Venus: Halide cloud condensation and volatile element inventories
NASA Technical Reports Server (NTRS)
Lewis, J. S.; Fegley, B., Jr.
1982-01-01
Several Venus cloud condensates, including A12C16 as well as halides, oxides and sulfides of arsenic and antimony, are assessed for their thermodynamic and geochemical plausibility. Aluminum chloride can confidently be ruled out, and condensation of arsenic sulfides on the surface will cause arsenic compounds to be too rare to produce the observed clouds. Antimony may conceivably be sufficiently volatile, but the expected molecular form is gaseous SbS, not the chloride. Arsenic and antimony compounds in the atmosphere will be regulated at very low levels by sulfide precipitation, irrespective of the planetary inventory of As and Sb. Thus the arguments for a volatile-deficient origin for Venus based on the depletion of water and mercury (relative to Earth) cannot be tested by a search for atmospheric arsenic or antimony.
NASA Technical Reports Server (NTRS)
1982-01-01
Non-solar compositional models of the troposphere of Jupiter, halide cloud condensation and volatile element inventories on Venus, and shock-wave processing of interstellar cloud materials are discussed.
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical and physical models of the Jovian subnebula are addressed. Halide cloud condensation and volatile element inventories on Venus and considered. Computation methods for isolated grain condensation behavior are examined.
Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Dhooghe, Frederik; De Keyser, Johan; Altwegg, Kathrin; Briois, Christelle; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Cessateur, Gaël; Combi, Michael R.; Equeter, Eddy; Fiethe, Björn; Fray, Nicolas; Fuselier, Stephen; Gasc, Sébastien; Gibbons, Andrew; Gombosi, Tamas; Gunell, Herbert; Hässig, Myrtha; Hilchenbach, Martin; Le Roy, Léna; Maggiolo, Romain; Mall, Urs; Marty, Bernard; Neefs, Eddy; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Wurz, Peter
2017-12-01
We report the first in situ detection of halogens in a cometary coma, that of 67P/Churyumov-Gerasimenko. Neutral gas mass spectra collected by the European Space Agency's Rosetta spacecraft during four periods of interest from the first comet encounter up to perihelion indicate that the main halogen-bearing compounds are HF, HCl and HBr. The bulk elemental abundances relative to oxygen are ∼8.9 × 10-5 for F/O, ∼1.2 × 10-4 for Cl/O and ∼2.5 × 10-6 for Br/O, for the volatile fraction of the comet. The cometary isotopic ratios for 37Cl/35Cl and 81Br/79Br match the Solar system values within the error margins. The observations point to an origin of the hydrogen halides in molecular cloud chemistry, with frozen hydrogen halides on dust grains, and a subsequent incorporation into comets as the cloud condensed and the Solar system formed.
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
A Numerical Study of Convection in a Condensing CO2 Atmosphere under Early Mars-Like Conditions
NASA Astrophysics Data System (ADS)
Nakajima, Kensuke; Yamashita, Tatsuya; Odaka, Masatsugu; Sugiyama, Ko-ichiro; Ishiwatari, Masaki; Nishizawa, Seiya; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki
2017-10-01
Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.
FRACTIONAL DISTILLATION SEPARATION OF PLUTONIUM VALUES FROM LIGHT ELEMENT VALUES
Cunningham, B.B.
1957-12-17
A process is described for removing light element impurities from plutonium. It has been found that plutonium contaminated with impurities may be purified by converting the plutonium to a halide and purifying the halide by a fractional distillation whereby impurities may be distilled from the plutonium halide. A particularly effective method includes the step of forming a lower halide such as the trior tetrahalide and distilling the halide under conditions such that no decomposition of the halide occurs. Molecular distillation methods are particularly suitable for this process. The apparatus may comprise an evaporation plate with means for heating it and a condenser surface with means for cooling it. The condenser surface is placed at a distance from the evaporating surface less than the mean free path of molecular travel of the material being distilled at the pressure and temperature used. The entire evaporating system is evacuated until the pressure is about 10/sup -4/ millimeters of mercury. A high temperuture method is presented for sealing porous materials such as carbon or graphite that may be used as a support or a moderator in a nuclear reactor. The carbon body is subjected to two surface heats simultaneously in an inert atmosphere; the surface to be sealed is heated to 1500 degrees centigrade; and another surface is heated to 300 degrees centigrade, whereupon the carbon vaporizes and flows to the cooler surface where it is deposited to seal that surface. This method may be used to seal a nuclear fuel in the carbon structure.
Anion binding by bambus[6]uril probed in the gas phase and in solution.
Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir
2011-10-20
Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.
NASA Astrophysics Data System (ADS)
Ohno, Kazumasa; Okuzumi, Satoshi
2017-02-01
A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation-coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.
Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.
1978-01-01
Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.
2017-10-01
Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter
2007-01-01
The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.
NASA Technical Reports Server (NTRS)
Oberbeck, Verne R.; Marshall, John; Shen, Thomas
1991-01-01
The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.
Parameterization of bulk condensation in numerical cloud models
NASA Technical Reports Server (NTRS)
Kogan, Yefim L.; Martin, William J.
1994-01-01
The accuracy of the moist saturation adjustment scheme has been evaluated using a three-dimensional explicit microphysical cloud model. It was found that the error in saturation adjustment depends strongly on the Cloud Condensation Nucleii (CCN) concentration in the ambient atmosphere. The scheme provides rather accurate results in the case where a sufficiently large number of CCN (on the order of several hundred per cubic centimeter) is available. However, under conditions typical of marine stratocumulus cloud layers with low CCN concentration, the error in the amounts of condensed water vapor and released latent heat may be as large as 40%-50%. A revision of the saturation adjustment scheme is devised that employs the CCN concentration, dynamical supersaturation, and cloud water content as additional variables in the calculation of the condensation rate. The revised condensation model reduced the error in maximum updraft and cloud water content in the climatically significant case of marine stratocumulus cloud layers by an order of magnitude.
Cloud condensation nucleus-sulfate mass relationship and cloud albedo
NASA Technical Reports Server (NTRS)
Hegg, Dean A.
1994-01-01
Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Kazumasa; Okuzumi, Satoshi
A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our modelmore » by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.« less
Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud
NASA Technical Reports Server (NTRS)
Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.;
2007-01-01
In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.
Cloud condensation nuclei near marine cumulus
NASA Technical Reports Server (NTRS)
Hudson, James G.
1993-01-01
Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
Increased ionization supports growth of aerosols into cloud condensation nuclei.
Svensmark, H; Enghoff, M B; Shaviv, N J; Svensmark, J
2017-12-19
Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important addition to the growth caused by condensation of neutral molecules. Under atmospheric conditions the growth from ions can constitute several percent of the neutral growth. We performed experimental studies which quantify the effect of ions on the growth of aerosols between nucleation and sizes >20 nm and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth's present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity.
Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Mbarek, Rostom; Kempton, Eliza M.-R.
2016-08-01
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.
2014-02-01
A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of condensates in the upper troposphere. The moist convection layer becomes potentially unstable with respect to an air parcel rising from below the H2O lifting condensation level (LCL) well before the development of cumulonimbus clouds. The instability accumulates until an appropriate trigger is provided by the H2O condensate that falls down through the H2O LCL; the H2O condensate drives a downward flow below the H2O LCL as a result of the latent cooling associated with the re-evaporation of the condensate, and the returning updrafts carry moist air from below to the moist convection layer. Active cloud development is terminated when the instability is completely exhausted. The period of intermittency is roughly equal to the time obtained by dividing the mean temperature increase, which is caused by active cumulonimbus development, by the body cooling rate.
NASA Astrophysics Data System (ADS)
Simpson, Emma; Connolly, Paul; McFiggans, Gordon
2016-04-01
Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a large suppression effect. In this poster possible ways to constrain Mwc are discussed as well as conditions where the suppression effect is likely to be greatest. Key Words: Clouds, aerosol, CCN, IN, modelling
Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Kempton, Eliza M.-R.; Mbarek, Rostom
2015-12-01
Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At higher temperatures, clouds are formed from a variety of materials including metals, metal oxides, and aluminosilicates.
Cloud Microphysics Budget in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2001-01-01
Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.
CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarek, Rostom; Kempton, Eliza M.-R., E-mail: mbarekro@grinnell.edu, E-mail: kemptone@grinnell.edu
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer and Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solarmore » and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350–3000 K. Clouds should form along the temperature–pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K{sub 2}SO{sub 4} and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.« less
Cloud Condensation in Titan's Lower Stratosphere
NASA Technical Reports Server (NTRS)
Romani, Paul N.; Anderson, Carrie M.
2011-01-01
A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability of the clouds.
Atmospheric Science Data Center
2013-04-19
... into a moist layer of atmosphere. The particles become cloud condensation nuclei (CCN), which may either produce new cloud particles where ... visualization of the vertical structure of the condensation trails. It was created using a combination of red band data from ...
Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.
2012-01-01
The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.
Laser-filamentation-induced condensation and snow formation in a cloud chamber.
Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan
2012-04-01
Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.
The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...
Apparatus for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1995-04-04
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Method for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1992-12-15
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Marchand, R.; Ackerman, T. P.
2016-12-01
Satellite instrument simulators have emerged as a means to reduce errors in model evaluation by producing simulated or psuedo-retrievals from model fields, which account for limitations in the satellite retrieval process. Because of the mismatch in resolved scales between satellite retrievals and large-scale models, model cloud fields must first be downscaled to scales consistent with satellite retrievals. This downscaling is analogous to that required for model radiative transfer calculations. The assumption is often made in both model radiative transfer codes and satellite simulators that the unresolved clouds follow maximum-random overlap with horizontally homogeneous cloud condensate amounts. We examine errors in simulated MISR and CloudSat retrievals that arise due to these assumptions by applying the MISR and CloudSat simulators to cloud resolving model (CRM) output generated by the Super-parameterized Community Atmosphere Model (SP-CAM). Errors are quantified by comparing simulated retrievals performed directly on the CRM fields with those simulated by first averaging the CRM fields to approximately 2-degree resolution, applying a "subcolumn generator" to regenerate psuedo-resolved cloud and precipitation condensate fields, and then applying the MISR and CloudSat simulators on the regenerated condensate fields. We show that errors due to both assumptions of maximum-random overlap and homogeneous condensate are significant (relative to uncertainties in the observations and other simulator limitations). The treatment of precipitation is particularly problematic for CloudSat-simulated radar reflectivity. We introduce an improved subcolumn generator for use with the simulators, and show that these errors can be greatly reduced by replacing the maximum-random overlap assumption with the more realistic generalized overlap and incorporating a simple parameterization of subgrid-scale cloud and precipitation condensate heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. SAND2016-7485 A
Precipitating Condensation Clouds in Substellar Atmospheres
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)
2000-01-01
We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.
Worldwide data sets constrain the water vapor uptake coefficient in cloud formation
Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.
2013-01-01
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189
Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.
Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N
2013-03-05
Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.
21 CFR 74.1327 - D&C Red No. 27.
Code of Federal Regulations, 2010 CFR
2010-04-01
... bromine. The 4,5,6,7-tetrachlorofluorescein is manufactured by the acid condensation of resorcinol and tetrachlorophthalic acid or its anhydride. The 4,5,6,7-tetrachlorofluorescein is isolated and partially purified prior... avoided by current good manufacturing practice: Sum of volatile matter (at 135 °C) and halides and...
NASA Astrophysics Data System (ADS)
Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.
2011-12-01
Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes. Entrainment of air into the plume is seen as evaporation of condensate. In the plume between about -7 and -12C, the ice condensate fraction increases with height, and the isotope ratios are used to discern ice formation from deposition from ice formed from in situ freezing of cloud liquid. The observed profiles demonstrate a new capacity for cloud process studies and provide new insight into the water budget of clouds.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg
The Third International Cloud Condensation Nuclei Workshop. [conference
NASA Technical Reports Server (NTRS)
Kocmond, W. C.; Rogers, C. R. (Editor); Rea, S. W. (Editor)
1981-01-01
Twenty-five instruments were tested, including size characterization devices and two Aitken counters. The test aerosols were supplied to the instruments by an on-line generation system, thereby eliminating the need for storage bags. Cloud condensation chambers and haze chambers are highlighted.
Nitric Acid Uptake on Subtropical Cirrus Cloud Particles
NASA Technical Reports Server (NTRS)
2004-01-01
The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.
NASA Astrophysics Data System (ADS)
Chen, Sisi; Yau, Man-Kong; Bartello, Peter; Xue, Lulin
2018-05-01
In most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small when condensational growth is effective. This implies that both processes should be considered simultaneously to unveil the full history of droplet growth and rain formation. This paper introduces the first direct numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions inside an adiabatic ascending cloud parcel. Results from the condensation-only, collision-only, and condensation-collision experiments are compared to examine the contribution to the broadening of droplet size distribution (DSD) by the individual process and by the combined processes. Simulations of different turbulent intensities are conducted to investigate the impact of turbulence on each process and on the condensation-induced collisions. The results show that the condensational process promotes the collisions in a turbulent environment and reduces the collisions when in still air, indicating a positive impact of condensation on turbulent collisions. This work suggests the necessity of including both processes simultaneously when studying droplet-turbulence interaction to quantify the turbulence effect on the evolution of cloud droplet spectrum and rain formation.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.
1983-01-01
Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J
2018-05-07
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Holden, Mark A.; Wilson, Theodore W.; O'Sullivan, Daniel; Murray, Benjamin J.
2018-01-01
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes–nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these ‘solute effects’, to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature. PMID:29780544
Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds
NASA Astrophysics Data System (ADS)
Goulden, Olivia; Crooks, Matthew; Connolly, Paul
2018-01-01
We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.
1995-01-01
A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micron radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and under-prediction of peak supersaturations.
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.
1995-01-01
A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micrometers radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.
Wave-Modulated CO2 Condensation in Mars' Polar Atmosphere From MGS/TES & MOLA and MRO/MCS.
NASA Astrophysics Data System (ADS)
Banfield, D. J.
2016-12-01
In Mars' polar night, atmospheric temperatures fall low enough to cause CO2 condensation. This has been empirically demonstrated by Mars Global Surveyor's (MGS) Mars Orbiter Laser Altimeter (MOLA), which identified reflections from above the surface, and MGS Radio Science (RS) and Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter's (MRO) Mars Climate Sounder (MCS), all of which showed polar night temperature profiles that were super-saturated. Detailed analysis of TES temperature profiles as well as numerical modeling both suggest that the stationary and traveling waves on the polar vortices are strong enough to significantly modulate the CO2 cloud condensation. However the extent to which this is actually occurring has not been quantified. The polar night CO2 condensation represents a significant amount of energy deposition, even if it were uniformly distributed. If instead it is concentrated in the cold sectors of the various waves, this can be a tremendous perturbation not only to the wave amplitudes (clipping them from going much below the CO2 condensation temperature), but also impacting their ability to transport heat and momentum poleward and upward, and thus it may also impact the maintenance and shape of the polar vortex itself. Mars' polar vortices remain barotropically unstable throughout the winter in spite of large amplitude waves in their vicinity. We have identified when and where the various waves (with their specific amplitudes and phases) in the vicinity of the polar vortex should modulate the CO2 condensation (see Figure of a meridional cross-section showing where no clouds are expected (blue), clouds should be ubiquitous (green) and waves should be required to form clouds (red)). We have also correlated this with the distribution of the actual observed cloud identifications from MGS MOLA and MRO MCS. We find only poor correlations between the MGS/TES identified wave modulated condensation predictions and actual simultaneous cloud identifications from MGS/MOLA. We will discuss the results of a similar study using only MRO/MCS to analyze the mean atmospheric temperature, the stationary and traveling waves along the polar vortex, and the actual locations where CO2 condensation is evident.
21 CFR 74.1322 - D&C Red No. 22.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... The fluorescein is manufactured by the acid condensation of resorcinol and phthalic acid or its... good manufacturing practice: Sum of volatile matter (at 135°C) and halides and sulfates (calculated as... of phthalic acid, not more than 1 percent. Sodium salt of 2-(3,5-Dibromo-2,4-dihydroxybenzoyl)benzoic...
Novel amine-based presursor compounds and composite membranes thereof
Lee, Eric K. L.; Tuttle, Mark E.
1989-01-01
Novel amine-based precursor compounds comprising the condensation products of dialkylenetriamine and alpha, beta-unsaturated acid halides are disclosed, as well as composite membranes containing such compounds, the membranes being useful in RO-type processes for desalination and the removal of low molecular weight organic compounds such as phenols and carboxylic acids.
Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uin, Janek
2016-04-01
The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only inmore » the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.« less
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg less than L(sub s) less than 28 deg). Initially, thin (normal optical depth less than 0.06 at 825/ cm) ice clouds and hazes were widespread, showing a latitudinal gradient. With the onset of a regional dust storm at L(sub s) = 224 deg, ice clouds essentially vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The thickest clouds (optical depth approx. 0.6) were associated with major volcanic features. At L(exp s) = 318 deg, the cloud at Ascraeus Mons was observed to disappear between 21:30 and 09:30, consistent with historically recorded diurnal behavior for clouds of this type. Limb observations showed extended optically thin (depth less than 0.04) stratiform clouds at altitudes up to 55 km. A water ice haze was present in the north polar night at altitudes up to 40 km; this probably provided heterogeneous nucleation sites for the formation of CO2 clouds at altitudes below the 1 mbar pressure level, where atmospheric temperatures dropped to the condensation point of CO2.
NASA Technical Reports Server (NTRS)
1976-01-01
Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.
Nitric Acid Uptake on Subtropical Cirrus Cloud Particles
NASA Technical Reports Server (NTRS)
Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.;
2004-01-01
The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.
Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin
2016-04-04
We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guosheng
2013-03-15
Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less
Titan's Aerosol and Condensation Cloud Properties in the Far-IR Between 2005 and 2010
NASA Technical Reports Server (NTRS)
Anderson, Carrie; Samuelson, Robert
2011-01-01
Analyses of far-IR spectra between 20 and 560 cm(exp -1) (500 to 18 micron) recorded by the Cassini Composite Infrared Spectrometer (CIRS) yield the spectral dependence and the vertical distribution of Titan's photochemical aerosol and ice clouds. Titan's aerosol appears to be well mixed between the surface and an altitude of 300 km, with a spectral shape that does not change with latitude or time. The aerosol exhibits an extremely broad emission feature with a spectral peak at 140 cm(exp -1) (71 micron), which is not evident in laboratory simulated Titan aerosols (tholin). This low- energy aerosol emission feature may arise from low-energy molecules such as polycyclic aromatic hydrocarbons and/or nitrogenated aromatics. Unlike the vertically well-mixed aerosol, Titan's condensate clouds are located in highly restricted altitudes in the lower stratosphere, ranging between 60 and 100 km at low and moderate latitudes, to between 150 and 165 km at high northern latitudes during northern winter. Such clouds are located at altitudes where nitrile vapors are expected to condense and appear to be dominated by HCN and HC3N, which are the two most abundant nitriles in Titan's atmosphere. Associated with this ice cloud is a broad emission feature that spectrally peaks near 160 cm(exp -1) (62.5 micron). This ice composite appears to chemically change with altitude and latitude, probably as a result of differences in vapor abundance and condensation temperature, and the ice cloud appears to be global in extent. Both CIRS and the Huygens Descent Imager and Spectral Radiometer (DISR) show evidence of cloud layering in Titan's lower stratosphere. The 15 km difference in cloud altitude indicated by the two instruments suggests a difference in ice composition. CIRS also indicates a second ice cloud that exists at isolated latitudes and is consistent with hydrocarbon condensation above the tropopause. This cloud exhibits an emission feature that spectrally peaks near 80 cm(exp -1) (125 micron), possibly due to C2H6 ice or dominated by an ethane-acetylene composite ice, given that CzH6 then C2H2 are the two most abundant hydrocarbons next to methane in Titan's atmosphere.
On signatures of clouds in exoplanetary transit spectra
NASA Astrophysics Data System (ADS)
Pinhas, Arazi; Madhusudhan, Nikku
2017-11-01
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely the optical slope, the uniformity of this slope and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes and scaleheights. First, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na2S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g. MnS, ZnS, TiO2 and Fe2O3 have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO2, Fe2O3, Mg2SiO4 and MgSiO3 bearing strong infrared features observable with James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
Microphysical Model Studies of Venus Clouds
NASA Astrophysics Data System (ADS)
Meade, P. E.; Bullock, M. A.; Grinspoon, D. H.
2004-11-01
We have adapted a standard cloud microphysics model to construct a self-consistent microphysical model of Venus' cloud layer which reproduces and extends previous studies (e.g. James et al. 1997). Our model is based on the Community Aerosol and Radiation Model Atmosphere (CARMA), which is a widely used computer code for terrestrial cloud microphysics, derived from the work of Toon et al. (1988). The standard code has been adapted to treat H2O and H2SO4 as co-condensing vapor species onto aqueous H2SO4 cloud droplets, as well as the nucleation of condensation nuclei to droplets. Vapor condensation and evaporation follows the method of James et al. (1997). Microphysical processes included in this model include nucleation of condensation nuclei, condensation and evaporation of H2O and H2SO4 vapor, and droplet coagulation. Vertical transport occurs though advection, eddy diffusion, sedimentation for both droplets and condensation nuclei. The cloud model is used to explore the sensitivity of Venus' cloud layer to environmental changes. Observations of the Venus' lower cloud from the Pioneer Venus, Venera, and Galileo spacecraft have suggested that the properties of the lower cloud may be time-variable, and at times may be entirely absent (Carlson et al. 1993, Grinspoon et al. 1993, Esposito et al. 1997). Our model explores the dependence of such behavior on environment factors such as variations in water or SO2 abundance. We have also calculated the optical properties of the model atmosphere using both the conventional optical constants for H2SO4 (Palmer and Williams, 1975), and the new data of Tisdale et al. (1998). This work has been supported by NASA's Exobiology Program. References Carlson, R.W., et al., 1993. Planetary and Space Science, 41, 477-486. Esposito, L.W., et al., 1997. In Venus II, eds. S.W. Bougher et al., pp. 415-458, University of Arizona Press, Tucson. Grinspoon, D.H., et al., 1993. Planetary and Space Science, 41 (July 1993), 515-542. James, E. P., et al., 1997. Icarus, 129, 147-171. Palmer, K.F., and D. Williams, 1975. Applied Optics, 14, 208-219. Tisdale, R.T., et al., 1998. Journal of Geophysical Research, 103, 25,353-25,370. Toon , O. B., et al., 1988. J. Atmos. Sci., 45, 2123-2143.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
Sato, Yousuke; Goto, Daisuke; Michibata, Takuro; Suzuki, Kentaroh; Takemura, Toshihiko; Tomita, Hirofumi; Nakajima, Teruyuki
2018-03-07
Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.
Evolution of the Far-Infrared Cloud at Titan's South Pole
NASA Technical Reports Server (NTRS)
Jennings, Donald E.; Achterberg, R. K.; Cottini, V.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Kunde, V. G.; Carlson, R. C.; Guandique, E.;
2015-01-01
A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16.
The case against climate regulation via oceanic phytoplankton sulphur emissions.
Quinn, P K; Bates, T S
2011-11-30
More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei
Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP <50) can be abundant in the troposphere, but are conventionally considered too small to affect cloud formation. However, observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP <50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses andmore » forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.« less
Marine aerosol formation from biogenic iodine emissions.
O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten
2002-06-06
The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.
An observational search for CO2 ice clouds on Mars
NASA Technical Reports Server (NTRS)
Bell, James F., III; Calvin, Wendy M.; Pollack, James B.; Crisp, David
1993-01-01
CO2 ice clouds were first directly identified on Mars by the Mariner 6 and 7 infrared spectrometer limb scans. These observations provided support for early theoretical modeling efforts of CO2 condensation. Mariner 9 IRIS temperature profiles of north polar hood clouds were interpreted as indicating that these clouds were composed of H2O ice at lower latitudes and CO2 ice at higher latitudes. The role of CO2 condensation on Mars has recently received increased attention because (1) Kasting's model results indicated that CO2 cloud condensation limits the magnitude of the proposed early Mars CO2/H2O greenhouse, and (2) Pollack el al.'s GCM results indicated that the formation of CO2 ice clouds is favorable at all polar latitudes during the fall and winter seasons. These latter authors have shown that CO2 clouds play an important role in the polar energy balance, as the amount of CO2 contained in the polar caps is constrained by a balance between latent heat release, heat advected from lower latitudes, and thermal emission to space. The polar hood clouds reduce the amount of CO2 condensation on the polar caps because they reduce the net emission to space. There have been many extensive laboratory spectroscopic studies of H2O and CO2 ices and frosts. In this study, we use results from these and other sources to search for the occurrence of diagnostic CO2 (and H2O) ice and/or frost absorption features in ground based near-infrared imaging spectroscopic data of Mars. Our primary goals are (1) to try to confirm the previous direct observations of CO2 clouds on Mars; (2) to determine the spatial extent, temporal variability, and composition (H2O/CO2 ratio) of any clouds detected; and (3) through radiative transfer modeling, to try to determine the mean particle size and optical depth of polar hood clouds, thus, assessing their role in the polar heat budget.
Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.
2018-03-01
Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei
Aerosol-cloud interaction remains the largest uncertainty in climate projections. Ultrafine aerosol particles (UAP; size <50nm) are considered too small to serve as cloud condensation nuclei conventionally. However, this study provides observational evidence to accompany insights from numerical simulations to support that deep convective clouds (DCCs) over Amazon have strong capability of nucleating UAP from an urban source and forming greater numbers of droplets, because fast drop coalescence in these DCCs reduces drop surface area available for condensation, leading to high vapor supersaturation. The additional droplets subsequently decrease supersaturation and release more condensational latent heating, a dominant contributor to convection intensification,more » whereas enhanced latent heat from ice-related processes plays a secondary role. Therefore, the addition of anthropogenic UAP may play a much greater role in modulating clouds than previously believed over the Amazon region and possibly in other relatively pristine regions such as maritime and forest locations.« less
Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B
NASA Technical Reports Server (NTRS)
Zhou, Yifan; Apai, Daniel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.;
2018-01-01
Time-resolved observations of brown dwarfs' rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 (WFC3) near-infrared G141 taken in six consecutive orbits observations of HNPeg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1 to 1.7 micron broadband light curve has the amplitude of and period of hour. The modulation amplitude has no detectable wavelength dependence except in the 1.4 micron water absorption band, indicating that the characteristic condensate particle sizes are large (greater than 1 micron). We detect significantly (4.4 sigma) lower modulation amplitude in the 1.4 micron water absorption band, and find that HN Peg B's spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
Cloud Atlas: Rotational Modulations in the L/T Transition Brown Dwarf Companion HN Peg B
NASA Astrophysics Data System (ADS)
Zhou, Yifan; Apai, Dániel; Metchev, Stanimir; Lew, Ben W. P.; Schneider, Glenn; Marley, Mark S.; Karalidi, Theodora; Manjavacas, Elena; Bedin, Luigi R.; Cowan, Nicolas B.; Miles-Páez, Paulo A.; Lowrance, Patrick J.; Radigan, Jacqueline; Burgasser, Adam J.
2018-03-01
Time-resolved observations of brown dwarfs’ rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the 1.1–1.7 μm broadband light curve has an amplitude of 1.206% ± 0.025% and period of 15.4 ± 0.5 hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 μm water absorption band, indicating that the characteristic condensate particle sizes are large (>1 μm). We detect significantly (4.4σ) lower modulation amplitude in the 1.4 μm water absorption band and find that HN Peg B’s spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
Jets and Water Clouds on Jupiter
NASA Astrophysics Data System (ADS)
Lian, Yuan; Showman, A. P.
2012-10-01
Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.
Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon
NASA Astrophysics Data System (ADS)
Pöhlker, Christopher; Wiedemann, Kenia T.; Sinha, Bärbel; Shiraiwa, Manabu; Gunthe, Sachin S.; Smith, Mackenzie; Su, Hang; Artaxo, Paulo; Chen, Qi; Cheng, Yafang; Elbert, Wolfgang; Gilles, Mary K.; Kilcoyne, Arthur L. D.; Moffet, Ryan C.; Weigand, Markus; Martin, Scot T.; Pöschl, Ulrich; Andreae, Meinrat O.
2012-08-01
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Substantial convection and precipitation enhancements by ultrafine aerosol particles
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; ...
2018-01-26
Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP <50) can be abundant in the troposphere, but are conventionally considered too small to affect cloud formation. However, observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP <50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses andmore » forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.« less
Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks.
NASA Astrophysics Data System (ADS)
Russell, Lynn M.; Noone, Kevin J.; Ferek, Ronald J.; Pockalny, Robert A.; Flagan, Richard C.; Seinfeld, John H.
2000-08-01
Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided an opportunity to acquire data on the role of organic compounds in ambient clouds and in ship tracks identified in satellite images. Identification of PAHs in cloud droplet residual samples indicates that several PAHs are present in cloud condensation nuclei in anthropogenically influenced air and do result in activated droplets in cloud. These results establish the presence of combustion products, such as PAHs, in submicrometer aerosols in anthropogenically influenced marine air, with enhanced concentrations in air polluted by ship effluent. The presence of PAHs in droplet residuals in anthropogenically influenced air masses indicates that some fraction of those combustion products is present in the cloud condensation nuclei that activate in cloud. Although a sufficient mass of droplet residuals was not collected to establish a similar role for organics from measurements in satellite-identified ship tracks, the available evidence from the fraction of organics present in the interstitial aerosol is consistent with part of the organic fraction partitioning to the droplet population. In addition, the probability that a compound will be found in cloud droplets rather than in the unactivated aerosol and the compound's water solubility are compared. The PAHs studied are only weakly soluble in water, but most of the sparse data collected support more soluble compounds having a higher probability of activation.
Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Martin, S. T.; Kleinman, L.
2016-03-01
Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less
Evidence for Limited Indirect Aerosol Forcing in Stratocumulus
NASA Technical Reports Server (NTRS)
Ackerman, Andrew S.; Toon, O. B.; Stevens, D. E.
2003-01-01
Increases in cloud cover and condensed water contribute more than half of the indirect aerosol effect in an ensemble of general circulation model (GCM) simulations estimating the global radiative forcing of anthropogenic aerosols. We use detailed simulations of marine stratocumulus clouds and airborne observations of ship tracks to show that increases in cloud cover and condensed water in reality are far less than represented by the GCM ensemble. Our results offer an explanation for recent simplified inverse climate calculations indicating that indirect aerosol effects are greatly exaggerated in GCMs.
Femtosecond laser filament induced condensation and precipitation in a cloud chamber
Ju, Jingjing; Liu, Jiansheng; Liang, Hong; Chen, Yu; Sun, Haiyi; Liu, Yonghong; Wang, Jingwei; Wang, Cheng; Wang, Tiejun; Li, Ruxin; Xu, Zhizhan; Chin, See Leang
2016-01-01
A unified picture of femtosecond laser induced precipitation in a cloud chamber is proposed. Among the three principal consequences of filamentation from the point of view of thermodynamics, namely, generation of chemicals, shock waves and thermal air flow motion (due to convection), the last one turns out to be the principal cause. Much of the filament induced chemicals would stick onto the existing background CCN’s (Cloud Condensation Nuclei) through collision making the latter more active. Strong mixing of air having a large temperature gradient would result in supersaturation in which the background CCN’s would grow efficiently into water/ice/snow. This conclusion was supported by two independent experiments using pure heating or a fan to imitate the laser-induced thermal effect or the strong air flow motion, respectively. Without the assistance of any shock wave and chemical CCN’s arising from laser filament, condensation and precipitation occurred. Meanwhile we believe that latent heat release during condensation /precipitation would enhance the air flow for mixing. PMID:27143227
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.
2015-12-01
The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed.
