Science.gov

Sample records for hall cooling tower

  1. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  3. Ozone Treatment For Cooling Towers

    NASA Technical Reports Server (NTRS)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  4. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  5. COOLING TOWER PUMP HOUSE, TRA606. CONNECTION TO COOLING TOWER. PUMPHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. CONNECTION TO COOLING TOWER. PUMP-HOUSE FLOOR PLAN AND FOUNDATION PLANS. LAYOUT OF SIX COOLING TOWER UNITS. BLAW-KNOX 3150-807-2, 12/1950. INL INDEX NO. 53-0607-62-098-100671, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Ozone inhibits corrosion in cooling towers

    NASA Technical Reports Server (NTRS)

    French, K. R.; Howe, R. D.; Humphrey, M. F.

    1980-01-01

    Commercially available corona discharge ozone generator, fitted onto industrial cooling tower, significantly reduces formation of scales (calcium carbonate) and corrosion. System also controls growth of algae and other microorganisms. Modification lowers cost and improves life of cooling system.

  7. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  8. INTERIOR HALL BY TOWER STAIRS, LOOKING SOUTH. Oregon Inlet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR HALL BY TOWER STAIRS, LOOKING SOUTH. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  9. INTERIOR TOWER STAIRS HALL, LOOKING NORTH INTO MESS. Oregon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS HALL, LOOKING NORTH INTO MESS. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  10. INTERIOR TOWER ENTRANCE HALL, LOOKING NORTHWEST. Oregon Inlet Coast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER ENTRANCE HALL, LOOKING NORTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  11. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  12. Film fill for power plant cooling towers

    SciTech Connect

    Mirsky, G.R. ); Monjoie, M. )

    1991-01-01

    This paper reports on film fill, which is the use of flat or formed sheets to provide a surface upon which liquid and air come in contact with each other to affect the exchange of heat. The only other fill options available to a cooling tower designer is the use of splash fill or combinations whereby heat exchange occurs on the surface of water droplets, or both. As film fill allows the designer the opportunity to build a more compact, cost effective, energy efficient cooling tower; this type of fill material is receiving ever increasing acceptance and finding it way into more and more cooling tower applications. film fill is used to both counterflow and crossflow cooling towers, from small air conditioning applications to large natural draft towers serving 1300 to 1500 M.W. power plants around the world. It is being used in applications using unfiltered water high in suspended solids, high concentrations of dissolved salts, water carrying fibers, silt, mud, treated and untreated waste effluent, scale etc. These situations are caused by users who are: trying to reduce water make-up, using untreated or unfiltered water, or trying to save on the cost of chemical treatment.

  13. Cooling tower water conditioning study. [using ozone

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  14. Update: Cooling tower and spray pond technology

    SciTech Connect

    Bartz, J.A.

    1995-05-01

    The 9th Cooling Tower and Spray Pond Symposium, under the auspices of the International Association for Hydraulic Research, took place at the von Karman Institute for Fluid Dynamics, Belgium, in September 1994. Technical topics discussed included cooling system design, performance, operation, environmental effects, modeling and components. Symposium proceedings will not be published. However, information of primary interest to staffs of power plants in the United States is summarized in this article.

  15. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. North and west sides of the cooling tower, utility building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west sides of the cooling tower, utility building (building 2606) is in the background at right - March Air Force Base, Strategic Air Command, Cooling Tower, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  17. View from southwest to northeast of cooling towers for perimeter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from southwest to northeast of cooling towers for perimeter acquisition radar building and PAR power plant - Stanley R. Mickelsen Safeguard Complex, Cooling Tower, In Limited Access Area, between Service Roads D & A, Nekoma, Cavalier County, ND

  18. Activation of a new cooling tower facility

    SciTech Connect

    Lansford, W.D.

    1986-01-01

    The activation of a completely new facility presents problems not found in modifications or additions to existing systems. Known baselines of previous operations provide some guidelines as to what is causing a particular problem. However, when a totally new, complex facility initially becomes operational, unfamiliar instrumentation, mechanical equipment, and unknown system idiosyncrasies, require careful analysis of each event to determine whether one is observing a symptom of pending disaster or a minor isolated occurrence of some subsystem. Careful planning and progressive introduction of related systems must be initiated, introducing operating personnel into the chain of events as early as possible. Personnel responsible for operation and maintenance should participate in the review of initial concepts and designs, to provide input based on systems experience. The cooling tower system described in this paper has gained recognition for dependability and consistency of operations since initially becoming operational. Instead of a once weekly activity, as originally anticipated, test units are now requesting cooling tower support for all test operations. During one five-month period, a total of 660 cooling tower operating hours were logged with one test support period of 78 non-stop hours recorded. The use of the cooling tower beyond original expectations is a compliment without comparison.

  19. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  20. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Process contact cooling towers... Process contact cooling towers provisions. (a) The owner or operator of each new affected source that... end finisher process that utilizes a process contact cooling tower shall comply with paragraph (c)...

  1. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Process contact cooling towers... § 63.1329 Process contact cooling towers provisions. (a) The owner or operator of each new affected... viscosity multiple end finisher process that utilizes a process contact cooling tower shall comply...

  2. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Process contact cooling towers... Process contact cooling towers provisions. (a) The owner or operator of each new affected source that... end finisher process that utilizes a process contact cooling tower shall comply with paragraph (c)...

  3. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Process contact cooling towers... Process contact cooling towers provisions. (a) The owner or operator of each new affected source that... end finisher process that utilizes a process contact cooling tower shall comply with paragraph (c)...

  4. Legionella in Puerto Rico cooling towers

    SciTech Connect

    Negron-Alviro, A.; Perez-Suarez, I.; Hazen, T.C.

    1988-12-31

    Water samples from air conditioning cooling towers receiving different treatment protocols on five large municipal buildings in San Juan, Puerto Rico were assayed for various species and serogroups of Legionella spp. using direct immunofluorescence. Several water quality parameters were also measured with each sample. Guinea pigs were inoculated with water samples to confirm pathogenicity and recover viable organisms. Legionella pneumophila (1-6), L. bozemanii, L. micdadei, L. dumoffii, and L. gormanii were observed in at least one of the cooling towers. L. pneumophila was the most abundant species, reaching 10{sup 5} cells/ml, within the range that is considered potentially pathogenic to humans. A significantly higher density of L. pneumophila was observed in the cooling tower water that was not being treated with biocides. Percent respiration (INT) and total cell activity (AODC), were inversely correlated with bacterial density. This study demonstrates that Legionella spp. are present in tropical air-conditioning cooling systems, and without continuous biocide treatment may reach densities that present a health risk.

  5. Legionella spp. in Puerto Rico cooling towers.

    PubMed Central

    Negrón-Alvíra, A; Pérez-Suarez, I; Hazen, T C

    1988-01-01

    Water samples from air conditioning cooling towers receiving different treatment protocols on five large municipal buildings in San Juan, P.R., were assayed for various Legionella spp. and serogroups by using direct immunofluorescence. Several water quality parameters were also measured for each sample. Guinea pigs were inoculated with water samples to confirm pathogenicity and recover viable organisms. Legionella pneumophila serogroups 1 to 6, L. bozemanii, L. micdadei, L. dumoffii, and L. gormanii were observed in at least one of the cooling towers. L. pneumophila was the most abundant species; its density reached 10(5) cells per ml, which is within the range that is considered potentially pathogenic to humans. A significantly higher density of L. pneumophila was observed in the cooling tower water that was not being treated with biocides. Percent respiration (INT) and total cell activity (acridine orange direct count) were inversely correlated with bacterial density. This study demonstrates that Legionella spp. are present in tropical air-conditioning cooling systems and that, without continuous biocide treatment, they may reach densities that present a health risk. PMID:3202625

  6. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  7. Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  8. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  9. Vortex-augmented cooling tower-windmill combination

    DOEpatents

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  10. PBF Cooling Tower. View of stairway to fan deck. Vents ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View of stairway to fan deck. Vents are made of redwood. Camera facing southwest toward north side of Cooling Tower. Siding is corrugated asbestos concrete. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3463 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. 36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER No. 1 AND TWO GAS COOLING TOWER SERVICE WATER PUMPS IN THE GAS WASHER PUMP HOUSE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. PBF Cooling Tower contextual view. Camera facing southwest. West wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower contextual view. Camera facing southwest. West wing and north facade (rear) of Reactor Building (PER-620) is at left; Cooling Tower to right. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4913 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Pilot scale cooling tower fouled fill treatment: AFCATT (Anti-Fouling Chemical Additive Test Tower)

    SciTech Connect

    Newton, M.T.; Noble, R.T.; Philpot, E.F.; Eastis, J.H.

    1995-02-01

    Polyvinylchloride (PVC) film-type cellular fill is the fill of choice in replacing cement asbestor board fill in existing cooling towers and in new cooling towers because of its high thermal performance, ease of installation, and low initial cost. However, PVC fill has been found to foul quickly with biological and sediment material, significant reducing tower performance and the fill`s useful life. The Anti-Fouling Chemical Additives Test Tower (AFCATT) has been built to study accumulation rates of fouling deposits in corrugated PVC film fill and to study methods of cleaning and preventing the fouling deposits. This small mechanical draft cooling tower is located next to the Unit 4 natural draft cooling tower at Georgia Power Company`s Plant Bowen. The once-through mechanical draft tower receives hot water from the condenser and returns the cold water to the basin of the host tower. The pilot tower is divided into four chambers allowing for three different treatment programs and one control to be run simultaneously. PVC fill packs are suspended from load cells to allow the weight of the fill packs to be measured continuously. Six vendors participated in the summer 1993 test program. Each proposed different methods of cleaning the fouled fill and were given the opportunity to try their proposed method of fill cleaning. The success of each treatment program was determined by its ability to reduce fill pack weight (i.e., reduce fouling).

  14. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  15. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  16. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  17. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  18. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  19. COOLING TOWER PUMP HOUSE, TRA606. SECTION, LAYOUT OF TOWERS. BLAWKNOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. SECTION, LAYOUT OF TOWERS. BLAW-KNOX 3150-7-2, 9/1950. INL INDEX NO. 531-0607-00-098-100014, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. 10. STATIC TEST TOWER CLOSEUP OF COOLING PIPES OF FLAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. STATIC TEST TOWER CLOSE-UP OF COOLING PIPES OF FLAME DEFLECTOR PIT ON NORTH ELEVATION. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  1. 72. Joe Moore, Photographer. September, 1996. BEVATRON COOLING TOWERS (3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Joe Moore, Photographer. September, 1996. BEVATRON COOLING TOWERS (3 SHOWN) AND MOTOR GENERATOR ON RIGHT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Use of cooling tower blow down in ethanol fermentation.

    PubMed

    Rajagopalan, N; Singh, V; Panno, B; Wilcoxon, M

    2010-01-01

    Reducing water consumption in bioethanol production conserves an increasingly scarce natural resource, lowers production costs, and minimizes effluent management issues. The suitability of cooling tower blow down water for reuse in fermentation was investigated as a means to lower water consumption. Extensive chemical characterization of the blow down water revealed low concentrations of toxic elements and total dissolved solids. Fermentation carried out with cooling tower blow down water resulted in similar levels of ethanol and residual glucose as a control study using deionized water. The study noted good tolerance by yeast to the specific scale and corrosion inhibitors found in the cooling tower blow down water. This research indicates that, under appropriate conditions, reuse of blow down water from cooling towers in fermentation is feasible.

  3. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  4. 2. Left side of Zinc Plant, from packless Cooling Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Left side of Zinc Plant, from packless Cooling Tower to midpoint of Cell Room, with majority of Upper Plant in view. View is to the east. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  5. 7. COOLING TOWER FROM ROOF. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COOLING TOWER FROM ROOF. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. An outbreak of Legionella pneumonia originating from a cooling tower.

    PubMed

    Isozumi, Rie; Ito, Yutaka; Ito, Isao; Osawa, Makoto; Hirai, Toyohiro; Takakura, Syunji; Iinuma, Yoshitsugu; Ichiyama, Satoshi; Tateda, Kazuhiro; Yamaguchi, Keizo; Mishima, Michiaki

    2005-01-01

    We report 2 cases of Legionella pneumonia in individuals who were exposed to aerosols during maintenance of a cooling tower at a waste processing plant. This report documents the first known occupation-related outbreak of Legionella pneumonia in Japan.

  7. 16. SOUTH SIDE OF STEAM PLANT COOLING TOWER IN OPERABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. SOUTH SIDE OF STEAM PLANT COOLING TOWER IN OPERABLE CONDITION, WITH STACKS OF ORIGINAL BOILERS IN BACKGROUND. June 10, 1941 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  8. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  9. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... viscosity multiple end finisher process that utilizes a process contact cooling tower shall comply with... high viscosity multiple end finisher process, and who is subject or becomes subject to 40 CFR part...

  10. Identification of cooling tower wood attack and methods of control

    SciTech Connect

    Song, P.; Trulear, M.G.

    1986-01-01

    Biological and chemical attack can greatly accelerate the deterioration of cooling tower wood. The damage, once inflicted, is irreversible and often results in premature and costly wood replacement. Biological attack is more serious than chemical, and is difficult to detect. Control of both types is essential for good tower maintenance A review of wood structures, types of attack and methods of control are presented. Effects of alkaline cooling water operation on wood deterioration are also discussed.

  11. Environmental Impacts from the Operation of Cooling Towers at SRP

    SciTech Connect

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  12. International cooling-tower and spray pond symposium

    SciTech Connect

    Not Available

    1990-09-01

    This document contains the manuscripts of sixty-one papers that were presented at the 7th Cooling Tower and Spray Pond Symposium of the International Association for Hydraulic Research, organized by the B.E. Vedeneev Institute (VNIIG) and held in Leningrad, USSR, in June 1990. This report represents a worldwide state-of-the-art survey of recent work on cooling towers and spray ponds. Individual papers are indexed separately on the energy database.

  13. 75 FR 63802 - Action Affecting Export Privileges; Parto Abgardan Cooling Towers Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... Bureau of Industry and Security Action Affecting Export Privileges; Parto Abgardan Cooling Towers Co. Parto Abgardan Cooling Towers Co., P.O. Box 966, Folsom, CA 95763; and P.O. Box 19395/5478, Tehran, Iran... Cooling Towers, Co. Applicable to Parto Abgardan Cooling Towers Co. Pursuant to Section 766.23 of...

  14. PBF Cooling Tower detail. Camera facing southwest into north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest into north side of Tower. Five horizontal layers of splash bars constitute fill decks, which will break up falling water into droplets, promoting evaporative cooling. Louvered faces, through which air enters tower, are on east and west sides. Louvers have been installed. Support framework for one of two venturi-shaped fan stacks (or "vents") is in center top. Orifices in hot basins (not in view) will distribute water over fill. Photographer: Kirsh. Date: May 15, 1969. INEEL negative no. 69-3032 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. COOLING TOWER PUMP HOUSE, TRA606. THREE OF SIX SECTIONS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. THREE OF SIX SECTIONS OF COOLING TOWER ARE VISIBLE ABOVE RAILING. PUMP HOUSE IN FOREGROUND IS ON SOUTH SIDE OF COOLING TOWER. NOTE THREE PIPES TAKING WATER FROM PUMP HOUSE TO HOT DECK OF COOLING TOWER. EMERGENCY WATER SUPPLY TOWER IS ALSO IN VIEW. INL NEGATIVE NO. 6197. Unknown Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Pontiac fever outbreak associated with a cooling tower.

    PubMed Central

    Friedman, S; Spitalny, K; Barbaree, J; Faur, Y; McKinney, R

    1987-01-01

    In late April 1984, an outbreak of Pontiac fever was investigated in an office building in lower Manhattan (New York City). The outbreak was characterized by a high attack rate (78 per cent overall); the predominant symptoms were myalgias, chills, fatigue, fever, and headache. There was a clustering of cases in an office that was air cooled by a dedicated cooling tower separate from the remainder of the building. A high concentration of live L. Pneumophila cells in the cooling tower was quantified. Airborne spread via settle plates placed along the air intake system and within the office was demonstrated. Legionella pneumophila serogroup 1 antigen was found in the urine of two cases, and identical monoclonal antibody reactivity patterns of isolates from all sources was observed. Difficulty was experienced in eliminating the organism from the tower. PMID:3565648

  18. Integrated reactor-containment hyperbolic-cooling-tower system

    SciTech Connect

    Patel, A.R.; Todreas, N.E.; Driscoll, M.J.

    1994-12-31

    A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

  19. Effectiveness of bromicide against Legionella pneumophila in a cooling tower

    SciTech Connect

    Fliermans, C.B.; Harvey, R.S.

    1983-01-01

    Cooling towers are considered to be man-made amplifiers of Legionella. Thus the proper maintenance and choice of biocides is important. The only biocide that has thus far been shown to be effective in field tests is the judicious use of chlorination. Perturbation studies were conducted on an industrial cooling tower shown to contain Legionella, using 1-bromo-3-chloro-5,5-dimethylhydantoin (Bromicide, Great Lakes Chemical Corp.). At the manufacturer's recommended concentrations neither the density nor the activity of Legionella was affected. At concentrations greater than 2.0 ppM free residual, the Bromicide was not effective in reducing Legionella to source water concentrations, nor was it effective in reducing the INT activity of the bacterium in situ. The data indicate that at concentrations up to 2.0 ppM, Bromicide is not effective in these tower studies. 23 references, 3 tables.

  20. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  1. Indiana State University Graduates to Advanced Plastic Cooling Towers

    ERIC Educational Resources Information Center

    Sullivan, Ed

    2012-01-01

    Perhaps more than many other industries, today's universities and colleges are beset by dramatically rising costs on every front. One of the areas where overhead can be contained or reduced is in the operation of the chilled water systems that support air conditioning throughout college campuses, specifically the cooling towers. Like many…

  2. Program for monitoring LDB concentrations in cooling-tower waters

    SciTech Connect

    Porter, W.E.

    1983-01-01

    A brief description is presented in tabular form describing the program employed by the Industrial Hygiene Department of the Oak Ridge National Laboratory to monitor and control levels of Legionella in cooling tower waters. Guidelines are listed to protect personnel from an exposure that could lead to legionnaire's disease.

  3. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  4. Cooling tower windage: a new aspect to environmental assessment

    SciTech Connect

    Taylor, F. G.; Park, S. H.

    1980-01-01

    Results of the several investigations provided quantitative estimates of windage from Oak Ridge Gaseous Diffusion Plant cooling towers. Windage water deposited on the ground has the potential to reach nearby streams through runoff. Windage deposited on moisture depleted soils would not be significant. During winter months at Oak Ridge soils generally have a high moisture content such that windage deposition could be quickly transported as runoff. It is during this time that cooling towers are sometimes operated without fan-induced draft. Since windage water contains the same hexavalent chromium concentration (9 ppM) as the recirculating cooling water system, the runoff stream from the K-892J tower constitues a NPDES violation as an unpermitted discharge. As a long-term abatement strategy, concrete aprons were constructed along each side of new cooling towers at the Paducah, Kentucky Gaseous Diffusion Plant. The maximum distance of windage impact is wind dependent. If apron construction is envisioned as an abatement strategy at Oak Ridge, the maximum distance of impact can be inferred graphically from the several points where windage (fans off) and drift (fans on) loss curves intersect under the different meteorological conditions. Once the hexavalent chromium laden runoff stream reaches Poplar Creek, it is diluted well below the standards for drinking water and poses little potential for biological effects to aquatic systems.

  5. MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COOLING TOWER. BASIN IS ADJACENT TO PUMP HOUSE. CAMERA FACES SOUTHEAST TOWARD NORTH SIDE OF PUMP HOUSE. INL NEGATIVE NO. 2690. Unknown Photographer, 6/1951. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Water distribution characteristics of spray nozzles in a cooling tower

    NASA Astrophysics Data System (ADS)

    Vitkovic, Pavol

    2015-05-01

    Water distribution characteristics of spray nozzles with spray plates used to distribute cooling water to the cooling fills in a cooling tower is one of the important parameters for the selection of nozzles. Water distribution characteristic describes the distribution of water from the axis of the nozzle along a fill. One of the parameters affecting the water distribution characteristic of the nozzle is airflow velocity of counter flow airstream. Water distribution characteristics are commonly measured using by a set of containers. The problem with this method of the measurement of characteristics is block of the airflow with collections of containers. Therefore, this work is using the visualization method.

  7. Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones

    SciTech Connect

    Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin; Srivastava, Prateek

    2016-01-01

    Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on average 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.

  8. Film fill fouling in counterflow cooling towers: Research results

    SciTech Connect

    Mortensen, K.P.; Conley, S.N.

    1994-12-31

    High-efficiency cross-corrugated PVC film packing materials, first introduced in the US for new counterflow cooling tower products in the 1970`s, have in a number of instances recently been used to improve the thermal performance of older splash and flat-sheet-filled counterflow towers. These highly interfaced PVC packs in new tower and retrofit service have been applied in a variety of circumstances and conditions. In some locations raw waters have fouled packs. This fouling process can, if left unchecked, reverse performance gains from the tower upgrade and add substantially to cooling tower structural loadings. This paper details a significant effort to understand and reproduce that primary fouling mechanism in a controlled and accelerated laboratory regimen, and to conduct equal basis comparative fouling tests on a number of fill configurations to optimize geometry. These efforts proceeded in specially constructed lab cells which did not risk customer tower installations while defining optimum fill design features. Considerable effort went into evaluating their customers` descriptions of field fouling and to duplicate field observations in the lab process. Field low-clog fill testing results are correlated with lab results. Many alternative fill shapes, spacings, texturings, support schemes, and materials are compared here in order to define the best geometry for the end user. Water conditions, particularly biological characterization and the relation of any circulating water biopotential to suspended solids concentration are discussed because of their specific causal relation in pack fouling. Low-Clog fill application criteria are established. Water treatment needs are discussed. Washing of existing fouled packing is also considered. Finally, a laboratory method for thermal comparison of various packs in fouled condition is described.

  9. Film fill fouling in counterflow cooling towers: Continuing research results

    SciTech Connect

    Mortensen, K.P.; Conely, S.N.

    1995-02-01

    High-efficiency crosscorrugated PVC film packing materials-first introduced in the U.S. for new counterflow cooling tower products in the 1970s-have in a number of instances of older splash and flat-sheet-filled counterflow towers. These highly interfaced PVC packs in new tower and retrofit service have been applied in a variety of circumstances and conditions. In some locations raw waters have fouled packs. This fouling process can, if left unchecked, reverse performance gains from the tower upgrade and add substantially to cooling tower structural loading. This paper details an effort to understand and reproduce that primary fouling mechanism in a controlled and accelerated laboratory regimen, and to conduct equal basis comparative fouling tests on a number of fill configurations to optimize geometry. These efforts proceeded in specially constructed lab cells which did not risk customer tower installations while defining optimum fill design features. Considerable effort went into evaluating our customer`s descriptions of field fouling and to duplicate field observations in the lab process. Field low-clog fill testing results are correlated with lab results. Many alternative fill shapes, spacing, texturing, support schemes, and materials are compared here in order to define the best geometry for the end user. Water conditions, particularly biological characterization and the relation of any circulating water biopotential to suspended solids concentration are discussed because of their specific casual relation in pack fouling. Low-clog fill application criteria are established. Water treatment needs are discussed. Washing of existing fouled packing is also considered. Finally, a laboratory method for thermal comparison of various packs in fouled condition is described.

  10. Factors stimulating propagation of legionellae in cooling tower water

    SciTech Connect

    Yamamoto, Hiroyuki; Sugiura, Minoru; Kusunoki, Shinji; Ezaki, Takayuki; Ikedo, Masanari; Yabuuchi, Eiko )

    1992-04-01

    The authors survey of cooling tower water demonstrated that the highest density of legionellae, {ge}10{sup 4} CFU/100 ml, appeared in water containing protozoa, {ge}10{sup 2} MPN/100 ml, and heterotrophic bacteria, {ge}10{sup 6} CFU/100 ml, at water temperatures between 25 and 35C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 10{sup 5} CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not with heterotrophic bacterial counts. The water temperature of cooling towers may promote increases in the viable counts of legionellae, and certain microbes, e.g., protozoa or some heterotrophic bacteria, may be a factor stimulating the propagation of legionellae.

  11. Susceptibility of Legionella pneumophila to three cooling tower microbicides

    SciTech Connect

    Grace, R.D.; Dewar, N.E.; Barnes, W.G.; Hodges, G.R.

    1981-01-01

    Investigation of epidemic outbreaks of Legionnaires disease by Center for Disease Control personnel has resulted in the isolation of Legionella pneumophila from water in the air-conditioning cooling towers or evaporative condensers at the site of the outbreak. It is suspected that improperly maintained open, recirculating water systems may play a role in the growth and dissemination of this pathogen. The objective of this study was to determine the antimicrobial activity of three chemically different, commercially available, cooling tower microbicides against L. pneumophila. Using two in vitro test systems, a combination of N-alkyl dimethyl benzyl ammonium chloride and bis (tri-n-butyltin) oxide was found to kill L. pneumophila at a concentration 25 times less than the minimum recommended use concentration, whereas N-alkyl 1,3-propanediamine and methylene bis(thiocyanate) were active at concentrations equal to or greater than the concentrations recommended for use by the manufacturer.

  12. Short-term pilot cooling tower tests

    SciTech Connect

    Suciu, D.F.; Miller, R.L.

    1980-01-01

    Two major problems are associated with the use of cooled geothermal water as coolant for the 5 MW(e) pilot plant at Raft River. They are: (1) a scaling potential owing to the chemical species present in solution, and (2) the corrosive nature of the geothermal water. Tests were conducted to obtain data so that methods can be devised to either reduce or eliminate effects from these problems. Data show that scaling can be prevented, but only by using a high concentration of dispersant. Pitting data, however, are not as conclusive and seem to indicate that pitting control cannot be realized, but this result cannot be substantiated without additional experimentation. Results also demonstrate that chromate can be removed by using either chemical destruction or ion exchange. Whichever method is used, EPA discharge limits for both chromate and zinc can be achieved. A preliminary economic analysis is presented.

  13. PBF Cooling Tower. View from highbay roof of Reactor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View from high-bay roof of Reactor Building (PER-620). Camera faces northwest. East louvered face has been installed. Inlet pipes protrude from fan deck. Two redwood vents under construction at top. Note piping, control, and power lines at sub-grade level in trench leading to Reactor Building. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3466 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2008-03-03

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

  15. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  16. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  17. Operational cooling tower model (CTTOOL V1.0)

    SciTech Connect

    Aleman, S.; LocalDomainServers, L.; Garrett, A.

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  18. Cooling tower irrigator layout with allowances for non-uniformity of the airflow velocity field

    NASA Astrophysics Data System (ADS)

    Pushnov, A. S.; Ryabushenko, A. S.

    2016-07-01

    This article covers the results of analysis of aerodynamic processes in the cooling tower irrigator and provides the approaches to optimal layout of preformed packing blocks (of the irrigator) developed based on these results. The analysis of the airflow velocity field in the cooling towers shows that the irrigation space can be broken down into the following zones: the peripheral zone of the cooling tower near the airblast windows, the zone near the cooling tower center, and the intermediate zone. Furthermore, the highest level of nonuniformity of the airflow velocity field in cooling towers is in the zone adjoining the tower's airblast windows. The proposed concept of the cooling tower irrigator's layout is made with allowances for the airflow velocity field characteristics in the cross-section of the irrigation space of the cooling tower. Based on this concept, we suggest that higher irrigator blocks should be placed in the zone of increased airflow consumption, which provides the possibility to enhance the hydraulic resistance and, respectively, decrease the gas flow velocity as well as to boost the efficiency of chilling the circulating water in the cooling tower. For this purpose, additional irrigator blocks can be of the same design as the main irrigator. As an option, it is possible to use blocks of the geometry and design other than the main irrigator block in the cooling tower.

  19. Prevalence study of Simkania negevensis in cooling towers in Spain.

    PubMed

    Pérez, Leonardo Martín; Codony, Francesc; Ríos, Karina; Adrados, Bárbara; Fittipaldi, Mariana; De Dios, Gregori; Peñuela, Gustavo; Morató, Jordi

    2011-06-01

    Simkania negevensis is an obligate intracellular bacterium grouped into the order Chlamydiales. This new amoeba-resistant intracellular bacterium might represent a novel etiologic agent of bronchiolitis and community-acquired pneumonia and occurs in aquatic habitats such as drinking water and reclaimed wastewater. Another amoeba-related bacterium, Legionella pneumophila, is an etiologic agent of pneumonia transmitted by environmental aerosols or contaminated water/air cooling systems. These transmission pathways are important in the natural history of Legionellae infections and possibly other intracellular microorganisms such as Parachlamydiaceae; thus, understanding the feasibility of Simkania infection by these routes is relevant. In the present work, we investigated the prevalence of this newly identified pathogenic bacterium in cooling towers by quantitative PCR (qPCR) and its possible relationship with Legionella pneumophila co-infection. Our results show Simkania detection in 2 of 70 cooling towers analyzed. To our knowledge, this report is the first describing Simkania negevensis detection in this category of environmental water samples.

  20. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    SciTech Connect

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  1. Gasifier waste water treatment: Phase I cooling tower assessment

    SciTech Connect

    Mann, M.D.; Willson, W.G.; Hendrikson, J.G.; Winton, S.L.

    1985-02-01

    Details of an advanced study of the treatability of waste waters from the fixed-bed gasification of lignite describe the test equipment and results at a pilot plant in North Dakota using stripped-gas liquor (SGL) as cooling tower makeup. Ammonia, alkalinity, phenol, and other non-hydantoin organics were removed from the cooling water by stripping and/or biological degradation, with the phenol concentration in the exhaust air exceeding the odor threshold. It will be necessary to control foaming of the circulating water, but both glycol and silicon based agents performed well during the test. It will also be necessary to reduce the high level of biofouling on heat transfer surfaces, although stainless steel fouling was not a major problem. The conclusion is that SGL is limited by potentially serious operating problems without additional treatment. 5 references, 4 figures, 7 tables.

  2. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  3. PBF Cooling Tower and it Auxiliary Building (PER624) to left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower and it Auxiliary Building (PER-624) to left of tower. Camera facing west and the east louvered face of the tower. Details include secondary coolant water riser piping and flow control valves (butterfly valves) to distribute water evenly to all sections of tower. Photographer: Holmes. Date: May, 20, 1970. INEEL negative no. 70-2322 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Flue gas injection control of silica in cooling towers.

    SciTech Connect

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  5. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  6. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  7. PBF Cooling Tower Auxiliary Building (PER624) interior. Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower Auxiliary Building (PER-624) interior. Camera facing north. Deluge valves and automatic fire protection piping for Cooling Tower. Photographer: Holmes. Date: May 20, 1970. INEEL negative no. 70-2323 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. PBF Cooling Tower (PER720). Camera faces east to show west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces east to show west facade. Sloped (louvered) panels in this and opposite facade allow air to enter tower and cool water falling on splash bars within. Date: August 2003. INEEL negative no. HD-35-10-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Isolation of Legionella pneumophila from hospital cooling towers in Johor, Malaysia.

    PubMed

    Abdul Samad, B H; Suhaili, M R; Baba, N; Rajasekaran, G

    2004-08-01

    Water-based cooling towers and their water supply at two hospitals in Johor were surveyed for the presence Legionella pneumophila. L. pneumophila were grown from 19 (76%) out of 25 collected water samples. One hospital cooling tower was contaminated with L. pneumophila serogroup 1.

  10. Method and system for simulating heat and mass transfer in cooling towers

    DOEpatents

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  11. PBF. Oblique and contextual view of PBF Cooling Tower, PER720. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF. Oblique and contextual view of PBF Cooling Tower, PER-720. Camera facing northeast. Auxiliary Building (PER-624) abuts Cooling Tower. Demolition equipment has arrived. Date: August 2003. INEEL negative no. HD-35-11-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. [Isolation of Legionella spp. from cooling tower water and the effect of microbicides].

    PubMed

    Kasai, J; Ando, F; Kuwashima, M

    1989-08-01

    Legionella spp., the causative organism of legionnaires' disease, were isolated from more than 80% of water samples in cooling towers before washing. Therefore, we evaluated the effect of microbicide treatment of cooling tower water on Legionella spp., other bacteria and protozoa. 2-Bromo-2-nitropane-1,3-dial, 2,4-dibromo-5,5-dimethylhydantoin or silver nitrate-treated silica gel was added to cooling tower water. The isolation rate of Legionella spp. in the cooling tower water was 50% after microbiocide treatment with 2-bromo-2-nitropane-1,3-dial being the most effective. The microbicide treatment had no effect on other bacteria or protozoa. These findings indicated the importance of regular washing and water exchange of cooling tower water with microbicide treatment.

  13. Thermal performance upgrade of the Arkansas Nuclear One cooling tower: A ``root cause`` analysis approach

    SciTech Connect

    Liffick, G.W.; Cooper, J.W. Jr.

    1995-10-01

    The thermal performance efficiency of the natural draft cooling tower at Entergy Operations` 858 MWe Arkansas Nuclear One, Unit 2 was successfully upgraded to 101% of design performance capability in April 1994 as the end result of a unique root-cause analysis of the cooling tower`s long-standing performance deficiencies. Through application of state-of-the-art diagnostic testing methods and computer modeling techniques, Entergy was able to identify and correct air/water maldistribution problems in the 447 foot tall counterflow cooling tower at minimal cost. Entergy estimates that the savings realized, as a result of the 1.2 F reduction in cooling tower outlet water temperature, will pay for the thermal upgrade project in approximately 14 months.

  14. Cooling tower and plume modeling for satellite remote sensing applications

    SciTech Connect

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  15. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  16. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  17. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  18. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  19. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.134... are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke...

  20. Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data

    SciTech Connect

    Gay, G.T.

    1982-03-01

    During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

  1. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  2. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  3. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  4. A case of nosocomial Legionella pneumonia associated with a contaminated hospital cooling tower.

    PubMed

    Osawa, Kayo; Shigemura, Katsumi; Abe, Yasuhisa; Jikimoto, Takumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2014-01-01

    We report the epidemiological investigation of a nosocomial pneumonia case due to Legionella pneumophila linked to a contaminated hospital cooling tower in an immune-compromised patient. A 73-year-old female patient was diagnosed with nosocomial Legionella pneumonia proven by a culture of L. pneumophila serogroup 1 from bronchoalveolar lavage fluid. Two strains isolated from the patient and two strains isolated from two cooling towers were found to be identical using repetitive-sequence-based-PCR with a 95% probability. This Legionella pneumonia case might be caused by aerosol from cooling towers on the roof of the hospital building which was contaminated by L. pneumophila. We increased up the temperature of hot water supply appropriately for prevention of Legionella breeding in an environment of patients' living. On the other hand, as the maintenance of cooling tower, we increased the frequency of Legionella culture tests from twice a year to three times a year. In addition, we introduced an automated disinfectants insertion machine and added one antiseptic reagent (BALSTER ST-40 N, Tohzai Chemical Industry Co., Ltd., Kawasaki, Japan) after this Legionella disease, and thereafter, we have no additional cases of Legionella disease or detection of Legionella spp. from the cooling tower or hot water supply. This case demonstrates the importance of detecting the infection source and carrying out environmental maintenance in cooperation with the infection control team.