NASA Astrophysics Data System (ADS)
Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk
2018-03-01
An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
Cloud Condensation Nuclei in FIRE III
NASA Technical Reports Server (NTRS)
Hudson, James G.; Delnore, Victor E. (Technical Monitor)
2002-01-01
Yum and Hudson showed that the springtime Arctic aerosol is probably a result of long-range transport at high altitudes. Scavenging of particles by clouds reduces the low level concentrations by a factor of 3. This produces a vertical gradient in particle concentrations when low-level clouds are present. Concentrations are uniform with height when clouds are not present. Low-level CCN (cloud condensation nuclei) spectra are similar to those in other maritime areas as found by previous projects including FIRE 1 and ASTEX, which were also supported on earlier NASA-FIRE grants. Wylie and Hudson carried this work much further by comparing the CCN spectra observed during ACE with back trajectories of air masses and satellite photographs. This showed that cloud scavenging reduces CCN concentrations at all altitudes over the springtime Arctic, with liquid clouds being more efficient scavengers than frozen clouds. The small size of the Arctic Ocean seems to make it more susceptible to continental and thus anthropogenic aerosol influences than any of the other larger oceans.
NASA Technical Reports Server (NTRS)
Hindman, E. E., II; Ala, G. G.; Parungo, F. P.; Willis, P. T.; Bendura, R. J.; Woods, D.
1978-01-01
Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum.
Evolution of the Far-Infrared Cloud at Titan's South Pole
NASA Technical Reports Server (NTRS)
Jennings, Donald E.; Achterberg, R. K.; Cottini, V.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Kunde, V. G.; Carlson, R. C.; Guandique, E.;
2015-01-01
A condensate cloud on Titan identified by its 220 cm-1 far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north, the cloud, which extends from 55 N to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the south pole is very different from that in the north. Mapping in 2013 December showed that the condensate emission was confined to a ring with a maximum at 80 S. The ring was centered 4deg from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in 2014 January) was also offset by 4deg, but had a central peak at the pole and a secondary maximum in a ring at about 70 S with a minimum at 80 S. The shape of the gas emission distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the south pole is likely to transition to a gradual decline from 2015 to 2016. Key words: molecular processes - planets and satellites: atmospheres - planets and satellites: composition - planets and satellites: individual (Titan) - radiation mechanisms: thermal
NASA Astrophysics Data System (ADS)
Wang, Xiaocong
2017-04-01
Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich
2016-01-01
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers.
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Barbosa, Henrique M J; Pöschl, Ulrich; Andreae, Meinrat O
2016-05-24
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day.
NASA Astrophysics Data System (ADS)
Guan, S.; Reuter, G. W.
1996-08-01
Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.
CO2 Condensation Models for Mars
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R.
2004-01-01
During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less
Large Scale Ice Water Path and 3-D Ice Water Content
Liu, Guosheng
2008-01-15
Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.
Dynamics and thermodynamics of a tornado: Rotation effects
NASA Astrophysics Data System (ADS)
Ben-Amots, N.
2016-09-01
This paper investigates the relevant processes in the tornado including the dynamics of rotation and thermodynamics as well as condensation. The main novelty of this paper is the explanation of the phenomena occurring in the central downflow. The reduced pressure in the tornado's funnel sucks air and water vapor from the cloud above the tornado. The latent heat of condensation is released in the funnel. The centrifugal force drives the generated water drops out of the funnel. The latent heat of condensation released is also transferred out of the funnel, and supplies the helically ascending air flow surrounding the tornado with additional buoyancy energy. This process gives the tornado increased strength compared to the dust devil type of flow, thus explaining why tornadoes occur always under a cloud, and why the tornado pipe can reach a height of a kilometer and more. To sustain a tornado, the temperature of water vapor at the cloud's base should be higher than the surroundings by a certain minimal value. Remote infrared temperature measurements of clouds' bases may provide indications of the probability that a cloud can spawn a tornado, which may increase the lead time.
NASA Astrophysics Data System (ADS)
Fiedler, V.; Arnold, F.; Schlager, H.; Pirjola, L.
2009-01-01
We report on sulfur dioxide (SO2) induced formation of aerosols and cloud condensation nuclei in an SO2 rich aged (9 days) pollution plume of Chinese origin, which we have detected at 5-7 km altitude during a research aircraft mission over the East Atlantic off the West coast of Ireland. Building on our measurements of SO2 and other trace gases along with plume trajectory simulations, we have performed model simulations of SO2 induced formation of gaseous sulfuric acid (GSA, H2SO4) followed by GSA induced formation and growth of aerosol particles. We find that efficient photochemical SO2 conversion to GSA took place in the plume followed by efficient formation and growth of H2SO4-H2O aerosol particles. Most particles reached sufficiently large sizes to act as cloud condensation nuclei whenever water vapor supersaturation exceeded 0.1-0.2%. As a consequence, smaller but more numerous cloud droplets are formed, which tend to increase the cloud albedo and to decrease the rainout efficiency. The detected plume represents an interesting example of the environmental impact of long range transport of fossil fuel combustion generated SO2.
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
A photoionization model for the optical line emission from cooling flows
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. M.
1991-01-01
The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.
Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping
NASA Astrophysics Data System (ADS)
Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna
2017-11-01
This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.
Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2009-01-01
Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are ~20% less reflective than typical neighboring clouds throughout the spectral range from 0.8 ??m to at least 4.1 ??m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the ~1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the ~10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 ??m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. ?? 2009 Elsevier Ltd. All rights reserved.
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers
Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; ...
2016-03-04
Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities ( Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. In this paper, our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation ( S) is determined by Wb and the satellite-retrieved cloud basemore » drop concentrations ( Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. Finally, the limitation for small solar backscattering angles of <25° restricts the satellite coverage to ~25% of the world area in a single day.« less
NASA Astrophysics Data System (ADS)
Barros, A. P.; Duan, Y.
2017-12-01
A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.
Modeling studying on ice formation by bacteria in warm-based convective cloud
NASA Astrophysics Data System (ADS)
Sun, J.
2005-12-01
Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.
NASA Technical Reports Server (NTRS)
1998-01-01
Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48.
Figure caption from Science MagazineNASA Technical Reports Server (NTRS)
Rossow, W. B.
1977-01-01
An approximate numerical technique is used to investigate the influence of coagulation, sedimentation and turbulent motions on the observed droplet size distribution in the upper layers of the Venus clouds. If the cloud mass mixing ratio is less than 0.000001 at 250 K or the eddy diffusivity throughout the cloud is greater than 1,000,000 sq cm per sec, then coagulation is unimportant. In this case, the observed droplet size distribution is the initial size distribution produced by the condensation of the droplets. It is found that all cloud models with droplet formation near the cloud top (e.g., a photochemical model) must produce the observed droplet size distribution by condensation without subsequent modification by coagulation. However, neither meteoritic or surface dust can supply sufficient nucleating particles to account for the observed droplet number density. If the cloud droplets are formed near the cloud bottom, the observed droplet size distribution can be produced solely by the interaction of coagulation and dynamics; all information about the initial size distribution is lost. If droplet formation occurs near the cloud bottom, the lower atmosphere of Venus is oxidizing rather than reducing.
Water Ice Cloud Opacities and Temperatures Derived from the Viking IRTM Data Set
NASA Technical Reports Server (NTRS)
TamppariL. K.; Zurek, R. W.; Paige, D. A.
1999-01-01
The degree to which water ice clouds play a role in the Mars climate is unknown. Latent heating of water ice clouds is small and since most hazes appeared to be thin (tau less than or = 1) their radiative effects have been neglected. Condensation likely limits the vertical extent of water vapor in the water column and a lowering of the condensation altitude, as seen in the northern spring and summer, could increase the seasonal exchange of water between the atmosphere and the surface. It has been suggested that water ice cloud formation is more frequent and widespread in the aphelic hemisphere (currently the northern). This may limit water to the northern hemisphere through greater exchange with the regolith and through restricted southward transport of water vapor by the Mars Hadley circulation. In addition, it has been suggested that water ice cloud formation also controls the vertical distribution of atmospheric dust in some seasons. This scavenging of dust may Continuing from the IRTM cloud maps, derived cloud opacities and cloud temperatures for several locations and seasons will be presented. Sensitivities to cloud particle sizes, surface temperature, and dust opacity will be discussed.
Aerosol-cloud interactions in mixed-phase convective clouds - Part 1: Aerosol perturbations
NASA Astrophysics Data System (ADS)
Miltenberger, Annette K.; Field, Paul R.; Hill, Adrian A.; Rosenberg, Phil; Shipway, Ben J.; Wilkinson, Jonathan M.; Scovell, Robert; Blyth, Alan M.
2018-03-01
Changes induced by perturbed aerosol conditions in moderately deep mixed-phase convective clouds (cloud top height ˜ 5 km) developing along sea-breeze convergence lines are investigated with high-resolution numerical model simulations. The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics (CASIM) module for the Unified Model (UM), which allows for the representation of the two-way interaction between cloud and aerosol fields. Simulations are evaluated against observations collected during the COnvective Precipitation Experiment (COPE) field campaign over the southwestern peninsula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud base cloud droplet number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by cloud microphysical processes improves the correspondence with observed CDNC values and spatial variability, but reduces the agreement with observations for average cloud size and cloud top height. Accumulated precipitation is suppressed for higher-aerosol conditions before clouds become organised along the sea-breeze convergence lines. Changes in precipitation are smaller in simulations with aerosol processing. The precipitation suppression is due to less efficient precipitation production by warm-phase microphysics, consistent with parcel model predictions. In contrast, after convective cells organise along the sea-breeze convergence zone, accumulated precipitation increases with aerosol concentrations. Condensate production increases with the aerosol concentrations due to higher vertical velocities in the convective cores and higher cloud top heights. However, for the highest-aerosol scenarios, no further increase in the condensate production occurs, as clouds grow into an upper-level stable layer. In these cases, the reduced precipitation efficiency (PE) dominates the precipitation response and no further precipitation enhancement occurs. Previous studies of deep convective clouds have related larger vertical velocities under high-aerosol conditions to enhanced latent heating from freezing. In the presented simulations changes in latent heating above the 0°C are negligible, but latent heating from condensation increases with aerosol concentrations. It is hypothesised that this increase is related to changes in the cloud field structure reducing the mixing of environmental air into the convective core. The precipitation response of the deeper mixed-phase clouds along well-established convergence lines can be the opposite of predictions from parcel models. This occurs when clouds interact with a pre-existing thermodynamic environment and cloud field structural changes occur that are not captured by simple parcel model approaches.
NASA Astrophysics Data System (ADS)
Dong, C.; Stanier, C. O.; Bullard, R.; Singh, A.
2016-12-01
A one month simulation has been performed using the New particle formation (NPF)-explicit WRF-Chem (Matsui et al, Journal of Geophysical Research, 116(D19208), 2011). The simulation was run for a domain of the continental United States, with analysis focused on the Midwestern and eastern portions of the U.S. Analysis focused on quantification and explanation of planetary boundary layer (PBL) NPF in the model on variables beyond condensation nuclei (CN), cloud condensation nuclei (CCN), and cloud droplet size distributions. The model was evaluated against meteorology, chemical species and aerosol physical property observations. Comparison shows the model performance was comparable to that of other studies. Nucleation enhanced the concentration of condensation nuclei (CN). Cloud condensation nuclei (CCN) concentrations were enhanced and suppressed at high and low supersaturations, respectively. For air pollutants, the most pronounced influence of PBL nucleation was PM2.5 reduction, which was mainly caused by SO4 decreases (62.7%). For shortwave radiation, changes due to indirect effects of NPF were larger than direct effects. Shortwave radiation and cloud droplet concentration typically changed in the same way. Similar change patterns were found for T2 and PBL height. PBL nucleation led to a net increase of precipitation during the simulation period. Sensitivity tests showed that the combination of PBL NPF together with aqueous chemistry was the predominant cause of SO4 reduction.
NASA Technical Reports Server (NTRS)
Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.;
2006-01-01
If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xianyu; Showman, Adam P., E-mail: xianyut@lpl.arizona.edu
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle ofmore » silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east–west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.« less
Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam P.
2017-02-01
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east-west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.
NASA Technical Reports Server (NTRS)
Lee, Yunha; Adams, P. J.
2012-01-01
This study develops more computationally efficient versions of the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithms, collectively called Fast TOMAS. Several methods for speeding up the algorithm were attempted, but only reducing the number of size sections was adopted. Fast TOMAS models, coupled to the GISS GCM II-prime, require a new coagulation algorithm with less restrictive size resolution assumptions but only minor changes in other processes. Fast TOMAS models have been evaluated in a box model against analytical solutions of coagulation and condensation and in a 3-D model against the original TOMAS (TOMAS-30) model. Condensation and coagulation in the Fast TOMAS models agree well with the analytical solution but show slightly more bias than the TOMAS-30 box model. In the 3-D model, errors resulting from decreased size resolution in each process (i.e., emissions, cloud processing wet deposition, microphysics) are quantified in a series of model sensitivity simulations. Errors resulting from lower size resolution in condensation and coagulation, defined as the microphysics error, affect number and mass concentrations by only a few percent. The microphysics error in CN70CN100 (number concentrations of particles larger than 70100 nm diameter), proxies for cloud condensation nuclei, range from 5 to 5 in most regions. The largest errors are associated with decreasing the size resolution in the cloud processing wet deposition calculations, defined as cloud-processing error, and range from 20 to 15 in most regions for CN70CN100 concentrations. Overall, the Fast TOMAS models increase the computational speed by 2 to 3 times with only small numerical errors stemming from condensation and coagulation calculations when compared to TOMAS-30. The faster versions of the TOMAS model allow for the longer, multi-year simulations required to assess aerosol effects on cloud lifetime and precipitation.
1998-03-13
Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48. http://photojournal.jpl.nasa.gov/catalog/PIA00812
Direct Numerical Simulation of Turbulent Condensation in Clouds
NASA Technical Reports Server (NTRS)
Shariff, K.; Paoli, R.
2004-01-01
In this brief, we investigate the turbulent condensation of a population of droplets by means of a direct numerical simulation. To that end, a coupled Navier-Stokes/Lagrangian solver is used where each particle is tracked and its growth by water vapor condensation is monitored exactly. The main goals of the study are to find out whether turbulence broadens the droplet size distribution, as observed in in situ measurements. The second issue is to understand if and for how long a correlation between the droplet radius and the local supersaturation exists for the purpose of modeling sub-grid scale microphysics in cloud-resolving codes. This brief is organized as follows. In Section 2 the governing equations are presented, including the droplet condensation model. The implementation of the forcing procedure is described in Section 3. The simulation results are presented in Section 4 together with a sketch of a simple stochastic model for turbulent condensation. Conclusions and the main outcomes of the study are given in Section 5.
Volatile element chemistry in the solar nebula - Na, K, F, Cl, Br, and P
NASA Technical Reports Server (NTRS)
Fegley, B., Jr.; Lewis, J. S.
1980-01-01
The results of the most extensive set to date of thermodynamic calculations on the equilibrium chemistry of several hundred compounds of the elements Na, K, F, Cl, Br, and P in a solar composition system are reported. Two extreme models of accretion are investigated. In one extreme complete chemical equilibrium between condensates and gases is maintained because the time scale for accretion is long compared to the time scale for cooling or dissipation of the nebula. Condensates formed in this homogeneous accretion model include several phases such as whitlockite, alkali feldspars, and apatite minerals which are found in chondrites. In the other extreme complete isolation of newly formed condensates from prior condensates and gases occurs due to a time scale for accretion that is short relative to the time required for nebular cooling or dissipation. The condensates produced in this heterogeneous accretion model include alkali sulfides, ammonium halides, and ammonium phosphates. None of these phases are found in chondrites. Available observations of the Na, K, F, Cl, Br, and P elemental abundances in the terrestrial planets are found to be compatible with the predictions of the homogeneous accretion model.
NASA Astrophysics Data System (ADS)
Hu, Renyu; Cahoy, Kerri; Zuber, Maria T.
2012-07-01
We study the condensation of CO2 in Mars' atmosphere using temperature profiles retrieved from radio occultation measurements from Mars Global Surveyor (MGS) as well as the climate sounding instrument onboard the Mars Reconnaissance Orbiter (MRO), and detection of reflective clouds by the MGS Mars Orbiter Laser Altimeter (MOLA). We find 11 events in 1999 where MGS temperature profiles indicate CO2 condensation and MOLA simultaneously detects reflective clouds. We thus provide causal evidence that MOLA non-ground returns are associated with CO2 condensation, which strongly indicates their nature being CO2 clouds. The MGS and MRO temperature profiles together reveal the seasonal expansion and shrinking of the area and the vertical extent of atmospheric saturation. The occurrence rate of atmospheric saturation is maximized at high latitudes in the middle of winter. The atmospheric saturation in the northern polar region exhibits more intense seasonal variation than in the southern polar region. In particular, a shrinking of saturation area and thickness from LS ˜ 270° to ˜300° in 2007 is found; this is probably related to a planet-encircling dust storm. Furthermore, we integrate the condensation area and the condensation occurrence rate to estimate cumulative masses of CO2 condensates deposited onto the northern and southern seasonal polar caps. The precipitation flux is approximated by the particle settling flux which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8-22 μm in the northern hemisphere and 4-13 μm in the southern hemisphere. Our multi-instrument data analysis provides new constraints on modeling the global climate of Mars.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)
2002-01-01
A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
Influence of organic films on the evaporation and condensation of water in aerosol
Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.
2013-01-01
Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675
Influence of organic films on the evaporation and condensation of water in aerosol.
Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P
2013-05-28
Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.
New particle formation leads to cloud dimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi
New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less
On the probability distribution function of the mass surface density of molecular clouds. I
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-05-01
The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenhua; Sui, Chung-Hsiung; Fan, Jiwen
Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolutionmore » of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.« less
Influence of Microphysical Variability on Stochastic Condensation in Turbulent Clouds
NASA Astrophysics Data System (ADS)
Desai, N.; Chandrakar, K. K.; Chang, K.; Glienke, S.; Cantrell, W. H.; Fugal, J. P.; Shaw, R. A.
2017-12-01
We investigate the influence of variability in droplet number concentration and radius on the evolution of cloud droplet size distributions. Measurements are made on the centimeter scale using digitial inline holography, both in a controlled laboratory setting and in the field using HOLODEC measurements from CSET. We created steady state cloud conditions in the laboratory Pi Chamber, in which a turbulent cloud can be sustained for long periods of time. Using holographic imaging, we directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. We interpret the measurements in the context of stochastic condensation theory to determine how fluctuations in integral radius contribute to droplet growth. We find that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate, but contributes significantly to the rate of increase of the size distribution width. We compare these results with in-situ measurements and find evidence for microphysical signatures of stochastic condensation. The results suggest that supersaturation fluctuations lead to broader size distributions and allow droplets to reach the collision-coalescence stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ji-Young; Hong, Song-You; Sunny Lim, Kyo-Sun
The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, whichleadstolessproductionoffrozenprecipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversionmore » of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in pre-cipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.« less
Better Absorbents for Ammonia Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer
Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less
Better Absorbents for Ammonia Separation
Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer; ...
2018-03-30
Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less
Can Condensing Organic Aerosols Lead to Less Cloud Particles?
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S.
2017-12-01
We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.
A Linearized Prognostic Cloud Scheme in NASAs Goddard Earth Observing System Data Assimilation Tools
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald M.; Gelaro, Ronald; Kim, Jong G.; Mahajan, Rahul
2015-01-01
A linearized prognostic cloud scheme has been developed to accompany the linearized convection scheme recently implemented in NASA's Goddard Earth Observing System data assimilation tools. The linearization, developed from the nonlinear cloud scheme, treats cloud variables prognostically so they are subject to linearized advection, diffusion, generation, and evaporation. Four linearized cloud variables are modeled, the ice and water phases of clouds generated by large-scale condensation and, separately, by detraining convection. For each species the scheme models their sources, sublimation, evaporation, and autoconversion. Large-scale, anvil and convective species of precipitation are modeled and evaporated. The cloud scheme exhibits linearity and realistic perturbation growth, except around the generation of clouds through large-scale condensation. Discontinuities and steep gradients are widely used here and severe problems occur in the calculation of cloud fraction. For data assimilation applications this poor behavior is controlled by replacing this part of the scheme with a perturbation model. For observation impacts, where efficiency is less of a concern, a filtering is developed that examines the Jacobian. The replacement scheme is only invoked if Jacobian elements or eigenvalues violate a series of tuned constants. The linearized prognostic cloud scheme is tested by comparing the linear and nonlinear perturbation trajectories for 6-, 12-, and 24-h forecast times. The tangent linear model performs well and perturbations of clouds are well captured for the lead times of interest.
Cloud Condensation Nuclei in Cumulus Humilis - Selected Case Study During the CHAPS Campaign
NASA Astrophysics Data System (ADS)
Yu, X.; Berg, L. K.; Berkowitz, C. M.; Alexander, M. L.; Lee, Y.; Laskin, A.; Ogren, J. A.; Andrews, B.
2009-12-01
The Cumulus Humilis Aerosol Processing Study (CHAPS) provided a unique opportunity to study aerosol and cloud processing. Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Department of Energy (DOE) G-1 aircraft was used as one of the main platforms in CHAPS. Flight tracks were designed and implemented to characterize freshly emitted aerosols on cloud top and cloud base as well as with cloud, i.e., cumulus humilis (or fair-weather cumulus), in the vicinity of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols were determined downstream of an isokinetic inlet; and the activated particles downstream of a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This work will focus on studying CCN properties in cumulus humilis. Several approaches will be taken. The first is single particle analysis of particles collected by the Time-Resolved Aerosol Sampler (TRAC) by SEM/TEM coupled with EDX. We will specifically look into differences in particle properties such as chemical composition and morphology between activated and interstitial ones. The second analysis will link in situ measurements with the snap shots observations by TRAC. For instance, by looking into the characteristic m/z obtained by AMS vs. CO or isoprene, one can gain more insight into the role of primary and secondary organic aerosols in CCNs and background aerosols. Combined with observations of cloud properties, an improved picture of CCN activation in cumulus humilis can be made.
Direct Observations of Clouds on Brown Dwarfs: A Spitzer Study of Extreme Cases
NASA Astrophysics Data System (ADS)
Burgasser, Adam; Cruz, Kelle; Cushing, Michael; Kirkpatrick, J. Davy; Looper, Dagny; Lowrance, Patrick; Marley, Mark; Saumon, Didier
2008-03-01
Clouds play a fundamental role in the emergent spectral energy distributions and observed variability of very low mass stars and brown dwarfs, yet hey have only been studied indirectly thus far. Recent indications of a broad silicate grain absorption feature in the 8-11 micron spectra of mid-type L dwarfs, and evidence that the strength of this absorption varies according to broad-band near-infrared color, may finally allow the first direct studies of clouds and condensate grain properties in brown dwarf atmospheres. We propose to observe a sample of 18 ``extreme'' L dwarfs - objects with unusually blue and red near-infrared colors - with IRAC and IRS to study the 8-11 micron feature in detail (including grain size distributions and bulk compositions), and to constrain advanced condensate cloud atmosphere models currently in development. Our program provides a unique examination of the general processes of cloud formation by focusing on the relatively warm photospheres of late-type brown dwarfs.
Turbulence and star formation in molecular clouds
NASA Astrophysics Data System (ADS)
Larson, R. B.
1981-03-01
Consideration is given to the turbulence properties of molecular clouds and their implications for star formation. Data for 54 molecular clouds and condensations is presented which reveals cloud velocity dispersion and region size to follow a power-law relation, similar to the Kolmogoroff law for subsonic turbulence. Examination of the dynamics of the molecular clouds for which mass determinations are available reveals essentially all of them to be gravitationally bound, and to approximately satisfy the virial theorem. The observation of moderate scatter in the dispersion-size relation is noted to imply that most regions have not collapsed much since formation, suggesting that processes of turbulent hydrodynamics have played an important role in producing the observed substructures. A lower limit to the size of subcondensations at which their internal motions are no longer supersonic is shown to predict a minimum protostellar mass on the order of a few tenths of a solar mass, while massive protostellar clumps are found to develop complex internal structures, probably leading to the formation of prestellar condensation nuclei. The observed turbulence of molecular clouds is noted to imply lifetimes of less than 10 million years.
Corrosion of titanium and zirconium in organic solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clapp, R.A.; Saldanha, B.J.; Kvochak, J.J.
1995-09-01
Experiences of reactive metal corrosion in organic acids will be discussed. Emphasis will be placed on anhydrous organic solutions, and organic acids containing halides which are often added as catalysts or promoters. The case examples will illustrate the importance of evaluating reactive metals under conditions that closely simulate actual process chemistry, type of exposure (vapor, liquid, condensate), and final fabricated form, to ensure that the material will provide predictable long-term service in a commercial facility.
NASA Technical Reports Server (NTRS)
Hu, Renyu; Cahoy, Kerri; Zuber, Maria T.
2012-01-01
We study the condensation of CO2 in Mars atmosphere using temperature profilesretrieved from radio occultation measurements from Mars Global Surveyor (MGS) as wellas the climate sounding instrument onboard the Mars Reconnaissance Orbiter (MRO),and detection of reflective clouds by the MGS Mars Orbiter Laser Altimeter (MOLA). Wefind 11 events in 1999 where MGS temperature profiles indicate CO2 condensation andMOLA simultaneously detects reflective clouds. We thus provide causal evidence thatMOLA non-ground returns are associated with CO2 condensation, which strongly indicatestheir nature being CO2 clouds. The MGS and MRO temperature profiles together revealthe seasonal expansion and shrinking of the area and the vertical extent of atmosphericsaturation. The occurrence rate of atmospheric saturation is maximized at high latitudes inthe middle of winter. The atmospheric saturation in the northern polar region exhibits moreintense seasonal variation than in the southern polar region. In particular, a shrinking ofsaturation area and thickness from LS 270 to 300 in 2007 is found; this is probablyrelated to a planet-encircling dust storm. Furthermore, we integrate the condensation areaand the condensation occurrence rate to estimate cumulative masses of CO2 condensatesdeposited onto the northern and southern seasonal polar caps. The precipitation flux isapproximated by the particle settling flux which is estimated using the impulse responses ofMOLA filter channels. With our approach, the total atmospheric condensation mass canbe estimated from these observational data sets with average particle size as the onlyfree parameter. By comparison with the seasonal polar cap masses inferred from thetime-varying gravity of Mars, our estimates indicate that the average condensate particleradius is 822 mm in the northern hemisphere and 413 mm in the southern hemisphere.Our multi-instrument data analysis provides new constraints on modeling the global climateof Mars.
Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jingyi; Liu, Yangang; Zhang, Minghua
This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less
Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime
Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...
2018-01-10
This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less
NASA Technical Reports Server (NTRS)
Shi, J. J.; Matsui, T.; Tao, W.-K.; Tan, Q.; Peters-Lidard, C.; Chin, M.; Pickering, K.; Guy, N.; Lang, S.; Kemp, E. M.
2014-01-01
Aerosols affect the Earth's radiation balance directly and cloud microphysical processes indirectly via the activation of cloud condensation and ice nuclei. These two effects have often been considered separately and independently, hence the need to assess their combined impact given the differing nature of their effects on convective clouds. To study both effects, an aerosol-microphysics-radiation coupling, including Goddard microphysics and radiation schemes, was implemented into the NASA Unified Weather Research and Forecasting model (NU-WRF). Fully coupled NU-WRF simulations were conducted for a mesoscale convective system (MCS) that passed through the Niamey, Niger area on 6-7 August 2006 during an African Monsoon Multidisciplinary Analysis (AMMA) special observing period. The results suggest that rainfall is reduced when aerosol indirect effects are included, regardless of the aerosol direct effect. Daily mean radiation heating profiles in the area traversed by the MCS showed the aerosol (mainly mineral dust) direct effect had the largest impact near cloud tops just above 200 hectopascals where short-wave heating increased by about 0.8 Kelvin per day; the weakest long-wave cooling was at around 250 hectopascals. It was also found that more condensation and ice nuclei as a result of higher aerosol/dust concentrations led to increased amounts of all cloud hydrometeors because of the microphysical indirect effect, and the radiation direct effect acts to reduce precipitating cloud particles (rain, snow and graupel) in the middle and lower cloud layers while increasing the non-precipitating particles (ice) in the cirrus anvil. However, when the aerosol direct effect was activated, regardless of the indirect effect, the onset of MCS precipitation was delayed about 2 hours, in conjunction with the delay in the activation of cloud condensation and ice nuclei. Overall, for this particular environment, model set-up and physics configuration, the effect of aerosol radiative heating due to mineral dust overwhelmed the effect of the aerosols on microphysics.
Condensed Acids In Antartic Stratospheric Clouds
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.;
1992-01-01
Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".
NASA Technical Reports Server (NTRS)
Gierasch, P.; Kahn, R. A.
1985-01-01
The first systematic account of the climate of Mars, based upon observations was produced. Cloud data were used to determine spatially and temporally varying near-surface wind direction, relative wind speed, static stability, and humidity conditions on a global scale. Existing models of meteorological processes were critically reexamined in light of the data, and more stringent constraints were set on global processes. Several discoveries were made, including the large extent and seasonal variability of the Mars equatorial Hadley cell, the failure of high latitude winds to reverse direction in early northern spring, the change in meridional wind component in southern midautum, and the almost constant cloud cover in the northern hemisphere, during spring and summer primarily by condensate clouds and in fall and winter by condensates and dust. The implications of these observations are discussed.
CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Fegley, Bruce, E-mail: laura_s@levee.wustl.ed, E-mail: bfegley@levee.wustl.ed
2009-10-01
We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds suchmore » as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.« less
NASA Astrophysics Data System (ADS)
Simarski, Lynn Teo
Research reported at an AGU session on Galileo's Earth/Moon flyby refined the spacecraft's distinctive portrait of the Earth-Moon system. The Galileo team presented dramatic new views of the Earth and Moon taken last December. Andrew P. Ingersoll showed a color movie of the rotating Earth, made through spectral filters with which Galileo viewed the Earth almost continuously for 25 hours.Galileo also made finely tuned observations of vegetation and clouds, using three very closely spaced spectral wavelengths in the near-infrared, explained W. Reid Thompson. In the resulting images, Argentinian grassland and Brazilian rain forest are clearly distinguished, demonstrating the applicability of this technique for routine monitoring of deforestation, shifts in vegetation due to climate, and other phenomena. Thompson suggested that this capability could be used on the Earth Observing System. One of the spectral bands may also have potential for monitoring cloud condensation, as it appears to differentiate actively condensing, vapor-heavy clouds from higher and drier clouds.
Clouds in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Määttänen, Anni; Montmessin, Franck
2018-01-01
Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.
STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cziczo, D.
2016-03-01
The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normallymore » at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.« less
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
NASA Astrophysics Data System (ADS)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; Feingold, Graham; McFarquhar, Greg M.; Wu, Wei; Mei, Fan
2017-12-01
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.
Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.
2016-01-01
We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.
Rain scavenging of solid rocket exhaust clouds
NASA Technical Reports Server (NTRS)
Dingle, A. N.
1978-01-01
An explicit model for cloud microphysics was developed for application to the problem of co-condensation/vaporization of HCl and H2O in the presence of Al2O3 particulate nuclei. Validity of the explicit model relative to the implicit model, which has been customarily applied to atmospheric cloud studies, was demonstrated by parallel computations of H2O condensation upon (NH4)2 SO4 nuclei. A mesoscale predictive model designed to account for the impact of wet processes on atmospheric dynamics is also under development. Input data specifying the equilibrium state of HC1 and H2O vapors in contact with aqueous HC1 solutions were found to be limited, particularly in respect to temperature range.
Study on Cloud Water Resources and Precipitation Efficiency Characteristic over China
NASA Astrophysics Data System (ADS)
Zhou, Y., Sr.; Cai, M., Jr.
2017-12-01
The original concept and quantitative assessment method of cloud water resource and its related physical parameters are proposed based on the atmospheric water circulation and precipitation enhancement. A diagnosis method of the three-dimensional (3-D) cloud and cloud water field are proposed , based on cloud observation and atmospheric reanalysis data. Furthermore, using analysis data and precipitation products, Chinese cloud water resources in 2008-2010 are assessed preliminarily. The results show that: 1. Atmospheric water cycle and water balance plays an important part of the climate system. Water substance includes water vapor and hydrometeors, and the water cycle is the process of phase transition of water substances. Water vapor changes its phase into solid or liquid hydrometeors by lifting and condensation, and after that, the hydrometeors grow lager through cloud physical processes and then precipitate to ground, which is the mainly resource of available fresh water .Therefore, it's far from enough to only focus on the amount of water vapor, more attention should be transfered to the hydrometeors (cloud water resources) which is formed by the process of phase transition including lifting and condensation. The core task of rainfall enhancement is to develop the cloud water resources and raise the precipitation efficiency by proper technological measures. 2. Comparing with the water vapor, the hydrometeor content is much smaller. Besides, the horizontal delivery amount also shows two orders of magnitude lower than water vapor. But the update cycle is faster and the precipitation efficiency is higher. The amount of cloud water resources in the atmosphere is determined by the instantaneous quantity, the advection transport, condensation and precipitation from the water balance.The cloud water resources vary a lot in different regions. In southeast China, hydrometeor has the fastest renewal cycle and the highest precipitation efficiency. The total amount of hydrometeor in the northwest China is relatively small, but it still has some development potential due to the low precipitation efficiency. 3. The accuracy of the assessment results can be improved and the estimation error can be reduced by using higher-resolution reanalysis data or combining of observational diagnosis and numerical model.
The Role of CO2 Clouds on the Stability of the Early Mars Atmosphere Against Collapse
NASA Astrophysics Data System (ADS)
Kahre, Melinda A.; Haberle, Robert; Steakley, Kathryn; Murphy, Jim; Kling, Alexandre
2017-10-01
The early Mars atmosphere was likely significantly more massive than it is today, given the growing body of evidence that liquid water flowed on the surface early in the planet’s history. Although the CO2 inventory was likely larger in the past, there is much we still do not understand about the state of that CO2. As surface pressure increases, the temperature at which CO2 condenses also increases, making it more likely that CO2 ice would form and persist on the surface when the atmospheric mass increases. An atmosphere that is stable against collapse must contain enough energy, distributed globally, to prohibit the formation of permanents CO2 ice reservoirs that lead to collapse. The presence of the “faint young sun” compounds this issue. Previous global climate model (GCM) investigations show that atmospheres within specific ranges of obliquities and atmospheric masses are stable against collapse. We use the NASA Ames Mars GCM to expand on these works by focusing specifically on the role of CO2 clouds in atmospheric stability. Two end member simulations are executed, one that includes CO2 cloud formation and one that does not. The simulation that explicitly includes CO2 clouds is stable, while the simulation without CO2 clouds collapses into permanent surface CO2 reservoirs. In both cases, significant atmospheric condensation is occurring in the atmosphere throughout the year. In the case without CO2 clouds, all atmospheric condensation (even if it occurs at altitude) leads directly to the accumulation of surface ice, whereas in the case with CO2 clouds, there is a finite settling timescale for the cloud particles. Depending on this timescale and the local conditions, the cloud particles could stay aloft or sublimate as they fall toward the surface. Thus, the striking difference between these two cases illustrates the important role of CO2 clouds. We plan to conduct and present further simulations to better understand how atmospheric stability depends on the details of CO2 cloud microphysical processes and assumptions.
Global circulation as the main source of cloud activity on Titan
Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, Christophe; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2009-01-01
Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon
2016-04-01
The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.
Eulerian and Lagrangian approaches to multidimensional condensation and collection
NASA Astrophysics Data System (ADS)
Li, Xiang-Yu; Brandenburg, A.; Haugen, N. E. L.; Svensson, G.
2017-06-01
Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here an Eulerian scheme based on the Smoluchowski equation is compared with two Lagrangian superparticle (or superdroplet) schemes in the presence of condensation and collection. The growth processes are studied either separately or in combination using either two-dimensional turbulence, a steady flow or just gravitational acceleration without gas flow. Good agreement between the different schemes for the time evolution of the size spectra is observed in the presence of gravity or turbulence. The Lagrangian superparticle schemes are found to be superior over the Eulerian one in terms of computational performance. However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use of symmetric over asymmetric collection schemes is shown to reduce the amount of scatter in the results. For the Eulerian scheme, gravitational collection is rather sensitive to the mass bin resolution, but not so in the case with turbulence.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Autumn at Titan's South Pole: The 220 cm-1 Cloud
NASA Astrophysics Data System (ADS)
Jennings, D. E.; Cottini, V.; Achterberg, R. K.; Anderson, C. M.; Flasar, F. M.; de Kok, R. J.; Teanby, N. A.; Coustenis, A.; Vinatier, S.
2015-10-01
Beginning in 2012 an atmospheric cloud known by its far-infrared emission has formed rapidly at Tit an's South Pole [1, 2]. The build-up of this condensate is a result of deepening temperatures and a gathering of gases as Winter approaches. Emission from the cloud in the south has been doubling each year since 2012, in contrast to the north where it has halved every 3.8 years since 2004. The morphology of the cloud in the south is quite different from that in the north. In the north, the cloud has extended over the whole polar region beyond 55 N, whereas in the south the cloud has been confined to within about 10 degrees of the pole. The cloud in the north has had the form of a uniform hood, whereas the southern cloud has been much more complex. A map from December 2014,recorded by the Composite Infrared Spectrometer (CIRS) on Cassini, showed the 220 cm-1 emission coming from a distinct ring with a maximum at about 80 S. In contrast, emissions from the gases HC3N, C4H2 and C6H6 peaked near the pole and had a ring at 70 S. The 220 cm-1 ring at 80 S coincided with the minimum in the gas emission pattern. The80 S condensate ring encompassed the vortex cloud seen by the Cassini Imaging Science Subsystem (ISS) and Visible and Infrared Mapping Spectrometer (VIMS)[3, 4]. Both the 220 cm-1 ring and the gas "bull's-eye" pattern were centered on a point that was shifted from the geographic South Pole by 4 degrees in the direction of the Sun. This corresponds to the overall tilt of Titan's atmosphere discovered from temperature maps early in the Cassini mission by Achterberg et al. [5]. The tilt may be reinforced by the presumably twice-yearly (north and south) spin-up of the atmosphere at the autumnal pole. The bull's-eye pattern of the gas emissions can be explained by the retrieved abundance distributions, which are maximum near the pole and decrease sharply toward lower latitudes, together with temperatures that are minimum at the pole and increase toward lower latitudes. The increasing temperatures overcome the decreasing gas abundances to produce emission in the narrow range around 70 S. This cannot, however, explain the maximum of emission at 80 S from the condensate ring. The coincidence at 80 S of the 220 cm-1 peak with the gas emission minimum may indicate where the condensation is taking place. The central, polar minimum in the cloud emission may be due to faster rain-out and smaller extinction cross-sections. Spectral maps from 2013-15 [6] show that the gas emission pattern has been evolving quickly, with noticeable changes from one flyby to the next (about one month). The bull's-eye structure appears to have been most prominent in early 2014 and by late 2014 the pattern was becoming more uniform. As Titan progresses through late southern Autumn we expect the morphology of the condensate cloud to take on a hood-like distribution similar to that in the north.
Cascade oxime formation, cyclization to a nitrone, and intermolecular dipolar cycloaddition.
Furnival, Rachel C; Saruengkhanphasit, Rungroj; Holberry, Heather E; Shewring, Jonathan R; Guerrand, Hélène D S; Adams, Harry; Coldham, Iain
2016-11-22
Simple haloaldehydes, including enolisable aldehydes, were found to be suitable for the formation of cyclic products by cascade (domino) condensation, cyclisation, dipolar cycloaddition chemistry. This multi-component reaction approach to heterocyclic compounds was explored by using hydroxylamine, a selection of aldehydes, and a selection of activated dipolarophiles. Initial condensation gives intermediate oximes that undergo cyclisation with displacement of halide to give intermediate nitrones; these nitrones undergo in situ intermolecular dipolar cycloaddition reactions to give isoxazolidines. The cycloadducts from using dimethyl fumarate were treated with zinc/acetic acid to give lactam products and this provides an easy way to prepare pyrrolizinones, indolizinones, and pyrrolo[2,1-a]isoquinolinones. The chemistry is illustrated with a very short synthesis of the pyrrolizidine alkaloid macronecine and a formal synthesis of petasinecine.
Design and Performance of McRas in SCMs and GEOS I/II GCMs
NASA Technical Reports Server (NTRS)
Sud, Yogesh C.; Einaudi, Franco (Technical Monitor)
2000-01-01
The design of a prognostic cloud scheme named McRAS (Microphysics of clouds with Relaxed Arakawa-Schubert Scheme) for general circulation models (GCMs) will be discussed. McRAS distinguishes three types of clouds: (1) convective, (2) stratiform, and (3) boundary-layer types. The convective clouds transform and merge into stratiform clouds on an hourly time-scale, while the boundary-layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the auto-conversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud-microphysics throughout the life-cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry. An evaluation of McRAS in a single column model (SCM) with the GATE Phase III and 5-ARN CART datasets has shown that together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without many systematic errors. The time history and time mean incloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvil and towers, and the convective updraft and downdraft velocities and mass fluxes all show a realistic behavior. Performance of McRAS in GEOS 11 GCM shows several satisfactory features but some of the remaining deficiencies suggest need for additional research involving convective triggers and inhibitors, provision for continuously detraining updraft, a realistic scheme for cumulus gravity wave drag, and refinements to physical conditions for ascertaining cloud detrainment level.
The chemical evolution of molecular clouds
NASA Technical Reports Server (NTRS)
Iglesias, E.
1977-01-01
The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, Young Chol; Liu, Hauyu Baobab; Ho, Paul T. P.
2013-08-10
Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include thosemore » previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.« less
NASA Technical Reports Server (NTRS)
Wolfe, James F.
1993-01-01
The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.
1990-01-01
schedule soon, while in the percutaneous one auto-fluorescence spectroscopy could be the closest technique to be effectively included in the angioplasty...experiments Dashed line: Amplifier mode experiments ( scheduled ) Fig. 3 Schematic of laser, pulsed power, and X-ray preionizer 3. Pulsed Power 4. X-Ray...of KrF Amplifier * scheduled ** estimated value 120 CONDENSED PHASE RARE GAS HALIDE EXCIPLEX LASERS V. Ara Apkarian Professor of Chemistry Department
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, Alex D.; McCabe, Daniel J.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less
NASA Astrophysics Data System (ADS)
Sud, Y. C.; Walker, G. K.
1999-09-01
A prognostic cloud scheme named McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme) has been designed and developed with the aim of improving moist processes, microphysics of clouds, and cloud-radiation interactions in GCMs. McRAS distinguishes three types of clouds: convective, stratiform, and boundary layer. The convective clouds transform and merge into stratiform clouds on an hourly timescale, while the boundary layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the autoconversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud microphysics throughout the life cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry.An evaluation of McRAS in a single-column model (SCM) with the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) Phase III data has shown that, together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. The time history and time mean in-cloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvils and towers, and the convective updraft and downdraft velocities and mass fluxes all simulate a realistic behavior. Some of these diagnostics are not verifiable with data on hand. These SCM sensitivity tests show that (i) without clouds the simulated GATE-SCM atmosphere is cooler than observed; (ii) the model's convective scheme, RAS, is an important subparameterization of McRAS; and (iii) advection of cloud water substance is helpful in simulating better cloud distribution and cloud-radiation interaction. An evaluation of the performance of McRAS in the Goddard Earth Observing System II GCM is given in a companion paper (Part II).
NASA Astrophysics Data System (ADS)
Gao, P.; Carlson, R. W.; Robinson, T. D.; Crisp, D.; Lyons, J. R.; Yung, Y. L.
2016-12-01
A mystery that has continued to plague our sister planet, Venus, for nearly a century is the nature of the brightness contrasts observed crisscrossing its disk in near-ultraviolet wavelength images. These contrasts - specifically the dark regions - have been attributed to the actions of an unknown UV absorber, knowing the identity of which is integral to understanding the Venus atmosphere due to the high rates of mesospheric heating attributed to the absorption of solar UV. One possible candidate for the UV absorber is polysulfur, which form from polymerization of elemental sulfur arising from SO2 photolysis at the Venus cloud tops under low O2 conditions. In this work we investigate the microphysics of condensed polysulfur and its interaction with the sulfuric acid clouds. We consider the "gumdrop model", where sulfur is allowed to condense onto sulfuric acid cloud particles. We explore the possibility that S2 vapor may condense faster than its loss to gas phase reactions that produce higher allotropes, leading to solid state polymerization to S8. This process may explain the ephemeral and variable nature of the UV absorption.
Tight coupling of particle size and composition in atmospheric cloud droplet activation
NASA Astrophysics Data System (ADS)
Topping, D.; McFiggans, G.
2011-09-01
The substantial uncertainty in the indirect effect on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the longwave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived in 1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition and a particles size under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; moreso even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.
NASA Technical Reports Server (NTRS)
Twohy, Cynthia H.; Hudson, James G.
1995-01-01
In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.
Production and condensation of organic gases in the atmosphere of Titan
NASA Technical Reports Server (NTRS)
Sagan, C.; Thompson, W. R.
1982-01-01
The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, beginning with CH4 at about 2615 km, comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.
NASA Astrophysics Data System (ADS)
Hu, Renyu
Current-generation Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) offers extensive coverage of the latitudinal and seasonal distribution of CO_2 condensation in Mars’s atmosphere. The atmospheric temperature profiles measured by MCS reveal that the thickness of CO_2 condensation layer reaches a maximum of 10-15 km (north) or ˜20 km (south) during the middle of winter. There is a shrinking of the CO_2 condensation layer from L_S ˜270(°) to ˜300(°) in 2007, probably related to a planet-encircling dust storm. We integrate the condensation area and the condensation occurrence rate synthesized from the MCS observations to estimate cumulative masses of CO2 condensates deposited onto the northern and southern seasonal polar caps. The mass loading of CO_2 condensate particles, when condensation occurs, can be independently inferred from the detections of reflective clouds by the Mars Orbiter Laser Altimetry (MOLA) onboard the Mars Global Surveyor (MGS). Therefore, we approximate the precipitation flux by the particle settling flux, which is estimated using the impulse responses of MOLA filter channels. With our approach, the total atmospheric condensation mass can be estimated from these observational data sets, with average particle size as the only free parameter. By comparison with the seasonal polar cap masses inferred from the time-varying gravity of Mars, our estimates indicate that the average condensate particle radius is 8 - 22 mum in the northern hemisphere and 4 - 13 mum in the southern hemisphere. This multi-instrument data analysis provides new constraints on modeling the microphysics of CO_2 clouds on Mars.
Earth Observations taken by the Expedition 16 Crew
2008-02-05
ISS016-E-027426 (5 Feb. 2008) --- Cumulonimbus Cloud over Africa is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Deemed by many meteorologists as one of the most impressive of cloud formations, cumulonimbus (from the Latin for "puffy" and "dark") clouds form due to vigorous convection of warm and moist unstable air. Surface air warmed by the Sun-heated ground surface rises, and if sufficient atmospheric moisture is present, water droplets will condense as the air mass encounters cooler air at higher altitudes. The air mass itself also expands and cools as it rises due to decreasing atmospheric pressure, a process known as adiabatic cooling. This type of convection is common in tropical latitudes year-round and during the summer season at higher latitudes. As water in the rising air mass condenses and changes from a gaseous to a liquid state, it releases energy to its surroundings, further heating the surrounding air and leading to more convection and rising of the cloud mass to higher altitudes. This leads to the characteristic vertical "towers" associated with cumulonimbus clouds, an excellent example of which is visible in this image (right). If enough moisture is present to condense and continue heating the cloud mass through several convective cycles, a tower can rise to altitudes of approximately 10 kilometers at high latitudes to 20 kilometers in the tropics -- before encountering a region of the atmosphere known as the tropopause. The tropopause is characterized by a strong temperature inversion where the atmosphere is dryer and no longer cools with altitude. This halts further vertical motion of the cloud mass, and causes flattening and spreading of the cloud tops into an anvil-shaped cloud as illustrated by this oblique photograph. The view direction is at an angle from the vertical, rather than straight "down" towards the Earth's surface. The image, photographed while the International Space Station was passing over western Africa near the Senegal-Mali border, shows a fully-formed anvil cloud with numerous smaller cumulonimbus towers rising near it. The high energetics of these storm systems typically make them hazardous due to associated heavy precipitation, lightning, high wind speeds and possible tornadoes.
Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers
NASA Astrophysics Data System (ADS)
Woitke, P.; Helling, Ch.
2004-01-01
In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.
Josephson effects in a Bose–Einstein condensate of magnons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago; Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl
A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation betweenmore » the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.« less
Widespread morning drizzle on Titan.
Adámkovics, Máté; Wong, Michael H; Laver, Conor; de Pater, Imke
2007-11-09
Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere. Retrieved extinction profiles are consistent with condensed methane in clouds at an altitude near 30 kilometers and concomitant methane drizzle below. The moisture encompasses the equatorial region over Titan's brightest continent, Xanadu. Diurnal temperature gradients that cause variations in methane relative humidity, winds, and topography may each be a contributing factor to the condensation mechanism. The clouds and precipitation are optically thin at 2.0 micrometers, and models of "subvisible" clouds suggest that the droplets are 0.1 millimeter or larger.
Biogenic influence on cloud microphysics in the 'clean' oceanic atmosphere
NASA Astrophysics Data System (ADS)
Lana, A.; Simó, R.; Vallina, S. M.; Jurado, E.; Dachs, J.
2009-12-01
A 20 years old hypothesis postulates a feedback relationship between marine biota and climate through the emission of dimethylsulfide (DMS) as the principal natural source of Sulfate Secondary Aerosols (S-DMS) that are very efficient as cloud condensation nuclei (CCN). In recent years, the biological influence on cloud microphysics have been expanded to other potential biogenic cloud precursors: (i) volatile organic compounds produced by plankton and emitted to the atmosphere to form Secondary Organic Aerosols (SOA); (ii) biological particles and biogenic polymers, lifted with the seaspray by wind friction and bubble-bursting processes, that act as Primary Organic Aerosols (POA). Besides these biogenic aerosols, also seaspray-associated Sea Salt (SS) emissions, which are the dominant contribution to aerosol mass in the remote mixed boundary layer, also contribute to cloud condensation. All these aerosols affect cloud microphysics by providing new CCN, reducing the size of cloud droplets, and increasing cloud albedo. We have compared the seasonalities of the parameterized source functions of these natural cloud precursors with that of the satellite-derived cloud droplet effective radius (CLEFRA) over large regions of the ocean. Regions where big loads of continental aerosols (including anthropogenic -industrial, urban, and biomass burning) dominate during a significant part of the year were identified by use of remote sensing aerosol optical properties and excluded from our analysis. Our results show that the seasonality of cloud droplet effective radius matches those of S-DMS and SOA in the clean marine atmosphere, whereas SS and chlorophyll-associated POA on their own do not seem to play a major role in driving cloud droplet size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.; Nash, C.; Howe, A.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less
Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Verheggen, Bart; Cozic, Julie; Weingartner, Ernest; Bower, Keith; Mertes, Stephan; Connolly, Paul; Gallagher, Martin; Flynn, Michael; Choularton, Tom; Baltensperger, Urs
2007-12-01
The partitioning of aerosol particles between the cloud and the interstitial phase (i.e., unactivated aerosol) has been investigated during several Cloud and Aerosol Characterization Experiments (CLACE-3, CLACE-3? and CLACE-4) conducted in winter and summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m altitude, Switzerland). Ambient air was sampled using different inlets in order to determine the activated fraction of aerosol particles, FN, defined as the fraction of the total aerosol number concentration (with particle diameter dp > 100 nm) that has been incorporated into cloud particles. The liquid and ice water content of mixed-phase clouds were characterized by analyzing multiple cloud probes. The dependence of the activated fraction on several environmental factors is discussed on the basis of more than 900 h of in-cloud observations and parameterizations for key variables are given. FN is found to increase with increasing liquid water content and to decrease with increasing particle number concentration in liquid clouds. FN also decreases with increasing cloud ice mass fraction and with decreasing temperature from 0 to -25°C. The Wegener-Bergeron-Findeisen process probably contributed to this trend, since the presence of ice crystals causes liquid droplets to evaporate, thus releasing the formerly activated particles back into the interstitial phase. Ice nucleation could also have prevented additional cloud condensation nuclei from activating. The observed activation behavior has significant implications for our understanding of the indirect effect of aerosols on climate.
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
NASA Astrophysics Data System (ADS)
Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.
2012-12-01
Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).
The observed influence of local anthropogenic pollution on northern Alaskan cloud properties
Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; ...
2017-12-11
Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM)more » Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiagvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.« less
NASA Astrophysics Data System (ADS)
Ohashi, Satoshi; Sanhueza, Patricio; Sakai, Nami; Kandori, Ryo; Choi, Minho; Hirota, Tomoya; Nguyễn-Lu’o’ng, Quang; Tatematsu, Ken’ichi
2018-04-01
We have investigated the TUKH122 prestellar core in the Orion A cloud using ALMA 3 mm dust continuum, N2H+ (J = 1‑0), and CH3OH ({J}K={2}K-{1}K) molecular-line observations. Previous studies showed that TUKH122 is likely on the verge of star formation because the turbulence is almost dissipated and chemically evolved among other starless cores in the Orion A cloud. By combining ALMA 12 m and ACA data, we recover extended emission with a resolution of ∼5″ corresponding to 0.01 pc and identify six condensations with a mass range of 0.1–0.4 M ⊙ and a radius of ≲0.01 pc. These condensations are gravitationally bound following a virial analysis and are embedded in the filament, including the elongated core with a mass of ∼29 M ⊙ and a radial density profile of r ‑1.6 derived by Herschel. The separation of these condensations is ∼0.035 pc, consistent with the thermal Jeans length at a density of 4.4 × 105 cm‑3. This density is similar to the central part of the core. We also find a tendency for the N2H+ molecule to deplete at the dust peak condensation. This condensation may be beginning to collapse because the line width becomes broader. Therefore, the fragmentation still occurs in the prestellar core by thermal Jeans instability, and multiple stars are formed within the TUKH122 prestellar core. The CH3OH emission shows a large shell-like distribution and surrounds these condensations, suggesting that the CH3OH molecule formed on dust grains is released into the gas phase by nonthermal desorption such as photoevaporation caused by cosmic-ray-induced UV radiation.
NASA Astrophysics Data System (ADS)
Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.
2011-04-01
Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.
Lagrangian condensation microphysics with Twomey CCN activation
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets
to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.
Integrating Cloud Processes in the Community Atmosphere Model, Version 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.; Bretherton, Christopher S.; Rasch, Philip J.
2014-09-15
This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and icemore » crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.« less
A 3D Microphysical Model of Titan's Methane Cloud
NASA Astrophysics Data System (ADS)
Xiao, J.; Newman, C.; Inada, A.; Richardson, M.
2006-12-01
A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.
NASA Astrophysics Data System (ADS)
Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Machado, L.; Mertes, S.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Wang, J.; Weinzierl, B.; Wendisch, M.
2016-12-01
Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with aerosol number concentrations after normalization to STP often exceeding those in the boundary layer (BL) by one or two orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO. The campaign took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were consistently observed on all flights, using several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were depleted in aerosol particles, whereas dramatically enhanced small (<90 nm diameter) aerosol number concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. We also found elevated concentrations of larger (>90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest that aerosol production takes place in the UT from volatile material brought up by deep convection, which is converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new particle formation has not been observed. We propose that this may have been the dominant process supplying secondary aerosols in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Bose-Einstein condensates in charged black-hole spacetimes
NASA Astrophysics Data System (ADS)
Castellanos, Elías; Degollado, Juan Carlos; Lämmerzahl, Claus; Macías, Alfredo; Perlick, Volker
2018-01-01
We analyze Bose-Einstein condensates on three types of spherically symmetric and static charged black-hole spacetimes: the Reissner-Nordström spacetime, Hoffmann's Born-Infeld black-hole spacetime, and the regular Ayón-Beato-García spacetime. The Bose-Einstein condensate is modeled in terms of a massive scalar field that satisfies a Klein-Gordon equation with a self-interaction term. The scalar field is assumed to be uncharged and not self-gravitating. If the mass parameter of the scalar field is chosen sufficiently small, there are quasi-bound states of the scalar field that may be interpreted as dark matter clouds. We estimate the size and the total energy of such clouds around charged supermassive black holes and we investigate if their observable features can be used for discriminating between the different types of charged black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.
Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less
Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...
2017-12-06
Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.
2018-05-01
Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in situ measurements and 3-D dynamic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, Ping Pui; Riemer, Nicole; West, Matthew
2016-05-27
Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcelmore » cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.« less
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-01-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234
NASA Astrophysics Data System (ADS)
Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
2017-03-01
Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Radke, L. F.; Langer, G.; Hindman, E. E., II
1978-01-01
Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.
Microphysical Processes Affecting the Pinatubo Volcanic Plume
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia
1996-01-01
In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.
On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number
NASA Technical Reports Server (NTRS)
Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.
2011-01-01
Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.
Remote sensing of smoke, clouds, and fire using AVIRIS data
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.
1993-01-01
Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).
Statistical properties of a cloud ensemble - A numerical study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai
1987-01-01
The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.
NASA Technical Reports Server (NTRS)
Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat
2006-01-01
Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.
Interaction of a cumulus cloud ensemble with the large-scale environment
NASA Technical Reports Server (NTRS)
Arakawa, A.; Schubert, W.
1973-01-01
Large-scale modification of the environment by cumulus clouds is discussed in terms of entrainment, detrainment, evaporation, and subsidence. Drying, warming, and condensation by vertical displacement of air are considered as well as budget equations for mass, static energy, water vapor, and liquid water.
Attribution of the United States “warming hole”: Aerosol indirect effect andprecipitable water vapor
Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and /or ice nuclei, thereby modifying cloud optical properties. Observations show a striking cooling trend in summertime daily maximum temperature (Tmax) in the central and...
Explosive desorption of icy grain mantles in dense clouds
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Greenberg, J. M.
1991-01-01
The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut
2018-01-01
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems
and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement)
, on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5-72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; ...
2018-01-25
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less
Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.
NASA Astrophysics Data System (ADS)
Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim
2017-12-01
This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.
NASA Astrophysics Data System (ADS)
Gálvez, Óscar; Pacios, Luis F.
2010-05-01
Atmospheric iodine has received considerable attention in the two past decades due to both its potential role in the catalytic destruction of ozone (1) and its contribution to the formation of cloud condensation nuclei (2). It is generally assumed that iodine in the atmosphere has a natural origin since no anthropogenic sources are known. Seaweeds and marine phytoplankton release iodocarbons. In addition, IO and even I2, a major source of particle formation in coastal areas, are also detectable in the atmosphere above kelp beds. However, the reasons why iodocarbons are released by seaweeds and the mechanisms involved in their production remain largely unknown. It is currently well established that the general catalytic role of halide oxidation in marine algae is actually played by vanadium-dependent haloperoxidases enzymes, although relevant details such as protonation states of the vanadate cofactor or even key steps in the mechanism are still unknown. In this contribution, we focus on the iodoperoxidase VIPO enzyme. Quantum calculations on the vanadate cofactor were combined with structural analyses on a reliable three-dimensional model of the VIPO protein to investigate the steps along the catalytic mechanism that lead to the release of halide oxidation products. In addition, iodination reactions of several common organic compounds selected to account for representative volatile and non-volatile iodocarbons were thermodynamically studied by means of high-level ab initio correlated calculations. Free energies of reactions with the three possible iodinating species produced by the enzyme, namely HOI, I2, and I3- were calculated. Our results show that only hypoiodous acid give rise to clearly exoergonic iodination of organic substrates. (1) Saiz-Lopez, A.; Mahajan, A.S.; Salmon, R.A.; Bauguitte, J.B.; Jones, A.E.; Roscoe, H.K.; Plane, J.M.C. Science 2007, 317, 348-351 (2) O'Dowd, C.D.; Jimenez, J.L.; Bahreini, R.; Flagan, R.C.; Seinfeld, J.H.; Hämeri, K.; Pirjola, L.; Kulmala, M.; Jennings, S.G.; Hoffmann, T. Nature, 2002, 417, 632-636.
NASA Astrophysics Data System (ADS)
Broekhuizen, K.; Kumar, P. Pradeep; Abbatt, J. P. D.
2004-01-01
The ability of partially soluble organic species to act as cloud condensation nuclei (CCN) has been studied. A Köhler model incorporating solute solubility and droplet surface tension describes the behavior of solid adipic and succinic acid particles, whereas solid azelaic acid activates much more efficiently that predicted. In addition, it was shown that trace levels of either sulfate or surface active species have a dramatic effect on the activation of adipic acid, a moderately soluble organic, as predicted by the full Köhler model. For internally mixed particles in the atmosphere, these effects will greatly enhance the role of organic aerosols as CCN.
NASA Technical Reports Server (NTRS)
Robertson, F. R.
1984-01-01
The role of cloud related diabatic processes in maintaining the structure of the South Pacific Convergence Zone is discussed. The method chosen to evaluate the condensational heating is a diagnostic cumulus mass flux technique which uses GOES digital IR data to characterize the cloud population. This method requires as input an estimate of time/area mean rainfall rate over the area in question. Since direct observation of rainfall in the South Pacific is not feasible, a technique using GOES IR data is being developed to estimate rainfall amounts for a 2.5 degree grid at 12h intervals.
Grain formation in astronomical systems: A critical review of condensation processes
NASA Technical Reports Server (NTRS)
Donn, B.
1978-01-01
An analysis is presented of the assumption and the applicability of the three theoretical methods for calculating condensations in cosmic clouds where no pre-existing nuclei exist. The three procedures are: thermodynamic equilibrium calculations, nucleation theory, and a kinetic treatment which would take into account the characteristics of each individual collision. Thermodynamics provide detailed results on the composition temperature and composition of the condensate provided the system attains equilibrium. Because of the cosmic abundance mixture of elements, large supersaturations in some cases and low pressures, equilibrium is not expected in astronomical clouds. Nucleation theory, a combination of thermodynamics and kinetics, has the limitations of each scheme. Kinetics, not requiring equilibrium, avoids nearly all the thermodynamics difficulties but requires detailed knowledge of many reactions which thermodynamics avoids. It appears to be the only valid way to treat grain formation in space. A review of experimental studies is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast,Jerome; Mei,Fan; Hubbe,John
Most of the instruments were deployed on the ARM Aerial Facility (AAF) Gulfstream-159 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Aerosol microphysical property measurements supplemented routine ARM aerosol measurements made at the surface. The G-1 completed transects over the SGP Central Facility at multiple altitudes within the boundary layer, and within and above clouds.
Experimental studies of aerosol- cloud droplet interactions at the puy de Dome observatory (France)
NASA Astrophysics Data System (ADS)
Laj, P.; Dupuy, R.; Sellegri, K.; Pichon, J.; Fournol, J.; Cortes, L.; Preunkert, S.; Legrand, M.
2001-05-01
The interactions between aerosol particles, gases and cloud droplets were studied at the puy de Dome cloud station (France, 1465 a.s.l.) during winter 2000. The partitioning of gas and aerosol species between interstitial and condensed phases is achieved using a series of instrumentation including a newly developed dual counter-flow virtual impactor (CVI)/ Round jet impactor (RJI) system. The RJI/CVI system, coupled with measurement of cloud microphysical properties, provided direct observation of number and mass partitioning of aerosols under different air mass conditions. Preliminary results from this field experiment allowed for the characterization of size segregated chemical composition of CCNs and of interstitial aerosols by means of gravimetric analysis and ion chromatography. It appears that CCNs are clearly enriched in soluble species as respect to interstitial aerosols. We found evidences of limited growth of Ca2+ - rich coarse particles (>1 μm) that did not form droplets larger than the 5 μm CVI cut-off. The number partitioning of aerosol particles between interstitial and condensed phases clearly depends upon cloud microphysics and aerosol properties and therefore undergoes different behaviour according to air mass origin. However, results cannot be fully explained by diffusion growth alone, in particular for high cloud LWC.
Competition for water vapour results in suppression of ice formation in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon
2018-05-01
The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete
INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.