  5. A community outbreak of Legionnaires' disease: evidence of a cooling tower as the source.

    PubMed

    Sabria, M; Alvarez, J; Dominguez, A; Pedrol, A; Sauca, G; Salleras, L; Lopez, A; Garcia-Nuñez, M A; Parron, I; Barrufet, M P

    2006-07-01

    A community outbreak of Legionella pneumonia in the district of Cerdanyola, Mataró (Catalonia, Spain) was investigated in an epidemiological, environmental and molecular study. Each patient was interviewed to ascertain personal risk-factors and the clinical and epidemiological data. Isolates of Legionella from patients and water samples were subtyped by pulsed-field gel electrophoresis. Between 7 August and 25 August 2002, 113 cases of Legionella pneumonia fulfilling the outbreak case definition criteria were reported, with 84 (74%) cases being located within a 500-m radius of the suspected cooling tower source. In this area, the relative risk of being infected was 54.6 (95% CI 25.3-118.1) compared with individuals living far from the cooling tower. Considering the population residing in the Cerdanyola district (28,256 inhabitants) as a reference population, the attack rate for the outbreak was 399.9 cases/100,000 inhabitants, and the case fatality rate was 1.8%. A single DNA subtype was observed among the ten clinical isolates, and one of the subtypes from the cooling tower matched exactly with the clinical subtype. Nine days after closing the cooling tower, new cases of pneumonia caused by Legionella ceased to appear. The epidemiological features of the outbreak, and the microbiological and molecular investigations, implicated the cooling tower as the source of infection.

  6. CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS

    SciTech Connect

    Lee, S.; Garrett, A.; Bollinger, J.

    2009-09-02

    Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some

  7. Concentration, serotypic profiles, and infectivity of Legionnaires' Disease bacteria populations in cooling towers

    SciTech Connect

    Tyndall, R.L.

    1982-01-01

    At the Philadelphia American Legion Convention in 1976 nearly two hundred people developed pulmonary infection. Of these, twenty-eight died. The causative bacterial agent was subsequently isolated and identified as a previously undiscovered human pathogen, that is, Legionnaires' Disease Bacterium (LDB). Currently it is estimated that over one hundred thousand cases of Legionella occur annually. Cooling towers have been shown to be the source of LDB in some of the outbreaks. Ecological information indicates that the bacteria are present in many natural waters. Moreover, there is strong evidence that algal products can stimulate the growth of LDB. Because cooling tower environments may be conducive for growth and/or dispersal of LDB, a survey of both industrial and air-conditioning cooling towers for the presence of LDB was undertaken.

  8. An alkaline approach to treating cooling towers for control of Legionella pneumophila.

    PubMed Central

    States, S J; Conley, L F; Towner, S G; Wolford, R S; Stephenson, T E; McNamara, A M; Wadowsky, R M; Yee, R B

    1987-01-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggests that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospital cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat. PMID:3662515

  9. Hypotheses of calculation of the water flow rate evaporated in a wet cooling tower

    SciTech Connect

    Bourillot, C.

    1983-08-01

    The method developed by Poppe at the University of Hannover to calculate the thermal performance of a wet cooling tower fill is presented. The formulation of Poppe is then validated using full-scale test data from a wet cooling tower at the power station at Neurath, Federal Republic of Germany. It is shown that the Poppe method predicts the evaporated water flow rate almost perfectly and the condensate content of the warm air with good accuracy over a wide range of ambient conditions. The simplifying assumptions of the Merkel theory are discussed, and the errors linked to these assumptions are systematically described, then illustrated with the test data.

  10. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  11. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  12. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  13. Cost-optimal design of dry cooling towers through mathematical programming techniques

    SciTech Connect

    Buys, J.D.; Kroeger, D.G. )

    1989-05-01

    The Constrained Variable Metric Algorithm is chosen to minimize the objective function (cost) in the design of a natural draft dry cooling tower. An existing cooling system design that has specific performance characteristics under prescribed operating conditions is selected as a reference unit. By changing design variables, but not exceeding prescribed constraints, a more cost-effective design is achieved. The influence of various parameters, and the sensitivity of the objective function to these parameters, are evaluated.

  14. PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. ETR COOLING TOWER PUMP HOUSE, TRA645. FOUR SECONDARY COOLANT PUMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER PUMP HOUSE, TRA-645. FOUR SECONDARY COOLANT PUMPS ARE ARRANGED IN A ROW. IN REAR ARE THREE SHUTDOWN EMERGENCY PUMPS. INL NEGATIVE NO. 56-4176. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Prevalence of Legionella strains in cooling towers and legionellosis cases in New Zealand.

    PubMed

    Lau, Robert; Maqsood, Saadia; Harte, David; Caughley, Brian; Deacon, Rob

    2013-01-01

    Over 3,900 water samples from 688 cooling towers were tested for Legionella in 2008 in New Zealand. Of 80 (2.05% isolation rate) Legionella isolates, 10 (12.5%) were L. pneumophila serogroup 1; 10 (12.5%) were L. anisa; nine (11.2%) were L. pneumophila serogroup 8; and one (1.2%) was L. longbeachae serogroup 2. Forty-one (51.2%) Legionella isolates were L. pneumophila serogroups. Over 3,990 water samples from 606 cooling towers were tested for Legionella in 2009 in New Zealand. Of 51 (1.28% isolation rate) Legionella isolates, 18 (35.3%) were L. pneumophila serogroup 1, and 39 (76.4%) were other L. pneumophila serogroups. L. pneumophila serogroups were significantly associated with legionellosis cases in 2008 and 2009. L. longbeachae serogroups were equally significantly associated with legionellosis cases. This significant association of L. longbeachae with legionellosis particularly of L. longbeachae serogroup 1 is unique in that part of the world. The authors' study also showed that the aqueous environment of the cooling tower is not a natural habitat for pathogenic L. longbeachae. Regular monitoring and maintenance of cooling towers have prevented outbreaks of legionellosis.

  17. COOLING TOWER PUMP HOUSE, TRA606. PLAN AND SECTIONS. PUMPS, PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. PLAN AND SECTIONS. PUMPS, PIPE AND MONORAIL LAYOUT. BLAW-KNOX 3150-7-1, 9/1950. INL INDEX NO. 531-0607-00-100013, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. COOLING TOWER PUMP HOUSE, TRA606. ELEVATIONS, STRUCTURAL AND ROOF PLAN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. ELEVATIONS, STRUCTURAL AND ROOF PLAN, DETAILS. BLAW-KNOX 3150-807-1, 2/1950. INL INDEX NO. 531-0607-00-098-100670. REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. ETR COOLING TOWER PUMP HOUSE, TRA645. PUMP HOUSE TAKES SHAPE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER PUMP HOUSE, TRA-645. PUMP HOUSE TAKES SHAPE. CAMERA FACES NORTH TOWARD ETR CONSTRUCTION AND MTR BEYOND. INL NEGATIVE NO. 56-2041. Jack L. Anderson, Photographer, 6/14/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Magnetic fluid conditioning system allows 3000 ppm hardness without cooling tower scale buildup

    SciTech Connect

    Szostak, R.J.; Toy, D.A.

    1985-08-01

    Big Three Industries, a manufacturer of compressed and liquefied atmospheric gases, operates a large production complex in Bayport, TX which recirculates 100,000 gpm cooling water. Due to regulatory agency guidelines, high costs, and limited effectiveness of conventional chemical treatment methods, Big Three was in need of a treatment method to prevent corrosion and scaling in recirculating water cooling systems. In December 1983 a magnetic fluid conditioner (MFC) was installed in the pump discharge piping of one cooling tower at Bayport. The patented MFC is an 18'' long spool pipe fitted with uranium-based alloy magnets. The MFC has no moving parts and requires no chemicals, external power source, or maintenance. The MFC is designed so that the fluid is accelerated through a magnetic field. The high velocity of the fluid causes nucleation of the salts in the fluid. The salts are separated from the water by precipitation. During eighteen months of using the MFC, the cooling tower has concentrated in excess of 50 cycles. Conductivity is in excess of 10,000 micromhos, and total hardness (CaCO/sub 3/) is above 4000 ppm with pH stabilized between 8 and 9. However, inspections have revealed clean surfaces. The cleaner metal surfaces within the cooling water system provide better heat transfer which has resulted in reduction of tower blowdown, makeup water requirements, and pumping costs. Associated savings will enable the MFC to achieve payback in two and a half years.

  1. Nosocomial legionnaires' disease: epidemiologic demonstration of cooling towers as a source. [Legionella pneumophila

    SciTech Connect

    Garbe, P.L.; Davis, B.J.; Weisfeld, J.S.; Markowitz, L.; Miner, P. Garrity, F.; Barbaree, J.M.; Reingold, A.L.

    1985-07-26

    Investigation of a recent outbreak of nosocomial legionnaires' disease - initially thought to be due to the documented presence of Legionella pneumophila in the hospital potable water - showed that aerosols from one or more cooling towers were the actual source of infection. From June 27 to Aug 25, 1983, nosocomial legionnaires' disease developed in 15 persons at a hospital in Rhode Island. Twelve (80%) of 15 case-patients occupied rooms in building 1, unit B, compared with eight (28%) of 29 control patients (odds ratio = 10.8; 95% confidence interval = 1.4 to 85.6). Subsequent investigation demonstrated that water in a cooling tower located 100 ft upwind of unit B was heavily contaminated with L. pneumophila, serogroup 1, subgroup 1, 2, 4, 5. The same strain was isolated from nine of the patients and from the make-up water for the tower. Active surveillance during the ten months following decontamination of the cooling tower identified no additional cases of nosocomial legionnaires' disease, although the hospital potable water had not been treated. While recommendations have been made for controlling nosocomial legionnaires' disease by heating or hyperchlorination of hospital potable water, this outbreak demonstrates the importance of an adequate epidemiologic-environmental investigation in choosing the appropriate control strategy.

  2. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  3. Distinct difference of flaA genotypes of Legionella pneumophila between isolates from bath water and cooling tower water.

    PubMed

    Amemura-Maekawa, Junko; Kura, Fumiaki; Chang, Bin; Suzuki-Hashimoto, Atsuko; Ichinose, Masayuki; Endo, Takuro; Watanabe, Haruo

    2008-09-01

    To investigate the genetic difference of Legionella pneumophila in human-made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.

  4. Reliability Analysis of Cooling Towers: Influence of Rebars Corrosion on Failure

    SciTech Connect

    Sudret, Bruno; Pendola, Maurice

    2002-07-01

    Natural-draught cooling towers are used in nuclear power plants as heat exchangers. These structures are submitted to environmental loads such as wind and thermal gradients that are stochastic in nature. A probabilistic framework has been developed by EDF (Electricite de France) for assessing the durability of such structures. In this paper, the corrosion of the rebars due to concrete carbonation and the corresponding weakening of the reinforced concrete sections is considered. Due to the presence of time in the definition of the limit state function associated with the loss of serviceability of the cooling tower, time-variant reliability analysis has to be used. A novel approach is proposed to take into account the random 'initiation time', which corresponds to the time necessary for the carbonation to attain the rebars. Results are given in terms of the probability of failure of the structure over its life time. (authors)

  5. Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments.

    PubMed

    Li, Lijie; Qin, Tian; Li, Yun; Zhou, Haijian; Song, Hongmei; Ren, Hongyu; Li, Liping; Li, Yongguang; Zhao, Dong

    2015-10-12

    Cooling towers are a source of Legionnaires' disease. It is important from a public health perspective to survey industrial cooling towers for the presence of Legionella. Prospective surveillance of the extent of Legionella pollution was conducted at factories in Shijiazhuang, China between March 2011 and September 2012. Overall, 35.7% of 255 industrial cooling tower water samples showed Legionella-positive, and their concentrations ranged from 100 Colony-Forming Units (CFU)/liter to 88,000 CFU/liter, with an average concentration of 9100 CFU/liter. A total of 121 isolates were obtained. All isolates were L. pneumophila, and the isolated serogroups included serogroups 1 (68 isolates, 56.2%), 6 (25, 20.7%), 5 (12, 9.9%), 8 (8, 6.6%), 3 (6, 5.0%) and 9 (2, 1.6%). All 121 isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and 64 different patterns were obtained. All 121 isolates were analyzed sequence-based typing (SBT), a full 7-allele profile was obtained from 117 isolates. One hundred and seventeen isolates were divided into 49 sequence types. Two virulence genes, lvh and rtxA, are analyzed by polymerase chain reaction (PCR). 92.6% (112/121) and 98.3% (119/121) isolates carried lvh and rtxA respectively and 90.9% (110/121) of tested isolates carried both genes. Our results demonstrated high prevalence and genetic polymorphism of L. pneumophila in industrial cooling tower environments in Shijiazhang, China, and the SBT and virulence gene PCR results suggested that the isolates were pathogenic. Improved control and prevention strategies are urgently needed.

  6. Prevalence and Molecular Characteristics of Waterborne Pathogen Legionella in Industrial Cooling Tower Environments

    PubMed Central

    Li, Lijie; Qin, Tian; Li, Yun; Zhou, Haijian; Song, Hongmei; Ren, Hongyu; Li, Liping; Li, Yongguang; Zhao, Dong

    2015-01-01

    Cooling towers are a source of Legionnaires’ disease. It is important from a public health perspective to survey industrial cooling towers for the presence of Legionella. Prospective surveillance of the extent of Legionella pollution was conducted at factories in Shijiazhuang, China between March 2011 and September 2012. Overall, 35.7% of 255 industrial cooling tower water samples showed Legionella-positive, and their concentrations ranged from 100 Colony-Forming Units (CFU)/liter to 88,000 CFU/liter, with an average concentration of 9100 CFU/liter. A total of 121 isolates were obtained. All isolates were L. pneumophila, and the isolated serogroups included serogroups 1 (68 isolates, 56.2%), 6 (25, 20.7%), 5 (12, 9.9%), 8 (8, 6.6%), 3 (6, 5.0%) and 9 (2, 1.6%). All 121 isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and 64 different patterns were obtained. All 121 isolates were analyzed sequence-based typing (SBT), a full 7-allele profile was obtained from 117 isolates. One hundred and seventeen isolates were divided into 49 sequence types. Two virulence genes, lvh and rtxA, are analyzed by polymerase chain reaction (PCR). 92.6% (112/121) and 98.3% (119/121) isolates carried lvh and rtxA respectively and 90.9% (110/121) of tested isolates carried both genes. Our results demonstrated high prevalence and genetic polymorphism of L. pneumophila in industrial cooling tower environments in Shijiazhang, China, and the SBT and virulence gene PCR results suggested that the isolates were pathogenic. Improved control and prevention strategies are urgently needed. PMID:26473896

  7. Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant

    SciTech Connect

    Lang, R.A.

    1984-12-01

    The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

  8. Design, manufacture, and testing of the Armstrong Hall drop tower decelerator

    NASA Astrophysics Data System (ADS)

    Ocampo, Jaime Andres

    A decelerator was needed for the Armstrong Hall Microgravity tower. Three designs were considered as concepts and the one chosen was an airbag. The airbag is 5 feet tall and 4.5 feet in diameter due to floor constraints. The deceleration was controlled by designing the vent system to provide the needed vent area as a function of time. This dynamics vent area controls the rate at which volume is expelled from the airbag. The volume expelled depends on the pressure inside the airbag, thus, a direct relation between the vent area and the deceleration profile was determined. The airbag and associated infrastructure was designed, manufactured, and tested. This system includes an airbag with a cushion on top to prevent wear, cart and rails, a drop package, and a latch and release system. More than forty tests were done with different drop height and drop weight combinations culminating in three drops of 200 lbs from the third floor. The drop weight was varied by adjusting the water level in a plastic barrel in the drop package. Pressure measurements inside the bag and vent were taken using two pressure transducers. The pressure transducers sampled the pressure at one of the exit vents and at the center of the bottom of the airbag. The signals were low-pass filtered for noise and scaled for pressure. The pressure traces were processed to find the mean deceleration. The deceleration was found to be independent of drop weight, only depending on drop height. The traces were also integrated to find a momentum per unit area. This value was then compared to the momentum of the drop package. From these two results an effective impact area can be found. It was found that the cushion not only reduced wear but also increased the effective impact area substantially. This increase in area reduced the value of the mean deceleration by reducing the pressure inside the airbag. The airbag proved to work well for the drops, decelerating the package and preventing a direct hit with the

  9. Field Scale Transport of Chromate in Groundwater From Cooling Tower Wastes

    NASA Astrophysics Data System (ADS)

    Gladding, S. M.; Hunt, J. R.

    2007-12-01

    Chromate (Cr(VI)) was used extensively in evaporative cooling systems to prevent corrosion and scale formation. Waters from the cooling systems were discharged to ponds that were intended as evaporation ponds, but there were instances where the wastewaters infiltrated into the soil and released chromate to groundwater. Cooling tower discharges containing chromate also have elevated salt concentrations compared to the ambient groundwater because of the intended evaporative cooling process. Density driven flow and emplacement of contaminated brines should thus be expected. This conceptual model is being evaluated by the analysis of field data at two natural gas compressor facilities in the deserts of southeastern California. These facilities continuously released chromate containing water to unlined evaporation ponds for more than a decade, and subsequent investigations have identified groundwater plumes containing chromate. At one site, extensive remediation over a 15 year period has limited the plume migration but has not reduced groundwater concentrations. At the other site, density-stratified flow is observed. While there are uncertainties in the amounts released, the data available at these sites suggest that remedial approaches based on groundwater extraction are not effective in removing the source of chromate contamination from emplaced pockets of highly concentrated cooling tower discharge. Long term data sets collected during site investigations and remediation are valuable sources of data on field scale transport of highly mobile contaminants such as chromate.