Aerosol properties and their influences on surface cloud condensation nuclei during CAP-MBL and MC3E
NASA Astrophysics Data System (ADS)
Logan, T.; Dong, X.; Xi, B.
2016-12-01
Aerosol particles are of particular importance because of their influences on cloud development and precipitation processes over land and ocean. Aerosol physical and chemical properties and their ability to activate as cloud condensation nuclei (CCN) as well as influence CCN number concentration (NCCN) during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) over the Southern Great Plains (SGP) region and the 2009-2010 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) over the Azores are presented in this study. Both regions periodically observe increases in NCCN when sulfate pollution and biomass burning smoke are present but over ocean, mineral dust diminishes NCCN. During clean conditions over the ocean, sea salt is the main contributor to CCN production, and strong (weak) surface winds and turbulent conditions can enhance (diminish) NCCN. Over the SGP, there were moderate to high correlations (R > 0.5) between increased magnitudes of aerosol loading (ssp), NCCN, chemical species, and PWV suggesting a shared common transport mechanism via the Gulf of Mexico further indicating the strong dependence on air mass type (e.g., marine vs. continental). Further investigations will greatly help to understand the seasonal influences of air masses on aerosol, NCCN, and cloud properties.
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
Condensation of acetol and acetic acid vapor with sprayed liquid
USDA-ARS?s Scientific Manuscript database
A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...
Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch
NASA Astrophysics Data System (ADS)
Cozic, J.; Verheggen, B.; Mertes, S.; Connolly, P.; Bower, K.; Petzold, A.; Baltensperger, U.; Weingartner, E.
2007-04-01
The scavenging of black carbon (BC) in liquid and mixed phase clouds was investigated during intensive experiments in winter 2004, summer 2004 and winter 2005 at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland). Aerosol residuals were sampled behind two well characterized inlets; a total inlet which collected cloud particles (droplets and ice particles) as well as interstitial (unactivated) aerosol particles; an interstitial inlet which collected only interstitial aerosol particles. BC concentrations were measured behind each of these inlets along with the submicrometer aerosol number size distribution, from which a volume concentration was derived. These measurements were complemented by in-situ measurements of cloud microphysical parameters. BC was found to be scavenged into the condensed phase to the same extent as the bulk aerosol, which suggests that BC was covered with soluble material through aging processes, rendering it more hygroscopic. The scavenged fraction of BC (FScav,BC), defined as the fraction of BC that is incorporated into cloud droplets and ice crystals, decreases with increasing cloud ice mass fraction (IMF) from FScav,BC=60% in liquid phase clouds to FScav,BC~5-10% in mixed-phase clouds with IMF>0.2. This can be explained by the evaporation of liquid droplets in the presence of ice crystals (Wegener-Bergeron-Findeisen process), releasing BC containing cloud condensation nuclei back into the interstitial phase. In liquid clouds, the scavenged BC fraction is found to decrease with decreasing cloud liquid water content. The scavenged BC fraction is also found to decrease with increasing BC mass concentration since there is an increased competition for the available water vapour.
Dimethylsulfide oxidation over the tropical South Atlantic: OH and other oxidants
NASA Technical Reports Server (NTRS)
Hemming, Brooke L.; Vastano, John A.; Chatfield, Robert B.; Andreae, Meinrat O.; Hildemann, Lynn M.
1994-01-01
The general course of events in the formation of a marine cloud begins with the emission of species which can eventually serve as nuclei around which water can condense to form a cloud droplet. In remote marine regions, cloud condensation nuclei (CCN) are primarily composed of sulfate, in either its acid or ammonium salt form. Most sulfate in these regions is the product of atmospheric oxidation of dimethyl sulfide (DMS), a reduced sulfur gas that is released by phytoplankton at the ocean surface. Therefore, in order to effectively quantify the links in the cloud-formation cycle, one must begin with a well-defined description of the atmospheric chemistry of DMS. The intent of this project has been to initiate development of a comprehensive model of the chemistry and dynamics responsible for the formation of clouds in the remote marine boundary layer. The primary tool in this work has been the Global/Regional Atmospheric Chemistry Event Simulator (GRACES), a global atmospheric chemistry model, which is under development within the Atmospheric Chemistry and Dynamics Branch of NASA-Ames Research Center. In this effort, GRACES was used to explore the first chemical link between DMS and sulfate by modeling the diurnal variation of DMS.
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)
1996-01-01
Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the atmosphere to subsequently influence not only tropical but mid-latitude climate.
Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert
1992-01-01
Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.
Stratus Cloud Radiative Effects from Cloud Processed Bimodal CCN Distributions
NASA Astrophysics Data System (ADS)
Noble, S. R., Jr.; Hudson, J. G.
2016-12-01
Inability to understand cloud processes is a large component of climate uncertainty. Increases in cloud condensation nuclei (CCN) concentrations are known to increase cloud droplet number concentrations (Nc). This aerosol-cloud interaction (ACI) produces greater Nc at smaller sizes, which brightens clouds. A lesser understood ACI is cloud processing of CCN. This improves CCN that then more easily activate at lower cloud supersaturations (S). Bimodal CCN distributions thus ensue from these evaporated cloud droplets. Hudson et al. (2015) related CCN bimodality to Nc. In stratus clouds, bimodal CCN created greater Nc whereas in cumulus less Nc. Thus, CCN distribution shape influences cloud properties; microphysics and radiative properties. Measured uni- and bimodal CCN distributions were input into an adiabatic droplet growth model using various specified vertical wind speeds (W). Bimodal CCN produced greater Nc (Fig. 1a) and smaller mean diameters (MD; Fig. 1b) at lower W typical of stratus clouds (<70 cm/s). Improved CCN (low critical S) were more easily activated at the lower S of stratus from low W, thus, creating greater Nc. Competition for condensate thus reduced MD and drizzle. At greater W, typical of cumulus clouds (>70 cm/s), bimodal CCN made lower Nc with larger MD thus enhancing drizzle whereas unimodal CCN made greater Nc with smaller MD, thus reducing drizzle. Thus, theoretical predictions of Nc and MD for uni- and bimodal CCN agree with the sense of the observations. Radiative effects were determined using a cloud grown to a 250-meter thickness. Bimodal CCN at low W reduced cloud effective radius (re), made greater cloud optical thickness (COT), and made greater cloud albedo (Fig. 1c). At very low W changes were as much as +9% for albedo, +17% for COT, and -12% for re. Stratus clouds typically have low W and cover large areas. Thus, these changes in cloud radiative properties at low W impact climate. Stratus cloud susceptibility to CCN distribution thus requires further investigation to determine their impact on ACI. Hudson et al. (2015), JGRA, 120, 3436-3452.
The global impact of mineral dust on cloud droplet number concentration
NASA Astrophysics Data System (ADS)
Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.
2016-12-01
This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.
Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran
2014-05-01
We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Aydogan, Abdullah; Akar, Ahmet
2012-02-13
Calixpyrrole-based oligomeric compounds were synthesized by "click chemistry" from the corresponding alkyne- and azide-functionalized calix[4]pyrroles. Calix[4]pyrrole 3, possessing an alkyne functional group, was prepared through a mixed condensation of pyrrole with acetone and but-3-ynyl 4-oxopentanoate. Another alkyne-group-containing calix[4]pyrrole 5 was obtained by treatment of 4'-hydroxyphenyl-functionalized calixpyrrole 4 with propargyl bromide. Tetrakis(azidopentyl)-functionalized calix[4]pyrrole 7 was synthesized by reacting NaN(3) with tetrabromopentyltetraethylcalix[4]pyrrole 6, which was prepared through a condensation reaction of pyrrole and 7-bromohept-2-one. Oligomeric calixpyrrole compounds were found to be capable of extracting tetrabutylammonium chloride and fluoride salts from aqueous media. Extraction abilities of the oligomeric compounds were monitored by NMR and UV/Vis spectroscopy and thermogravimetric analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel reactor for the simulation of gas and ash interactions in volcanic eruption plumes
NASA Astrophysics Data System (ADS)
Ayris, Paul M.; Cimarelli, Corrado; Delmelle, Pierre; Dingwell, Donald B.
2014-05-01
The chemical interactions between volcanic ash and the atmosphere, hydrosphere, pedosphere, cryosphere and biosphere are initially the result of rapid mobilisation of soluble salts and aqueous acids from wetted particle surfaces. Such surface features are attributable to the scavenging of sulphur and halide species by ash during its transport through the eruption plume and volcanic cloud. It has been historically considered (e.g., Rose, 1977) that the primary mechanism driving scavenging of sulphur and halide species is via condensation of acid aerosols onto ash surfaces within the cold volcanic cloud. However, for large explosive eruptions, insights from new experimental highlight the potential for scavenging via adsorption onto ash within the high-temperature eruption plume. In previous investigations on simple SO2 (Ayris et al. 2013a) and HCl systems (Ayris et al. 2013b), we identified ash composition, and the duration and temperature of gas-ash interaction as key determinants of adsorption-mode scavenging. However, the first generation of gas-ash reactors could not fully investigate the interactions between ash and the hydrous volcanic atmosphere; we have therefore developed an Advanced Gas Ash Reactor (AGAR), which can be fluxed with varying proportions of H2O, CO2, SO2 and HCl. The AGAR consists of a longitudinally-rotating quartz glass reaction bulb contained within a horizontal, three-stage tube furnace operating at temperatures of 25-900° C. A sample mass of up to 100 g can traverse a thermal gradient via manual repositioning of the reaction bulb within the furnace. In combination with existing melt synthesis capabilities in our laboratories, this facility permits a detailed investigation of the effects of ash and gas composition, and temperature on in-plume scavenging of SO2 and HCl. Additionally, the longitudinal rotation enables particle-particle interaction under an 'in-plume' atmosphere, and may yield insight into the effects of gas-ash interaction on aggregation processes. Large quantities of material can be processed in the AGAR. We invite discussions regarding collaboration with 'downstream' projects that would benefit from use of such materials, or from access to and further development of, the advanced gas-ash reactor. References Ayris, P. M., Lee, A. F., Wilson, K., Kueppers, U., Dingwell, D. B., & Delmelle, P. (2013a). SO2 sequestration in large volcanic eruptions: high-temperature scavenging by tephra. Geochimica et Cosmochimica Acta. Ayris, P. M., Delmelle, P., Maters, E., & Dingwell, D. B. (2013b). Quantifying HCl and SO2 adsorption by tephra in volcanic eruptions. In EGU General Assembly Conference Abstracts (Vol. 15, p. 2780). Rose, W. I. (1977). Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications. Geology, 5(10), 621-624.
2016-10-18
Pluto's present, hazy atmosphere is almost entirely free of clouds, though scientists from NASA's New Horizons mission have identified some cloud candidates after examining images taken by the New Horizons Long Range Reconnaissance Imager and Multispectral Visible Imaging Camera, during the spacecraft's July 2015 flight through the Pluto system. All are low-lying, isolated small features -- no broad cloud decks or fields -- and while none of the features can be confirmed with stereo imaging, scientists say they are suggestive of possible, rare condensation clouds. http://photojournal.jpl.nasa.gov/catalog/PIA21127
NASA Astrophysics Data System (ADS)
Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.
2007-02-01
Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All isolates were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging,~countering desiccation, and assist in their widespread dispersal.
NASA Astrophysics Data System (ADS)
Ahern, H. E.; Walsh, K. A.; Hill, T. C. J.; Moffett, B. F.
2006-10-01
Microorganisms were discovered in clouds over 100 years ago but information on bacterial community structure and function is limited. Clouds may not only be a niche within which bacteria could thrive but they might also influence dynamic processes using ice nucleating and cloud condensing abilities. Cloud and rain samples were collected from two mountains in the Outer Hebrides, NW Scotland, UK. Community composition was determined using a combination of amplified 16S ribosomal DNA restriction analysis and sequencing. 256 clones yielded 100 operational taxonomic units (OTUs) of which half were related to bacteria from terrestrial psychrophilic environments. Cloud samples were dominated by a mixture of fluorescent Pseudomonas spp., some of which have been reported to be ice nucleators. It was therefore possible that these bacteria were using the ice nucleation (IN) gene to trigger the Bergeron-Findeisen process of raindrop formation as a mechanism for dispersal. In this study the IN gene was not detected in any of the isolates using both polymerase chain reaction (PCR) and differential scanning calorimetry (DSC). Instead 55% of the total isolates from both cloud and rain samples displayed significant biosurfactant activity when analyzed using the drop-collapse technique. All were characterised as fluorescent pseudomonads. Surfactants have been found to be very important in lowering atmospheric critical supersaturations required for the activation of aerosols into cloud condensation nuclei (CCN). It is also known that surfactants influence cloud droplet size and increase cloud lifetime and albedo. Some bacteria are known to act as CCN and so it is conceivable that these fluorescent pseudomonads are using surfactants to facilitate their activation from aerosols into CCN. This would allow water scavenging, countering desiccation, and assist in their widespread dispersal.
Cloud Condensation Nuclei Measurements During the First Year of the ORACLES Study
NASA Astrophysics Data System (ADS)
Kacarab, M.; Howell, S. G.; Wood, R.; Redemann, J.; Nenes, A.
2016-12-01
Aerosols have significant impacts on air quality and climate. Their ability to scatter and absorb radiation and to act as cloud condensation nuclei (CCN) plays a very important role in the global climate. Biomass burning organic aerosol (BBOA) can drastically elevate the concentration of CCN in clouds, but the response in droplet number may be strongly suppressed (or even reversed) owing to low supersaturations that may develop from the strong competition of water vapor (Bougiatioti et al. 2016). Understanding and constraining the magnitude of droplet response to biomass burning plumes is an important component of the aerosol-cloud interaction problem. The southeastern Atlantic (SEA) cloud deck provides a unique opportunity to study these cloud-BBOA interactions for marine stratocumulus, as it is overlain by a large, optically thick biomass burning aerosol plume from Southern Africa during the burning season. The interaction between these biomass burning aerosols and the SEA cloud deck is being investigated in the NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study. The CCN activity of aerosol around the SEA cloud deck and associated biomass burning plume was evaluated during the first year of the ORACLES study with direct measurements of CCN concentration, aerosol size distribution and composition onboard the NASA P-3 aircraft during August and September of 2016. Here we present analysis of the observed CCN activity of the BBOA aerosol in and around the SEA cloud deck and its relationship to aerosol size, chemical composition, and plume mixing and aging. We also evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics.
Allowing for Horizontally Heterogeneous Clouds and Generalized Overlap in an Atmospheric GCM
NASA Technical Reports Server (NTRS)
Lee, D.; Oreopoulos, L.; Suarez, M.
2011-01-01
While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.
Ice nuclei emissions from biomass burning
Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller
2009-01-01
Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...
Cloud Condensation Nuclei in Fire-3
NASA Technical Reports Server (NTRS)
2000-01-01
The centerpiece of this research was the cloud condensation nuclei (CCN) measurements of the Desert Research Institute (DRI) CCN spectrometers on board the NCAR C-130 aircraft during the Arctic Cloud Experiment (ACE) in May, 1998. These instruments operated successfully throughout all eight 10-hour research flights based in Fairbanks and the two ferry flights between Colorado and Fairbanks. Within a few months of completion of ACE the CCN data was edited and put into the archives. A paper was completed and published on the CCN climatology during the previous two FIRE field projects-FIRE 1 based in San Diego in June and July, 1987 and ASTEX based in the Azores Islands in June, 1992. This showed distinct contrasts in concentrations and spectra between continental and maritime CCN concentrations, which depended on air mass trajectories. Pollution episodes from Europe had distinct influences on particle concentrations at low altitudes especially within the boundary layer. At higher altitudes concentrations were similar in the two air mass regimes. Cloudier atmospheres showed lower concentrations especially below the clouds, which were a result mostly of coalescence scavenging.
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic
NASA Technical Reports Server (NTRS)
Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.;
2016-01-01
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.
Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; ...
2016-01-21
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
NASA Technical Reports Server (NTRS)
Lyons, W. A.; Pease, S. R.
1973-01-01
The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.
Grabowski, W. W.; Wang, L. -P.; Prabha, T. V.
2015-01-27
This paper discusses impacts of cloud and precipitation processes on macrophysical properties of shallow convective clouds as simulated by a large eddy model applying warm-rain bin microphysics. Simulations with and without collision–coalescence are considered with cloud condensation nuclei (CCN) concentrations of 30, 60, 120, and 240 mg -1. Simulations with collision–coalescence include either the standard gravitational collision kernel or a novel kernel that includes enhancements due to the small-scale cloud turbulence. Simulations with droplet collisions were discussed in Wyszogrodzki et al. (2013) focusing on the impact of the turbulent collision kernel. The current paper expands that analysis and puts modelmore » results in the context of previous studies. Despite a significant increase of the drizzle/rain with the decrease of CCN concentration, enhanced by the effects of the small-scale turbulence, impacts on the macroscopic cloud field characteristics are relatively minor. Model results show a systematic shift in the cloud-top height distributions, with an increasing contribution of deeper clouds for stronger precipitating cases. We show that this is consistent with the explanation suggested in Wyszogrodzki et al. (2013); namely, the increase of drizzle/rain leads to a more efficient condensate offloading in the upper parts of the cloud field. A second effect involves suppression of the cloud droplet evaporation near cloud edges in low-CCN simulations, as documented in previous studies (e.g., Xue and Feingold, 2006). We pose the question whether the effects of cloud turbulence on drizzle/rain formation in shallow cumuli can be corroborated by remote sensing observations, for instance, from space. Although a clear signal is extracted from model results, we argue that the answer is negative due to uncertainties caused by the temporal variability of the shallow convective cloud field, sampling and spatial resolution of the satellite data, and overall accuracy of remote sensing retrievals.« less
A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph
2006-10-23
spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust
Skirt clouds associated with the soufriere eruption of 17 april 1979.
Barr, S
1982-06-04
A fortuitous and dramatic photograph of the Soufriere eruption column of 17 April 1979 displays a series of highly structured skirt clouds. The gentle distortion of thin, quasi-horizontal layers of moist air has been documented in meteorological situations. It is proposed that at St. Vincent subhorizontal layers of moist air were intensely deformed by the rapidly rising eruption column and were carried to higher altitudes, where they condensed to form the skirt clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.
The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less
Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model
NASA Astrophysics Data System (ADS)
McGouldrick, K.
2012-12-01
Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.
Comparative exoplanetology with consistent retrieval methods
NASA Astrophysics Data System (ADS)
Barstow, Joanna Katy; Aigrain, Suzanne; Irwin, Patrick Gerard Joseph; Sing, David
2016-10-01
The number of hot Jupiters with broad wavelength spectroscopic data has finally become large enough to make comparative planetology a reasonable proposition. New results presented by Sing et al. (2016) showcase ten hot Jupiters with spectra from the Hubble Space Telescope and photometry from Spitzer, providing insights into the presence of clouds and hazes.Spectral retrieval methods allow interpretation of exoplanet spectra using simple models, with minimal prior assumptions. This is particularly useful for exotic exoplanets, for which we may not yet fully understand the physical processes responsible for their atmospheric characteristics. Consistent spectral retrieval of a range of exoplanets can allow robust comparisons of their derived atmospheric properties.I will present a retrieval analysis using the NEMESIS code (Irwin et al. 2008) of the ten hot Jupiter spectra presented by Sing et al. (2016). The only distinctive aspects of the model for each planet are the mass and radius, and the temperature range explored. All other a priori model parameters are common to all ten objects. We test a range of cloud and haze scenarios, which include: Rayleigh-dominated and grey clouds; different cloud top pressures; and both vertically extended and vertically confined clouds.All ten planets, with the exception of WASP-39b, can be well represented by models with at least some haze or cloud. Our analysis of cloud properties has uncovered trends in cloud top pressure, vertical extent and particle size with planet equilibrium temperature. Taken together, we suggest that these trends indicate condensation and sedimentation of at least two different cloud species across planets of different temperatures, with condensates forming higher up in hotter atmospheres and moving progressively further down in cooler planets.Sing, D. et al. (2016), Nature, 529, 59Irwin, P. G. J. et al. (2008), JQSRT, 109, 1136
Studies of Dark Spots and Their Companion Clouds on the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Bhure, Sakhee; Sankar, Ramanakumar; Hadland, Nathan; Palotai, Csaba J.; Le Beau, Raymond P.; Koutas, Nikko
2017-10-01
Observations of ice giant planets in our Solar System have shown several large-scale dark spots with varying lifespans. Some of these features were directly observed, others were diagnosed from their orographic companion clouds. Historically, numerical simulations have been able to model certain characteristics of these storms such as the shape variability of the Neptune Great Dark Spot (GDS-89) (Deng and Le Beau, 2006), but have not been able to match observed drift rates and lifespans using the standard zonal wind profiles (Hammel et al. 2009). Common amongst these studies has been the lack of condensable species in the atmosphere and an explicit treatment of cloud microphysics. Yet, observations show that dark spots can affect neighboring cloud features, such as in the case of bright companion clouds or the “Berg” on Uranus. An analysis of the cloud structure is therefore required to gain a better understanding of the underlying atmospheric physics and dynamics of these vortices.For our simulations, we use the Explicit Planetary Isentropic Coordinate (EPIC) general circulation model (Dowling et al. 1998, 2006) and adapt its jovian cloud microphysics module which successfully reproduced the cloud structure of jovian storms, such as the Great Red Spot and the Oval BA (Palotai and Dowling 2008, Palotai et al. 2014). EPIC was recently updated to account for the condensation of methane and hydrogen sulfide (Palotai et al. 2016), which allows us to account for both the high-altitude methane ice-cloud and the deep atmosphere hydrogen sulfide ice-cloud layers.In this work, we simulate large-scale vortices on Uranus and Neptune with varying cloud microphysical parameters such as the deep abundance and the ambient supersaturation. We examine the effect of cloud formation on their lifespan and drift rates to better understand the underlying processes which drive these storms.
Coupled Photochemical and Condensation Model for the Venus Atmosphere
NASA Astrophysics Data System (ADS)
Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang
2017-10-01
Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2010 CFR
2010-01-01
... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...
14 CFR Appendix G to Part 417 - Natural and Triggered Lightning Flight Commit Criteria
Code of Federal Regulations, 2011 CFR
2011-01-01
... time. A cumulus cloud formed locally and a cirrus layer that is physically separated from that cumulus... launch point at the same time. Bright band means an enhancement of radar reflectivity caused by frozen.... Cloud means a visible mass of water droplets or ice crystals produced by condensation of water vapor in...
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
NASA Technical Reports Server (NTRS)
Field, G. B.
1979-01-01
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered.
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Rosen, J. M.; Harder, J. W.; Hereford, J. V.
1989-01-01
Measurements of the vertical profile of particles with condensation nuclei counters and eight channel aerosol detectors at McMurdo Station, Antarctica, in 1987 verified observations made in 1986 concerning the absence of upwelling in the polar vortex and the presence of a condensation nuclei layer in conjunction with the ozone hole region. New observations of a bimodal aerosol size distribution, consisting of a large-particle mode mixed in with the small-particle sulfate mode, at temperatures below -79 C are consistent with the presence of nitric acid-water particles at low concentrations. Higher concentrations of large particles were observed in association with nacreous clouds. An unusual particle layer which contained enhanced concentrations of both the small-particle (sulfate) mode and the large-particle (nitric acid) mode was detected at temperatures below -85 C, suggesting simultaneous nucleation and growth phenomena. The vortex condensation nuclei layer was observed to form at the same time as the ozone hole, indicating that formation of the layer is triggered by photochemical processes and may be important in controlling ozone depletion above 22 km.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Clarke, A. D.; Nenes, A.; Lathem, T. L.; Redemann, J.; Jefferson, A.; Wood, R.
2014-12-01
Contrary to common assumptions in satellite-based modeling of aerosol-cloud interactions, ∂logCCN/∂logAOD is less than unity, i.e., the number concentration of cloud condensation nuclei (CCN) less than doubles as aerosol optical depth (AOD) doubles. This can be explained by omnipresent aerosol processes. Condensation, coagulation and cloud processing, for example, generally make particles scatter more light while hardly increasing their number. This paper reports on the relationship in local air masses between CCN concentration, aerosol size distribution and light extinction observed from aircraft and the ground at diverse locations. The CCN-to-local-extinction relationship, when averaged over ~1 km distance and sorted by the wavelength dependence of extinction, varies approximately by a factor of 2, reflecting the variability in aerosol intensive properties. This, together with retrieval uncertainties and the variability in aerosol spatio-temporal distribution and hygroscopic growth, challenges satellite-based CCN estimates. However, the large differences in estimated CCN may correspond to a considerably lower uncertainty in cloud drop number concentration (CDNC), given the sublinear response of CDNC to CCN. Overall, our findings from airborne and ground-based observations call for model-based reexamination of aerosol-cloud interactions and underlying aerosol processes.
Cloud and boundary layer interactions over the Arctic sea-ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-05-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Cloud and boundary layer interactions over the Arctic sea ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-09-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Volatile transport on Venus and implications for surface geochemistry and geology
NASA Technical Reports Server (NTRS)
Brackett, Robert A.; Fegley, Bruce; Arvidson, Raymond E.
1995-01-01
The high vapor pressure of volatile metal halides and chalcogenides (e.g., of Cu, Zn, Sn, Pb, As, Sb, Bi) at typical Venus surface temperatures, coupled with the altitude-dependent temperature gradient of approximately 8.5 K/km, is calculated to transport volatile metal vapors to the highlands of Venus, where condensation and accumulation will occur. The predicted geochemistry of volatile metals on Venus is supported by observations of CuCl in volcanic gases at Kilauea and Nyiragongo, and large enrichments of these and other volatile elements in terrestrial volcanic aerosols. A one-dimensional finite difference vapor transport model shows the diffusive migration of a thickness of 0.01 to greater than 10 microns/yr of moderately to highly volatile phases (e.g., metal halides and chalcogenides) from the hot lowlands (740 K) to the cold highlands (660 K) on Venus. The diffusive transport of volatile phases on Venus may explain the observed low emissivity of the Venusian highlands, hazes at 6-km altitude observed by two Pioneer Venus entry probes, and the Pioneer Venus entry probe anomalies at 12.5 km.
NASA Astrophysics Data System (ADS)
Bykovskii, N. E.; Senatskii, Yu. V.
2018-02-01
The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.
Numerical simulation of cloud and precipitation structure during GALE IOP-2
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Perkey, D. J.; Seablom, M. S.
1988-01-01
A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.
Discovery of lake-effect clouds on Titan
Brown, M.E.; Schaller, E.L.; Roe, H.G.; Chen, C.; Roberts, J.; Brown, R.H.; Baines, K.H.; Clark, R.N.
2009-01-01
Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar region of Saturn's large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ???40 km and appear confined to the same latitudes as those of the largest known hydrocarbon lakes at the north pole of Titan. The physical properties of these clouds suggest that they are due to methane convection and condensation. Such convection could be caused by a process in some ways analogous to terrestrial lake-effect clouds. The lakes on Titan could be a key connection between the surface and the meteorological cycle. ?? 2009 by the American Geophysical Union.
The Microphysics of Antarctic Clouds - Part one Observations.
NASA Astrophysics Data System (ADS)
Lachlan-Cope, Tom; Listowski, Constantino; O'Shea, Sebastian; Bower, Keith
2016-04-01
During the Antarctic summer of 2010 and 2011 in-situ measurements of clouds were made over the Antarctic Peninsula and in 2015 similar measurements were made over the eastern Weddell Sea using the British Antarctic Surveys instrumented Twin Otter aircraft. This paper contrasts the clouds found on either side of the Antarctic Peninsula with the clouds over the eastern Weddell Sea, paying particular attention to the total number of ice and water particles found in the clouds. The differences found between the clouds are considered in relation to the sources of cloud condensation nuclei and ice nuclei that are expected to be active in the different cases. In particular it was found that the number of ice nuclei was very low over the Weddell Sea when compared to other regions.
NASA Astrophysics Data System (ADS)
Roth, A.; Schneider, J.; Klimach, T.; Mertes, S.; van Pinxteren, D.; Herrmann, H.; Borrmann, S.
2016-01-01
Cloud residues and out-of-cloud aerosol particles with diameters between 150 and 900 nm were analysed by online single particle aerosol mass spectrometry during the 6-week study Hill Cap Cloud Thuringia (HCCT)-2010 in September-October 2010. The measurement location was the mountain Schmücke (937 m a.s.l.) in central Germany. More than 160 000 bipolar mass spectra from out-of-cloud aerosol particles and more than 13 000 bipolar mass spectra from cloud residual particles were obtained and were classified using a fuzzy c-means clustering algorithm. Analysis of the uncertainty of the sorting algorithm was conducted on a subset of the data by comparing the clustering output with particle-by-particle inspection and classification by the operator. This analysis yielded a false classification probability between 13 and 48 %. Additionally, particle types were identified by specific marker ions. The results from the ambient aerosol analysis show that 63 % of the analysed particles belong to clusters having a diurnal variation, suggesting that local or regional sources dominate the aerosol, especially for particles containing soot and biomass burning particles. In the cloud residues, the relative percentage of large soot-containing particles and particles containing amines was found to be increased compared to the out-of-cloud aerosol, while, in general, organic particles were less abundant in the cloud residues. In the case of amines, this can be explained by the high solubility of the amines, while the large soot-containing particles were found to be internally mixed with inorganics, which explains their activation as cloud condensation nuclei. Furthermore, the results show that during cloud processing, both sulfate and nitrate are added to the residual particles, thereby changing the mixing state and increasing the fraction of particles with nitrate and/or sulfate. This is expected to lead to higher hygroscopicity after cloud evaporation, and therefore to an increase of the particles' ability to act as cloud condensation nuclei after their cloud passage.
Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia
NASA Astrophysics Data System (ADS)
Yang, Jiefan; Lei, Hengchi; Lü, Yuhuan
2017-08-01
A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei (CCN) spectra was observed using a passive cloud and aerosol spectrometer (PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = cS k were 539 and 1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12 (Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles (1000-2500 cm-3) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of N CCN to N a (aerosols measured from PCASP) was 0.74 (0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities, such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.
From aerosol-limited to invigoration of warm convective clouds.
Koren, Ilan; Dagan, Guy; Altaratz, Orit
2014-06-06
Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation. Copyright © 2014, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Lee, I. Y.; Haenel, G.; Pruppacher, H. R.
1980-01-01
The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.
RACORO aerosol data processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elisabeth Andrews
2011-10-31
The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurementsmore » and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.« less
NASA Astrophysics Data System (ADS)
De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.
2016-12-01
Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.
Project Fog Drops. Part 2: Laboratory investigations
NASA Technical Reports Server (NTRS)
Kocmond, W. C.; Mack, E. J.; Katz, U.; Pilie, R. J.
1972-01-01
Measurements of the total nucleus concentration and cloud condensation nuclei (CCN) were acquired for several conditions representing both high normal and severe pollution levels for the Los Angeles Basin as well as clean filtered air. The data show that in filtered air there is a large photochemically induced increase in the total particle content within a few minutes after starting the lamp. The concentration of CCN remains near zero, until sufficient coagulation and condensation occurs on the smaller Aitken particles. The addition of gaseous pollutants to filtered air results in large increases in the photochemical production of both the cloud and Aitken nucleus concentration. Fogs were also generated under controlled, reproducible conditions in the cloud chamber and seeded with aerosols of various compounds which form monomolecular surface films at air-water interfaces. Visibility characteristics and droplet data were obtained. The data suggest that droplet growth on treated nuclei can be retarded but fog formation was not significantly altered by the chemical seeding.
The GFS Atmospheric Model description
model has only one type of cloud cover represented by C. In the tropics the cloudiness is primarily due mainly through grid-scale condensation. The fractional cloud cover C is available at all model levels , 1996: Parameterizations for the absorption of solar radiation by water vapor and ozone. J. Atmos. Sci
Arctic sea ice melt leads to atmospheric new particle formation.
Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M
2017-06-12
Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.
Boreal forests, aerosols and the impacts on clouds and climate.
Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S
2008-12-28
Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.
Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)
NASA Astrophysics Data System (ADS)
Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.