  10. Investigation of Microbial Respirometry for Monitoring Natural Sulfide Abatement in Geothermal Cooling Tower Basins

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    Geothermal plant operators are interested in investigating the ability of micro-organisms found in the cooling tower basin to metabolize and cycle sulfide to less toxic sulfur compounds. If the growth or activity of the organisms participating in sulfur-oxidation could be selectively enhanced, then hydrogen sulfide could be naturally abated in the cooling basin, substantially reducing the costs associated with the chemicals used for abatement. The use of respirometry has been proposed as a technique for monitoring the response of the microbial populations found in geothermal cooling towers to various conditions, including the addition of nutrients such as nitrogen and phosphorus. Respiro-metry is a manometric measurement of dissolved gases that are in equilibrium in a con-fined sample volume. Since microbes expire varying amounts of carbon dioxide or oxygen as they metabolize nutrients, this technique can be used to evaluate their activities in process streams. This report describes a series of experiments designed to determine the suitability of respirometry for tracking microbial activity for evaluating and enhancing natural abatement processes in geothermal cooling basins.

  11. Reuse of refinery's tertiary-treated wastewater in cooling towers: microbiological monitoring.

    PubMed

    Dos Santos, Vera Lúcia; Veiga, Andréa Azevedo; Mendonça, Rafael Silva; Alves, Andrea Lima; Pagnin, Sérgio; Santiago, Vânia M J

    2015-02-01

    The study was planned to quantify the distribution of bacteria between bulk water and biofilm formed on different materials in an industrial scale cooling tower system of an oil refinery operating with clarified and chlorinated freshwater (CCW) or chlorinated tertiary effluent (TRW) as makeup water. The sessile and planktonic heterotrophic bacteria and Pseudomonas aeruginosa densities were significantly higher in the cooling tower supplied with clarified and chlorinated freshwater (CTCW) (p < 0.05). In the two towers, the biofilm density was higher on the surface of glass slides and stainless steel coupons than on the surface of carbon steel coupons. The average corrosion rates of carbon steel coupons (0.4-0.8 millimeters per year (mpy)) and densities of sessile (12-1.47 × 10(3) colony-forming unit (CFU) cm(-1)) and planktonic (0-2.36 × 10(3) CFU mL(-1)) microbiota remained below of the maximum values of reference used by water treatment companies as indicative of efficient microbial control. These data indicate that the strategies of the water treatment station (WTS) (free chlorine) and industrial wastewater treatment station (IWTS) followed by reverse electrodialysis system (RES) (free chlorine plus chloramine) were effective for the microbiological control of the two makeup water sources.

  12. Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full scale cooling towers.

    PubMed

    Türetgen, Irfan

    2004-04-01

    The presence of microbial cells on surfaces results in the formation of biofilms, which may also give rise to microbiologically influenced corrosion. Biofilms accumulate on all submerged industrial and environmental surfaces. The efficacy of disinfectants is usually evaluated using planktonic cultures, which often leads to an underestimate of the concentration required to control a biofilm. The aim of this study was to investigate the efficacy of monochloramine on biofilms developed in a cooling tower. The disinfectants selected for the study were commercial formulations recommended for controlling microbial growth in cooling towers. A cooling tower and a laboratory model recirculating water system were used as biofilm reactors. Although previous studies have evaluated the efficacy of free chlorine and monochloramine for controlling biofilm growth, there is a lack of published data concerning the use monochloramine in cooling towers. Stainless steel coupons were inserted in each tower basin for a period of 30 d before removal. Monochloramine and free chlorine were tested under identical conditions on mixed biofilms which had been allowed to grow on coupons. Monochloramine was found to be significantly more effective than free chlorine against cooling tower biofilms.

  13. Numerical study of coupled transfer of heat and mass between air and water inside a geothermal water cooling tower

    NASA Astrophysics Data System (ADS)

    Bassem, Mohamed Mehdi; Bourouni, Karim; Thameur Chaibi, Mohamed

    2006-11-01

    In the south of Tunisia, geothermal water is used to irrigate cultures. Since its temperature is very high (70 C), geothermal water is cooled by cooling towers. These towers are sized empirically and present many operating problems such as excessive energy consumption, big loss of vapour and low cooling efficiency. The aim of our work is modelling the coupled heat and mass transfer between air and water inside the cooling tower. The most important results obtained are that the evaporative potential is dominating the convective one in the cooling process. That's why the cooling is more efficient in summer than in hibernal period when humidity of ambient air reaches high values. In other hand, the negative convective phenomenon is illustrated. In fact, at the bottom of the tower, water temperature reaches the air one; the two fluids begin to cooling simultaneously. Air is cooled by convection and water by evaporation. We demonstrate also that there is no point in putting fans in working during cold weather. We studied also the effect of the variation of heat transfer coefficient on the efficiency of cooling.

  14. Reinforced concrete corrosion: Application of Bayesian networks to the risk management of a cooling tower

    NASA Astrophysics Data System (ADS)

    Capra, B.; Le Drogo, J.; Wolff, V.

    2006-11-01

    Degradation modelling of concrete structures uses uncertain variables and leads, using reliability assessment, to time dependant evolution of failure probabilities. However, only few data are generally available to feed models leading to two types of uncertainties: an intrinsic one depending on the modelled phenomena and one related to the precision of the measurement. Each new data available is a piece of information which allows to update the initial prediction. In this article, an example of updating process, based on a Bayesian network, is presented and applied on the corrosion risk of a cooling tower.

  15. Study plan for conducting a section 316(a) demonstration: K-Reactor cooling tower, Savannah River Site

    SciTech Connect

    Paller, M.H.

    1991-02-01

    The K Reactor at the Savannah River Site (SRS) began operation in 1954. The K-Reactor pumped secondary cooling water from the Savannah River and discharged directly to the Indian Grave Branch, a tributary of Pen Branch which flows to the Savannah River. During earlier operations, the temperature and discharge rates of cooling water from the K-reactor were up to approximately 70{degree}C and 400 cfs, substantially altering the thermal and flow regimes of this stream. These discharges resulted in adverse impacts to the receiving stream and wetlands along the receiving stream. As a component of a Consent Order (84-4-W as amended) with the South Carolina Department of Health and Environmental Control, the Department of Energy (DOE) evaluated the alternatives for cooling thermal effluents from K Reactor and concluded that a natural draft recirculating cooling tower should be constructed. The cooling tower will mitigate thermal and flow factors that resulted in the previous impacts to the Indian Grave/Pen Branch ecosystem. The purpose of the proposed biological monitoring program is to provide information that will support a Section 316(a) Demonstration for Indian Grave Branch and Pen Branch when K-Reactor is operated with the recirculating cooling tower. The data will be used to determine that Indian Grave Branch and Pen Branch support Balanced Indigenous Communities when K-Reactor is operated with a recirculating cooling tower. 4 refs., 1 fig. 1 tab.

  16. Investigation of the effect of packing location on performance of closed wet cooling tower based on exergy analysis

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2016-08-01

    In this paper, the effect of packing location on thermal performance of Closed Wet Cooling Tower (CWCT) based on exergy analysis has been studied. The experimental study incorporates design, manufacture and testing of a modified counter flow forced draft CWCT prototype. The modification based on addition packing to the conventional CWCT. The variation of spray water temperature, air dry bulb temperature, air wet bulb temperature, enthalpy and relative humidity of air for different position along the tower are measured experimentally. Applying the exergy destruction method for the cooling tower; exergy destruction, exergy efficiency, exergy of water and air were calculated for two cases: CWCT with packing below the heat exchanger and CWCT with packing above the heat exchanger. It is highly important to analyze the exergy along the cooling tower height. Therefore, the exergy analysis of different elements along the height of the tower is carried out. Results show that the total exergy destruction of modified CWCT is higher when the heat exchanger is located above the packing at the highest point of the tower.

  17. Deposition and corrosion phenomena on aluminum surfaces under deluged dry cooling-tower condisions. Interim report

    SciTech Connect

    Wheeler, K.R.; May, R.P.; Douglas, J.G.; Tylczak, J.H.

    1981-07-01

    Deposition and corrosion on aluminum heat exchanger surfaces resulting from deluge in wet/dry cooling towers is simulated in a laboratory Corrosion/Deposition Loop (CDL). Heat exchanger deposition buildup was found to be linearly dependent on concentration factor and number of wet/dry cycles. Deionized water rising after deluge reduced rate of deposition. Laboratory data obtained from CDL relates directly to operation of the Advanced Concepts Test (ACT) demonstration cooling tower. Technology transferable to ACT shows that deposition from supersaturated solution can be effectively controlled by attention to water chemistry, pH, water conditioning, and good heat transfer design. The additional mechanism of deposition by water film evaporation is effectively managed by soft water rinsing and uniform surface wetting. Exposure of a model TRANE surface (the ACT wet/dry exchanger) produced short-term deposition extrapolating to 0.011 mm buildup in three years. Studies continue to verify 4X as maximum cycles of concentration through control of water chemistry and rinsing after deluge. Deluge water used at ACT facility is sufficiently aggressive to warrant use of Alclad to extend tube service life.

  18. A model for autumn outbreaks of Legionnaires' disease associated with cooling towers, linked to system operation and size.

    PubMed Central

    Bentham, R. H.; Broadbent, C. R.

    1993-01-01

    Cooling towers have been demonstrated to be amplifiers and disseminators of legionella, the causative organism of Legionnaires' disease. Community outbreaks associated with cooling towers have been reported with several common factors. Small towers (< 300 kW) have predominantly been implicated in outbreaks. Cooling tower-associated outbreaks are most frequent in autumn, and frequently implicated systems have been operated after a period of shutdown. This paper reports field study data relating system operation to legionella colonization of systems. Operating systems have been shown to be more frequently colonized by legionella than shutdown systems. In some cases operation of systems after periods of shutdown raised legionella concentrations from below detection limits to between 50 and 950 c.f.u./ml within 10 min. These data and previously reported data relating to biofilm and sediment colonization of the systems, and community outbreaks of Legionnaires' disease, have been used to develop a model explaining the seasonal nature of outbreaks associated with irregularly operated, small cooling tower systems. PMID:8405155

  19. Molecular characterization of viable Legionella spp. in cooling tower water samples by combined use of ethidium monoazide and PCR.

    PubMed

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki

    2015-01-01

    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments.

  20. Radar observation of snowfall from a natural-draft cooling tower plume

    SciTech Connect

    Sauvageot, H.

    1987-11-01

    One of the potential atmospheric effects of energy dissipation at large power parks is the mesoscale modification of the precipitation field. Meteorological conditions favorable for such an influence mainly correspond to naturally precipitating atmospheres and make the identification of the anthropogenic components difficult. In this paper, millimetric Doppler radar data are used in order to analyze the three-dimensional structure of snowfalls associated, in a perturbed environment, with a natural-draft cooling tower park. The plumes observed spread out in the atmospheric boundary layer with spread angles of 15/sup 0/--30/sup 0/ over a distance of more than 20 km. Their main characteristics compare favorably with Koenig's numerical simulation results.

  1. A mechanistic approach to the development of chemical solutions for fouling of cooling tower film fills

    SciTech Connect

    Gill, J.S.; Yorke, M.A.; Donlan, R.M.; Gibbon, D.L.; McClung, B.

    1995-02-01

    Since the 1980`s reported incidents of cooling tower film fill fouling have continually increased and many utilities have sought chemical treatment solution for their fouling problems. Specialty chemical companies have been called upon to research the problems and to provide programs and products that address this pressing issue. The process of surface fouling of high efficiency film fill is a complex problem due to the multiple components involved in the fouling. An in depth understanding of the problem is necessary to determine effective treatment approaches. This study defines the mechanisms of film fill fouling by examination of microorganisms, silt particles and inorganic minerals in the fouling process. The investigation of chemical treatment approaches for the effective control of fouling based on the fouling mechanisms also are discussed.

  2. Application of a semi-spectral cloud water parameterization to cooling tower plumes simulations

    NASA Astrophysics Data System (ADS)

    Bouzereau, Emmanuel; Musson Genon, Luc; Carissimo, Bertrand

    2008-10-01

    In order to simulate the plume produced by large natural draft cooling towers, a semi-spectral warm cloud parameterization has been implemented in an anelastic and non-hydrostatic 3D micro-scale meteorological code. The model results are compared to observations from a detailed field experiment carried out in 1980 at Bugey (location of an electrical nuclear power plant in the Rhône valley in East Central France) including airborne dynamical and microphysical measurements. Although we observe a slight overestimation of the liquid-water content, the results are satisfactory for all the 15 different cases simulated, which include different meteorological conditions ranging from low wind speed and convective conditions in clear sky to high wind and very cloudy. Such parameterization, which includes semi-spectral determination for droplet spectra, seems to be promising to describe plume interaction with atmosphere especially for aerosols and cloud droplets.

  3. Experimental measurement of cooling tower emissions using image processing of sensitive papers

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Kaiser, A. S.; Ballesta, M.; Gil, A.; Lucas, M.

    2013-04-01

    Cooling tower emissions are harmful for several reasons such as air polluting, wetting, icing and solid particle deposition, but mainly due to human health hazards (i.e. Legionella). There are several methods for measuring drift drops. This paper is focussed on the sensitive paper technique, which is suitable in low drift scenarios and real conditions. The lack of an automatic classification method motivated the development of a digital image process algorithm for the Sensitive Paper method. This paper presents a detailed description of this method, in which, drop-like elements are identified by means of the Canny edge detector combined with some morphological operations. Afterwards, the application of a J48 decision tree is proposed as one of the most relevant contributions. This classification method allows us to discern between stains whose origin is a drop and stains whose origin is not a drop. The method is applied to a real case and results are presented in terms of drift and PM10 emissions. This involves the calculation of the main features of the droplet distribution at the cooling tower exit surface in terms of drop size distribution data, cumulative mass distribution curve and characteristic drop diameters. The Log-normal and the Rosin-Rammler distribution functions have been fitted to the experimental data collected in the tests and it can been concluded that the first one is the most suitable for experimental data among the functions tested (whereas the second one is less suitable). Realistic PM10 calculations include the measurement of drift emissions and Total Dissolved Solids as well as the size and number of drops. Results are compared to the method proposed by the U.S. Environmental Protection Agency assessing its overestimation. Drift emissions have found to be 0.0517% of the recirculating water, which is over the Spanish standards limit (0.05%).

  4. Flue gas discharge from cooling towers. Wind tunnel investigation of building downwash effects on ground-level concentrations

    NASA Astrophysics Data System (ADS)

    Schatzmann, M.; Lohmeyer, A.; Ortner, G.

    German power plants are required to meet new emission standards which limit the maximum sulfur dioxide (SOs) concentration in flue gas discharges to 400 mg m -3. To achieve this level of reduction in SO 2 concentration, wet scrubbing is necessary for large plants using lignite or hard coal. Wet scrubbing results in a significant reduction in the flue gas temperature leading to low effective stack heights. Instead of using stack gas reheating to achieve the plume rise necessary to satisfy local environmental standards, it was proposed to discharge the scrubbed flue gas from the existing natural-draft cooling towers (NDCT). This method should be effective in reducing local ground-level concentrations since NDCT-plumes are typically very buoyant (densimetric Froude number below 1 ) and normally reach considerable heights of rise. Only under strong wind conditions does the situation reverse itself. For such strong winds, the NDCT-plume is subject to tower and building downwash with the possibility of unacceptably high ground-level concentrations. For a 2700 MW e lignite-fired power plant near Cologne, a wind tunnel study was carried out to investigate the effects of tower and building downwash effects on the ground-level concentrations of SO 2 produced by discharging the scrubbed flue gas from the natural-draft cooling towers. Also, a comparison was made between the ground-level concentrations produced by the cooling tower discharge method and those produced by a traditional stack. It was found that for low and intermediate wind speeds, the groundlevel concentrations are lower for the case of the cooling tower discharge. Only for strong winds, which occur only very rarely at most German sites, did the conventional stack discharge appear to be superior.

  5. Free-living amoebae and their associated bacteria in Austrian cooling towers: a 1-year routine screening.

    PubMed

    Scheikl, Ute; Tsao, Han-Fei; Horn, Matthias; Indra, Alexander; Walochnik, Julia

    2016-09-01

    Free-living amoebae (FLA) are widely spread in the environment and known to cause rare but often serious infections. Besides this, FLA may serve as vehicles for bacterial pathogens. In particular, Legionella pneumophila is known to replicate within FLA thereby also gaining enhanced infectivity. Cooling towers have been the source of outbreaks of Legionnaires' disease in the past and are thus usually screened for legionellae on a routine basis, not considering, however, FLA and their vehicle function. The aim of this study was to incorporate a screening system for host amoebae into a Legionella routine screening. A new real-time PCR-based screening system for various groups of FLA was established. Three cooling towers were screened every 2 weeks over the period of 1 year for FLA and Legionella spp., by culture and molecular methods in parallel. Altogether, 83.3 % of the cooling tower samples were positive for FLA, Acanthamoeba being the dominating genus. Interestingly, 69.7 % of the cooling tower samples were not suitable for the standard Legionella screening due to their high organic burden. In the remaining samples, positivity for Legionella spp. was 25 % by culture, but overall positivity was 50 % by molecular methods. Several amoebal isolates revealed intracellular bacteria.

  6. Legionnaires' Disease Outbreak at a Long-Term Care Facility Caused by a Cooling Tower Using an Automated Disinfection System--Ohio, 2013.