2010-12-01
Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction (<100 nm) of atmospheric aerosol particles often dominates the total aerosol numbers, and nucleation of atmospheric vapours is one of the most important sources of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size, and consequently their climatic importance remains to be quantified (see Fig. 1). We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapours is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations; we propose a new modelling approach that is consistent with the measurements. Finally, we demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapours and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models. Figure 1. Organic emissions and the dynamic processes governing the climatic importance of ultrafine aerosol. Condensable vapours are produced upon oxidation of volatile organic compounds (VOCs) and can 1) nucleate to form new small particles; 2) grow freshly formed particles to larger sizes and increase their probability to serve as CCN; 3) condense on the background aerosol (> 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the aerosol size distribution, enhancing the scavenging of the ultrafine particles.
Boamah, Mavis D; Sullivan, Kristal K; Shulenberger, Katie E; Soe, ChanMyae M; Jacob, Lisa M; Yhee, Farrah C; Atkinson, Karen E; Boyer, Michael C; Haines, David R; Arumainayagam, Christopher R
2014-01-01
In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.
Effects of Wildfire Pollution on the Microphysical and Electrical Properties of Pyrocumulus
NASA Astrophysics Data System (ADS)
Duff, R.; Grant, L. D.; van den Heever, S. C.
2014-12-01
Pyrocumulus clouds form over wildfires when hot, smoke-filled air rises, cools and condenses. These clouds have higher cloud condensation nuclei (CCN) concentrations, which affect their microphysical and electrical properties. It is important to better understand pyrocumulus cloud microphysical characteristics and lightning formation, which have implications for the prediction of wildfire growth as well as the radiative and chemical characteristics of the upper troposphere. A recent observational study documented an electrified pyrocumulus over the May 2012 Hewlett Gulch fire located to the west of Fort Collins, Colorado. This cloud produced approximately 20 intracloud lightning flashes, and its electrical activity differed from surrounding convection that was not directly impacted by the fire and associated smoke. The goal of this research is to investigate aerosol-induced cloud-scale microphysical differences between clean clouds and polluted pyrocumulus to better characterize the mechanisms that cause pyrocumulus electrification. In order to address this goal, idealized cloud-resolving model simulations were performed using the Regional Atmospheric Modeling System (RAMS). The model environment was initialized with an average of the 12Z 16 May and 00Z 17 May 2012 observed Denver soundings to represent the conditions when the Hewlett Gulch pyrocumulus occurred. Five simulations were performed using surface aerosol concentrations from 100 to 5000 #/mg. The results demonstrate that in moderately polluted pyrocumulus, rain processes are suppressed while graupel production increases. Extremely polluted pyrocumulus, however, experience a complete shut-down of graupel production, which favors the production of large amounts of liquid water and smaller ice species such as ice crystals and snowflakes. The processes responsible for these microphysical changes, as well as inferred pyrocumulus electrification mechanisms, will be compared with those discussed in previous observational studies of this case.
Holmlid, Leif
2009-01-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Holmlid, Leif
2009-08-01
Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.
NASA Astrophysics Data System (ADS)
Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.
2009-07-01
The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.
2003-01-01
Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case produces fewer droplets, larger sized develop due to the greater condensational and collectional growth, leading to a broader size spectrum in comparison to the high CCN case.
Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen
2017-07-01
Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.
The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.
2005-01-01
Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.
Effect of ship-stack effluents on cloud reflectivity
NASA Technical Reports Server (NTRS)
Coakley, James A., Jr.; Bernstein, Robert L.; Durkee, Philip A.
1987-01-01
Under stable meteorological conditions the effect of ship-stack exhaust on overlying clouds was detected in daytime satellite images as an enhancement in cloud reflectivity at 3.7 micrometers. The exhaust is a source of cloud-condensation nuclei that increases the number of cloud droplets while reducing droplet size. This reduction in droplet size causes the reflectivity at 3.7 micrometers to be greater than the levels for nearby noncontaminated clouds of similar physical characteristics. The increase in droplet number causes the reflectivity at 0.63 micrometer to be significantly higher for the contaminated clouds despite the likelihood that the exhaust is a source of particles that absorb at visible wavelengths. The effect of aerosols on cloud reflectivity is expected to have a larger influence on the earth's albedo than that due to the direct scattering and absorption of sunlight by the aerosols alone.
Clouds and hazes in exoplanets and brown dwarfs
NASA Astrophysics Data System (ADS)
Morley, Caroline Victoria
The formation of clouds significantly alters the spectra of cool substellar atmospheres from terrestrial planets to brown dwarfs. In cool planets like Earth and Jupiter, volatile species like water and ammonia condense to form ice clouds. In hot planets and brown dwarfs, iron and silicates instead condense, forming dusty clouds. Irradiated methane-rich planets may have substantial hydrocarbon hazes. During my dissertation, I have studied the impact of clouds and hazes in a variety of substellar objects. First, I present results for cool brown dwarfs including clouds previously neglected in model atmospheres. Model spectra that include sulfide and salt clouds can match the spectra of T dwarf atmospheres; water ice clouds will alter the spectra of the newest and coldest brown dwarfs, the Y dwarfs. These sulfide/salt and ice clouds potentially drive spectroscopic variability in these cool objects, and this variability should be distinguishable from variability caused by hot spots. Next, I present results for small, cool exoplanets between the size of Earth and Neptune. They likely have sulfide and salt clouds and also have photochemical hazes caused by stellar irradiation. Vast resources have been dedicated to characterizing the handful of super Earths and Neptunes accessible to current telescopes, yet of the planets smaller than Neptune studied to date, all have radii in the near-infrared consistent with being constant in wavelength, likely showing that these small planets are consistently enshrouded in thick hazes and clouds. For the super Earth GJ 1214b, very thick, lofted clouds of salts or sulfides in high metallicity (1000x solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes also create featureless transmission spectra at lower metallicities. For the Neptune-sized GJ 436b, its thermal emission and transmission spectra combine indicate a high metallicity atmosphere, potentially heated by tides and affected by disequilibrium chemistry. I show that despite the challenges, there are promising avenues for understanding small planets: by observing thermal emission and reflected light, we can break the degeneracies and con- strain the atmospheric compositions. These future observations will provide rich diagnostics of molecules and clouds in small planets.
The Impact of Clouds and Hazes in Substellar Atmospheres
NASA Astrophysics Data System (ADS)
Morley, Caroline; Fortney, Jonathan J.; Marley, Mark S.
2016-01-01
The formation of clouds significantly alters the spectra of cool substellar atmospheres from terrestrial planets to brown dwarfs. In cool planets like Earth and Jupiter, volatile species like water and ammonia condense to form ice clouds. In hot planets and brown dwarfs, iron and silicates instead condense, forming dusty clouds. Irradiated methane-rich planets may have substantial hydrocarbon hazes. During my thesis, I have studied the impact of clouds and hazes in a variety of substellar objects. First, I present results for cool brown dwarfs including clouds previously neglected in model atmospheres. Model spectra that include sulfide and salt clouds can match the spectra of T dwarf atmospheres; water ice clouds will alter the spectra of the newest and coldest brown dwarfs, the Y dwarfs. These sulfide/salt and ice clouds potentially drive spectroscopic variability in these cool objects, and this variability should be distinguishable from variability caused by hot spots.Next, I present results for small, cool exoplanets between the size of Earth and Neptune, so-called super Earths. They likely have sulfide and salt clouds and also have photochemical hazes caused by stellar irradiation. Vast resources have been dedicated to characterizing the handful of super Earths accessible to current telescopes, yet of the planets smaller than Neptune studied to date, all have radii in the near-infrared consistent with being constant in wavelength, likely showing that these small planets are consistently enshrouded in thick hazes and clouds. Very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. I show that despite these challenges, there are promising avenues for understanding this class of small planets: by observing the thermal emission and reflectivity of small planets, we can break the degeneracies and better constrain the atmospheric compositions. These observations may provide rich diagnostics of molecules and clouds in small planets, in contrast to the limited success to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel
How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less
Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; ...
2017-01-23
How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that depositionmore » plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm -3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm -3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D.; Nash, C.; Mcclane, D.
The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to demonstrate evaporation of a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, in order to predict the composition of the effluents from the EMF evaporator to aid in planning for their disposition. This document describes the results of that test using the core simulant. This simulant formulation is designated as the “core simulant”; other additives will be included for specific testing, such as volatiles for evaporation or hazardous metals for measuring leaching properties of waste forms. The results indicate that the simulant can easily be concentrated via evaporation. During that the pH adjustment step in simulant preparation, ammonium is quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, it was found that after concentrating (>12x) and cooling that a small amount of LiF and Na 3(SO 4)F precipitate out of solution. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF).« less
3D Simulations of methane convective storms on Titan's atmosphere
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.
2005-08-01
The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.
Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.
2014-11-17
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less
NASA Astrophysics Data System (ADS)
Cecchini, Micael A.; Machado, Luiz A. T.; Artaxo, Paulo
2014-06-01
This work aims to study typical Droplet Size Distributions (DSDs) for different types of precipitation systems and Cloud Condensation Nuclei concentrations over the Vale do Paraíba region in southeastern Brazil. Numerous instruments were deployed during the CHUVA (Cloud processes of tHe main precipitation systems in Brazil: a contribUtion to cloud resolVing modeling and to the GPM) Project in Vale do Paraíba campaign, from November 22, 2011 through January 10, 2012. Measurements of CCN (Cloud Condensation Nuclei) and total particle concentrations, along with measurements of rain DSDs and standard atmospheric properties, including temperature, pressure and wind intensity and direction, were specifically made in this study. The measured DSDs were parameterized with a gamma function using the moment method. The three gamma parameters were disposed in a 3-dimensional space, and subclasses were classified using cluster analysis. Seven DSD categories were chosen to represent the different types of DSDs. The DSD classes were useful in characterizing precipitation events both individually and as a group of systems with similar properties. The rainfall regime classification system was employed to categorize rainy events as local convective rainfall, organized convection rainfall and stratiform rainfall. Furthermore, the frequencies of the seven DSD classes were associated to each type of rainy event. The rainfall categories were also employed to evaluate the impact of the CCN concentration on the DSDs. In the stratiform rain events, the polluted cases had a statistically significant increase in the total rain droplet concentrations (TDCs) compared to cleaner events. An average concentration increase from 668 cm- 3 to 2012 cm- 3 for CCN at 1% supersaturation was found to be associated with an increase of approximately 87 m- 3 in TDC for those events. For the local convection cases, polluted events presented a 10% higher mass weighted mean diameter (Dm) on average. For the organized convection events, no significant results were found.
Detection of Dust Condensations in the Orion Bar Photon-dominated Region
NASA Astrophysics Data System (ADS)
Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou
2018-03-01
We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.
Cloud condensation nucleus counter by impactor sampling technique
NASA Technical Reports Server (NTRS)
Ohtake, T.
1981-01-01
Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.
Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter
NASA Technical Reports Server (NTRS)
Anderson, Carrie; Samuelson, R.; Achterberg, R.
2012-01-01
The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although in significantly larger abundances. We will present the spectral and vertical distribution of Titan's stratospheric particulates during northern winter on Titan. The drastically changing abundance of the haystack over a small latitude range will be highlighted, specifically comparing the IRIS and CIRS epochs, Finally, we will discuss the situation in which CH4 condenses in Titan's lower stratosphere, forming an unexpected quasi steady-state stratospheric Ice cloud.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation
NASA Technical Reports Server (NTRS)
Robinson, N. F.; Scott, W. T.
1981-01-01
A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.
Validation and Refinement of the DELFIC Cloud Rise Module
1977-01-15
Explosion Energy Fraction in the Cloud, f 13 2.4.2 Temper&ture of Condensed-Phase Matter 13 2.4.3 Altitude 14 2.4.4 Rise V0elociy 14 2.4.5 Mass and Volume 15...2.4.1 Explosion Energy Fraction in the Cloud. f. The original NRDL water-surface burst model used an energy fraction of 33%. For the first DELFIC...of explosion energy) is used to heat soil and air to their respective initial tempera- tures. The soil mans and both initial temperatures are
Evidence for a polar ethane cloud on Titan
Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.
2006-01-01
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.
Evidence for a polar ethane cloud on Titan.
Griffith, C A; Penteado, P; Rannou, P; Brown, R; Boudon, V; Baines, K H; Clark, R; Drossart, P; Buratti, B; Nicholson, P; McKay, C P; Coustenis, A; Negrao, A; Jaumann, R
2006-09-15
Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.
NASA Astrophysics Data System (ADS)
Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.
2010-10-01
A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.
NASA Astrophysics Data System (ADS)
Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.
2010-05-01
A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.
Using Laboratory Methods to Better Understand Refractory Cloud Formation in Exoplanet Atmospheres
NASA Astrophysics Data System (ADS)
Kohler, E.; Ferguson, F.
2017-12-01
The high number of extrasolar planets found in recent years has brought a new importance to planetary atmospheres. These recently discovered planets show a large diversity in their masses, temperatures, orbital periods, and other properties. With such a diverse mix of planetary parameters, it is safe to assume that the atmospheric properties are just as varied. Recent literature suggests silicates and metals as possible condensates in extrasolar planetary atmospheres as well as the atmospheres of brown dwarfs. While theoretical studies have laid the foundation of cloud formation analysis, their findings still need to be validated via experiments. A verification of the condensation and vaporization predictions of refractory materials needs to be found in order to assist global circulation models in being as accurate as possible. The stability of minerals identified in the literature as potential candidates, will be tested in a thermogravimetric balance. The minerals will be pumped under vacuum for twenty-four hours under room temperature and then heated to a predetermined high temperature, dependent on the expected vaporization temperature of that sample. If there is apparent mass loss, then the temperature will be lowered at preset durations and mass measurements will be taken in similar measured increments. The data will be processed by a computer program in order to calculate the mass loss as a function of temperature. The current cloud formation and global circulation models are very important to the field of planetary science but their accuracy is hindered by the lack of experimental data. The aim of this work is to investigate the mineral stability of potential condensates in an effort to explain the formation of refractory clouds in the atmospheres of extrasolar planets and brown dwarfs.
Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Romps, D. M.
2016-12-01
Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.
Computer image processing of up-draft flow motion and severe storm formation observed from satellite
NASA Technical Reports Server (NTRS)
Hung, R. J.; Smith, R. E.
1985-01-01
Special rapid-scan satellite visible and infrared observations have been used to study the life cycle of the clouds from the initiation of updraft flow motion in the atmosphere, the condensation of humid air, the formation of clouds, the development of towering cumulus, the penetration of the tropopause, the collapsing of an overshooting turret, and the dissipation of cloud. The infrared image provides an indication of the equivalent blackbody temperature of the observed cloud tops. By referencing the temperature, height and humidity profiles from rawinsonde observations as the background meteorological data for the instability of the air mass to the satellite infrared data sets at different time periods, the development of convective clouds can be studied in detail.
Rose, William I.; Millard, G.A.; Mather, T.A.; Hunton, D.E.; Anderson, B.; Oppenheimer, C.; Thornton, B.F.; Gerlach, T.M.; Viggiano, A.A.; Kondo, Y.; Miller, T.M.; Ballenthin, J.O.
2006-01-01
On 28 February 2000, a volcanic cloud from Hekla volcano, Iceland, was serendipitously sampled by a DC-8 research aircraft during the SAGE III Ozone Loss and Validation Experiment (SOLVE I). It was encountered at night at 10.4 km above sea level (in the lower stratosphere) and 33-34 hours after emission. The cloud is readily identified by abundant SO2 (???1 ppmv), HCl (???70 ppbv), HF (???60 ppbv), and particles (which may have included fine silicate ash). We compare observed and modeled cloud compositions to understand its chemical evolution. Abundances of sulfur and halogen species indicate some oxidation of sulfur gases but limited scavenging and removal of halides. Chemical modeling suggests that cloud concentrations of water vapor and nitric acid promoted polar stratospheric cloud (PSC) formation at 201-203 K, yielding ice, nitric acid trihydrate (NAT), sulfuric acid tetrahydrate (SAT), and liquid ternary solution H2SO4/H2O/HNO3 (STS) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated volcanogenic halogens in the cloud producing >2 ppbv ClOx. This would have destroyed ozone during an earlier period of daylight, consistent with the very low levels of ozone observed. This combination of volcanogenic PSCs and chlorine destroyed ozone at much faster rates than other PSCs that Arctic winter. Elevated levels of HNO3 and NOy in the cloud can be explained by atmospheric nitrogen fixation in the eruption column due to high temperatures and/or volcanic lightning. However, observed elevated levels of HOx remain unexplained given that the cloud was sampled at night. Copyright 2006 by the American Geophysical Union.
Temperature Dependence in Homogeneous and Heterogeneous Nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGraw R. L.; Winkler, P. M.; Wagner, P. E.
2017-08-01
Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneouslymore » on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less
Impact of the CO2 and H2O clouds of the Martian polar hood on the polar energy balance
NASA Technical Reports Server (NTRS)
Forget, Francois; Pollack, James B.
1993-01-01
Clouds covering extensive areas above the martian polar caps have regularly been observed during the fall and winter seasons of each hemisphere. These 'polar hoods' are thought to be made of H2O and CO2. In particular, the very cold temperatures observed during the polar night by Viking and Mariner 9 around both poles have been identified as CO2 clouds and several models, including GCM, have indicated that the CO2 can condense in the atmosphere at all polar latitudes. Estimating the impact of the polar hood clouds on the energy balance of the polar regions is necessary to model the CO2 cycle and address puzzling problems like the polar caps assymetry. For example, by altering the thermal radiation emitted to space, CO2 clouds alter the amount of CO2 that condenses during the fall and winter season. The complete set of Viking IRTM data was analyzed to define the spatial and temporal properties of the polar hoods, and how their presence affects the energy radiated by the atmosphere/caps system to space was estimated. The IRTM observations provide good spatial and temporal converage of both polar regions during fall, winter, and spring, when a combination of the first and the second Viking year is used. Only the IRTM brightness temperatures at 11, 15, and 20 microns are reliable at martian polar temperatures. To recover the integrated thermal fluxes from the IRTM data, a simple model of the polar hood, thought to consist of 'warm' H2O clouds lying above colder and opaque CO2 clouds was developed. Such a model is based on the analysis of the IRIS spectra, and is consistent with the IRTM data used.
Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.
2009-12-01
In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.
Model Intercomparison of CCN-Limited Arctic Clouds During ASCOS
NASA Astrophysics Data System (ADS)
Stevens, Robin; Dearden, Chris; Dimetrelos, Antonios; Eirund, Gesa; Possner, Anna; Raatikainen, Tomi; Loewe, Katharina; Hill, Adrian; Shipway, Ben; Connolly, Paul; Ekman, Annica; Hoose, Corinna; Laaksonen, Ari; de Leeuw, Gerrit; Kolmonen, Pekka; Saponaro, Giulia; Field, Paul; Carlsaw, Ken
2017-04-01
Future decreases in Arctic sea ice are expected to increase fluxes of aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings. However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. Their study was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea-ice loss or changing aerosol concentrations. Taken together, these results show that significant uncertainties remain in trying to quantify aerosol-cloud processes in the Arctic system. The current representation of these processes in global climate models is most likely insufficient to realistically simulate long-term changes. In order to better understand the microphysical processes currently governing Arctic clouds, we perform a model intercomparison of summertime high Arctic (>80N) clouds observed during the 2008 ASCOS campaign. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). The results of these experiments will be used as a basis for sensitivity studies on the impact of sea-ice loss on Arctic clouds through changes in aerosol and precursor emissions as well as changes in latent and sensible heat fluxes. Browse, J., et al., Atmos. Chem. Phys., 14(14), 7543-7557, doi:10.5194/acp-14-7543-2014, 2014. Struthers, H., et al., Atmos. Chem. Phys., 11(7), 3459-3477, doi:10.5194/acp-11-3459-2011, 2011.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Joyce E.; Zhou, Cheng
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAMmore » is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
NASA Astrophysics Data System (ADS)
Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.
2017-12-01
Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009) Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions,2009, Atmos. Chem. Phys., 9, 543-556.
1980-12-01
size data has been obtained with diffusion batteries, electrostatic precipitators , and cascade im- pactors. There is a strong (5 to 1) seasonal variation...dimensional Eddington approximation to derive microwave radiances emerging from finite clouds of precipitation , it was noted that the Eddington...condensation nuclei. They can then accrete water and grow by condensation, and fall as rain, collecting water droplets after they have grown to precipitation
Multimodel evaluation of cloud phase transition using satellite and reanalysis data
NASA Astrophysics Data System (ADS)
Cesana, G.; Waliser, D. E.; Jiang, X.; Li, J.-L. F.
2015-08-01
We take advantage of climate simulations from two multimodel experiments to characterize and evaluate the cloud phase partitioning in 16 general circulation models (GCMs), specifically the vertical structure of the transition between liquid and ice in clouds. We base our analysis on the ratio of ice condensates to the total condensates (phase ratio, PR). Its transition at 90% (PR90) and its links with other relevant variables are evaluated using the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Cloud Product climatology, reanalysis data, and other satellite observations. In 13 of 16 models, the PR90 transition height occurs too low (6 km to 8.4 km) and at temperatures too warm (-13.9°C to -32.5°C) compared to observations (8.6 km, -33.7°C); features consistent with a lack of supercooled liquid with respect to ice above 6.5 km. However, this bias would be slightly reduced by using the lidar simulator. In convective regimes (more humid air and precipitation), the observed cloud phase transition occurs at a warmer temperature than for subsidence regimes (less humid air and precipitation). Only few models manage to roughly replicate the observed correlations with humidity (5/16), vertical velocity (5/16), and precipitation (4/16); 3/16 perform well for all these parameters (MPI-ESM, NCAR-CAM5, and NCHU). Using an observation-based Clausius-Clapeyron phase diagram, we illustrate that the Bergeron-Findeisen process is a necessary condition for models to represent the observed features. Finally, the best models are those that include more complex microphysics.
Effects of turbulence on warm clouds and precipitation with various aerosol concentrations
NASA Astrophysics Data System (ADS)
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2015-02-01
This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.
Aerosol impacts on deep convective storms in the tropics: A combination of modeling and observations
NASA Astrophysics Data System (ADS)
Storer, Rachel Lynn
It is widely accepted that increasing the number of aerosols available to act as cloud condensation nuclei (CCN) will have significant effects on cloud properties, both microphysical and dynamical. This work focuses on the impacts of aerosols on deep convective clouds (DCCs), which experience more complicated responses than warm clouds due to their strong dynamical forcing and the presence of ice processes. Several previous studies have seen that DCCs may be invigorated by increasing aerosols, though this is not the case in all scenarios. The precipitation response to increased aerosol concentrations is also mixed. Often precipitation is thought to decrease due to a less efficient warm rain process in polluted clouds, yet convective invigoration would lead to an overall increase in surface precipitation. In this work, modeling and observations are both used in order to enhance our understanding regarding the effects of aerosols on DCCs. Specifically, the area investigated is the tropical East Atlantic, where dust from the coast of Africa frequently is available to interact with convective storms over the ocean. The first study investigates the effects of aerosols on tropical DCCs through the use of numerical modeling. A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as CCN. Polluted simulations contained more deep convective clouds, wider storms, higher cloud tops and more convective precipitation across the entire domain. Differences in the warm cloud microphysical processes were largely consistent with aerosol indirect theory, and the average precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in surface precipitation; however the production of rain through the melting of ice, though it also decreased, became more important as the aerosol concentration increased. The DCCs in polluted simulations contained more frequent, stronger updrafts and downdrafts, but the average updraft speed decreased with increasing aerosols in DCCs above 6 km. An examination of the buoyancy term of the vertical velocity equation demonstrates that the drag associated with condensate loading is an important factor in determining the average updraft strength. The largest contributions to latent heating in DCCs were cloud nucleation and vapor deposition onto water and ice, but changes in latent heating were, on average, an order of magnitude smaller than those in the condensate loading term. It is suggested that the average updraft is largely influenced by condensate loading in the more extensive stratiform regions of the polluted storms, while invigoration in the convective core leads to stronger updrafts and higher cloud tops. The goal of the second study was to examine observational data for evidence that would support the findings of the modeling work. In order to do this, four years of CloudSat data were analyzed over a region of the East Atlantic, chosen for the similarity (in meteorology and the presence of aerosols) to the modeling study. The satellite data were combined with information about aerosols taken from the output of a global transport model, and only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, rain top, and ice water path were all found to increase with increased aerosol loading. These findings are in agreement with what was found in the modeling work, and are suggestive of convective invigoration with increased aerosols. In order to separate environmental effects from that due to aerosols, the data were sorted by environmental convective available potential energy (CAPE) and lower tropospheric static stability (LTSS). The aerosol effects were found to be largely independent of the environment. A simple statistical test suggests that the difference between the cleanest and most polluted clouds sampled are significant, lending credence to the hypothesis of convective invigoration. This is the first time evidence of deep convective invigoration has been demonstrated within a large region and over a long time period, and it is quite promising that there are many similarities between the modeling and observational results.
Tropical cloud buoyancy is the same in a world with or without ice
NASA Astrophysics Data System (ADS)
Seeley, Jacob T.; Romps, David M.
2016-04-01
When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.
Carbon Dioxide Snow Storms During the Polar Night on Mars
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Colaprete, Anthony
2001-01-01
The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.
Integrated Sensor Systems for UAS
2008-04-01
2. Optical particle counter 0.27 5.4 3. Pyranometer 0.17 ɘ.2 4. Temp. & relative humidity 0.05 ɘ.1 5. Data acquisition system 0.15 ɘ.2 6...payload volume showing sensor instrument installation. The insert shows the Manta exterior with the cloud droplet probe and pyranometer mounted on...Instrumentation Above- 2.7 Aethalometer cloud 14 Optical particle counter Up and down pyranometers Condensation particle counter In- 3.7
Discrete clouds of neutral gas between the galaxies M31 and M33.
Wolfe, Spencer A; Pisano, D J; Lockman, Felix J; McGaugh, Stacy S; Shaya, Edward J
2013-05-09
Spiral galaxies must acquire gas to maintain their observed level of star formation beyond the next few billion years. A source of this material may be the gas that resides between galaxies, but our understanding of the state and distribution of this gas is incomplete. Radio observations of the Local Group of galaxies have revealed hydrogen gas extending from the disk of the galaxy M31 at least halfway to M33. This feature has been interpreted to be the neutral component of a condensing intergalactic filament, which would be able to fuel star formation in M31 and M33, but simulations suggest that such a feature could also result from an interaction between both galaxies within the past few billion years (ref. 5). Here we report radio observations showing that about 50 per cent of this gas is composed of clouds, with the rest distributed in an extended, diffuse component. The clouds have velocities comparable to those of M31 and M33, and have properties suggesting that they are unrelated to other Local Group objects. We conclude that the clouds are likely to be transient condensations of gas embedded in an intergalactic filament and are therefore a potential source of fuel for future star formation in M31 and M33.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Clarke, A. D.; Nenes, A.; Jefferson, A.; Wood, R.; McNaughton, C. S.; Ström, J.; Tunved, P.; Redemann, J.; Thornhill, K. L., II; Moore, R.; Lathem, T. L.; Lin, J.; Yoon, Y. J.
2017-12-01
Aerosol-cloud interactions (ACI) are the largest source of uncertainty in estimates of anthropogenic radiative forcing responsible for the on-going climate change. ACI for warm clouds depend on the number concentration of cloud condensation nuclei (CCN), not on aerosol optical properties. Yet, aerosol optical depth (AOD) and its variants weighted by the spectral dependence over visible and near infrared wavelengths are commonly substituted for CCN in ACI studies. The substitution is motivated by the wide availability in space and time of satellite retrievals, an advantage over the sparse CCN measurements. If satellite-based CCN estimates are to continue to complement purely model-based ones, what CCN-AOD relationship should we assume and how large is the associated uncertainty? Our 2015 paper examines airborne and ground-based observations of aerosols to address these questions, focusing on the relationship between CCN and light extinction, σ, of dried particles averaged over one-kilometer horizontal distance. That paper discusses the way the CCN-AOD relationship is influenced not only by the CCN-σ relationship but also by the humidity response of light extinction, the vertical profile, the horizontal-temporal variability and the AOD measurement error. In this presentation, we apply these findings to passive satellite data to analyze the uncertainty in satellite-based CCN estimates.
Many-body interferometry of magnetic polaron dynamics
NASA Astrophysics Data System (ADS)
Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene
2018-02-01
The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Krejci, Radovan; Giangrande, Scott
The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less
Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A
2011-03-15
Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.
A flattened cloud core in NGC 2024
NASA Technical Reports Server (NTRS)
Ho, Paul T. P.; Peng, Yun-Lou; Torrelles, Jose M.; Gomez, Jose F.; Rodriguez, Luis F.; Canto, Jorge
1993-01-01
The (J, K) (1, 1) and (2, 2) NH3 lines were mapped toward a molecular cloud core in NGC 2024 using the VLA in its C/D-configuration. This region is associated with one of the most highly collimated molecular outflows. We find that the molecular condensations associated with the far-infrared sources FIR 5, FIR 6, and FIR 7 have kinetic temperatures of about 40 K. We also find line broadening toward FIR 6 and FIR 7. This suggests that these condensations may not be protostars heated by gravitational energy released during collapse but that they have an internal heating source. A flattened structure of ammonia emission is found extending parallel to the unipolar CO outflow structure, but displaced systematically to the east. If the NH3 emission traces the denser gas environment, there is no evidence that a dense gas structure is confining the molecular outflow. Instead, the location of the high-velocity outflow along the surface of the NH3 structure suggests that a wind is sweeping material from the surface of this elongated cloud core.
The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Li, X.; Matsui, T.
2012-01-01
Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes.
NASA Astrophysics Data System (ADS)
Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John
2017-04-01
This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data.
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...
2016-02-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol–cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol–cloud interactions adequately. There is a dearth of observational constraints on aerosol–cloud interactions. In this paper, we develop a conceptual approach to systematically constrain the aerosol–cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. Finally, we heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol–cloud radiation system.« less
New approaches to quantifying aerosol influence on the cloud radiative effect
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian
2016-01-01
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092
New approaches to quantifying aerosol influence on the cloud radiative effect.
Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian
2016-05-24
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.
2009-10-02
In this infrared view from the Herschel Observatory, a European Space Agency mission, blue shows the warmest dust, and red, the coolest. The choppy clouds of gas and dust are just starting to condense into new stars.
Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds
NASA Astrophysics Data System (ADS)
Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.
2015-12-01
An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.
Turbulence and cloud droplets in cumulus clouds
NASA Astrophysics Data System (ADS)
Saito, Izumi; Gotoh, Toshiyuki
2018-02-01
In this paper, we report on the successful and seamless simulation of turbulence and the evolution of cloud droplets to raindrops over 10 minutes from microscopic viewpoints by using direct numerical simulation. Included processes are condensation-evaporation, collision-coalescence of droplets with hydrodynamic interaction, Reynolds number dependent drag, and turbulent flow within a parcel that is ascending within a self-consistently determined updraft inside a cumulus cloud. We found that the altitude and the updraft velocity of the parcel, the mean supersaturation, and the liquid water content are insensitive to the turbulence intensity, and that when the turbulence intensity increases, the droplet number density swiftly decreases while the spectral width of droplets rapidly increases. This study marks the first time the evolution of the mass density distribution function has been successfully calculated from microscopic computations. The turbulence accelerated to form a second peak in the mass density distribution function, leading to the raindrop formation, and the radius of the largest drop was over 300 μm at the end of the simulation. We also found that cloud droplets modify the turbulence in a way that is unlike the Kolmogorov-Obukhov-Corrsin theory. For example, the temperature and water vapor spectra at low wavenumbers become shallower than {k}-5/3 in the inertial-convective range, and decrease slower than exponentially in the diffusive range. This spectra modification is explained by nonlinear interactions between turbulent mixing and the evaporation-condensation process associated with large numbers of droplets.
Inhomogeneities in frontal cirrus clouds
NASA Astrophysics Data System (ADS)
Neis, Patrick; Krämer, Martina; Hoor, Peter; Reutter, Philipp; Spichtinger, Peter
2013-04-01
Frontal cirrus clouds have a scientifically proven effect on the Earth's radiation budget and thereby an influence on the weather and climate change in regional scale. The formation processes and structures of frontal cirrus clouds are still not fully understood. For a close investigation of typical frontal cirrus clouds, we use in situ measurements from the CIRRUS-III campaign over Germany and Northern Europe in November 2006. Besides water vapour, cloud ice water content, ice particle size distributions, condensation nuclei, and reactive nitrogen were measured during 6 flights. In this work the data of the 24th November flight is used to detect and to analyze warm frontal cirrus clouds in the mid latitudes on small temporal and spatial scale. Further, these results are compared with large-scale meteorological analyses from ECMWF and satellite data. Combining these data, the formation and evolution of inhomogeneities in the cirrus cloud structure are investigated. One important result is a qualitative agreement between the occurrence of cirrus clouds and the 'sharpness' of the Tropopause Inversion Layer (TIL).
Initialization and assimilation of cloud and rainwater in a regional model
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
The initialization and assimilation of cloud and rainwater quantities in a mesoscale regional model was examined. Forecasts of explicit cloud and rainwater are made using conservation equations. The physical processes include condensation, evaporation, autoconversion, accretion, and the removal of rainwater by fallout. These physical processes, some of which are parameterized, represent source and sink in terms in the conservation equations. The question of how to initialize the explicit liquid water calculations in numerical models and how to retain information about precipitation processes during the 4-D assimilation cycle are important issues that are addressed.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Penner, Joyce E.
2017-01-01
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.
NASA Astrophysics Data System (ADS)
Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.
2012-04-01
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this problem by establishing a Data Application Center for conducting social science research focused on understanding the best ways to use, transfer, and communicate mission data to decision-makers. The CHASER Data Application Center supports the visions of the National Research Council and the Decadal Survey for an integrated program of observations from space that secures practical benefits for humankind by developing data products for assessing risks due to severe weather and climate change.
NASA Astrophysics Data System (ADS)
Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.
2016-07-01
The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.
The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone
NASA Astrophysics Data System (ADS)
Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David
2016-10-01
The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST, WFIRST-AFTA and the LUVOIR mission concept.
Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds
NASA Astrophysics Data System (ADS)
Cotton, W.; Carrio, G.; Jiang, H.
2003-04-01
The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting rates when mixed phase clouds are present.
Alkali and Chlorine Photochemistry in a Volcanically Driven Atmosphere on Io
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Zolotov, Mikhail Yu.; Fegley, Bruce
2002-03-01
Observations of the Io plasma torus and neutral clouds indicate that the extended ionian atmosphere must contain sodium, potassium, and chlorine in atomic and/or molecular form. Models that consider sublimation of pure sulfur dioxide frost as the sole mechanism for generating an atmosphere on Io cannot explain the presence of alkali and halogen species in the atmosphere—active volcanoes or surface sputtering must also be considered, or the alkali and halide species must be discharged along with the SO 2 as the frost sublimates. To determine how volcanic outgassing can affect the chemistry of Io's atmosphere, we have developed a one-dimensional photochemical model in which active volcanoes release a rich suite of S-, O-, Na-, K-, and Cl-bearing vapor and in which photolysis, chemical reactions, condensation, and vertical eddy and molecular diffusion affect the subsequent evolution of the volcanic gases. Observations of Pele plume constituents, along with thermochemical equilibrium calculations of the composition of volcanic gases exsolved from high-temperature silicate magmas on Io, are used to constrain the composition of the volcanic vapor. We find that NaCl, Na, Cl, KCl, and K will be the dominant alkali and chlorine gases in atmospheres generated from Pele-like plume eruptions on Io. Although the relative abundances of these species will depend on uncertain model parameters and initial conditions, these five species remain dominant for a wide variety of realistic conditions. Other sodium and chlorine molecules such as NaS, NaO, Na 2, NaS 2, NaO 2, NaOS, NaSO 2, SCl, ClO, Cl 2, S 2Cl, and SO 2Cl 2 will be only minor constituents in the ionian atmosphere because of their low volcanic emission rates and their efficient photochemical destruction mechanisms. Our modeling has implications for the general appearance, properties, and variability of the neutral sodium clouds and jets observed near Io. The neutral NaCl molecules present at high altitudes in atmosph eres generated by active volcanoes might provide the NaX + ion needed to help explain the morphology of the high-velocity sodium "stream" feature observed near Io.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.
1998-01-01
A prognostic cloud scheme named McRAS (Microphysics of clouds with Relaxed Arakawa-Schubert Scheme) was developed with the aim of improving cloud-microphysics, and cloud-radiation interactions in GCMs. McRAS distinguishes convective, stratiform, and boundary-layer clouds. The convective clouds merge into stratiform clouds on an hourly time-scale, while the boundary-layer clouds do so instantly. The cloud condensate transforms into precipitation following the auto-conversion relations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, and diffuse both horizontally and vertically with a fully active cloud-microphysics throughout its life-cycle, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry. An evaluation of McRAS in a single column model (SCM) with the GATE Phase III data has shown that McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. An evaluation with the ARM-CART SCM data in a cloud model intercomparison exercise shows reasonable but not an outstanding accurate simulation. Such a discrepancy is common to almost all models and is related, in part, to the input data quality. McRAS was implemented in the GEOS II GCM. A 50 month integration that was initialized with the ECMWF analysis of observations for January 1, 1987 and forced with the observed sea-surface temperatures and sea-ice distribution and vegetation properties (biomes, and soils), with prognostic soil moisture, snow-cover, and hydrology showed a very realistic simulation of cloud process, incloud water and ice, and cloud-radiative forcing (CRF). The simulated ITCZ showed a realistic time-mean structure and seasonal cycle, while the simulated CRF showed sensitivity to vertical distribution of cloud water which can be easily altered by the choice of time constant and incloud critical cloud water amount regulators for auto-conversion. The CRF and its feedbacks also have a profound effect on the ITCZ. Even though somewhat weaker than observed, the McRAS-GCM simulation produces robust 30-60 day oscillations in the 200 hPa velocity potential. Two ensembles of 4-summer (July, August, September) simulations, one each for 1987 and 1988 show that the McRAS-GCM simulates realistic and statistically significant precipitation differences over India, Central America, and tropical Africa. Several seasonal simulations were performed with McRAS-GEOS II GCM for the summer (June-July- August) and winter (December-January-February) periods to determine how the simulated clouds and CRFs would be affected by: i) advection of clouds; ii) cloud top entrainment instability, iii) cloud water inhomogeneity correction, and (iv) cloud production and dissipation in different cloud-processes. The results show that each of these processes contributes to the simulated cloud-fraction and CRF.
Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California
NASA Technical Reports Server (NTRS)
Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel
2015-01-01
Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.
A microphysical parameterization of aqSOA and sulfate formation in clouds
NASA Astrophysics Data System (ADS)
McVay, Renee; Ervens, Barbara
2017-07-01
Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
Cloud Properties Derived from Surface-Based Near-Infrared Spectral Transmission
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)
1996-01-01
Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.
GNSS Polarimetric Radio Occultations: Thermodynamical Structure of pecipitating clouds
NASA Astrophysics Data System (ADS)
De La Torre Juarez, M.; Padulles, R.; Cardellach, E.; Turk, F. J.; Tomás, S.; Ao, C. O.
2016-12-01
Recent analysis of changes in the hydrological sensitivity during a recent weakening of transient warming show that the representation of the processes linking the condensation of water vapor and the growth and invigoration of convective precipitation produce the greatest disparities between cloud resolving models and current observations of convective cloud systems. The temperature and moisture structure of a cloud environment is the main control on the thermodynamical processes leading to the development of precipitation. The surrounding environmental state acts as the broader sink and source for moisture exchange between clouds and their surroundings. As precipitation develops, water vapor condensation leads to an evolving 3D temperature and moisture structure in and near clouds different from the larger scale structure or the clear-sky environment. Yet there is a gap in existing space-based observations since conventional IR and microwave sounding data are degraded in the presence of clouds and precipitation. GNSS radio occultations (RO) are a low-cost approach to sounding the global atmosphere with high precision, accuracy and vertical resolution inside clouds and across land-ocean boundaries. GNSS provides reliable, sustained signal sources. While current RO provide no direct information on the associated precipitation state, a recently studied concept of Polarimetric RO (PRO) can characterize the moist thermodynamics within precipitating systems. Since precipitation-sized hydrometeors are non-spherically shaped, precipitation induces a cross-polarized component during propagation through clouds, recorded by a dual-channel RO receiver as a differential phase shift. Theoretical analysis performed using coincident TRMM Precipitation Radar and COSMIC observations shows that the polarimetric phase shift is sensitive to the path-integrated rain rate. Based on the expected signal-to-noise ratio (SNR) of simulated PRO measurements, the precision of the differential phase signal averaged over 1-sec has been estimated greater than 1.5 mm, with rain rates exceeding 5 mm hr-1 detectable above the instrument noise level 90% of the time. We present the technique and show analyses that prove its potential to characterize the lapse rate inside precipitating vs. non-precipitating clouds.
Particles from a Diesel ship engine: Mixing state on the nano scale and cloud condensation abilities
NASA Astrophysics Data System (ADS)
Lieke, K. I.; Rosenørn, T.; Fuglsang, K.; Frederiksen, T.; Butcher, A. C.; King, S. M.; Bilde, M.
2012-04-01
Transport by ship plays an important role in global logistics. Current international policy initiatives by the International Maritime Organization (IMO) are taken to reduce emissions from ship propulsion systems (NO and SO, primarily). However, particulate emissions (e.g. soot) from ships are yet not regulated by legislations. To date, there is still a lack of knowledge regarding the global and local effects of the particulate matter emitted from ships at sea. Particles may influence the climate through their direct effects (scattering and absorption of long and shortwave radiation) and indirectly through formation of clouds. Many studies have been carried out estimating the mass and particle number from ship emissions (e.g. Petzold et al. 2008), many of them in test rig studies (e.g. Kasper et al. 2007). It is shown that particulate emissions vary with engine load and chemical composition of fuels. Only a few studies have been carried out to characterize the chemical composition and cloud-nucleating ability of the particulate matter (e.g. Corbett et al. 1997). In most cases, the cloud-nucleating ability of emission particles is estimated from number size distribution. We applied measurements to characterize particulate emissions from a MAN B&W Low Speed engine on test bed. A unique data set was obtained through the use of a scanning mobility particle sizing system (SMPS), combined with a cloud condensation nucleus (CCN) counter and a thermodenuder - all behind a dilution system. In addition, impactor samples were taken on nickel grids with carbon foil for use in an electron microscope (EM) to characterize the mineral phase and mixing state of the particles. The engine was operated at a series of different load conditions and an exhaust gas recirculation (EGR) system was applied. Measurements were carried out before and after the EGR system respectively. Our observations show significant changes in number size distribution and CCN activity with varying conditions. Results of transmission electron microscopy revealed salt condensates of nanometer size attached to soot particles. High resolution structural analysis of single particles shows that three different phases (graphitic soot, crystalline salt and amorphous condensed organic matter) may be present in the same particle volume. A closure between CCN activation curves, EM samples, and SMPS size distribution will be presented and used to identify climate active parts in single particles. ACKNOWLEDGEMENTS We thank the Danish Agency for Science, Technology and Innovation for support through the NaKIM project (www.nakim.dk).
Noble metal superparticles and methods of preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yugang; Hu, Yongxing
A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less
Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex
NASA Astrophysics Data System (ADS)
Long, X.; Huang, J.; Cheng, C.; Wang, W.
2007-12-01
The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Earle, Michael
2010-10-01
Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70more » particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.« less
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna
2007-01-01
Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.
Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models
McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.; ...
2015-08-21
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less
A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment
NASA Astrophysics Data System (ADS)
Nishant, Nidhi; Sherwood, Steven C.
2017-06-01
In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.
CIRS-Observed Titan’s Stratospheric Ice Clouds Studied in the Laboratory
NASA Astrophysics Data System (ADS)
Nna-Mvondo, Delphine; Anderson, Carrie; Samuelson, Robert E.
2018-06-01
Stratospheric ice clouds have been repeatedly observed in Titan’s atmosphere by the Cassini Composite InfraRed Spectrometer (CIRS) since the Cassini spacecraft entered into orbit around Saturn in 2004. Most of these stratospheric ice clouds form as a result of vapor condensation, composed of a combination of pure and mixed nitriles and hydrocarbons. So far, the crystalline cyanoacetylene (HC3N) ν6 band at 506 cm‑1 and a co-condensed nitrile ice feature at 160 cm‑1, dominated by a mixture of HCN and HC3N ices, have been identified in the CIRS limb spectra. However, the presence of other observed stratospheric ice emission features, such as the ν8 band of dicyanoacetylene (C4N2) at 478 cm‑1 and the Haystack emission feature at 220 cm‑1, are puzzling since they have no associated observed vapor emission features. As well, recently, a massive stratospheric ice cloud system, the High-Altitude South Polar (HASP) cloud, was discovered in Titan’s early southern winter stratosphere with an emission feature near 210 cm‑1. We are investigating in laboratory these perplexing stratospheric ices to better understand their formation mechanisms, identify their chemical compositions, and determine their optical properties. We perform transmission spectroscopy of thin films of pure and mixed nitrile ices, as well as ices combined with hydrocarbons, from 50 cm‑1 to 11700 cm‑1, at deposition temperature 30 K - 150 K, using the SPECTRAL high-vacuum chamber at NASA GSFC. The spectral evolution with time and temperature is studied, the ice phase formation identified, and optical constants computed. The first surprising yet significant result reveals that the libration mode of HCN is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar temperature and time-driven ice phase transitions, revealed by significant spectral changes until a stable crystalline phase is achieved. Comparing our laboratory spectra to the CIRS data, we found that a HCN-C6H6 mixed ice is a good match for the HASP cloud emission feature. We present a summary of our laboratory results, which provide crucial inputs to deepen our understanding of Titan's stratospheric chemistry.
A Balloon-Borne Cloud Condensation Nuclei Counter
NASA Technical Reports Server (NTRS)
Delene, David J.; Deshler, Terry; Wechsler, Perry; Vali, Gabor A.
1997-01-01
A balloon-borne instrument was constructed for observations of vertical profiles of cloud condensation nucleus (CCN) concentrations, active at 1% supersaturation. Droplet concentration in the static thermal-gradient diffusion chamber is deduced from the amount of scattered laser light detected by a photodetector. The photodetector is calibrated using a video camera and computer system to count the number of droplets produced from NaCl aerosol. Preliminary data are available from nine early morning profiles obtained at Laramie, Wyoming, between June 1995 and January 1997. To complement the CCN measurements, instruments that measure condensation nuclei (CN) and aerosols with diameter greater than 0.30 micrometers (D(sub 0.3) were also included on the balloon package. CCN concentrations exhibited a general decrease from the surface to the top of the boundary layers, were generally uniform through well-mixed layers, and show variability above well-mixed layers. In general, the structure of the CCN profile appears to be closely related to the structure in the CN and D(sub 0.3) profiles. Summer profiles generally have CCN concentration greater than 200/cu cm up to 500 mbar, whereas winter profiles are less than 200/cu cm at all levels.
How do changes in warm-phase microphysics affect deep convective clouds?
NASA Astrophysics Data System (ADS)
Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital
2017-08-01
Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems?
To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger ratio between the masses located above and below the ZTL in the polluted runs. When comparing the net mass flux crossing the ZTL in the clean and polluted runs, the difference was small. However, when comparing the upward and downward fluxes separately, the increase in aerosol concentration was seen to dramatically increase the fluxes in both directions, indicating the aerosol amplification effect of the convection and the affected cloud system properties, such as cloud fraction and rain rate.
Animation of Sequoia Forest Fire
NASA Technical Reports Server (NTRS)
2002-01-01
Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.
Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P
2016-04-29
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime.
Warming ancient Mars with water clouds
NASA Astrophysics Data System (ADS)
Hartwick, V.; Toon, B.
2017-12-01
High clouds in the present day Mars atmosphere nucleate on interplanetary dust particles (IDPs) that burn up on entry into the Mars atmosphere. Clouds form when superstaturated water vapor condenses on suspended aerosols. Radiatively active water ice clouds may play a crucial role in warming the early Mars climate. Urata and Toon (2011) simulate a stable warm paleo-climate for Mars if clouds form high in the atmosphere and if particles are sufficiently large (r > 10 μm). The annual fluence of micrometeoroids at Mars was larger early on in the evolution of our solar system. Additionally, the water vapor budget throughout the middle and high atmosphere was likely heightened . Both factors should contribute to enhanced nucleation and growth of water ice cloud particles at high altitudes. Here, we use the MarsCAM-CARMA general circulation model (GCM) to examine the radiative impact of high altitude water ice clouds on the early Mars climate and as a possible solution to the faint young sun problem for Mars.
Globules and pillars in Cygnus X. I. Herschel far-infrared imaging of the Cygnus OB2 environment
NASA Astrophysics Data System (ADS)
Schneider, N.; Bontemps, S.; Motte, F.; Blazere, A.; André, Ph.; Anderson, L. D.; Arzoumanian, D.; Comerón, F.; Didelon, P.; Di Francesco, J.; Duarte-Cabral, A.; Guarcello, M. G.; Hennemann, M.; Hill, T.; Könyves, V.; Marston, A.; Minier, V.; Rygl, K. L. J.; Röllig, M.; Roy, A.; Spinoglio, L.; Tremblin, P.; White, G. J.; Wright, N. J.
2016-06-01
The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 μm and 500 μm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey of OB Young Stellar objects (HOBYS) program. All of the observed irradiated structures were detected based on their appearance at 70 μm, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 μm and 160 μm flux maps, we derive the local far-ultraviolet (FUV) field on the photon dominated surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 103-104 G0 (Habing field) close to the central OB cluster (within 10 pc) and decreases down to a few tens G0, in a distance of 50 pc. From a spectral energy distribution (SED) fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the morphological classification corresponds to distinct physical properties. Pillars and globules are massive (~500 M⊙) and large (equivalent radius r ~ 0.6 pc) structures, corresponding to what is defined as "clumps" for molecular clouds. EGGs and proplyd-likeobjects are smaller (r ~ 0.1 and 0.2 pc) and less massive (~10 and ~30 M⊙). Cloud condensations are small (~0.1 pc), have an average mass of 35 M⊙, are dense (~6 × 104 cm-3), and can thus be described as molecular cloud "cores". All pillars and globules are oriented toward the Cyg OB2 association center and have the longest estimated photoevaporation lifetimes, a few million years, while all other features should survive less than a million years. These lifetimes are consistent with that found in simulations of turbulent, UV-illuminated clouds. We propose a tentative evolutionary scheme in which pillars can evolve into globules, which in turn then evolve into EGGs, condensations and proplyd-like objects. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Strong impacts on aerosol indirect effects from historical oxidant changes
NASA Astrophysics Data System (ADS)
Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael
2018-06-01
Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.
Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B
2014-12-28
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Process-model simulations of cloud albedo enhancement by aerosols in the Arctic
Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.
2014-01-01
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677
Temperatures in a runaway greenhouse on the evolving Venus Implications for water loss
NASA Technical Reports Server (NTRS)
Watson, A. J.; Donahue, T. M.; Kuhn, W. R.
1984-01-01
Some aspects of the temperature structure of a runaway greenhouse on Venus are examined using one-dimensional radiative transfer techniques. It is found that there generally is a region high in the atmosphere where condensation and cloud formation can occur, while deep in the atmosphere the gas is strongly unsaturated with respect to water vapor. The necessity of including clouds introduces considerably uncertainty into the calculation of surface temperatures. Under reasonable assumptions concerning the clouds, temperatures deep in the atmosphere are high enough to produce a plastic or even molten surface, which may significantly ease the problem of explaining the loss of oxygen.
NASA Technical Reports Server (NTRS)
Fenton, D. L.; Purcell, R. Y.; Hrdina, D.; Knutson, E. O.
1980-01-01
The coefficient for the washout from a rocket exhaust cloud of HCl generated by the combustion of an ammonium perchlorate-based solid rocket propellant such as that to be used for the Space Shuttle Booster is determined. A mathematical model of HCl scavenging by rain is developed taking into account rain droplet size, fall velocity and concentration under various rain conditions, partitioning of exhaust HCl between liquid and gaseous phases, the tendency of HCl to promote water vapor condensation and the concentration and size of droplets within the exhaust cloud. The washout coefficient is calculated as a function of total cloud water content, total HCl content at 100% relative humidity, condensation nuclei concentration and rain intensity. The model predictions are compared with experimental results obtained in scavenging tests with solid rocket exhaust and raindrops of different sizes, and the large reduction in washout coefficient at high relative humidities predicted by the model is not observed. A washout coefficient equal to 0.0000512 times the -0.176 power of the mass concentration of HCl times the 0.773 power of the rainfall intensity is obtained from the experimental data.
Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...
2016-10-24
The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less
Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
NASA Astrophysics Data System (ADS)
Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.
2016-11-01
The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.
Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T
2016-11-17
The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
NASA Technical Reports Server (NTRS)
Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.
2007-01-01
In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.
NASA Astrophysics Data System (ADS)
Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne
2017-01-01
A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.
Surfactants from the gas phase may promote cloud droplet formation.
Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye
2013-02-19
Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.
Organic Aerosols as Cloud Condensation Nuclei
NASA Astrophysics Data System (ADS)
Hudson, J. G.
2002-05-01
The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of agreement between these cloud chambers then tests and defines the limits of possible alterations of conventional Kohler theory (e.g., Kulmala et al. 1993).
Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J
2009-09-28
Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which leads to the addition of more than approximately 3% soluble material will significantly enhance its hygroscopicity and CCN activity.
On the existence of tropical anvil clouds
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.
2017-12-01
In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.
Experimental investigation of aerosol composition and growth rates
NASA Astrophysics Data System (ADS)
Wimmer, Daniela; Winkler, Paul; Kulmala, Markku; Petäjä, Tuukka
2017-04-01
Atmospheric aerosol particles have relevant influence on human lives. Human health is affected, as by breathing in the aerosol particles, they deposit in the lungs causing various health problems. Also they interfere indirectly and directly with sunlight, which affects the climate on Earth. Primary aerosol particles originate for example from anthropogenic sources, such as Diesel cars or natural sources such as dessert dust. Secondary aerosol particles are formed via condensation of low volatile gas phase compounds. First, small clusters consisting of a few gas molecules only are formed, which can then grow to bigger aerosol particles. These then form seeds for cloud droplets. The chemical composition of the cloud particles determines whether the cloud absorbs or scatters sunlight more. Intensive experimental and theoretical work has been put into understanding the details of the initial processes leading to the natural formation of these secondary aerosol particles. According to modelling studies, aerosol particles formed via the nucleation process are responsible for about 50% of the global cloud condensation nuclei concentration. With currently used methods, the chemical composition of small molecular clusters (up to 2nm in diameter) can be resolved. Also standard methods to determine aerosol particle composition at sizes >10 nm are available. Within this project, the aerosol particle composition in the 2-4 nm size range will be investigated experimentally. The setup will consist of a combination of an electrical method that allows determine the electrical mobility of the particles which then can be converted to a diameter. By letting the charged particles travel through a changing electrical field, they travel at different speeds according to their mobility. That allows to particles with certain mobilities, which then can be converted to a diameter. After the size selection, the particles are counted by means of optical detection. Condensation particle counters (CPCs) grow the particles internally, after which they are detected optically. By changing the condensing liquid, depending on the aerosol particle composition, they are activated differently. By combining the electrical size selection with CPCs with different liquids, information about particle composition can be determined. The project includes laboratory studies and field measurements in different locations (one rural site and two urban sites). I wish to acknowledge the Austrian Science Fund (FWF; Grant No J3951 - N36).
Modeling CO 2 ice clouds with a Mars Global Climate Model
NASA Astrophysics Data System (ADS)
Audouard, Joachim; Määttänen, Anni; Listowski, Constantino; Millour, Ehouarn; Forget, Francois; Spiga, Aymeric
2016-10-01
Since the first claimed detection of CO2 ice clouds by the Mariner campaign (Herr and Pimentel, 1970), more recent observations and modelling works have put new constraints concerning their altitude, region, time and mechanisms of formation (Clancy and Sandor, 1998; Montmessin et al., 2007; Colaprete et al., 2008; Määttänen et al., 2010; Vincendon et al., 2011; Spiga et al. 2012; Listowski et al. 2014). CO2 clouds are observed at the poles at low altitudes (< 20 km) during the winter and at high altitudes (60-110 km) in the equatorial regions during the first half of the year. However, Martian CO2 clouds's variability and dynamics remain somehow elusive.Towards an understanding of Martian CO2 clouds and especially of their precise radiative impact on the climate throughout the history of the planet, including their formation and evolution in a Global Climate Model (GCM) is necessary.Adapting the CO2 clouds microphysics modeling work of Listowski et al. (2013; 2014), we aim at implementing a complete CO2 clouds scheme in the GCM of the Laboratoire de Météorologie Dynamique (LMD, Forget et al., 1999). It covers CO2 microphysics, growth, evolution and dynamics with a methodology inspired from the water ice clouds scheme recently included in the LMD GCM (Navarro et al., 2014).Two main factors control the formation and evolution of CO2 clouds in the Martian atmosphere: sufficient supersaturation of CO2 is needed and condensation nuclei must be available. Topography-induced gravity-waves (GW) are expected to propagate to the upper atmosphere where they produce cold pockets of supersaturated CO2 (Spiga et al., 2012), thus allowing the formation of clouds provided enough condensation nuclei are present. Such supersaturations have been observed by various instruments, in situ (Schofield et al., 1997) and from orbit (Montmessin et al., 2006, 2011; Forget et al., 2009).Using a GW-induced temperature profile and the 1-D version of the GCM, we simulate the formation of CO2 clouds in the mesosphere and investigate the sensitivity of our microphysics scheme. First results and steps towards the integration in the 3-D GCM will be presented and discussed at the conference.This work is funded by the Laboratory of Excellence ESEP.
NASA Technical Reports Server (NTRS)
Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily
2013-01-01
The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor downstream of an in-ISRU process such as hydrogen reduction. The lunar-soil-sorbent trap is held at a temperature significantly lower than the operating temperature of the hydrogen reduction or other ISRU process in order to maximize capture of contaminants, but is held at a high enough temperature to allow moisture to pass through without condensing. The lunar soil benefits from physical beneficiation to remove ultrafine particles (to reduce pressure drop through a fixed bed reactor) and to upgrade concentrations of iron and/or calcium compounds (to improve reactivity with gaseous contaminants).
Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain
NASA Astrophysics Data System (ADS)
Kunishima, Y.; Onishi, R.
2017-12-01
Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column domain. The centre of the discussion will be the Lagrangian statistics which is collected from the individual behaviour of the tracked particles.
Sound, infrasound, and sonic boom absorption by atmospheric clouds.
Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis
2011-09-01
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America
Zhou, Cheng; Penner, Joyce E.
2017-01-02
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Cheng; Penner, Joyce E.
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS
NASA Astrophysics Data System (ADS)
Falkovich, Gregory; Malinowski, Szymon P.
2008-07-01
Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping elements of the puzzle, and those which combine them. Scales, assumptions and the conditions used in order to describe a particular single process of interest must be consistent with the conditions in clouds. The papers in this focus issue of New Journal of Physics collectively demonstrate (i) the variation in scientific approaches towards investigating cloud processes, (ii) the various stages of shaping elements of the puzzle, and (iii) some attempts to put the pieces together. These papers present just a small subset of loosely arranged elements in an initial stage of puzzle creation. Addressed by this issue is one of the important problems in our understanding of cloud processes—the interaction between cloud particles and turbulence. There is currently a gap between the cloud physics community and scientists working in wind tunnels, on turbulence theory and particle interactions. This collection is intended to narrow this gap by bringing together work by theoreticians, modelers, laboratory experimentalists and those who measure and observe actual processes in clouds. It forms a collage of contributions showing various approaches to cloud processes including: • theoretical works with possible applications to clouds (Bistagnino and Boffetta, Gustavsson et al), • an attempt to construct a phenomenological description of clouds and rain (Lovejoy and Schertzer), • simplified models designed to parameterize turbulence micro- and macro-effects (Celani et al, Derevyanko et al), • focused theoretical research aimed at particular cloud processes (Ayala et al, parts I and II, Wang et al), • laboratory and modeling studies of complex cloud processes (Malinowski et al). This collage is far from being complete but, hopefully, should give the reader a representative impression of the current state of knowledge in the field. We hope it will be useful to all scientists whose work is inspired by cloud processes. Focus on Cloud Physics Contents The equivalent size of cloud condensation nuclei Antonio Celani, Andrea Mazzino and Marco Tizzi Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling Szymon P Malinowski, Miroslaw Andrejczuk, Wojciech W Grabowski, Piotr Korczyk, Tomasz A Kowalewski and Piotr K Smolarkiewicz Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions Stanislav Derevyanko, Gregory Falkovich and Sergei Turitsyn Lagrangian statistics in two-dimensional free turbulent convection A Bistagnino and G Boffetta Turbulence, raindrops and the l1/2 number density law S Lovejoy and D Schertzer Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization Orlando Ayala, Bogdan Rosa and Lian-Ping Wang Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation Orlando Ayala, Bogdan Rosa, Lian-Ping Wang and Wojciech W Grabowski Collisions of particles advected in random flows K Gustavsson, B Mehlig and M Wilkinson Turbulent collision efficiency of heavy particles relevant to cloud droplets Lian-Ping Wang, Orlando Ayala, Bogdan Rosa and Wojciech W Grabowski
THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, G. C.; Kraemer, K. E.; McDonald, I.
2016-07-20
The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation betweenmore » DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.« less
NASA Astrophysics Data System (ADS)
Helling, Ch.; Woitke, P.; Thi, W.-F.
2008-07-01
Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects the cessation of the nucleation process at intermediate heights. The spectral appearance of the cloud layers in the mid IR (7-20 μm) is close to a grey body with only weak broad features of a few percent, mainly caused by MgSiO3[s], and Mg2SiO4[s]. These features are, nevertheless, a fingerprint of the dust in the higher atmospheric layers that can be probed by observations. Conclusions: Our models predict that the gas phase depletion is much weaker than phase-equilibrium calculations in the high atmospheric layers. Because of the low densities, the dust formation process is incomplete there, which results in considerable amounts of left-over elements that might produce stronger and broader neutral metallic lines.
Hard copies for digital medical images: an overview
NASA Astrophysics Data System (ADS)
Blume, Hartwig R.; Muka, Edward
1995-04-01
This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.
2007-03-01
examples of plumes with a natural cause. Figure 3.2 The left true colour panel depicts part of the Iberian peninsula . The huge forest fires in Portugal...these research activities has been dedicated to the provision of a number of atmospherical products for air quality and climate studies within the EU...as cloud condensation nuclei for the formation of clouds, which is an important topic in climate studies. The products in the former paragraphs, such
A Regional Real-time Forecast of Marine Boundary Layers During VOCALS-REx
2011-01-01
Condensation Nuclei) concentration pro- motes more precipitation, leading to the destruction and structural change of the clouds (e.g., Stevens et al...and Muñoz, 2004), investigations of cloud and dynamic pro- cesses in case studies (Mocko and Cotton , 1995; Mechem and Kogan, 2003; Thompson et al...land breeze, Geophys. Res. Lett., 32, L05605, doi:10.1029/2004GL022139, 2005. Golaz, J.-C., Larson, V. E., and Cotton ,W. R: A PDF-based model for
NASA Technical Reports Server (NTRS)
Katz, U.
1982-01-01
Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.
Substantial convection and precipitation enhancements by ultrafine aerosol particles
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Rosenfeld, Daniel; Zhang, Yuwei; Giangrande, Scott E.; Li, Zhanqing; Machado, Luiz A. T.; Martin, Scot T.; Yang, Yan; Wang, Jian; Artaxo, Paulo; Barbosa, Henrique M. J.; Braga, Ramon C.; Comstock, Jennifer M.; Feng, Zhe; Gao, Wenhua; Gomes, Helber B.; Mei, Fan; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; de Souza, Rodrigo A. F.