    PubMed

    Quinn, Celia; Demirjian, Alicia; Watkins, Louise Francois; Tomczyk, Sara; Lucas, Claressa; Brown, Ellen; Kozak-Muiznieks, Natalia; Benitez, Alvaro; Garrison, Laurel E; Kunz, Jasen; Brewer, Scott; Eitniear, Samantha; DiOrio, Mary

    2015-12-01

    On July 9, 2013, an outbreak of Legionnaires' disease (LD) was identified at Long-Term Care Facility A in central Ohio. This article describes the investigation of the outbreak and identification of the outbreak source, a cooling tower using an automated biocide delivery system. In total, 39 outbreak LD cases were identified; among these, six patients died. Water samples from a cooling tower were positive for Legionella pneumophila serogroup 1, reactive to monoclonal antibody 2, with matching sequence type to a patient isolate. An electronic control system turned off cooling tower pumps during low-demand periods, preventing delivery of disinfectant by a timed-release system, and leading to amplification of Legionella in the cooling tower. Guidelines for tower maintenance should address optimal disinfection when using automated systems.

  7. Hydraulic design of a low-specific speed Francis runner for a hydraulic cooling tower

    NASA Astrophysics Data System (ADS)

    Ruan, H.; Luo, X. Q.; Liao, W. L.; Zhao, Y. P.

    2012-11-01

    The air blower in a cooling tower is normally driven by an electromotor, and the electric energy consumed by the electromotor is tremendous. The remaining energy at the outlet of the cooling cycle is considerable. This energy can be utilized to drive a hydraulic turbine and consequently to rotate the air blower. The purpose of this project is to recycle energy, lower energy consumption and reduce pollutant discharge. Firstly, a two-order polynomial is proposed to describe the blade setting angle distribution law along the meridional streamline in the streamline equation. The runner is designed by the point-to-point integration method with a specific blade setting angle distribution. Three different ultra-low-specificspeed Francis runners with different wrap angles are obtained in this method. Secondly, based on CFD numerical simulations, the effects of blade setting angle distribution on pressure coefficient distribution and relative efficiency have been analyzed. Finally, blade angles of inlet and outlet and control coefficients of blade setting angle distribution law are optimal variables, efficiency and minimum pressure are objective functions, adopting NSGA-II algorithm, a multi-objective optimization for ultra-low-specific speed Francis runner is carried out. The obtained results show that the optimal runner has higher efficiency and better cavitation performance.

  8. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.

  9. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  10. Isolation of Legionella pneumophila from cooling towers, public baths, hospitals, and fountains in Seoul, Korea, from 2010 to 2012.

    PubMed

    Kim, Changkyu; Jeon, Sujin; Jung, Jihun; Oh, Younghee; Kim, Yeonsun; Lee, Jaein; Choi, Sungmin; Chae, Youngzoo; Lee, Young-Ki

    2015-01-01

    Legionnaire's disease is associated with a high mortality rate. The authors collected 3,495 water samples in Seoul, Korea, between 2010 and 2012 from public facilities (cooling towers, public baths, hospitals, and decorative fountains), which are considered the major habitats of Legionella pneumophila. In all, 527 (15.1%) isolates of L. pneumophila were obtained by microbial culture and polymerase chain reaction. Serological diagnosis and pulsed-field gel electrophoresis (PFGE) analysis were performed for the samples. The authors categorized the samples into four groups (A-D) on the basis of PFGE results. The analysis revealed that cooling towers containing the most samples with L. pneumophila serogroup 1 constituted the highest proportion of isolate. Samples from public facilities and serogroups could be distinctively classified by PFGE patterns. Thus, it is expected that source-specific features revealed through PFGE and serological analyses could serve as the basis for effectively coping with future outbreaks of L. pneumophila.

  11. Legionella anisa: a new species of Legionella isolated from potable waters and a cooling tower

    SciTech Connect

    Gorman, G.W.; Feeley, J.C.; Steigerwalt, A.; Edelstein, P.H.; Moss, C.W.; Brenner, D.J.

    1985-02-01

    Between March 1980 and June 1981, five strains of Legionella-like organisms were isolated from water. Four were recovered from potable water collected from hospitals in Chicago, IL, and Los Angeles, CA, during outbreaks of nosocomial legionellosis. The fifth strain was isolated from water collected from an industrial cooling tower in Jamestown, NY. The strains exhibited biochemical reactions typical of Legionella species and were gram-negative motile rods which grew on buffered charcoal-yeast extract agar but not on blood agar, required cysteine, and were catalase positive, urease negative, nitrate negative, hippurate negative, and nonfermentative. All strains were positive for oxidase and beta-lactamase and produced a brown, diffusible pigment. The fatty-acid composition and ubiquinone content of these strains were consistent with those of other Legionella species. Direct fluorescent-antibody examination of the five strains with conjugates to previously described Legionella species demonstrated no cross-reactions except with the conjugates to L. longbeachae serogroup 2 and L. bozemannii serogroup 2. Four strains gave a 4+ reaction to the L. longbeachae serogroup 2 conjugate and the fifth strain gave a 1+ reaction. Each of the five strains gave a 4+ reaction with the conjugate to L. bozemanii serogroup 2. DNAs from the five strains were highly related (84 to 99%) and showed 5 to 57% relatedness to other Legionella species. These strains constitute a new species in the genus Legionella, and the name Legionella anisa sp. nov. is proposed.

  12. Factors affecting the recovery of Legionella pneumophila serogroup 1 from cooling tower water systems.

    PubMed

    Lu, H F; Tsou, M F; Huang, S Y; Tsai, W C; Chung, J G; Cheng, K S

    2001-09-01

    A total of 20 water samples collected from the cooling towers at 20 different sites were analyzed under various conditions for the presence of Legionella pneumophila serogroup 1. A comparative assessment was performed to evaluate methods of sample collection (spray drops, beneath water at 20- to 40-cm depth, and water outlet), concentration (filtration and centrifugation), acid buffer treatment (no treatment, treatment for 3, 5, and 15 min), and CO2 incubation or candle jar incubation. The reduction in viable colonies and false negative rate were compared for the different factors. No quantitative differences in isolation of L. pneumophila serogroup 1 was found among samples collected from water at a depth of 20 to 40 cm, from water outlet, and from spray drops. Treatment in an acid buffer for 15 min significantly reduced the recovery rate, with a reduction in bacterial counts of about 40%, compared with a 3-min (12%) or a 5-min (25%) treatment. Acid buffer treatment for 3 or 5 min reduced the overgrowth of commensal flora. This treatment improved the selectivity but not the sensitivity for L. pneumophila serogroup 1. Colonies on plates incubated at 37 degrees C in a candle jar with a humidified atmosphere grew better than those incubated at 35 degrees C with 5% CO2. These results demonstrate that methods of sample collection, concentration, and incubation, but not collection site, can affect the isolation rate for L. pneumophila serogroup 1.

  13. VERA2D-84: a computer program for two-dimensional analysis of flow, heat, and mass transfer in evaporative cooling towers. Volume 2. User's manual. Final report

    SciTech Connect

    Majumdar, A.K.; Agrawal, N.K.; Keeton, L.W.; Singhal, A.K.

    1985-07-01

    Cooling towers that do not meet design performance standards can add millions of dollars to the long-term operating costs of generating plants. The VERA2D-84 code offers a reliable method for predicting the performance of natural-draft and mechanical-draft towers on the basis of physical design information.

  14. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  15. Legionella detection and subgrouping in water air-conditioning cooling tower systems in Kuwait.

    PubMed

    Al-Matawah, Qadreyah; Al-Zenki, Sameer; Al-Azmi, Ahmad; Al-Waalan, Tahani; Al-Salameen, Fadila; Hejji, Ahmad Ben

    2015-07-01

    The main aim of the study was to test for the presence of Legionnaires' disease-causing microorganisms in air-conditioned buildings in Kuwait using molecular technologies. For this purpose, 547 samples were collected from 38 cooling towers for the analysis of Legionella pneumophila. These samples included those from water (n = 178), air (n = 231), and swabs (n = 138). Out of the 547 samples, 226 (41%) samples were presumptive positive for L. pneumophila, with L. pneumophila viable counts in the positive water samples ranging from 1 to 88 CFU/ml. Of the Legionella culture-positive samples, 204 isolates were examined by latex agglutination. These isolates were predominately identified as L. pneumophila serogroup (sg) 2-14. Using the Dresden panel of monoclonal antibodies, 74 representatives isolates were further serogrouped. Results showed that 51% of the isolates belonged to serogroup 7 followed by 1 (18%) and 3 (18%). Serogroups 4 (4%) and 10 (7%) were isolated at a lower frequency, and two isolates could not be assigned to a serogroup. These results indicate the wide prevalence of L. pneumophila serogroup 7 as the predominant serogroup at the selected sampling sites. Furthermore, the 74 L. pneumophila (sg1 = 13; sg3 = 13; sg4 = 3; sg7 = 38; sg10 = 5; sgX = 2) isolates were genotyped using the seven gene protocol sequence-based typing (SBT) scheme developed by the European Working Group for Legionella Infections (EWGLI). The results show that Legionella isolates were discriminated into nine distinct sequence typing (ST) profiles, five of which were new to the SBT database of EWGLI. Additionally, all of the ST1 serogroup 1 isolates were of the OLDA/Oxford subgroup. These baseline data will form the basis for the development of a Legionella environmental surveillance program and used for future epidemiological investigations.

  16. Analysis of construction conditions affecting the structural response of the cooling tower at Willow Island, West Virginia

    SciTech Connect

    Lew, H.S.; Fattal, S.G.

    1980-07-01

    The initial investigation of the Willow Island cooling tower collapse (NBSIR 78-1578) established that the most probable cause of the collapse was the imposition of construction loads on the tower before the concrete had gained adequate strength. The analysis presented herein responds to questions outside the scope of that investigation which considered only actual conditions existing at the time of the collapse. The present investigation shows that failure would initiate in lift 28 if the concrete strength in that lift is 100 psi (6.9 MPa) or less, and to maintain a safety factor of 2.0, the concrete strength in that lift should be 4000 psi (27.6 MPa). This study also reveals that even if an additional bolt had been introduced between each exterior jumpform beam and the tower, the stresses would not have been relieved enough to prevent failure of lift 28. Finally, it is shown, that if the ground anchor point of the static line had been kept at the location occupied just prior to its last move to a location near the center of the tower, the stresses in the shell due to construction loads would have been relieved to the extent that failure of lift 28 would probably not have occurred.

  17. Effectiveness of 1-bromo-3-chloro-5,5-dimethylhydantoin against Legionella pneumophila in a cooling tower.

    PubMed Central

    Fliermans, C B; Harvey, R S

    1984-01-01

    Cooling towers are considered to be man-made amplifiers of Legionella spp. Thus, the proper maintenance and choice of biocides is important. The only biocidal measure that has thus far been shown to be effective in field tests is the judicious use of chlorination. Perturbation studies with 1-bromo-3-chloro-5, 5-dimethylhydantoin (Bromicide; Great Lakes Chemical Corp., West Lafayette, Ind.) (BCD) were conducted on an industrial cooling tower shown to contain Legionella pneumophila. At the concentrations recommended by the manufacturer, neither the density nor the activity of L. pneumophila was affected. At comcentrations greater than 2.0 ppm (2.0 micorgram/ml) free of residual, BCD was not effective in reducing L. pneumophila to source water concentrations, nor was it effective in reducing the 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride activity of the bacterium in situ. The data indicate that at concentrations up to 2.0 ppm, BCD is not effective in these tower studies. PMID:6742844

  18. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    PubMed

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  19. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant.

  20. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    PubMed

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor

  1. 93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF DOG EAR AND TRUSS (BRACKET) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  2. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    PubMed

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  3. Fouling of cooling tower film fill: Causes, cleanup techniques and operating guidelines to minimize reoccurrence

    SciTech Connect

    Robinette, D.J.; Puckorius, P.R.

    1996-10-01

    The old adage an ounce of prevention is worth a pound of cure could not be more appropriate than in the case of film fill fouling. It is relatively easy to keep new film fill from fouling if a good chemical treatment program is established from day one. On the other hand, if fill becomes fouled, it often goes undetected until the problem has progressed to such an extent that--at best, the tower performance is severely impaired, or--at worst, a portion of the tower collapses from the weight of the deposit. It is usually an extremely difficult, costly, and time-consuming task to restore the fill`s cleanliness under the latter circumstances. It requires proper foulant diagnosis and development of an effective cleanup procedure, but restoration to near 100% cleanliness can be achieved. This paper discusses the phenomenon of film fill fouling from a perspective developed through numerous actual case histories in which the authors were called in to diagnose and correct the problem.

  4. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  5. Applicability of a ``shower`` passive cooling tower in a hot dry climate

    SciTech Connect

    Givoni, B.; Al-Hemiddi, N.

    1995-11-01

    This cooling system has originally been developed by Givoni for cooling outdoor rest areas for the EXPO`92 in Seville, Spain. However, it can also be applied, and has been tested, as a cooling system for building and enclosed and shaded courtyards. It consists of an open shaft with showers at the top and a collecting ``pond`` at the bottom. Water is recirculated by a pump. The falling water entrain a large volume of air, creating a flow of cooled air down the shaft and into a building. A wind catcher can be installed above the shaft to enhance the air flow rate. The paper presents data on the performance of the system, tested by Al Hemiddi, including experimental data obtained first in a ``patio`` test cell at UCLA in Los Angeles, and later in a full size room in Riyadh, Saudi Arabia. The testing in Riyadh has demonstrated that with outdoor air maximum temperature of about 45 C the indoor air maximum of the cooled room was bout 29 C. This system can use brackish and sea water, in addition to fresh water. Thus it is applicable and capable of providing indoor comfort even in very hot desert regions, where any kind of water, even sea water, is available.

  6. Legionella pneumophila in cooling water systems. Report of a survey of cooling towers in London and a pilot trial of selected biocides.

    PubMed Central

    Kurtz, J. B.; Bartlett, C. L.; Newton, U. A.; White, R. A.; Jones, N. L.

    1982-01-01

    Fourteen recirculating cooling water systems were surveyed during the summer, 1981, to see what factors might influence the prevalence of Legionella pneumophila. The effect on the organism of three anti-microbials was studied, each in two systems, by intermittent treatment at two week intervals. L. pneumophila was isolated from six of the 14 cooling systems at the beginning of the trial but by the end was present in ten. An association was found between the presence of the organism and the concentration of dissolved solids, and chlorides and the pH. There also appeared to be associations with exclusion of light and higher water temperatures. Repeated tests on eight untreated systems showed that two were consistently infected, three became and remained infected, one was infected on a single occasion and two were never infected with L. pneumophila. Treatment of a contaminated system, either with a 10 p.p.m mixture of a quaternary ammonium compound and tributyltinoxide or slow release chlorine briquettes (maximum recorded free chlorine level 1.2 p.p.m.), did not eliminated legionellae. Treatment of two infected towers with a chlorinated phenol (100 p.p.m.) eliminated legionellae for at least three days, but after 14 days the organism was again found. PMID:7086112

  7. Natural Pathogen Control Chemistry to Replace Toxic Treatment of Microbes and Biofilm in Cooling Towers.

    PubMed

    Brouse, Lon; Brouse, Richard; Brouse, Daniel

    2017-03-31

    Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including "Trojan Protozoans" and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner.

  8. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    PubMed

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.

  9. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.

    PubMed

    Ilhan-Sungur, Esra; Ozuolmez, Derya; Çotuk, Ayşın; Cansever, Nurhan; Muyzer, Gerard

    2017-02-01

    Sulfidogenic Clostridia and sulfate reducing bacteria (SRB) often cohabit in nature. The presence of these microorganisms can cause microbially influenced corrosion (MIC) of materials in different ways. To investigate this aspect, bacteria were isolated from cooling tower water and used in corrosion tests of galvanized steel. The identity of the isolates was determined by comparative sequence analysis of PCR-amplified 16S rDNA gene fragments, separated by denaturing gradient gel electrophoresis (DGGE). This analysis showed that, in spite of the isolation process, colonies were not pure and consisted of a mixture of bacteria affiliated with Desulfosporosinus meridiei and Clostridium sp. To evaluate the corrosive effect, galvanized steel coupons were incubated with a mixed culture for 4, 8, 24, 72, 96, 168, 360 and 744 h, along with a control set in sterile culture medium only. The corrosion rate was determined by weight loss, and biofilm formation and corroded surfaces were observed by scanning electron microscopy (SEM). Although the sulfide-producing bacterial consortium led to a slight increase in the corrosion of galvanized steel coupons, when compared to the previous studies it can be said that Clostridium sp. can reduce the corrosive effect of the Desulfosporosinus sp. strain.

  10. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  11. Thermal Characteristics of Heating Towers

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Kametani, Shigeki

    Thermal characteristics of heating towers for air-source heat pumps are studied in terms of the overall enthalpy-transfer coefficient. Ka. First. the method of counter-flow calculation is presented taking physical properties of ethylene glycol solutions into account. Next, both cooling-tower and heating-tower experiments are carried out in a small, induced-draft. counterflow tower packed with tubes of a staggerd arrangement. using water and commercial ethylene glycol solutions. The coefficient Ka measured in the heating-tower experiment shows a trend similar to that in the cooling-tower experiment. So. the data on cooling towers will be helpful to the thermal design of heating towers.

  12. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect

    Daily III, W D

    2010-02-24

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be

  13. Epidemiological investigation and case-control study: a Legionnaires' disease outbreak associated with cooling towers in Warstein, Germany, August-September 2013.