2018-01-01
Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed.
Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.
2017-12-01
Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP < 50 g m-2), cloud base updraft speeds and cloud top cooling are well-correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.
Exploring The Relation Between Upper Tropospheric (UT) Clouds and Convection
NASA Astrophysics Data System (ADS)
Stephens, G. L.; Stubenrauch, C.
2017-12-01
The importance of knowing the vertical transports of water vapor and condensate by atmospheric moist convection cannot be overstated. Vertical convective transports have wide-ranging influences on the Earth system, shaping weather, climate, the hydrological cycle and the composition of the atmosphere. These transports also influence the upper tropospheric cloudiness that exerts profound effects on climate. Although there are presently no direct observations to quantify these transports on the large scale, and there are no observations to constrain model assumptions about them, it might be possible to derive useful observations proxies of these transports and their influence. This talk will present results derived from a large community effort that has developed important observations data records that link clouds and convection. Steps to use these observational metrics to examine the relation between convection, UT clouds in both cloud and global scale models are exemplified and important feedbacks between high clouds, radiation and convection will be elucidated.
Brooks, Sarah D; Thornton, Daniel C O
2018-01-03
The role of marine bioaerosols in cloud formation and climate is currently so uncertain that even the sign of the climate forcing is unclear. Marine aerosols form through direct emissions and through the conversion of gas-phase emissions to aerosols in the atmosphere. The composition and size of aerosols determine how effective they are in catalyzing the formation of water droplets and ice crystals in clouds by acting as cloud condensation nuclei and ice nucleating particles, respectively. Marine organic aerosols may be sourced both from recent regional phytoplankton blooms that add labile organic matter to the surface ocean and from long-term global processes, such as the upwelling of old refractory dissolved organic matter from the deep ocean. Understanding the formation of marine aerosols and their propensity to catalyze cloud formation processes are challenges that must be addressed given the major uncertainties associated with aerosols in climate models.
Environmental conditions regulate the impact of plants on cloud formation
Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.
2017-01-01
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253
Environmental conditions regulate the impact of plants on cloud formation.
Zhao, D F; Buchholz, A; Tillmann, R; Kleist, E; Wu, C; Rubach, F; Kiendler-Scharr, A; Rudich, Y; Wildt, J; Mentel, Th F
2017-02-20
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.
Pöschl, U; Martin, S T; Sinha, B; Chen, Q; Gunthe, S S; Huffman, J A; Borrmann, S; Farmer, D K; Garland, R M; Helas, G; Jimenez, J L; King, S M; Manzi, A; Mikhailov, E; Pauliquevis, T; Petters, M D; Prenni, A J; Roldin, P; Rose, D; Schneider, J; Su, H; Zorn, S R; Artaxo, P; Andreae, M O
2010-09-17
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
NASA Technical Reports Server (NTRS)
Albrizzio, C.; Andressen, A.
1974-01-01
A simple method to determine the approximate altitude of clouds is described, with the objective of refining their classification using only marginal data from the photographs. Results of the application of this method on photographs of the Goajira Peninsula, Paraguana Peninsula and the Central Coast of Venezuela are presented. Here, the altitudes computed are used to classify clouds and to identify the genus of others without typical form. Instability of air masses through clouds vertical development, and wind direction as well as other local climatic characteristics such as moisture content, loci of condensation, area, etc. are determined using repetitive coverage for the time interval of the photography. Applications for the regional and urban planning (including airport location and flights schedule) and natural resources evaluation are suggested.
Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
NASA Astrophysics Data System (ADS)
Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis, T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.; Andreae, M. O.
2010-09-01
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
NASA Astrophysics Data System (ADS)
Tuccella, P.; Curci, G.; Grell, G. A.; Visconti, G.; Crumeyrolle, S.; Schwarzenboeck, A.; Mensah, A. A.
2015-09-01
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the Weather Research and Forecasting model with Chemistry (WRF-Chem) model. The new chemistry option called "RACM-MADE-VBS-AQCHEM" was evaluated on a cloud resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI (Intensive Cloud Aerosol Measurement Campaign - European Integrated project on Aerosol Cloud Climate and Air quality interaction) campaign, and complemented with satellite data from MODIS. The day-to-day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface are captured by the model. Surface aerosol mass concentrations of sulfate (SO4), nitrate (NO3), ammonium (NH4), and organic matter (OM) are simulated with correlations larger than 0.55. WRF-Chem captures the vertical profile of the aerosol mass concentration in both the planetary boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the model does not capture the full range of the measured concentrations. Predicted OM concentration is at the lower end of the observed mass concentrations. The bias may be attributable to the missing aqueous chemistry processes of organic compounds and to uncertainties in meteorological fields. A key role could be played by assumptions on the VBS approach such as the SOA formation pathways, oxidation rate, and dry deposition velocity of organic condensable vapours. Another source of error in simulating SOA is the uncertainties in the anthropogenic emissions of primary organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated by a factor of 1.4 and 1.7 within the PBL and FT, respectively. Model bias is most likely attributable to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. Simulated cloud condensation nuclei (CCN) are also overestimated, but the bias is more contained with respect to that of CN. The CCN efficiency, which is a characterization of the ability of aerosol particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. The comparison with MODIS data shows that the model overestimates the aerosol optical thickness (AOT). The domain averages (for 1 day) are 0.38 ± 0.12 and 0.42 ± 0.10 for MODIS and WRF-Chem data, respectively. The droplet effective radius (Re) in liquid-phase clouds is underestimated by a factor of 1.5; the cloud liquid water path (LWP) is overestimated by a factor of 1.1-1.6. The consequence is the overestimation of average liquid cloud optical thickness (COT) from a few percent up to 42 %. The predicted cloud water path (CWP) in all phases displays a bias in the range +41-80 %, whereas the bias of COT is about 15 %. In sensitivity tests where we excluded SOA, the skills of the model in reproducing the observed patterns and average values of the microphysical and optical properties of liquid and all phase clouds decreases. Moreover, the run without SOA (NOSOA) shows convective clouds with an enhanced content of liquid and frozen hydrometers, and stronger updrafts and downdrafts. Considering that the previous version of WRF-Chem coupled with a modal aerosol module predicted very low SOA content (secondary organic aerosol model (SORGAM) mechanism) the new proposed option may lead to a better characterization of aerosol-cloud feedbacks.
NASA Astrophysics Data System (ADS)
Wong, M. H.
2017-12-01
NASA and ESA are considering options for in situ science with atmospheric entry probes to the ice giants Uranus and Neptune. Nominal probe entry mass is in the 300-kg range, although a miniaturized secondary probe option is being studied in the 30-kg range. In all cases, compositional sampling would commence near the 100-mbar level at Uranus, after ejection of the heat shield and deployment of the descent parachute. In this presentation, I review existing literature on the composition, mass loading, and vertical distribution of condensed material that the probe may encounter. Sample inlets for measurement of the gas composition should be heated to avoid potential buildup of condensate, which would block the flow of atmospheric gas into composition sensors. Heating rate and temperature values -- sufficient to keep sample inlets clean under various assumptions -- will be presented. Three main types of condensed material will be considered: Stratospheric hydrocarbon ices: Solar UV photolyzes CH4, leading to the production of volatile hydrocarbons with higher C/H ratios. These species diffuse from their production regions into colder levels where the ices of C2H2, C2H6, and C4H2 condense. Some studies have also considered condensation of C3H8, C4H10, C6H6, and C6H2. Gunk: The hydrocarbon ices are thought to become polymerized due to irradiation from solar UV. The exact composition of the resulting gunk is not known. Solid-state photochemical processing may produce the traces of reddish (blue-absorbing) haze material, present in the troposphere at temperatures warm enough to sublimate the simple hydrocarbon ices. Tropospheric ices: In the region accessible to probes under study (P < 10 bar), much thicker condensation clouds may form from volatile gases CH4, NH3, and H2S. If large amounts of NH3 are sequestered in the deeper H2O liquid cloud, then the S/N ratio could exceed 1 in the probe-accessible region of the atmosphere, leading to NH4SH and H2S ices below the CH4-ice cloud deck. Otherwise, NH4SH and NH3 ices would be found. This work is supported by a grant from the NASA Planetary Science Deep Space Small Satellite Program to the Small Next-generation Atmospheric Probe (SNAP) mission concept study (PI: Kunio Sayanagi).
Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites
Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.
2017-06-01
Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less
In situ measurements of ship tracks
NASA Technical Reports Server (NTRS)
Radke, Lawrence F.; Lyons, Jamie H.; Hobbs, Peter V.; Coakley, James E.
1990-01-01
It has long been known that cloud droplet concentrations are strongly influenced by cloud condensation nuclei (CCN) and that anthropogenic sources of pollution can affect CCN concentrations. More recently it has been suggested that CCN may play an important role in climate through their effect on cloud albedo. A interesting example of the effect of anthropogenic CCN on cloud albedo is the so-called 'ship track' phenomenon. Ship tracks were first observed in satellite imagery when the ship's emissions were evidently needed for the formation of a visible cloud. However, they appear more frequently in satellite imagery as modifications to existing stratus and stratocumulus clouds. The tracks are seen most clearly in satellite imagery by comparing the radiance at 3.7 microns with that at 0.63 and 11 microns. To account for the observed change in radiance, droplet concentrations must be high, and the mean size of the droplets small, in ship tracks. Researchers describe what they believe to be the first in situ measurements in what appears to have been a ship track.
The Structure and Evolution of Self-Gravitating Molecular Clouds
NASA Astrophysics Data System (ADS)
Holliman, John Herbert, II
1995-01-01
We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative to that in the intercloud medium. We estimate what fraction of a cloud on the verge of gravitational collapse will ultimately form a condensed object, and we predict the qualitative appearance of the collapse. Finally, we simulate fragmentation--a key step in the star-forming process whereby molecular clouds or clumps within more massive clouds break up into substantially less massive cores that can in turn condense into stars. Fragmentation occurs in the context of dynamical collapse--a highly nonlinear process--so it has been difficult to reach a consensus on its specific appearance or on the influence of initial conditions. Increases in density by several orders of magnitude and the unknown, time-dependent positions of the rapidly evolving fragments present difficulties for the simulation of fragmentation. In order to increase the efficiency and effective resolution with which we can model this process, we have assembled can adaptive mesh refinement (AMR) hydrodynamics algorithm and an adaptive elliptical solver for self-gravity. The code is adaptive in the sense that it can dynamically and automatically alter the configuration of a recursively finer mesh in the computational domain. A test suite helps confirm the proper operation of the algorithm. Using initial conditions adopted in previous fragmentation studies, we simulate the collapse of a molecular cloud core. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina
2017-06-01
The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.
Aerosol effects on clouds and precipitation over the eastern China
NASA Astrophysics Data System (ADS)
Wang, W. C.; Chen, G.; Song, Y.
2017-12-01
Anthropogenic aerosols (sulfates, nitrates and black carbons) can act as cloud condensation nuclei to regulate cloud droplet number and size, thereby changing cloud radiative properties and atmospheric short- and long-wave radiation. These together with aerosol direct radiative effects in turn alter the circulation with likely effects on the spatial distribution of cloud and precipitation. We conduct WRF model simulations over the eastern China to investigate the aerosol-cloud-climate interactions. In general, more aerosols yield more but smaller cloud droplets and larger cloud water content, whereas the changes of vertical distribution of cloud cover exhibit strong regional variations. For example, the low-cloud fraction and water content increase by more than 10% over the west part of the Yangtze-Huai River Valley (YHRV) and the southeast coastal region, but decrease over the east part of the YHRV, and high-cloud fraction decreases in South and North China but increases in the YHRV. The radiative forcing of aerosols and cloud changes are compared, with focus on the effects of changes of vertical distribution of cloud properties (microphysics and fraction). The precipitation changes are found to be closely associated with the circulation change, which favors more (and longer duration) rainfall over the YHRV but less (and shorter) rainfall over other regions. Details of the circulation change and its associations with clouds and precipitation will be presented.
Entrainment, Drizzle, and the Indirect Effect in Stratiform Clouds
NASA Technical Reports Server (NTRS)
Ackerman, Andrew
2005-01-01
Activation of some fraction of increased concentrations of sub-micron soluble aerosol particles lead to enhanced cloud droplet concentrations and hence smaller droplets, increasing their total cross sectional area and thus reflecting solar radiation more efficiently (the Twomey, or first indirect, effect). However, because of competition during condensational growth, droplet distributions tend to broaden as numbers increase, reducing the sensitivity of cloud albedo to droplet concentration on the order of 10%. Also, smaller droplets less effectively produce drizzle through collisions and coalescence, and it is widely expected (and found in large-scale models) that decreased precipitation leads to clouds with more cloud water on average (the so-called cloud lifetime, or second indirect, effect). Much of the uncertainty regarding the overall indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations based on FIRE-I, ASTEX, and DYCOMS-II conditions show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is-humid or droplet concentrations are very low. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.
Spatially-partitioned many-body vortices
NASA Astrophysics Data System (ADS)
Klaiman, S.; Alon, O. E.
2016-02-01
A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.
Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation
NASA Astrophysics Data System (ADS)
Pedersen, J. O.; Enghoff, M. B.; Svensmark, H.
2012-12-01
The role of ionization in the formation of clouds and aerosols has been debated for many years. A body of evidence exists that correlates cloud properties to galactic cosmic ray ionization; however these results are still contested. In recent years experimental evidence has also been produced showing that ionization can promote the nucleation of small aerosols at atmospheric conditions. The experiments showed that an increase in ionization leads to an increase in the formation of ultrafine aerosols (~3 nm), but in the real atmosphere such small particles have to grow by coagulation and condensation to become cloud condensation nuclei (CCN) in order to have an effect on clouds. However, numerical studies predict that variations in the count of ultra-fine aerosols will lead only to an insignificant change in the count of CCN. This is due to 1) the competition between the additional ultra-fine aerosols for the limited supply of condensable gases leading to a slower growth and 2) the increased loss rates of the additional particles during the longer growth-time. We investigated the growth of aerosols to CCN sizes using an 8 m3 reaction chamber made from electro-polished stainless steel. One side was fitted with a Teflon foil to allow ultraviolet light to illuminate the chamber, which was continuously flushed with dry purified air. Variable concentrations of water vapor, ozone, and sulfur dioxide could be added to the chamber. UV-lamps initiated photochemistry producing sulfuric acid. Ionization could be enhanced with two Cs-137 gamma sources (30 MBq), mounted on each side of the chamber. Figure 1 shows the evolution of the aerosols, following a nucleation event induced by the gamma sources. Previous to the event the aerosols were in steady state. Each curve represents a size bin: 3-10 nm (dark purple), 10-20 nm (purple), 20-30 nm (blue), 30-40 nm (light blue), 40-50 nm (green), 50-60 nm (yellow), and 60-68 nm (red). Black curves show a ~1 hour smoothing. The initial increase in small aerosols persists all the way to the largest size bin. Similar experiments where the aerosol burst was produced with either the ionization source or an aerosol generator (neutralized aerosols) were made and compared with each other and model runs. The runs using neutral aerosol bursts agree with the model predictions, where the initial burst is dampened such that there is little or no change in the largest sizes. Thus there seems to be a fundamental difference between the bursts produced by ionization and those produced by the aerosol generator. Growth of aerosols, nucleated by ionization.
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Lohmann, U.
2016-12-01
Orographic precipitation is prone to strong aerosol-cloud-precipitation interactions because the time for precipitation development is limited to the ascending section of mountain flow. At the same time, cloud microphysical development is constraint by the strong dynamical forcing of the orography. In this contribution, we discuss how changes in the amount and composition of droplet- and ice-forming aerosols influence precipitation in idealized simulations of stratiform orographic mixed-phase clouds. We find that aerosol perturbations trigger compensating responses of different precipitation formation pathways. The effect of aerosols is thus buffered. We explain this buffering by the requirement to fulfill aerosol-independent dynamical constraints. For our simulations, we use the regional atmospheric model COSMO-ART-M7 in a 2D setup with a bell-shaped mountain. The model is coupled to a 2-moment warm and cold cloud microphysics scheme. Activation and freezing rates are parameterized based on prescribed aerosol fields that are varied in number, size and composition. Our analysis is based on the budget of droplet water along trajectories of cloud parcels. The budget equates condensation as source term with precipitation formation from autoconversion, accretion, riming and the Wegener-Bergeron-Findeisen process as sink terms. Condensation, and consequently precipitation formation, is determined by dynamics and largely independent of the aerosol conditions. An aerosol-induced change in the number of droplets or crystals perturbs the droplet budget by affecting precipitation formation processes. We observe that this perturbation triggers adjustments in liquid and ice water content that re-equilibrate the budget. As an example, an increase in crystal number triggers a stronger glaciation of the cloud and redistributes precipitation formation from collision-coalescence to riming and from riming to vapor deposition. We theoretically confirm the dominant effect of water content adjustments over number changes by estimating susceptibilities d ln P / d ln N of precipitation formation P to droplet or crystal number N from the budget equation. The susceptibility analysis also reveals that aerosol perturbations to droplet and crystal number compensate each other.
Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
NASA Astrophysics Data System (ADS)
Kupiszewski, P.; Leck, C.; Tjernström, M.; Sjogren, S.; Sedlar, J.; Graus, M.; Müller, M.; Brooks, B.; Swietlicki, E.; Norris, S.; Hansel, A.
2013-12-01
Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.
New particle formation events as a source for cloud condensation nuclei in an urban environment
NASA Astrophysics Data System (ADS)
Wonaschütz, Anna; Burkart, Julia; Wagner, Robert; Reischl, Georg; Steiner, Gerhard; Hitzenberger, Regina
2014-05-01
Nucleation and growth events have been observed in many remote, urban and rural environments. The new particles can contribute significantly to cloud condensation nuclei concentrations, after growing into the appropriate size range (Kerminen et al., 2012). Several studies have attempted to quantify this contribution (e.g. Asmi et al., 2011, Matsui et al., 2013), but only a limited number of them to date have used simultaneous measurements of CCN concentrations and particle size distributions for this purpose (e.g. Levin et al., 2012). In this study, a data set from an urban background station, consisting of 22 months of size distribution and 12 months of CCN concentration measurements (Burkart et al., 2011, Burkart et al., 2012) with 10 months of overlapping measurements is combined to explore the variability of CCN concentrations, their possible causes, and the contribution of nucleation and growth events to CCN concentrations. Consistent with observations in many other locations, nucleation and growth events occur on 30% of all days in spring and summer, on 11% of days in fall and on 4% of days in winter. This suggests a potentially large source of CCN from nucleation and growth events, particularly in the warm season. We acknowledge funding from FWF (Austrian Science Fund) P19515-N20 References: Asmi E., Kivekas, N., Kerminen, V. M., Komppula, M., Hyvarinen, A. P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959-12972, doi: 10.5194/acp-11-12959-2011, 2011 Burkart J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) acticvation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751-5759, doi: 10.1016/j.atmosenv.2011.07.022, 2011. Burkart J., Hitzenberger, R., Reischl, G., Bauer, H., Leder, K., and Puxbaum, H.: Activation of "synthetic ambient" aerosols - relation to chemical composition of particles < 100 nm, Atmos. Environ., 54, 583-591, doi: 10.1016/j.atmosenv.2012.01.063, 2012. Kerminen V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmos. Chem. Phys., 12, 12037-12059, doi: 10.5194/acp-12-12037-2012, 2012. Levin, E. J. T., Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Sullivan, R. C., Atwood, S. A., Ortega, J., DeMott, P. J., and Smith, J. N.: An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado, J. Geophys. Res., 117, 06201, doi:10.1029/2011JD016854, 2012. Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Wiedensohler, A., Fast, J. D., and Zaveri, R. A.: Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing, J. Geophys. Res., 116, 19208, doi:10.1029/2011JD016025, 2011.
Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Smith, M. A. H.
1978-01-01
Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.
Cloud condensation nuclei activity of aliphatic amine secondary aerosol
USDA-ARS?s Scientific Manuscript database
Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...
Precipitation Efficiency in the Tropical Deep Convective Regime
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J
2018-02-19
Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.
Earth observations taken during STS-136
1995-07-04
STS071-745-006 (27 June-7 July 1995) --- This view shows a ship track, probably in the northern Pacific Ocean, where a ship has caused clouds to form more thickly directly above the path of this ship. This track is therefore visible even though the ship itself is not. Ship tracks are thought to be caused by particles thrown up into the air by the ship, from smokestack emissions and from water particles generated by the ship moving through the sea. Under favorable weather conditions, water condenses around these particles to form clouds, in this case thicker "popcorn" clouds than already exists in the area. Ongoing studies are attempting to understand this phenomenon better.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Soo Ya; Jeong, Jaein I.; Park, R.
We examine the effect of anthropogenic aerosols on the weekly variability of precipitation in Korea in summer 2004 by using Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models. We con-duct two WRF simulations including a baseline simulation with empirically based cloud condensation nuclei (CCN) number concentrations and a sensitivity simulation with our implementation to account for the effect of aerosols on CCN number concentrations. The first simulation underestimates observed precipitation amounts, particularly in northeastern coastal areas of Korea, whereas the latter shows higher precipitation amounts that are in better agree-ment with the observations. In addition, themore » sensitivity model with the aerosol effects reproduces the observed weekly variability, particularly for precipitation frequency with a high R at 0.85, showing 20% increase of precipita-tion events during the weekend than those during weekdays. We find that the aerosol effect results in higher CCN number concentrations during the weekdays and a three-fold increase of the cloud water mixing ratio through en-hanced condensation. As a result, the amount of warm rain is generally suppressed because of the low auto-conversion process from cloud water to rain water under high aerosol conditions. The inefficient conversion, how-ever, leads to higher vertical development of clouds in the mid-atmosphere with stronger updrafts in the sensitivity model, which increases by 21% cold-phase hydrometeors including ice, snow, and graupel relative to the baseline model and ultimately results in higher precipitation amounts in summer.« less
Water ice clouds on Mars: a study of partial cloudiness with a global climate model and MARCI data
NASA Astrophysics Data System (ADS)
Pottier, Alizée; Montmessin, Franck; Forget, François; Wolff, Mike; Navarro, Thomas; Millour, Ehouarn; Madeleine, Jean-Baptiste; Spiga, Aymeric; Bertrand, Tanguy
2015-04-01
There is a large reservoir of water ice on Mars in the polar caps, that sublimates in summer and releases water vapor. Water is then advected in the atmospheric circulation that evolves seasonally. This vapor forms clouds, frost, and can also be adsorbed in the soil. In a global study of the water cycle, water ice clouds play a key part in the martian climate. There is a need to understand better their distribution and radiative effect. The tool used in this study is the global climate model (GCM) of the Laboratoire de Météorologie Dynamique. It is made up of a core that computes fluid dynamics, and a physical part that gathers a number of parametrised processes. It includes tracers and the condensation and sublimation of water in the atmosphere and on the ground, allowing a study of the complete water cycle. To improve the representation of water ice clouds in the model, a new parametrisation of partial cloudiness has been implemented and will be presented. Indeed, model cells are hundreds of kilometers wide, and it is quite unrealistic to suppose that cloud coverage is always uniform in them. Furthermore, the model was quite unstable since the implementation of the radiative effect of clouds, and partial cloudiness had the effect of reducing this instability. In practice, a subgrid temperature distribution is supposed, and the temperature computed in the model is interpreted as its mean. The subgrid scale temperature distribution is simple, and its width is a free parameter. Using this distribution, the fraction of the grid cells under the water vapor condensation temperature is interpreted as the fraction of the cell in which clouds form (or cloud fraction). From these fractions at each height a total partial cloudiness (the clouds as seen from the orbit) is deduced. The radiative transfer is computed twice, for the clear area and for the cloudy one. Observing the water cycle with this new parametrisation, some differences are seen with standard runs. These changes mainly affect the aphelion cloud belt and the polar hoods. Partial cloudiness is compared to higher resolution (one per one degree) runs in which cloudiness diagnostics are done. MARCI data of cloud opacity is also used to verify the predicted water ice cloud distribution and patchiness. The aim is to understand the causes of patchiness and to validate the choice of a subgrid scale temperature distribution. There are seasonal variations, recurring patterns near major topographical features.
Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion
NASA Astrophysics Data System (ADS)
Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.
2014-08-01
Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.
A Cloud Microphysics Model for the Gas Giant Planets
NASA Astrophysics Data System (ADS)
Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler
2016-10-01
Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.
Cloud Condensation Nuclei Measurements in Tropical Cyclones
NASA Technical Reports Server (NTRS)
Hudson, J. G.; Simpson, J.
2002-01-01
The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.
NASA Astrophysics Data System (ADS)
Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard
2017-05-01
Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.
Deployment of ARM Aerial Facility Scanning Mobility Particle Sizer Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian
2016-09-01
Atmospheric aerosols influence global climate by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). While it is widely accepted that aerosol indirect effects cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly quantified. One key aerosol property for understanding aerosol indirect effects is the ability of aerosol particles to form cloud droplets at atmospheric relevant supersaturations—i.e., cloud condensation Nuclei (CCN) activity. For particles consisting of typical atmospheric inorganic compounds, their CCN activity is well understood and can be effectively predictedmore » using Köhler theory based on physicochemical properties of the solute, such as its mass, molar volume, and activity coefficient. However, atmospheric aerosols often consist of hundreds of organic species, which can contribute ~20-90% to the total fine aerosol mass. Depending on their properties, organic species can significantly influence the ability of aerosol particles to act as CCN and form cloud droplets. This project focuses on the CCN activity of secondary organic aerosol (SOA) compounds formed from key biogenic volatile organic compounds (VOCs) under representative conditions, and the relationship between the hygroscopicity and composition of organic aerosols. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (AAF) scanning mobility particles sizer (SMPS) was deployed during a ~ 2-week intensive measurement campaign, taking place February 10-February 23, 2016 at the Pacific Northwest National Laboratory (PNNL) Environmental Simulation Chamber. The SMPS was operated with a CCN counter (CCNc). Aerosol particles were first classified by the differential mobility analyzer inside the SMPS; the classified aerosol will then be simultaneously characterized by a condensation particle counter (CPC) (part of the SMPS) and the CCNc.« less
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
NASA Astrophysics Data System (ADS)
Bundke, U.; Jaenicke, R.; Klein, H.; Nillius, B.; Reimann, B.; Wetter, T.; Bingemer, H.
2009-04-01
Ice formation in clouds is a subject of great practical and fundamental importance since the occurrence of ice particle initializes dramatic changes in the microphysical structure of the cloud, which finally ends in the formation of precipitation. The initially step of ice formation is largely unknown. Homogenous nucleation of ice occurs only below -40 °C. If an ice nucleus (IN) is present, heterogeneous nucleation may occur at higher temperature. Here deposition freezing, condensation and immersion freezing as well as contact freezing are known. Also growth rates of ice particles are known as function of crystal surface properties, temperature and super saturation. Timescales for homogenous freezing activation in the order of 0.01 seconds and nucleation rates have been measured by Anderson et al. (1980) and Hagen et al., (1981) using their expansion cloud chamber. This contribution of deposition mode freezing measurements by the ice nucleus counter FINCH presents evidence that the activation timescale of this freezing mode is in the order of 1E-3 seconds. FINCH is an Ice Nucleus counter which activates IN in a supersaturated environment at freezing temperatures. The activation conditions are actively controlled by mixing three gas flows (aerosol, particle-free cold-dry and warm-humid flows).See Bundke et al. 2008 for details. In a special operation mode of FINCH we are able to produce a controlled peak super saturation in the order of 1 ms duration. For several test aerosols the results observed in this particular mode are comparable to normal mode operations, where the maximum super saturation remains for more than a second, thus leading to the conclusion that the time for activation is in the order of 1ms or less. References: R.J. Anderson et al, "A Study of Homogeneous Condensation Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber, Journal of the Atmospheric Sciences, Vol. 37, 2508-2520, 1980 U.Bundke et al., "The fast Ice Nucleus chamber FINCH", Atmospheric Research, Volume 90, Issues 2-4, 180-186, DOI:10.1016/j.atmosres.2008.02.008, 2008 D.E. Hagen et al., "Homogenous Condensation Freezing Nucleation Rate Measurements for Small Water Droplets in an Expansion Cloud Chamber", Journal of the Atmospheric Sciences, Vol 38, 1236-1243, 1981 Acknowledgments: This work was supported by the German Research Foundation: SFB 641 "Tropospheric Ice Phase" TP A1, SPP1294 BU1432/3-1, JA344/12-1, by the Helmholtz Association: VI-233 "Aerosol Cloud Interactions" and by and by the EU FP6 Infastructure Project EUSAAR.
Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.
Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira
2018-01-01
Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.
An interfacial mechanism for cloud droplet formation on organic aerosols
Ruehl, C. R.; Davies, J. F.; Wilson, K. R.
2016-03-25
Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less
An interfacial mechanism for cloud droplet formation on organic aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruehl, C. R.; Davies, J. F.; Wilson, K. R.
Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less
An interfacial mechanism for cloud droplet formation on organic aerosols.
Ruehl, Christopher R; Davies, James F; Wilson, Kevin R
2016-03-25
Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.
2012-12-01
Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.
New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...
Analysis of the physical state of one Arctic polar stratospheric cloud based on observations
NASA Technical Reports Server (NTRS)
Drdla, K.; Tabazadeh, A.; Turco, R. P.; Jacobson, M. Z.; Dye, J. E.; Twohy, C.; Baumgardner, D.
1994-01-01
During the Arctic Airborne Stratospheric Expedition (AASE) simultaneous measurements of aerosol size distribution and NO(y)(HN03 + NO + NO2 + 2(N205)) were made along ER-2 flight paths. The flow characteristics of the NO(y) instrument allow us to derive the condensed NO(y) amount (assumed to be HN03) present during polar stratospheric cloud (PSC) events. Analysis of the January 24th flight indicates that this condensed HN03 amount does not agree well with the aerosol volume if the observed PSCs are composed of solid nitric acid trihydrate (NAT), as is generally assumed. However, the composition agrees well with that predicted for liquid H2S04/HN03/H20 solution droplets using a new Aerosol Physical Chemistry Model (APCM). The agreement corresponds in detail to variations in temperature and humidity. The weight percentages of H2SO4, HN03, and H2O derived from the measurements all correspond to those predicted for ternary, liquid solutions.
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
Fierce, Laura; McGraw, Robert L.
2017-07-26
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierce, Laura; McGraw, Robert L.
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Earth Observations taken during Expedition Four
2002-05-15
ISS004-E-11807 (15 May 2002) --- This digital photograph, taken through the windows of the International Space Station on May 15, 2002, shows condensation trails over the Rhône Valley in the region west of Lyon, France. Condensation trails-or contrails-are straight lines of ice crystals that form in the wake of jet liners where air temperatures are lower than about -40 degrees Centigrade. Scientists have observed that newer contrails are thin whereas older trails have widened with time as a result of light winds. Because of this tendency for thin contrails to cover greater areas with time, it is estimated that these artificial clouds cover 0.1 per cent of the planets surface. Percentages are far higher in some places, say the scientists, such as southern California, the Ohio River Valley and parts of Europe, as illustrated here. The climatic impact of such clouds is poorly understood, which is why scientists continue to study them using images such as this.
NASA Astrophysics Data System (ADS)
Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.
2003-12-01
The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.
Dust temperature distributions in star-forming condensations
NASA Technical Reports Server (NTRS)
Xie, Taoling; Goldsmith, Paul F.; Snell, Ronald L.; Zhou, Weimin
1993-01-01
The FIR spectra of the central IR condensations in the dense cores of molecular clouds AFGL 2591. B335, L1551, Mon R2, and Sgr B2 are reanalyzed here in terms of the distribution of dust mass as a function of temperature. FIR spectra of these objects can be characterized reasonably well by a given functional form. The general shapes of the dust temperature distributions of these objects are similar and closely resemble the theoretical computations of de Muizon and Rouan (1985) for a sample of 'hot centered' clouds with active star formation. Specifically, the model yields a 'cutoff' temperature below which essentially no dust is needed to interpret the dust emission spectra, and most of the dust mass is distributed in a broad temperature range of a few tens of degrees above the cutoff temperature. Mass, luminosity, average temperature, and column density are obtained, and it is found that the physical quantities differ considerably from source to source in a meaningful way.