    PubMed

    Maisa, Anna; Brockmann, Ansgar; Renken, Frank; Lück, Christian; Pleischl, Stefan; Exner, Martin; Daniels-Haardt, Inka; Jurke, Annette

    2015-01-01

    Between 1 August and 6 September 2013, an outbreak of Legionnaires' disease (LD) with 159 suspected cases occurred in Warstein, North Rhine-Westphalia, Germany. The outbreak consisted of 78 laboratory-confirmed cases of LD, including one fatality, with a case fatality rate of 1%. Legionella pneumophila, serogroup 1, subtype Knoxville, sequence type 345, was identified as the epidemic strain. A case-control study was conducted to identify possible sources of infection. In univariable analysis, cases were almost five times more likely to smoke than controls (odds ratio (OR): 4.81; 95% confidence interval (CI): 2.33-9.93; p < 0.0001). Furthermore, cases were twice as likely to live within a 3 km distance from one identified infection source as controls (OR: 2.14; 95% CI: 1.09-4.20; p < 0.027). This is the largest outbreak of LD in Germany to date. Due to a series of uncommon events, this outbreak was most likely caused by multiple sources involving industrial cooling towers. Quick epidemiological assessment, source tracing and shutting down of potential sources as well as rapid laboratory testing and early treatment are necessary to reduce morbidity and mortality. Maintenance of cooling towers must be carried out according to specification to prevent similar LD outbreaks in the future.

  14. EAST ELEVATION, TOWER, FIRST STAGE, RIGHT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, FIRST STAGE, RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-7 157.4634. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  15. EAST ELEVATION, TOWER, FIRST STAGE, RIGHT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, FIRST STAGE, RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-7 157.4634. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  16. EAST ELEVATION, TOWER, SECOND STAGE, LEFT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, SECOND STAGE, LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-8 157.4635. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  17. EAST ELEVATION, TOWER, SECOND STAGE, RIGHT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, SECOND STAGE, RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-9 157.4636. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  18. EAST ELEVATION, TOWER, SECOND STAGE, RIGHT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, SECOND STAGE, RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-9 157.4636. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  19. EAST ELEVATION, TOWER, SECOND STAGE, LEFT. Glass plate stereopair number ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, SECOND STAGE, LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-8 157.4635. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  20. 107. TOWER STAIRHALL, SECOND FLOOR LANDING, SOUTH WALL, ENTABLATURE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. TOWER STAIRHALL, SECOND FLOOR LANDING, SOUTH WALL, ENTABLATURE SHOWING SECTION WITH ALL PAINT REMOVED RANGING FROM TWENTY-FIVE TO FIFTY COATS OF PAINT ON SECTIONS - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  1. Development of an improved PCR-ICT hybrid assay for direct detection of Legionellae and Legionella pneumophila from cooling tower water specimens.

    PubMed

    Horng, Yu-Tze; Soo, Po-Chi; Shen, Bin-Jon; Hung, Yu-Li; Lo, Kai-Yin; Su, Hsun-Pi; Wei, Jun-Rong; Hsieh, Shang-Chen; Hsueh, Po-Ren; Lai, Hsin-Chih

    2006-06-01

    A novelly improved polymerase chian reaction and immunochromatography test (PCR-ICT) hybrid assay comprising traditional multiplex-nested PCR and ICT, (a lateral-flow device) was developed for direct detection of Legionella bacteria from environmental cooling tower samples. The partial 16S rDNA (specific for Legionella spp.) and dnaJ (specific for Legionella pneumophila) genes from Legionella chromosome were first specifically amplified by multiplex-nested PCR, respectively, followed by detection using ICT strip. Reading of results was based on presence or absence of the two test lines on the strips. Presence of test line 1 indicated existence of Legionella spp. specific 16S rDNA and identified Legionella spp. Presence of test line 2 further indicated existence of dnaJ and thus specifically identified L. pneumophila. In contrast, for non-Legionellae bacteria no test line formation was observed. Results of direct detection of Legionella bacteria and L. pneumophila from water tower specimens by this assay showed 100% sensitivity, and 96.6% and 100% specificity, respectively compared with traditional culture, biochemical and serological identification methods. The PCR-ICT hybrid assay does not require sophisticated equipment and was proved to be practically useful in rapid and direct Legionellae detection from environmental water samples.

  2. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  3. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  4. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  5. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  6. The Physics of Shot Towers

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-04-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: How does the size of the lead shot depend on the height of the tower? In the process, we explain the basic technology underlying an important historical invention (the shot tower) and use simple physics (Newtonian mechanics and the thermodynamic laws of cooling) to model its operation.

  7. Ant Tower

    NASA Astrophysics Data System (ADS)

    Mlot, Nathan; Shinotsuka, Sho; Hu, David

    2010-11-01

    Ants walk via adhesive drops of fluid extruded by their feet. They also use these drops as mortar to build structures such as rafts, bridges and towers, each composed of thousands of ants linked together. We investigate experimentally the construction of triangular ant towers braced by hydrophobic walls. Particular attention is paid to the relationship between tower height and contact angle hysteresis of the wall. We rationalize tower height according to ant adhesion, and tower shape according to the constraints on a column of constant strength.

  8. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  9. Effect of chlorine and temperature on free-living protozoa in operational man-made water systems (cooling towers and hot sanitary water systems) in Catalonia.

    PubMed

    Canals, Oriol; Serrano-Suárez, Alejandra; Salvadó, Humbert; Méndez, Javier; Cervero-Aragó, Sílvia; Ruiz de Porras, Vicenç; Dellundé, Jordi; Araujo, Rosa

    2015-05-01

    In recent decades, free-living protozoa (FLP) have gained prominence as the focus of research studies due to their pathogenicity to humans and their close relationship with the survival and growth of pathogenic amoeba-resisting bacteria. In the present work, we studied the presence of FLP in operational man-made water systems, i.e. cooling towers (CT) and hot sanitary water systems (HSWS), related to a high risk of Legionella spp. outbreaks, as well as the effect of the biocides used, i.e. chlorine in CT and high temperature in HSWS, on FLP. In CT samples, high-chlorine concentrations (7.5 ± 1.5 mg chlorine L(-1)) reduced the presence of FLP by 63.8 % compared to samples with low-chlorine concentrations (0.04 ± 0.08 mg chlorine L(-1)). Flagellates and amoebae were observed in samples collected with a level of 8 mg chlorine L(-1), which would indicate that some FLP, including the free-living amoeba (FLA) Acanthamoeba spp., are resistant to the discontinuous chlorine disinfection method used in the CT studied. Regarding HSWS samples, the amount of FLP detected in high-temperatures samples (53.1 ± 5.7 °C) was 38 % lower than in low-temperature samples (27.8 ± 5.8 °C). The effect of high temperature on FLP was chiefly observed in the results obtained by the culture method, in which there was a clear reduction in the presence of FLP at temperatures higher than 50 °C, but not in those obtained by PCR. The findings presented here show that the presence of FLP in operational man-made water systems should be taken into account in future regulations.

  10. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water.

    PubMed Central

    Miyamoto, H; Yamamoto, H; Arima, K; Fujii, J; Maruta, K; Izu, K; Shiomori, T; Yoshida, S

    1997-01-01

    The presence of PCR inhibitors in water samples is well known and contributes to the fact that a practical PCR assay has not been developed for legionella surveillance. In this study, we devised a new seminested PCR assay for detection of Legionella spp. in water samples as a means of overriding the PCR inhibitors without loss of sensitivity. The seminested PCR assay utilized primers to amplify the 16S rRNA gene (LEG primers) of 39 Legionella spp. The assay was specific to legionellae, and the sensitivity was 1 fg of extracted Legionella DNA in laboratory examination. To evaluate the feasibility and sensitivity of the PCR assay in identifying the presence of legionellae, it was used to survey Legionella contamination in the water of 49 cooling towers of 32 hospitals. A commercially available EnviroAmp Legionella kit and a culture method were also used in the survey for comparison with the seminested PCR assay. The detection rates of legionellae in the samples were 91.8% (45 of 49) by the PCR assay and 79.5% (39 of 49) by the culture method. The EnviroAmp kit revealed that 30.6% of the water samples (15 of 49) contained inhibitors of the PCR amplification. However, the seminested PCR assay could produce the Legionella-specific DNA bands in 14 of the 15 samples. Although 8 of the 14 samples were positive in the first-step PCR, 6 of the 14 samples became positive in the second-step PCR. These results suggest that the effect of PCR inhibitors in samples, if any, can be reduced because of the dilution of the sample in the second-step PCR and that sensitivity of detection can be increased by the second-step PCR. Thus, the seminested PCR assay with LEG primers to amplify the 16S rRNA gene of 39 Legionella spp. was a practical and sensitive method to detect Legionella spp. in water samples. PMID:9212400

  11. EAST ELEVATION, TOWER, LOWER LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, LOWER LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-1 157.4628. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  12. EAST ELEVATION, TOWER, MIDDLE LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, MIDDLE LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-3 157.4630. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  13. EAST ELEVATION, TOWER, LOWER LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, LOWER LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-1 157.4628. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  14. EAST ELEVATION, TOWER, UPPER LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, UPPER LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-5 157.4632. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  15. EAST ELEVATION, TOWER, LOWER RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, LOWER RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-2 157.4629. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  16. EAST ELEVATION, TOWER, MIDDLE RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, MIDDLE RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-4 157.4631. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  17. EAST ELEVATION, TOWER, MIDDLE RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, MIDDLE RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-4 157.4631. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  18. EAST ELEVATION, TOWER, UPPER LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, UPPER LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-5 157.4632. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  19. EAST ELEVATION, TOWER, UPPER RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, UPPER RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-6 157.4633. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  20. EAST ELEVATION, TOWER, MIDDLE LEFT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, MIDDLE LEFT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-3 157.4630. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  1. EAST ELEVATION, TOWER, LOWER RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, LOWER RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-2 157.4629. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  2. EAST ELEVATION, TOWER, UPPER RIGHT. Glass plate stereopair number PA1430139 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, TOWER, UPPER RIGHT. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-6 157.4633. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  3. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  4. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  5. 71. PRISONER OF WAR AREA 'A,' BUILDING 7601, GUARD TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PRISONER OF WAR AREA 'A,' BUILDING 7601, GUARD TOWER No. 5. (Buildings 7653, 7654, 7655, 7656, and 7657, Barracks, Building 7659, Kitchen and Mess Hall, and Building 7651, Guard Tower No. 6, are in the background). Fort McCoy photograph #B-33, undated. - Fort McCoy, Sparta, Monroe County, WI

  6. Rapunzel's Tower

    ERIC Educational Resources Information Center

    Depp, Sheryl

    2007-01-01

    Children's literature often inspires the author's lessons, and reading to her primary students motivates their participation. In this article, the author presents and describes her lesson which is based on the book "Falling for Rapunzel" by Leah Wilcox. Students created a fairy tale tower in this lesson, which took place over three class periods.…

  7. EAST TOWER, DETAIL VIEW OF CARVED IONIC PILASTER CAPITAL. Glass ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST TOWER, DETAIL VIEW OF CARVED IONIC PILASTER CAPITAL. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-D-2 157.4684. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  8. EAST TOWER, DETAIL VIEW OF CARVED MASK. Glass plate stereopair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST TOWER, DETAIL VIEW OF CARVED MASK. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-D-1 157.4683. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  9. EAST TOWER, DETAIL VIEW OF CARVED IONIC PILASTER CAPITAL. Glass ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST TOWER, DETAIL VIEW OF CARVED IONIC PILASTER CAPITAL. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-D-2 157.4684. Right (not printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  10. EAST TOWER, DETAIL VIEW OF CARVED MASK. Glass plate stereopair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST TOWER, DETAIL VIEW OF CARVED MASK. Glass plate stereopair number PA-1430-139 LC-HABS-GS05-ET-D-1 157.4683. Left (printed) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  11. Virtual Tower

    SciTech Connect

    Wayne, R.A.

    1997-08-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.

  12. INTERIOR; VIEW OF ENTRY HALL, LOOKING SOUTH. Naval Computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR; VIEW OF ENTRY HALL, LOOKING SOUTH. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  13. AFCATT (Anti-Fouling Chemical Additive Test Tower)

    SciTech Connect

    Philpot, E.F.; Newton, M.T.; Noble, R.T.

    1995-06-01

    Polyvinylchloride (PVC) film-type cellular fill is the fill of choice in replacing cement asbestos board fill in existing cooling towers and in new cooling towers because of its high thermal performance, ease of installation, and low initial cost. However, PVC fill has been found to foul quickly with biological and sediment material, significantly reducing tower performance and the fill`s useful life. The Anti-Fouling Chemical Additives Test Tower (AFCATT) has been build to study accumulation rates of fouling deposits in corrugated PVC film fill and to study methods of cleaning and preventing the fouling deposits. This small mechanical draft cooling tower is located next to the Unit 4 natural draft cooling tower at Georgia Power Company`s Plant Bowen. The once-through mechanical draft tower receives hot water from the condenser and returns the cold water to the basin of the host tower. The pilot tower is divided into four chambers allowing for three different treatment programs and one control to be run simultaneously. PVC fill packs are suspended from load cells to allow the weight of the fill packs to be measured continuously. Six vendors participated in the summer 1993 test program. Each proposed different methods of cleaning the fouled fill and were given the opportunity to try their proposed method of fill cleaning. To determine the success of these different treatment programs, statistical analyses were performed on the collected data and the changes in the accumulation rates compared.

  14. Typical Mid Tower Elevation & Section, Typical Mid Tower Footing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Mid Tower Elevation & Section, Typical Mid Tower Footing Section & Elevation, South Tower Section & Elevation, and North Tower Sections & Elevation - Cape Arago Light Station Footbridge, Gregory Point, Charleston, Coos County, OR

  15. Towers for Earth Launch

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    This report lists some characteristics of a hypothetical 15 kilometer tower for launching spacecraft, the advantages of launching from high altitude, and some equations pertaining to launch from a 15 kilometer tower.

  16. Geology of Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower. The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member. The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3 deg - 5 deg towards the Tower. Beyond this distance, they dip at 2 deg - 5 deg from the Tower. The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.

  17. 91. VIEW OF THE SOUTHWEST CORNER WHERE THE TOWER JOINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF THE SOUTHWEST CORNER WHERE THE TOWER JOINS THE WEST GABLE & THE BRICK STEPS LEAD UP TO A SMALL VERANDAH (DUPLICATE OF HABS No. AL-765-34) - Kenworthy Hall, State Highway 14 (Greensboro Road), Marion, Perry County, AL

  18. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  19. Salt Water Drift From Cooling Towers

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. 18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST BY WEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  1. 37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  2. 43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  3. 47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. 40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  6. 36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. Operating manual for the Tower Shielding Facility

    SciTech Connect

    Not Available

    1985-12-01

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11.

  8. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  9. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  10. Leaning Tower of PESA

    ERIC Educational Resources Information Center

    Clark, John

    2009-01-01

    There is a certain similarity between the Philosophy of Education Society of Australasia (PESA) and the leaning tower of Pisa. Both have a certain presence on the landscape: the tower has a commanding appearance on the Italian countryside while PESA has left its mark on the academic fabric of Australasia. Both are much loved: Pisa by visiting…

  11. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  12. View of Nevada rim towers from Arizona side. Left tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from Arizona side. Left tower supports Circuit 6, middle tower supports Circuit 5, and right tower supports Circuits 4 and 15, view north - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  13. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  14. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  15. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  16. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. Aquarius: Tower Rollback

    NASA Video Gallery

    The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California is being moved away from the ULA Delta II rocket with the Aquarius/SAC-D spacecraft atop, in preparati...

  18. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  19. Towers for Antarctic Telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Nielsen, G.

    To take advantage of the exceptional seeing above the boundary layer on Antarctic sites, a high-resolution telescope must be mounted on a support tower. An open transparent tower of framework minimizes the upward temperature-disturbed airflow. A typical minimum height is 30m. The tower platform has to be extremely stable against wind-induced rotational motions, which have to be less than fractions of an arc second, unusually small from a mechanical engineering viewpoint. In a traditional structure, structural deflections result in angular deflections of the telescope platform, which introduce tip and tilt motions in the telescope. However, a structure that is designed to deflect with parallel motion relative to the horizontal plane will undergo solely translation deflections in the telescope platform and thus will not degrade the image. The use of a parallel motion structure has been effectively demonstrated in the design of the 15-m tower for the Dutch Open Telescope (DOT) on La Palma. Special framework geometries are developed, which make it possible to construct high towers in stories having platforms with extreme stability against wind-induced tilt. These geometric solutions lead to constructions, being no more massive than a normal steel framework carrying the same load. Consequently, these lightweight towers are well suited to difficult sites as on Antarctica. A geometry with 4 stories has been worked out.

  20. Confronting Campus Bullies: How Bullying Shows up in the Halls of Academe, and What We Can Do about It

    ERIC Educational Resources Information Center

    Myers, Virginia

    2012-01-01

    Everyone knows the playground bully: that big, cartoonish oaf towering over a scrawny school mate before he delivers a gut punch and knocks the lunch money from his victim's pockets. What ever happened to this menace? According to some, he's moved down the hall--the hall of academe. Once thought to be bastions of collegiality and high-mindedness,…

  1. 26. STATIC TEST TOWER CONTROL PANELS AT REAR OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. STATIC TEST TOWER CONTROL PANELS AT REAR OF TOWER UNDERNEATH SHED ROOF. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  2. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  4. 41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  6. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. 45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, LOOKING WEST BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  8. View of the north tower porte cochere and flag tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the north tower porte cochere and flag tower, looking southwest (duplicate of HABS No. DC-141-19) - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  9. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  10. Heating and cooling of municipal buildings with waste heat from ground water

    SciTech Connect

    Morgan, D.S.; Hochgraf, J.