NASA Astrophysics Data System (ADS)
Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.
2012-05-01
Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.
Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less
NASA Astrophysics Data System (ADS)
Tuccella, P.; Curci, G.; Grell, G. A.; Visconti, G.; Crumeroylle, S.; Schwarzenboeck, A.; Mensah, A. A.
2015-02-01
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative scheme in WRF/Chem model. The new chemistry option called "RACM/MADE/VBS" was evaluated on a cloud resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. The day-to-day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface is captured by the model. Surface aerosol mass of sulphate (SO4), nitrate (NO3), ammonium (NH4), and organic matter (OM) is simulated with a correlation larger than 0.55. WRF/Chem captures the vertical profile of the aerosol mass in both the planetary boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the model does not capture the full range of the measured concentrations. Predicted OM concentration is at the lower end of the observed mass. The bias may be attributable to the missing aqueous chemistry processes of organic compounds, the uncertainties in meteorological fields, the assumption on the deposition velocity of condensable organic vapours, and the uncertainties in the anthropogenic emissions of primary organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated by a factor 1.4 and 1.7 within PBL and FT, respectively. Model bias is most likely attributable to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. The overestimation of simulated cloud condensation nuclei (CCN) is more contained with respect to that of CN. The CCN efficiency, which is a measure of the ability of aerosol particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. The comparison with MODIS data shows that the model overestimates the aerosol optical thickness (AOT). The domain averages (for one day) are 0.38 ± 0.12 and 0.42 ± 0.10 for MODIS and WRF/Chem data, respectively. Cloud water path (CWP) is overestimated on average by a factor of 1.7, whereas modelled cloud optical thickness (COT) agrees with observations within 10%. In a sensitivity test where the SOA was not included, simulated CWP is reduced by 40%, and its distribution function shifts toward lower values with respect to the reference run with SOA. The sensitivity test exhibits also 10% more optically thin clouds (COT < 40) and an average COT roughly halved. Moreover, the run with SOA shows convective clouds with an enhanced content of liquid and frozen hydrometers, and stronger updrafts and downdrafts. Considering that the previous version of WRF/Chem coupled with a modal aerosol module predicted very low SOA content (SORGAM mechanism) the new proposed option may lead to a better characterization of aerosol-cloud feedbacks.
NASA Astrophysics Data System (ADS)
Nna-Mvondo, D.; Anderson, C. M.; Samuelson, R. E.
2017-12-01
Two types of cloud systems have been repeatedly observed in Titan's atmosphere since the Cassini spacecraft entered into orbit around Saturn in 2004: (1) tropospheric convective methane clouds and (2) stratospheric ice clouds. Most of the stratospheric ice clouds observed by Cassini's Composite InfraRed Spectrometer (CIRS) form as a result of vapor condensation processes from a combination of pure and mixed nitriles and hydrocarbons. Examples include the n6 band of crystalline cyanoacetylene (HC3N) at 506 cm-1 (Anderson et al., 2010 and references therein) and the CIRS-discovered co-condensed nitrile ice feature at 160 cm-1 (Anderson and Samuelson, 2011). Other CIRS-observed stratospheric ice emission features, such as the n8 band of dicyanoacetylene (C4N2) at 478 cm-1 and the Haystack emission feature at 220 cm-1, have no associated observed vapor emission features, and could therefore form through more complex chemical processes such as solid-state photochemistry as suggested by Anderson et al. (2016). In the Spectroscopy for Planetary Ices Environments (SPICE) laboratory at NASA GSFC, we are undergoing investigations of Titan's observed stratospheric ices to better understand their chemical compositions, formation mechanisms, and optical properties. We accomplish this using the SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) high-vacuum chamber, in which we perform transmission spectroscopy of thin films of pure and mixed ices, from the near- to far-infrared (50 cm-1 to 11700 cm-1), and dose at low temperatures (30 K to 150 K), to study their spectral evolution and optical properties. Here we discuss our laboratory results obtained for various experiments containing pure and mixed nitrile ices (and some combined with benzene). The first significant result reveals that the libration mode of HCN (166 - 169 cm-1) is drastically altered by the surrounding molecules when mixing occurs in a co-condensed phase. For propionitrile ice, we observe peculiar temperature and time-driven ice phase transitions (as compared to other nitrile ices), revealed by significant spectral changes in the mid and far-IR that cease once a stable crystalline phase is achieved. Results from such experimental measurements provide crucial data to deepen our understanding of Titan's stratospheric chemistry.
NASA Technical Reports Server (NTRS)
Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick
2008-01-01
A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.
Laboratory study of orographic cloud-like flow
NASA Astrophysics Data System (ADS)
Singh, Kanwar Nain; Sreenivas, K. R.
2013-11-01
Clouds are one of the major sources of uncertainty in climate prediction, listed in ``the most urgent scientific problems requiring attention'' IPCC. Also, convective clouds are of utmost importance to study the dynamics of tropical meteorology and therefore, play a key role in understanding monsoons. The present work is to study the dynamics of orographic clouds. Parameterization of these clouds will help in forecasting the precipitation accurately. Also, one could validate laboratory results from our study by actually measuring cloud development along a sloping terrain. In this context a planar buoyant turbulent wall jet is considered as an appropriate low order fluid-dynamical model for studying the turbulence and entrainment in orographic-clouds. Flow is volumetrically heated to mimic the latent heat release due to condensation in an actual cloud. This is the first step in studying the entrainment dynamics of the evolving orographic cloud. We are going to present some results on the cloud development using techniques that allows us to construct a 3-dimensional flow field at each instance and its development over the time. By combining velocity field from PIV and flow volume from PLIF at successive instances, we estimate the entrainment coefficient. Since the life-cycle of a cloud is determined by the entrainment of ambient air, these results could be extremely helpful in understanding the dynamics of the clouds. Detailed results will be presented at the conference.
Methods for producing single crystal mixed halide perovskites
Zhu, Kai; Zhao, Yixin
2017-07-11
An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.
Ozone, dust, smoke and humidity in nuclear winter
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.
1985-01-01
Recent correspondence on nuclear winter is commented on. Reasons are given for why the Tunguska meteor explosion may not be useful in calibrating the effects of a major nuclear exchange. The relationship between the optical depth of an aerosol cloud, the composition of the cloud, and its effect on sunlight intensity and climate are clarified. The significance of the Tambora eruption of 1815 and of historical fires for the nuclear winter theory are briefly discussed. The dispersion of smoke plumes from large fires is addressed, and water condensation and smoke scavenging are considered.
Effects of aerosol from biomass burning on the global radiation budget
NASA Technical Reports Server (NTRS)
Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.
1992-01-01
An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.
Aerosol processing in stratiform clouds in ECHAM6-HAM
NASA Astrophysics Data System (ADS)
Neubauer, David; Lohmann, Ulrike; Hoose, Corinna
2013-04-01
Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the chemical components as well as 5 tracers for aerosol particles in ice crystals. This allows simulations of aerosol processing in warm, mixed-phase (e.g. through the Bergeron-Findeisen process) and ice clouds. The fixed scavenging ratios used for wet deposition in clouds in standard HAM are replaced by an explicit treatment of collision of cloud droplets/ice crystals with interstitial aerosol particles. Nucleation scavenging of aerosol particles by acting as cloud condensation nuclei or ice nuclei, freezing and evaporation of cloud droplets and melting and sublimation of ice crystals are treated explicitly. In extension to previous studies, aerosol particles from evaporating precipitation are released to modes which correspond to their size. Cloud processing of aerosol particles changes their size distribution and hence influences cloud droplet and ice crystal number concentrations as well as precipitation rate, which in turn affects aerosol concentrations. Results will be presented at the conference. Hoose et al., JGR, 2008a, doi: 10.1029/2007JD009251 Hoose et al., ACP, 2008b, doi: 10.5194/acp-8-6939-2008 Stevens et al., 2013, submitted Stier et al., ACP, 2005, doi: 10.5194/acp-5-1125-2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.
Numerical simulations described in previous studies showed that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open cells. Additional analyses of the same simulations show that the suppression of rain is well described in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12-14 um. Cloud water starts to get depleted when column-maximum rain intensity (Rmax) exceeds 0.1 mm h-1. This happens when cloud-top re reaches 14 um. Rmax is mostly less than 0.1 mm h-1 at re<14 um, regardless of the cloud water path, butmore » increases rapidly when re exceeds 14 um. This is in agreement with recent aircraft observations and theoretical observations in convective clouds so that the mechanism is not limited to describing marine stratocumulus. These results support the hypothesis that the onset of significant precipitation is determined by the number of nucleated cloud drops and the height (H) above cloud base within the cloud that is required for cloud drops to reach re of 14 um. In turn, this can explain the conditions for initiation of significant drizzle and opening of closed cells providing the basis for a simple parameterization for GCMs that unifies the representation of both precipitating and non-precipitating clouds as well as the transition between them. Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization.« less
Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation
NASA Astrophysics Data System (ADS)
Vincent, Olivier; Marguet, Bastien; Stroock, Abraham
2016-11-01
A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.
This proposal targets the EPA-STAR Anthropogenic Influences on Organic Aerosol Formation and Regional Climate Implications, EPA-G2012-STAR-D1 question 3: “How are the climatically relevant properties of biogenic secondary organic aerosols (either optical properties or...
The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
NASA Astrophysics Data System (ADS)
Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.
2014-03-01
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...
2016-11-23
Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalesse, Heike; de Boer, Gijs; Solomon, Amy
Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less
Evidence for Natural Variability in Marine Stratocumulus Cloud Properties Due to Cloud-Aerosol
NASA Technical Reports Server (NTRS)
Albrecht, Bruce; Sharon, Tarah; Jonsson, Haf; Minnis, Patrick; Minnis, Patrick; Ayers, J. Kirk; Khaiyer, Mandana M.
2004-01-01
In this study, aircraft observations from the Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter are used to characterize the variability in drizzle, cloud, and aerosol properties associated with cloud rifts and the surrounding solid clouds observed off the coast of California. A flight made on 16 July 1999 provided measurements directly across an interface between solid and rift cloud conditions. Aircraft instrumentation allowed for measurements of aerosol, cloud droplet, and drizzle spectra. CCN concentrations were measured in addition to standard thermodynamic variables and the winds. A Forward Scatter Spectrometer Probe (FSSP) measured size distribution of cloud-sized droplets. A Cloud Imaging Probe (CIP) was used to measure distributions of drizzle-sized droplets. Aerosol distributions were obtained from a Cloud Aerosol Scatterprobe (CAS). The CAS probe measured aerosols, cloud droplets and drizzle-sized drops; for this study. The CAS probe was used to measure aerosols in the size range of 0.5 micron - 1 micron. Smaller aerosols were characterized using an Ultrafine Condensation Particle Counter (CPC) sensor. The CPC was used to measure particles with diameters greater than 0.003 micron. By subtracting different count concentrations measured with the CPC, this probe was capable of identifying ultrafine particles those falling in the size range of 3 nanometers - 7 nanometers that are believed to be associated with new particle production.
Gorin, Everett
1979-01-01
In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.
NASA Astrophysics Data System (ADS)
Freitag, S.; Howell, S. G.; Dobracki, A. N.; Smirnow, N.; Winchester, C.; Sedlacek, A. J., III; Podolske, J. R.; Noone, D.; McFarquhar, G. M.; Poellot, M.; Delene, D. J.
2017-12-01
During NASA ORACLES 2016/17 airborne missions, biomass burning (BB) advected from the African continent out over the South East Atlantic was intensively studied to better understand the role of BB aerosol in the regional radiation budget but also to discern its effect from natural aerosol on underlying Stratocumulus (Sc) clouds in the marine boundary layer (MBL). Because of its particle size and vast quantities BB aerosol once entrained into the MBL are highly effective as cloud condensation nuclei (CCN) impacting cloud microphysical properties and as such the Sc deck's radiative budget. This work identifies characteristic in-plume size resolved aerosol physiochemistry observed during the campaign with focus on absorbing aerosol measurements retrieved with a Single Particle Soot Photometer (SP2). The results are compared to MBL aerosol obervations and adjacent Sc cloud properties such as the cloud droplet number concentration. Additionally, size resolved aerosol physiochemistry and black carbon concentration were measured in the cloud occasionally using a Counterflow Virtual Impactor (CVI) inlet sampling exclusively cloud droplet residuals. Employing the CVI cloud droplets are inertially separated from the air and dried in-situ en-route to the aerosol instrumentation. This allows us to study natural and combustion-influenced aerosol that were actually activated as CCN in the Sc deck.
Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius
NASA Technical Reports Server (NTRS)
Platnick, Steven; Zinner, Tobias; Ackerman, S.
2008-01-01
Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.
Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping
2016-05-03
Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.
NASA Astrophysics Data System (ADS)
Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping
2016-05-01
Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.
Crew Earth Observations (CEO) taken during Expedition Six
2003-02-01
ISS006-E-28028 (February 2003) --- The Southern Cross (left center), the Coal Sack Nebula (bottom left), and the Carina Nebula (upper right) are visible in this view photographed by astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, on board the International Space Station (ISS). The Carina Nebula is a molecular cloud about 9000 light years from Earth where young stars are forming. The Coal Sack Nebula is an inky-black dust cloud about 2000 light years from Earth. Stars are probably condensing deep inside the Coal Sack, but their light has not yet broken through the clouds dense exterior. The Southern Cross, also known as The Crux, is a constellation familiar to southern hemisphere stargazers.
Spatially distributed multipartite entanglement enables EPR steering of atomic clouds
NASA Astrophysics Data System (ADS)
Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.
2018-04-01
A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.
Thermodynamic constraint on the depth of the global tropospheric circulation.
Thompson, David W J; Bony, Sandrine; Li, Ying
2017-08-01
The troposphere is the region of the atmosphere characterized by low static stability, vigorous diabatic mixing, and widespread condensational heating in clouds. Previous research has argued that in the tropics, the upper bound on tropospheric mixing and clouds is constrained by the rapid decrease with height of the saturation water vapor pressure and hence radiative cooling by water vapor in clear-sky regions. Here the authors contend that the same basic physics play a key role in constraining the vertical structure of tropospheric mixing, tropopause temperature, and cloud-top temperature throughout the globe. It is argued that radiative cooling by water vapor plays an important role in governing the depth and amplitude of large-scale dynamics at extratropical latitudes.
Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary
NASA Technical Reports Server (NTRS)
Rampino, Michael R.; Volk, Tyler
1988-01-01
The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.
Clarifying the dominant sources and mechanisms of cirrus cloud formation.
Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M
2013-06-14
Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.
NASA Astrophysics Data System (ADS)
Jha, Vandana
In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases, the response is non-monotonical, and when CCN affects are dominant, reductions in precipitation are found.
NASA Technical Reports Server (NTRS)
Krull, A. E.; Lowe, D. R.; Byerly, G. R.
2003-01-01
The chemical and physical processes by which spherules form during the condensation of impact-produced rock vapor clouds are poorly understood. Although efforts have been made to model the processes of spherule formation, there is presently a paucity of field data to constrain the resulting theoretical models. The present study examines the vertical compositional variability in a single early Archean spherule bed in the Barberton Greenstone Belt (BGB), South Africa, in order to better identify the process by which impact vapor clouds condense and spherules form and accumulate. The BGB spherule beds are suitable for this type of study because of their great thickness, often exceeding 25cm of pure spherules, due to the massive sizes of the impactors. Two main problems complicate analysis of vertical compositional variability of graded spherule beds: (1) differential settling of particles in both the vapor and water column due to density and size differences and (2) turbulence within the vapor cloud. The present study compares sections of spherule bed S3 from four different depositional environments in the Barberton Greenstone Belt: (1) The Sheba Mine section (SAF-381) was deposited under fairly low energy conditions in deep water, providing a nice fallout sequence, and also has abundant Ni-rich spinels; (2) Jay's Chert section (SAF-380) was deposited in subaerial to shallow-water conditions with extensive post-depositional reworking by currents. The spherules also have preserved spinels; (3) the Loop Road section (loc. SAF-295; samp. KSA-7) was moderately reworked and has only rare preservation of spinels; and (4) the shallow-water Barite Syncline section (loc. SAF-206; samp KSA-1) has few to no spinels preserved and is not reworked. Although all of the spherule beds have been altered by silica diagenesis and K-metasomatism, most of the compositional differences between these sections appear to reflect their diagenetic histories, possibly related to their differing depositional environments. Sulfate diagenesis in the Barite Syncline and Loop road sections may account for the loss of spinels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona
2009-11-01
Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of particular interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation with respect to liquid water similar to atmospheric conditions. In this study the sub-saturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols was determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as wellmore » as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were used. Aerosols were generated both with a wet and a dry disperser and the water uptake was parameterized via the hygroscopicity parameter, κ. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived κ values between 0.00 and 0.02. The latter value can be idealized as a particle consisting of 96.7% (by volume) insoluble material and ~3.3% ammonium sulfate. Pure clay aerosols were found to be generally less hygroscopic than real desert dust particles. All illite and montmorillonite samples had κ~0.003, kaolinites were least hygroscopic and had κ=0.001. SD (κ=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (κ=0.007) and ATD (κ=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles while immersed in an aqueous medium during atomization, thus indicating that specification of the generation method is critically important when presenting such data. Any atmospheric processing of fresh mineral dust which leads to the addition of more than ~3% soluble material is expected to significantly enhance hygroscopicity and CCN activity.« less
Quantum rotor model for a Bose-Einstein condensate of dipolar molecules.
Armaitis, J; Duine, R A; Stoof, H T C
2013-11-22
We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due to many-body effects. Investigation of the wave function of the macroscopic dipole moment also reveals squeezing of the probability distribution for the angular momentum of the molecules.
Identification of Absorption Features in an Extrasolar Planet Atmosphere
NASA Astrophysics Data System (ADS)
Barman, T.
2007-06-01
Water absorption is identified in the atmosphere of HD 209458b by comparing models for the planet's transmitted spectrum to recent, multiwavelength, eclipse-depth measurements (from 0.3 to 1 μm) published by Knutson et al. A cloud-free model that includes solar abundances, rainout of condensates, and photoionization of sodium and potassium is in good agreement with the entire set of eclipse-depth measurements from the ultraviolet to near-infrared. Constraints are placed on condensate removal by gravitational settling, the bulk metallicity, and the redistribution of absorbed stellar flux. Comparisons are also made to the Charbonneau et al. sodium measurements.
Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications
NASA Technical Reports Server (NTRS)
Thompson, W. R.; Zollweg, John A.; Gabis, David H.
1992-01-01
A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.
The dynamics of droplets in moist Rayleigh-Benard turbulence
NASA Astrophysics Data System (ADS)
Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond
2017-11-01
Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.
Trade-Wind Cloudiness and Climate
NASA Technical Reports Server (NTRS)
Randall, David A.
1997-01-01
Closed Mesoscale Cellular Convection (MCC) consists of mesoscale cloud patches separated by narrow clear regions. Strong radiative cooling occurs at the cloud top. A dry two-dimensional Bousinesq model is used to study the effects of cloud-top cooling on convection. Wide updrafts and narrow downdrafts are used to indicate the asymmetric circulations associated with the mesoscale cloud patches. Based on the numerical results, a conceptual model was constructed to suggest a mechanism for the formation of closed MCC over cool ocean surfaces. A new method to estimate the radioative and evaporative cooling in the entrainment layer of a stratocumulus-topped boundary layer has been developed. The method was applied to a set of Large-Eddy Simulation (LES) results and to a set of tethered-balloon data obtained during FIRE. We developed a statocumulus-capped marine mixed layer model which includes a parameterization of drizzle based on the use of a predicted Cloud Condensation Nuclei (CCN) number concentration. We have developed, implemented, and tested a very elaborate new stratiform cloudiness parameterization for use in GCMs. Finally, we have developed a new, mechanistic parameterization of the effects of cloud-top cooling on the entrainment rate.
Laboratory investigation of nitrile ices of Titan's stratospheric clouds
NASA Astrophysics Data System (ADS)
Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.
2017-09-01
Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.
Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder
NASA Technical Reports Server (NTRS)
Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin
2011-01-01
The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization
Development of a thermal gradient cloud condensation nucleus spectrometer
NASA Technical Reports Server (NTRS)
Leu, Ming-Taun; Friedl, R.
2004-01-01
Droplet clouds are one of the most important factors controlling the albedo and hence the temperature of out planet. Anthropogenic aerosols, such as black carbon (BC) organic carbon (OC) and sulfate, have a strong influence on cloud albedo. IPCC (2001) has estimated the global mean forcing from aerosols to be potentially as large as that of green house gases but opposite in sign. However, the uncertainties associated with the indirect aerosol forcing preclude a quantitative estimate. An additional impact on the indirect aerosol forcing, not quantified by IPCC, arises from recently identified chemical factors, for examples, interactions of atmospheric soluble gases, slightly soluble solutes, and organic substance with aerosols, which may influence the formation of cloud droplets. Recent studies suggest that inclusion of chemical effects on aerosol droplets. We plan to conduct several critical laboratory experiments that will reduce the uncertainty associated with indirect radiative forcing due to chemical modification of sulfate and BC aerosols by ambient gases.
Systematic analysis of the unique band gap modulation of mixed halide perovskites.
Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha
2016-02-14
Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.
Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign
NASA Astrophysics Data System (ADS)
Dumka, U. C.; Bhattu, Deepika; Tripathi, S. N.; Kaskaoutis, D. G.; Madhavan, B. L.
2015-03-01
Atmospheric aerosols are key elements in cloud microphysics, the hydrological cycle and climate by serving as cloud condensation nuclei (CCN). The present work analyzes simultaneous measurements of number concentration of CCN (NCCN) and condensation nuclei (NCN) obtained at Nainital, in the Gangetic-Himalayan (GH) region, during the frameworks of Ganges Valley Aerosol Experiment (GVAX), June 2011 to March 2012. The NCCN, NCN and activation (AR = NCCN/NCN) at 0.31-0.33% S (supersaturation ratio), exhibit significant daily, monthly and seasonal variations within a range of 684-2065 cm- 3 for NCCN, 1606-4124 cm- 3 for NCN, and 0.38-0.60 for AR, suggesting large inhomogeneity in aerosol properties, types and sources, which control the degree of aerosol potential activation. Thus, transported aerosols from the Ganges valley and abroad, the boundary-layer dynamics and atmospheric modification processes play an important role in aerosol-cloud interactions over the GH region. The NCN and NCCN show monthly-dependent diurnal variations with afternoon maxima due to transported aerosols from the Ganges valley up to the Himalayan foothills, while the AR is lower during these hours implying lower hygroscopicities or smaller sizes of the transported aerosols. The dependence of NCCN on S is highest during Dec-Mar and lowest during monsoon (Jun-Sep), suggesting different aerosol chemical composition. Comparison between Nainital and Kanpur shows that NCN and NCCN are much lower at Nainital, while the similarity in AR suggests aerosols of similar type, source and chemical composition uplifted from the Ganges valley to the Himalayan foothills.
Cold and transition season cloud condensation nuclei measurements in western Colorado
NASA Astrophysics Data System (ADS)
Ward, D. S.; Cotton, W. R.
2010-11-01
Recent research has shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud-active aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign. Total particle and cloud condensation nuclei (CCN) number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains, in Sept. and Oct. 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements aboard the KingAir platform during December 2009. A CCN closure attempt was performed using the size distribution information and suggested that the sampled aerosol in general had low hygroscopicity that changed slightly with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with a cloud active portion that varied slowly in time, and little in space along the Western Slope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less
NASA Technical Reports Server (NTRS)
Schlosser, Herbert
1992-01-01
In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.
Children's Views about the Water Cycle.
ERIC Educational Resources Information Center
Bar, Varda
1989-01-01
Israeli children's (kindergarten to grade nine) explanations about the water cycle are described. Reports the children's views about the source of clouds and the mechanism of rainfall. It was concluded that understanding evaporation is a necessary condition for explaining a mechanism of rain containing the ideas of condensation and heaviness. (YP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Kondo, Yutaka
New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosol number (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduced a new aerosol model representation with 20 size bins between 1 nm and 10 {mu}m and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the CARE-Beijing 2006 campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurementsmore » (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20-30% of CN concentrations (> 10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of pre-existing particles through the competition of condensable gases between new particles and pre-existing particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.« less
NASA Astrophysics Data System (ADS)
Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Wiedensohler, A.; Fast, J. D.; Zaveri, R. A.
2011-10-01
New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduce a new aerosol model representation with 20 size bins between 1 nm and 10 μm and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CARE-Beijing 2006) campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurements (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens of nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20%-30% of the CN concentrations (>10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of preexisting particles through the competition of condensable gases between new particles and preexisting particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.
NASA Astrophysics Data System (ADS)
Burkart, Julia; Hodshire, Anna L.; Mungall, Emma L.; Pierce, Jeffrey R.; Collins, Douglas B.; Ladino, Luis A.; Lee, Alex K. Y.; Irish, Victoria; Wentzell, Jeremy J. B.; Liggio, John; Papakyriakou, Tim; Murphy, Jennifer; Abbatt, Jonathan
2017-10-01
Ship-based aerosol measurements in the summertime Arctic indicate elevated concentrations of ultrafine particles with occasional growth to cloud condensation nuclei (CCN) sizes. Focusing on one episode with two continuously growing modes, growth occurs faster for a large, preexisting mode (dp ≈ 90 nm) than for a smaller nucleation mode (dp ≈ 20 nm). We use microphysical modeling to show that growth is largely via organic condensation. Unlike results for midlatitude forested regions, most of these condensing species behave as semivolatile organics, as lower volatility organics would lead to faster growth of the smaller mode. The magnitude of the CCN hygroscopicity parameter for the growing particles, 0.1, is also consistent with organic species constituting a large fraction of the particle composition. Mixing ratios of common aerosol growth precursors, such as isoprene and sulfur dioxide, are not elevated during the episode, indicating that an unidentified aerosol growth precursor is present in this high-latitude marine environment.
Observational Study and Parameterization of Aerosol-fog Interactions
NASA Astrophysics Data System (ADS)
Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.
2014-12-01
Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.
Water ice clouds observations with PFS on Mars Express
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team
The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.
2016-01-01
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097
Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.
Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H
2016-12-08
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-03
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.
2011-01-01
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.
NASA Astrophysics Data System (ADS)
Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng
2018-02-01
Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.
NASA Astrophysics Data System (ADS)
Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin
2016-04-01
Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.
NASA Astrophysics Data System (ADS)
Abbatt, J. P. D.; Broekhuizen, K.; Pradeep Kumar, P.
The ability of mixed ammonium sulfate/organic acid particles to act as cloud condensation nuclei (CCN) has been studied in the laboratory using a continuous flow, thermal-gradient diffusion chamber operated at supersaturations between 0.3% and 0.6%. The organic acids studied were malonic acid, azelaic acid, hexanoic acid, cis-pinonic acid, oleic acid and stearic acid, and the particles were largely prepared by condensation of the organic vapor onto a dry ammonium sulfate core. For malonic acid and hexanoic acid, the mixed particles activated as predicted by a simple Köhler theory model where both species are assumed to be fully soluble and the droplet has the surface tension of water. Three low-solubility species, cis-pinonic acid, azelaic acid and oleic acid, are well modeled where the acid was assumed to be either partially or fully insoluble. Interestingly, although thin coats of stearic acid behaved in a manner similar to that displayed by oleic and cis-pinonic acid, we observed that thick coats led to a complete deactivation of the ammonium sulfate, presumably because the water vapor could not diffuse through the solid stearic acid. We observed no CCN behavior that could be clearly attributed to a lowering of the surface tension of the growing droplet by the presence of the organic constituents, some of which are highly surface active.
Entrainment and cloud evaporation deduced from the stable isotope chemistry of clouds during ORACLES
NASA Astrophysics Data System (ADS)
Noone, D.; Henze, D.; Rainwater, B.; Toohey, D. W.
2017-12-01
The magnitude of the influence of biomass burning aerosols on cloud and rain processes is controlled by a series of processes which are difficult to measure directly. A consequence of this limitation is the emergence of significant uncertainty in the representation of cloud-aerosol interactions in models and the resulting cloud radiative forcing. Interaction between cloud and the regional atmosphere causes evaporation, and the rate of evaporation at cloud top is controlled in part by entrainment of air from above which exposes saturated cloud air to drier conditions. Similarly, the size of cloud droplets also controls evaporation rates, which in turn is linked to the abundance of condensation nuclei. To quantify the dependence of cloud properties on biomass burning aerosols the dynamic relationship between evaporation, drop size and entrainment on aerosol state, is evaluated for stratiform clouds in the southeast Atlantic Ocean. These clouds are seasonally exposed to biomass burning plumes from agricultural fires in southern Africa. Measurements of the stable isotope ratios of cloud water and total water are used to deduce the disequilibrium responsible for evaporation within clouds. Disequilibrium is identified by the relationship between hydrogen and oxygen isotope ratios of water vapor and cloud water in and near clouds. To obtain the needed information, a custom-built, dual inlet system was deployed alongside isotopic gas analyzers on the NASA Orion aircraft as part of the Observations of Aerosols above Clouds and their Interactions (ORACLES) campaign. The sampling system obtains both total water and cloud liquid content for the population of droplets above 7 micrometer diameter. The thermodynamic modeling required to convert the observed equilibrium and kinetic isotopic is linked to evaporation and entrainment is described, and the performance of the measurement system is discussed.
Lin, Yun; Wang, Yuan; Pan, Bowen; ...
2016-08-26
In this study, a continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol microphysical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudinessmore » for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. Finally, the results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol–cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts.« less
TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF
Fried, S.
1951-03-20
Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.
NASA Technical Reports Server (NTRS)
Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey
2013-01-01
The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.
A large source of low-volatility secondary organic aerosol
NASA Astrophysics Data System (ADS)
Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.
2014-02-01
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewangan, L. K.; Janardhan, P.; Baug, T.
In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used {sup 13}CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10{sup 37} erg s{sup 1}. A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact ofmore » stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H{sub 2}) ∼9.2 × 10{sup 22} cm{sup 2} and A{sub V} ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.« less
A large source of low-volatility secondary organic aerosol.
Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F
2014-02-27
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
APPARATUS FOR THE PRODUCTION OF LITHIUM METAL
Baker, P.S.; Duncan, F.R.; Greene, H.B.
1961-08-22
Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)
NASA Astrophysics Data System (ADS)
Ohno, Kazumasa; Okuzumi, Satoshi
2018-05-01
The ubiquity of clouds in the atmospheres of exoplanets, especially of super-Earths, is one of the outstanding issues for the transmission spectra survey. Understanding the formation process of clouds in super-Earths is necessary to interpret the observed spectra correctly. In this study, we investigate the vertical distributions of particle size and mass density of mineral clouds in super-Earths using a microphysical model that takes into account the vertical transport and growth of cloud particles in a self-consistent manner. We demonstrate that the vertical profiles of mineral clouds significantly vary with the concentration of cloud condensation nuclei and atmospheric metallicity. We find that the height of the cloud top increases with increasing metallicity as long as the metallicity is lower than the threshold. If the metallicity is larger than the threshold, the cloud-top height no longer increases appreciably with metallicity because coalescence yields larger particles of higher settling velocities. We apply our cloud model to GJ1214 b and GJ436 b, for which recent transmission observations suggest the presence of high-altitude opaque clouds. For GJ436 b, we show that KCl particles can ascend high enough to explain the observation. For GJ1214 b, by contrast, the height of KCl clouds predicted from our model is too low to explain its flat transmission spectrum. Clouds made of highly porous KCl particles could explain the observations if the atmosphere is highly metal-rich, and hence the particle microstructure might be a key to interpret the flat spectrum of GJ1214 b.
Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...
2008-02-27
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less
Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
NASA Astrophysics Data System (ADS)
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven
2008-02-01
Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.
Global aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Wagner, Till; Stier, Philip
2013-04-01
Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.