    1980-10-01

    The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

  11. THE TOWER HOUSE, LOOKING WEST. The tower house provided a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE TOWER HOUSE, LOOKING WEST. The tower house provided a water tank on the second floor that gravity fed water to the Kineth house and farm buildings. The one-story addition to the west of the tower provided workshop space. The hog shed is seen on the left of the image and the concrete foundation of the upright silo is in the foreground on the right. - Kineth Farm, Tower House, 19162 State Route 20, Coupeville, Island County, WA

  12. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  13. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  14. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  15. FIRE_ACE_UTRECHT_TOWER

    Atmospheric Science Data Center

    2015-10-28

    FIRE_ACE_UTRECHT_TOWER Project Title:  FIRE II ACE Discipline:  ... L3 Platform:  SHEBA Ship Site; Meteorological tower Instrument:  Eppley precision pyrgeometers Meteorological tower Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  16. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  17. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  18. Talking Towers, Making Withs.

    ERIC Educational Resources Information Center

    Lemke, J. L.

    The notion of a linguistic "register" is useful in posing questions about how the ways language is used differ from one kind of human activity to another. This paper analyzes a videotaped segment of male grade 4/5 students (n=3) who are talking as they work to build a tower from plastic drinking straws and pins. Discussion of the…

  19. The Towers of Hanoi

    ERIC Educational Resources Information Center

    Morris, George C.

    2007-01-01

    This article presents an investigation carried out with a group of able mathematics students who were studying at a level 1 year in advance of their peers. The purpose was to investigate the extension of usual three peg Towers of Hanoi to four pegs and attempt to find a rule that could be used to predict the minimum number of moves required to…

  20. The Ivory Tower Revisited

    ERIC Educational Resources Information Center

    Chantler, Abigail

    2016-01-01

    The corollary of the concept of the "ivory tower", as reflected in the writings of Plato and Newman amongst others, was, paradoxically, the vital importance of the university for wider society. Nevertheless from the mid-twentieth century, the esteem in which a "liberal" university education was held was diminished by rising…

  1. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  2. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  3. 54. The Curtis Music Hall (15 West Park) dates from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. The Curtis Music Hall (15 West Park) dates from 1892. This is one if the more architecturally interesting buildings remaining in Butte, with a variety of window types, a corbelled parapet extending over one bay, a central gable flanked by decorative square towers, a turret, and a richly decorated facade. The storefront has been modernized with plate glass windows and a metal canopy. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  4. Hall Effect Spintronics

    DTIC Science & Technology

    2008-09-23

    resistance measurement, in which current sources can share a common ground, the Hall measurement requires electrically isolated current sources. It...8 Figure captions Fig. 1. Measurement setup for the non-switching van der Pauw Hall technique. IAC and IDB are electrically isolated...Longitudinal resistivity (measured along the electrical current) is expected to be an even function of magnetic induction B, whereas the transverse or Hall

  5. HALL EFFECT INVESTIGATIONS

    DTIC Science & Technology

    INTERMETALLIC COMPOUNDS, *SEMICONDUCTING FILMS, *THIN FILM STORAGE DEVICES, ANTIMONY ALLOYS, CRYSTALLIZATION, ELECTRODES, ELECTROMAGNETIC PROPERTIES, EVAPORATION, HALL EFFECT , HEAT TREATMENT, INDIUM ALLOYS, ELECTRICAL RESISTANCE.

  6. 52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. GREAT HALL, LOOKING NORTH THROUGH STAIR HALL TO NORTH VESTIBULE DOORS - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  8. INTERIOR TOWER STAIRS BETWEEN SECOND LEVEL AND TOWER ROOM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS BETWEEN SECOND LEVEL AND TOWER ROOM, LOOKING NORTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  9. INTERIOR TOWER STAIRS BETWEEN TOWER ROOM AND SECOND LEVEL, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS BETWEEN TOWER ROOM AND SECOND LEVEL, LOOKING SOUTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  10. 2. Southern Light Tower and Northern Light Tower, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southern Light Tower and Northern Light Tower, view north, south sides - Kennebec River Light Station, South side of Doubling Point Road, off State Highway 127, 1.8 miles south of U.S. Route 1, Arrowsic, Sagadahoc County, ME

  11. Hall of Fame.

    ERIC Educational Resources Information Center

    El Rancho Unified School District, Pico Rivera, CA.

    A Hall of Fame was established by the El Rancho Unified School District (California) to identify and honor graduates of the school district who have graduated more than 15 years ago, who have achieved recognition in their chosen field, and who would bring honor to the school district in its honoring of them. Nominees for the Hall of Fame were…

  12. The Hall Effect

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The experimental procedure consists of the measurement of the Hall coefficient, resistivity, and Hall mobility as a function of temperature of a sample of gallium arsenides before and after irradiation with low and high energy protons. Work has begun on the development of the theory and subsequently experiments will be designed and performed.

  13. Skyrmions and Hall Transport.

    PubMed

    Kim, Bom Soo; Shapere, Alfred D

    2016-09-09

    We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2+1)-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.

  14. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  15. Skyrmions and Hall Transport

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo; Shapere, Alfred D.

    2016-09-01

    We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2 +1 )-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.

  16. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    SciTech Connect

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  17. Archaeoastronomy: the Newport Tower

    NASA Astrophysics Data System (ADS)

    Penhallow, William

    1997-07-01

    The Newport Tower is a masonry structure of fieldstone about 28 feet high and 22 feet in diameter located near the top of a hill overlooking the harbor in Newport, Rhode Island. In essence it is a cylinder with Romanesque arches resting on eight pillars. The cylinder has three major openings as well as four smaller ones. On the inside there are eight indentations for beams on a first floor and four for a second,. In addition there are seven niches and a fireplace on the inside. A careful photogrammetric survey of the tower done by the Technical University of Denmark for the Danish National Museum provided data for the calculation of declinations, azimuths and altitudes associated with possible pairs of features. Numerous alignments involving the Sun and Moon indicate an emphasis on determining the location of the nodes of the Moon's orbit. Accurate determination of true north by observing Polaris at upper culmination is evident. Possible observations of Sirius are indicated. These results provide strong evidence that astronomy was involved in the design and use of this intriguing structure first mentioned in Governor Arnold's will in 1677. Further study is clearly warranted. This paper was published in the New England Antiquities Research Association Journal, p. 44, 1994

  18. Hall instability of a weakly ionized, rotating disk with equilibrium pressure stratification and thermal loss

    SciTech Connect

    Bora, Madhurjya P.; Buzar Baruah, Manasi

    2011-01-15

    A linear stability analysis of a thin rotating Keplerian disk is presented in the framework of Hall-magnetohydrodynamics with equilibrium pressure stratification and radiative cooling. Anisotropic pressure is considered in view of a stronger axial magnetic field. The analysis is relevant in studying the stability of protoplanetary disks. It has been shown that the equilibrium pressure stratification determines the growth rate of the Hall instability. With radiative loss, the thermal modes are affected by the Hall mode and the classical instability conditions.

  19. Facilty Focus: Residence Halls.

    ERIC Educational Resources Information Center

    Hunnewell, James F., Jr.

    2002-01-01

    Describes the Western Ridge Residence at Colorado College and Beard Hall at Wheaton College. The buildings feature multiple levels that take advantage of views and also help create a "homey" feeling. (EV)

  20. Self-stabilizing floating tower

    SciTech Connect

    Mougin, G.L.

    1980-12-30

    An offshore floating tower comprises two coaxial cylindrical enclosures interconnected by continuous radial bulkheads forming in the upper portion a ring of damping chambers and in the lower portion a ring of buoyancy tanksaround a bell-shaped chamber which is partially filled with air to produce pneumatic damping of vertical movement of the tower. The upper portion of the tower is separated from the lower portion by a horizontal slab. The upper portion of the internal enclosure is perforated in the vicinity of the horizontal slab.

  1. Hall Effect Spintronics

    DTIC Science & Technology

    2011-04-01

    spin-transfer torque gives rise to magnetization reversal and excitation of spin-waves in ferromagnet /normal- metal / ferromagnet trilayers (F/N/F...applications based on the extraordinary Hall effect (EHE). The work was focused on three major tasks: 1. Preparation and study of CoPd multilayers ...D. Rosenblatt, M. Karpovski and A. Gerber, Reversal of the Extraordinary Hall Effect polarity in thin Co-Pd multilayers ., Appl. Phys. Lett., 96

  2. You're a What?: Tower Technician

    ERIC Educational Resources Information Center

    Vilorio, Dennis

    2012-01-01

    In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…

  3. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  4. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  5. The Physics of Shot Towers

    ERIC Educational Resources Information Center

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-01-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: "How does the size of the lead shot depend on the height…

  6. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  7. Nonlocal Anomalous Hall Effect.

    PubMed

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  8. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  9. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  10. Conducting Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  11. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  12. Packed tower program eases calculations for diameter, hydraulics of towers

    SciTech Connect

    Petrarca, C.A.

    1986-04-14

    A packed tower program will calculate the diameter and hydraulics of a packed tower, or check the hydraulics of an existing tower for other process conditions. It is written in simple BASIC for an IBM PC and could easily be converted to other PC's. There are approximately 100 statement lines, with memory requirement of approximately 4,100 bytes. The program is presented as an aid, or tool, to reduce tedious calculations in design or revision work. Much has already been written on the specifics of design methods and calculation procedures for packed towers. This article will cover only the program's procedure and calculation method, input requirements, output data, and features. The program first transforms the raw data into consistent units. Gas flow rate in pounds per hour is calculated from the input of standard cubic feet per minute and specific gravity, or moles per hour and molecular weight. Liquid flow rate in pounds per hour is calculated from the gallons per minute and specific gravity input. Using the temperature, pressure, compressibility, and molecular weight inputs, the gas density in pounds per cubic foot is calculated from the ideal gas law equation. Liquid density is calculated directly from the specific gravity. With this data, the program then calculates the ''x'' ordinate of the generalized flooding correlation for packed towers. Using regressed design curves of X vs. Y, which somewhat parallel the flooding curve, the program calculates the Y abscissa function which relates liquid and gas densities, gas mass velocity, packing factor, gravitational constant, and liquid viscosity.

  13. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  14. Model of Hall Reconnection

    SciTech Connect

    Malyshkin, Leonid M.

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length d{sub i} is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to d{sub i}/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be d{sub i}.

  15. Model of Hall reconnection.

    PubMed

    Malyshkin, Leonid M

    2008-11-28

    The rate of quasistationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics, which includes the Hall and electron pressure terms in Ohm's law. The Hall-magnetohydrodynamics equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length di is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to di/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer and the ion layer thickness is found to be di.

  16. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  17. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  18. A freely falling magneto-optical trap drop tower experiment

    NASA Astrophysics Data System (ADS)

    Könemann, T.; Brinkmann, W.; Göklü, E.; Lämmerzahl, C.; Dittus, H.; van Zoest, T.; Rasel, E. M.; Ertmer, W.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Peters, A.; Vogel, A.; Johannsen, G.; Wildfang, S.; Bongs, K.; Sengstock, K.; Kajari, E.; Nandi, G.; Walser, R.; Schleich, W. P.

    2007-12-01

    We experimentally demonstrate the possibility of preparing ultracold atoms in the environment of weightlessness at the earth-bound short-term microgravity laboratory Drop Tower Bremen, a facility of ZARM - University of Bremen. Our approach is based on a freely falling magneto-optical trap (MOT) drop tower experiment performed within the ATKAT collaboration (“Atom-Catapult”) as a preliminary part of the QUANTUS pilot project (“Quantum Systems in Weightlessness”) pursuing a Bose-Einstein condensate (BEC) in microgravity at the drop tower [1, 2]. Furthermore we give a complete account of the specific drop tower requirements to realize a compact and robust setup for trapping and cooling neutral rubidium 87Rb atoms in microgravity conditions. We also present the results of the first realized freely falling MOT and further accomplished experiments during several drops. The goal of the preliminary ATKAT pilot project is to initiate a basis for extended atom-optical experiments which aim at realizing, observing and investigating ultracold quantum matter in microgravity.

  19. Hall Effect in a Plasma.

    ERIC Educational Resources Information Center

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  20. Strained graphene Hall bar

    NASA Astrophysics Data System (ADS)

    Milovanović, S. P.; Peeters, F. M.

    2017-02-01

    The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, R B, around zero-magnetic field and the occurrence of side-peaks in R B. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in R B are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.

  1. Residence Hall Fires.

    ERIC Educational Resources Information Center

    Wright, Dorothy

    1999-01-01

    Discusses how one college's experience with a tragic fire in one of its residence halls prompted a reevaluation of its fire-prevention-and-response strategies. Staff training, sprinkler installation, new alarm systems, and exit hardware to help make building exiting more efficient are discussed. (GR)

  2. Laurance David Hall.

    PubMed

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered.

  3. The Monty Hall Dilemma.

    ERIC Educational Resources Information Center

    Granberg, Donald; Brown, Thad A.

    1995-01-01

    Examines people's behavior in the Monty Hall Dilemma (MHD), in which a person must make two decisions to win a prize. In a series of five studies, found that people misapprehend probabilities in the MHD. Discusses the MHD's relation to illusion of control, belief perseverance, and the status quo bias. (RJM)

  4. Hall Sweet Home

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  5. The Tower Shielding Facility: Its glorious past

    SciTech Connect

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  6. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  7. Graph Theory of Tower Tasks

    PubMed Central

    Hinz, Andreas M.

    2012-01-01

    The appropriate mathematical model for the problem space of tower transformation tasks is the state graph representing positions of discs or balls and their moves. Graph theoretical quantities like distance, eccentricities or degrees of vertices and symmetries of graphs support the choice of problems, the selection of tasks and the analysis of performance of subjects whose solution paths can be projected onto the graph. The mathematical model is also at the base of a computerized test tool to administer various types of tower tasks. PMID:22207419

  8. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  9. View of Arizona rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona rim towers from top of power plant. Left tower supports Circuit 3, second tower from left supports Circuit 12, middle tower supports Circuit 10, second tower from right supports Circuit 9, and right tower supports Circuit 8, view southeast - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  10. View of first bank of circuit towers on Arizona side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of first bank of circuit towers on Arizona side of canyon. Left tower supports Circuit 12, second from left tower supports Circuit 11, middle tower supports Circuit 10, second from right tower supports Circuit 9, and right tower supports Circuit 8, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  11. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  12. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  13. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  14. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  15. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  16. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  17. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  18. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  19. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  20. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  1. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  2. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Levin, Yuri; Beloborodov, Andrei M.

    2016-12-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimensional models that consider temperature-sensitive plastic flow, heat transport, and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  3. Susceptibilities of Algae and Legionella pneumophila to Cooling Tower Biocides

    PubMed Central

    Soracco, Reginald J.; Gill, Helen K.; Fliermans, Carl B.; Pope, Daniel H.

    1983-01-01

    Nine algal strains and nine Legionella pneumophila strains were tested in laboratory culture for their susceptibility to inhibition by a variety of commercially available microbiocides. The responses ranged from ineffective to effective at 1/100 the manufacturers' recommended pulse doses. Tests were also performed to determine whether the action of the microbiocide was bacteriostatic or bacteriocidal. PMID:6859846

  4. Preliminary design package for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  5. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  6. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  7. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  8. Hall effect magnetometer

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Beale, H. A.; Spain, I. L. (Inventor)

    1974-01-01

    A magnetometer which uses a single crystal of bismuth selenide is described. The rhombohedral crystal structure of the sensing element is analyzed. The method of construction of the magnetometer is discussed. It is stated that the sensing crystal has a positive or negative Hall coefficient and a carrier concentration of about 10 to the 18th power to 10 to the 20th power per cubic centimeter.

  9. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  10. 27. THIRD FLOOR MAIN HALL FROM SIDE HALL LEADING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. THIRD FLOOR MAIN HALL FROM SIDE HALL LEADING TO SERVICE STAIRS This hall is lit by three natural sources, the lightwell window of the main stairs visible in the distance, the skylight in the linen closet at the extreme left, and from the glazed openings in the interior and exterior doors of the nurse's room, out of sight to the right. - Woodrow Wilson House, 2340 South S Street, Northwest, Washington, District of Columbia, DC

  11. Thermal Hall Effect of Magnons

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi; Okamoto, Akihiro

    2017-01-01

    We review recent developments in theories and experiments on the magnon Hall effect. We derive the thermal Hall conductivity of magnons in terms of the Berry curvature of magnonic bands. In addition to the Dzyaloshinskii-Moriya interaction, we show that the dipolar interaction can make the Berry curvature nonzero. We mainly discuss theoretical aspects of the magnon Hall effect and related theoretical works. Experimental progress in this field is also mentioned.

  12. Precise quantization of anomalous Hall effect near zero magnetic field

    NASA Astrophysics Data System (ADS)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  13. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    UNCLASSIFIED: Distribution A. Approved for public release. REUSABLE MATERIAL FOR DROP TOWER A thesis written at TANK AUTOMOTIVE RESEARCH AND...ABSTRACT This thesis represents the capstone of my five years combined academic work at Kettering University and job experience at Tank Automotive ...NUMBER OF PAGES 57 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  14. Cellular automaton for bacterial towers

    NASA Astrophysics Data System (ADS)

    Indekeu, J. O.; Giuraniuc, C. V.

    2004-05-01

    A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as “towering biofilm”, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.

  15. Self-assembled granular towers

    NASA Astrophysics Data System (ADS)

    Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team

    2013-03-01

    When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.

  16. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  17. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  18. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  19. Chapin Hall Center for Children.

    ERIC Educational Resources Information Center

    Chicago Univ., IL. Chapin Hall Center for Children.

    This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…

  20. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  1. Predictors of Residence Hall Involvement

    ERIC Educational Resources Information Center

    Arboleda, Ana; Wang, Yongyi; Shelley, Mack C., II; Whalen, Donald F.

    2003-01-01

    Residence hall students' (N = 1,186, 52% male, 90% White, 66% freshmen) involvement in their living community is influenced significantly by precollege student characteristics (gender, ethnicity), classification, attitudes (toward hall director, house cabinet, academic comfort, social environment, group study), and environmental variables (noise,…

  2. 2. Abandoned light tower and keeper's house/light tower, view southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Abandoned light tower and keeper's house/light tower, view southeast, north northwest and west southwest sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  3. 1. Light tower/keeper's house and abandoned light tower, view northwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Light tower/keeper's house and abandoned light tower, view northwest, south southeast and east northeast sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  4. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  5. Optimal Inflatable Space Towers of High Height

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2002-01-01

    Author provides theory and computations for building inflatable space towers up to a hundred km in height. These towers can be used for tourism; scientific observation of space, earth's surface, weather, top atmosphere, as well as for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. Towers can be built using present technology. Towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the earth's surface. The transport system for this tower consists a small engine (used only for friction compensation) located at the earth's surface. The tower is separated into sections and has special protection mechanism in case of a damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in subsequent publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  6. Optimal inflatable space towers of high height

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggested, developed theory, and computed some projects of an optimal inflatable space tower of the heights some hundreds km. These towers can be used for tourism, scientist observation of space, Earth surface, Earth weather, Earth top atmosphere, and for radio, TV, communication transmissions. These towers can be used for launching of the space ships and Earth s atellites. The computed projects not expensive, do not request rockets. They need only in thin strong films composed from the artificial fibers and fabricated by a current industry. Towers can be built by a current technology. Towers can be explored (for tourism, communication, etc.) in a time of the construction process and give a profit, self- financing for further constriction. They can permanent increase their height. The tower design does not request a work at the high altitudes. All construction works will be making at the Earth surface. Author suggests the transport system for this tower of a high capability, which does not request a power energy issue. The small engine (only for a friction compensation) is located at the Earth surface. The tower is separated on sections and has a special protection of a case of a damage. It is considered also the problems of security, control, repair, etc. of the suggested towers. The author has also solved additional problems, which appear in these projects and which can look as difficult for the given proposal and current technology. The author is prepared to discuss the problems with serious organizations, which want to research and develop these projects.

  7. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  8. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  9. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  10. Farm Hall: The Play

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  11. 157. Copy of Louis Rosenberg Etching (original in the Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. Copy of Louis Rosenberg Etching (original in the Tower City Development Office) TERMINAL TOWER UNDER CONSTRUCTION, STEEL FRAMEWORK OF THE SOUTHWEST WING, VIEW WEST TO EAST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  12. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  13. APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN FROM BELOW, SHOWING VALVE TOWER TO RIGHT. VIEW FACING NORTH - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower Foot Bridge, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  14. Planar Hall effect based characterization of spin orbital torques in Ta/CoFeB/MgO structures

    NASA Astrophysics Data System (ADS)

    Jamali, Mahdi; Zhao, Zhengyang; DC, Mahendra; Zhang, Delin; Li, Hongshi; Smith, Angeline K.; Wang, Jian-Ping

    2016-04-01

    The spin orbital torques in Ta/CoFeB/MgO structures are experimentally investigated utilizing the planar Hall effect and magnetoresistance measurement. By angular field characterization of the planar Hall resistance at ±current, the differential resistance which is directly related to the spin orbital torques is derived. Upon curve fitting of the analytical formulas over the experimental results, it is found that the anti-damping torque, also known as spin Hall effect, is sizable while a negligible field-like torque is observed. A spin Hall angle of about 18 ± 0.6% is obtained for the Ta layer. Temperature dependent study of the spin orbital torques is also performed. It is found that temperature does not significantly modify the spin Hall angle. By cooling down the sample down to 100 K, the obtained spin Hall angle has a maximum value of about 20.5 ± 0.43%.

  15. View of first bank of circuit towers on Arizona side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of first bank of circuit towers on Arizona side of canyon. Photograph taken from Nevada side of canyon. Left tower supports Circuit 8, second from left tower supports Circuit 9, middle tower supports Circuit 10, second from right tower supports Circuit 11, and right tower supports Circuit 12, view southeast. - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  16. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    SciTech Connect

    Zhang, J. Y.; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Liu, J. L.; Wang, R. M.; Amsellem, E.; Kohn, A.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  17. Ward identities for Hall transport

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-10-01

    We derive quantum field theory Ward identities based on linear area preserving and conformal transformations in 2+1 dimensions. The identities relate Hall viscosities, Hall conductivities and the angular momentum. They apply both for relativistic and non relativistic systems, at zero and at finite temperature. We consider systems with or without translation invariance, and introduce an external magnetic field and viscous drag terms. A special case of the identities yields the well known relation between the Hall conductivity and half the angular momentum density.

  18. Tower Water-Vapor Mixing Ratio

    SciTech Connect

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  19. D0 Detector Assemble Hall Platform Oxygen Deficiency Hazard Analysis

    SciTech Connect

    Clark, D.; Michael, J.; /Fermilab

    1991-01-29

    Liquid cryogens, released and warming to atmosphere conditions, expand to, on average, seven hundred times their liquid volume, and displace vital atmospheric oxygen. An oxygen deficiency hazard analysis assesses the increased risk to personnel in areas containing cryogenic systems. The D0 detector platform area ODH analysis has been approached four different ways using established methods. In each case, the analysis shows the platform area to be ODH class 0 as equipped (with ventilation fans) and requiring no special safety provisions. System designers have provided for a reduced oxygen level detection and warning system as well as emergency procedures to address fault conditions. The Oxygen Deficiency Hazard of any particular area is defined by these parameters: the nature of the accidental supply of inert gas (probability of occurrence and quantity then released), the area's volume, the area's ventilation rate, and to a small degree the elevation of the area. Once this information is assembled, the ODH classification can be determined through standardized calculations. The platform area under the D0 detector contains much of the cryogenic and gas system piping necessary for the D0 experiment. Prior to moving the detector into the Collision Hall, the liquid argon calorimeters are cooled down and operated in the Assembly Hall. The first phase of this operation involved the cooldown of the Central Calorimeter, which was done in February 1991. This engineering note assesses the increased risk to personnel in the platform level to a reduced oxygen atmosphere during the cool down and subsequent operation of the calorimeters in the Assembly Hall. In addition, it outlines the steps taken to warn personnel of an emergency and to direct the subsequent evacuation. This note analyses only the Assembly Hall area. A similar engineering note, EN-332, covers the analysis of the Collision Hall area.

  20. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  1. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  2. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  3. Performance specification for control tower display systems

    NASA Astrophysics Data System (ADS)

    Aleva, Denise L.; Meyer, Frederick M.

    2003-09-01

    Personnel in airport control towers monitor and direct the takeoff of outgoing aircraft, landing of incoming aircraft and all movements of aircraft on the ground. Although the primary source of information for the Local Controller, Assistant Local Controller and the Ground Controller is the real world viewed through the windows of the control tower, electronic displays are also used to provide situation awareness. Due to the criticality of the work to be performed by the controllers and the rather unique environment of the air traffic control tower, display hardware standards, which have been developed for general use, are not directly applicable. The Federal Aviation Administration (FAA) requested assistance of Air Force Research Laboratory Human Effectiveness Directorate in producing a document which can be adopted as a Tower Display Standard usable by display engineers, human factors practitioners and system integrators. Particular emphasis was placed on human factors issues applicable to the control tower environment and controller task demands.

  4. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  5. Multilayer thin film Hall effect device

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N. (Inventor); Sisk, R. Charles (Inventor)

    1994-01-01

    A Hall effect device and a method of obtaining a magnetic field map of a magnetic body with the Hall effect device are presented. The device comprises: (1) a substrate, (2) a first layer having a first Hall coefficient deposited over the substrate, and (3) a second layer having a second Hall coefficient deposited over the first layer, the first and second layers cooperating to create, in the Hall effect device, a third Hall coefficient different from the first and second Hall coefficients. Creation of the third Hall coefficient by cooperation of the first and second layers allows use of materials for the first and second layers that were previously unavailable for Hall effect devices due to their relatively weak Hall coefficient.

  6. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  7. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  8. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  9. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2001-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  10. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  11. Kinetic Space Towers and Launchers

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    The paper discusses a new revolutionary method for access to outer space. A cable stands up vertically and pulls up its payload to space with a maximum force determined by its strength. From the ground the cable is allowed to rise up to the required altitude. After this, one can climb to an altitude by this cable or deliver to altitude a required load. The paper shows this is possible and does not infringe on the law of gravity. The article contains the theory of the method and the computations for four projects for towers that are 4, 75, 225 and 160,000 km in height. The first three projects use conventional artificial fiber widely produced by current industry, while the fourth project uses nanotubes made in scientific laboratories. The paper also shows in a fifth project how this idea can be used to launch a load at high altitude.

  12. Augmented Reality Tower Technology Assessment

    NASA Technical Reports Server (NTRS)

    Reisman, Ronald J.; Brown, David M.

    2009-01-01

    Augmented Reality technology may help improve Air Traffic Control Tower efficiency and safety during low-visibility conditions. This paper presents the assessments of five off-duty controllers who shadow-controlled' with an augmented reality prototype in their own facility. Initial studies indicated unanimous agreement that this technology is potentially beneficial, though the prototype used in the study was not adequate for operational use. Some controllers agreed that augmented reality technology improved situational awareness, had potential to benefit clearance, control, and coordination tasks and duties and could be very useful for acquiring aircraft and weather information, particularly aircraft location, heading, and identification. The strongest objections to the prototype used in this study were directed at aircraft registration errors, unacceptable optical transparency, insufficient display performance in sunlight, inadequate representation of the static environment and insufficient symbology.

  13. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  14. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  15. The Hall Instability of Weakly Ionized, Radially Stratified, Rotating Disks

    NASA Astrophysics Data System (ADS)

    Liverts, Edward; Mond, Michael; Chernin, Arthur D.

    2007-09-01

    Cool weakly ionized gaseous rotating disks are considered by many models to be the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD) and, recently, Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum and of radial density stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluid in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and, thus, perhaps initiates the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period. This family of instabilities is introduced here for the first time in an astrophysical context.

  16. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  17. PHOTOCOPY OF EARLY STEREO VIEW OF CARPENTERS' HALL. Date and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF EARLY STEREO VIEW OF CARPENTERS' HALL. Date and photographer unknown. Original in Carpenters' Hall - Carpenters' Company Hall, 320 Chestnut Street & Carpenters' Court, Philadelphia, Philadelphia County, PA

  18. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  19. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  20. View of second bank of circuit towers on Arizona side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of second bank of circuit towers on Arizona side of canyon. Left tower supports Circuit 8, middle tower supports Circuit 9, and right tower supports Circuit 10, view northwest - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  1. 17. VIEW OF THE TOP OF THE TOWER SHOWING BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE TOP OF THE TOWER SHOWING BASE OF TOWER MAST AND WOOD DECKING ON SIGNAL TOWER ROOF. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  2. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  3. View of Nevada rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from top of power plant. Left tower supports Circuits 7 and 14, middle tower supports Circuit 6, and right tower supports Circuit 5, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  4. A comment on towers for windmills. [structural and economic criteria

    NASA Technical Reports Server (NTRS)

    Budgen, H. P.

    1973-01-01

    Design considerations for windmill tower structures include the effects of normal wind forces on the rotor and on the tower. Circular tabular or masonry towers present a relatively simple aerodynamic solution. Economic factors establish the tubular tower as superior for small and medium sized windmills. Concrete and standard concrete block designs are cheaper than refabricated steel structures that have to be freighted.

  5. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  6. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  7. On the structure and stability of magnetic tower jets

    SciTech Connect

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

    2012-09-05

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

  8. On the structure and stability of magnetic tower jets

    DOE PAGES

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; ...

    2012-09-05

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models,more » the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.« less

  9. Credit BG. View looking northeast down from the tower onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  10. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  11. Hall effect in quantum critical charge-cluster glass

    PubMed Central

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan

    2016-01-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ∼ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  12. Precise quantization of anomalous Hall effect near zero magnetic field

    SciTech Connect

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  13. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  14. GTE_A3B_TOWER

    Atmospheric Science Data Center

    2014-07-23

    ... Campaigns Aerosols Platform:  Ground based tower Shefferville, Canada Instrument:  See Parameters & ... File Format:  ASCII Tools:  FTP Web Access:  Data Pool Parameters:  See Parameters & ...

  15. GTE_A3A_TOWER

    Atmospheric Science Data Center

    2014-07-23

    ... Campaigns Aerosols Platform:  Ground based tower, Bethel Alaska Instrument:  See Parameters & Sensors ... File Format:  ASCII Tools:  FTP Web Access:  Data Pool Parameters:  See Parameters & ...

  16. The Tower of London bomb explosion.

    PubMed Central

    Tucker, K; Lettin, A

    1975-01-01

    After the detonation of a bomb in the Tower of London 37 people were brought to St. Bartholomew's Hospital. The explosion caused numerous severe injuries of a type rarely seen in peacetime. PMID:1148778

  17. Use of Oriented Spray Nozzles to Set the Vapor-Air Flow in Rotary Motion in the Superspray Space of the Evaporative Chimney-Type Tower

    NASA Astrophysics Data System (ADS)

    Dobrego, K. V.; Davydenko, V. F.; Koznacheev, I. A.

    2016-01-01

    The present paper considers the problem of upgrading the thermal efficiency of chimney-type evaporative cooling towers due to the rotary motion of the vapor-air flow in the superspray space. To set the vapor-air flow in rotary motion, we propose to use the momentum of the sprayed water. It has been shown that the existing parameters of spray nozzles permit setting up to 30% of the water flow momentum in translatory motion, which is enough for changing considerably the aerodynamics of the vapor-air flow in the superspray space and improving the operation of the cooling tower. The optimal angle of axial inclination of the spray cone has been estimated. Recommendations are given and problems have been posed for engineering realization of the proposed technologies in a chimney-type cooling tower.

  18. Loss of coolant analysis for the tower shielding reactor 2

    SciTech Connect

    Radcliff, T.D.; Williams, P.T.

    1990-06-01

    The operational limits of the Tower Shielding Reactor-2 (TSR-2) have been revised to account for placing the reactor in a beam shield, which reduces convection cooling during a loss-of-coolant accident (LOCA). A detailed heat transfer analysis was performed to set operating time limits which preclude fuel damage during a LOCA. Since a LOCA is survivable, the pressure boundary need not be safety related, minimizing seismic and inspection requirements. Measurements of reactor component emittance for this analysis revealed that aluminum oxidized in water may have emittance much higher than accepted values, allowing higher operating limits than were originally expected. These limits could be increased further with analytical or hardware improvements. 5 refs., 7 figs.

  19. Update on the Purdue University 2-second Drop Tower

    NASA Astrophysics Data System (ADS)

    Collicott, Steven

    A small drop tower of approximately one second drop duration was built in the School of Aero-nautics and Astronautics at Purdue University beginning in 1998 and operated until summer 2007. This inexpensive tower in an old airplane hanger, was built largely by Yongkang Chen, now a Research Professor at Portland State University in Oregon, USA. In about 7 years of operations, the tower generated sufficient science results for Chen's PhD thesis[1] (summarized in three AIAA Journal papers[2-4]), Fitzpatrick's MS thesis[5], two industry projects for since-canceled advanced rodent habitats for ISS, and one project for NASA Marshall. In addition to the science use, Purdue undergraduate students designed, built, and performed simpler fluids experiments for their own career advancement, including a novel investigation of the impact of imperfect repeatability of initial conditions on a zero-g fluids experiment. The tower was also used for outreach to school children. It is most satisfying that Chen's PhD research in this small tower, and subsequent discussions and interactions, helped Weislogel to propose the two Vane Gap tests in his highly successful Capillary Fluids Experiment (CFE) in the International Space Station in 2006 and 2007[6]. Chen as been involved in the remodeling of these two Vane Gap cylinders for subsequent re-launch to ISS for a second round of experiments expected in 2010 and 2011. In August 2007 the School of Aeronautics and Astronautics at Purdue University moved into the new Neil Armstrong Hall of Engineering and construction on a new 2-second drop tower began. A vertical shaft of nearly 23 meters was designed into the building. An approximately 80 m2 general-use fluids lab is at the top level, and a small access room of approximately 9 m2 is at the bottom. However, construction of the new $57M building created only the space for the science facility, not the science facility itself. The science facility is under construction and this paper presents

  20. Modeling of tower relief dynamics: Part 2

    SciTech Connect

    Cassata, J.R.; Dasgupta, S.; Gandhi, S.L. )

    1993-11-01

    Dynamic simulations of individual towers or systems of distillations columns overcome limitations of steady-state models by rigorously determining dynamic responses. These will lead to a realistic quantification of relief header and flare system load and identify the design-setting relief scenario. Determination of distillation tower relief loads based on steady-state simulations or recognized methods of approximation can lead to over designing relief systems by large margins. This can result in unnecessary capital expenditure for relief headers and flare systems that can significantly alter the economics of a proposed project. Such overly conservative requirements may even cause potentially attractive projects to be unnecessarily canceled. In addition, approximate methods or analyses based on steady-state simulations sometimes do not identify the design-setting relief mode. Part 1 introduced the PRV and tower dynamic models. Different strategies were shown that can simplify these models. These strategies include tower segmentation, tray lumping and component lumping. Two case studies illustrate the advantages of dynamic models. The two studies are a depentanizer tower relief study and a delthanizer tower relief study.

  1. Hall thruster with grooved walls

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ning, Zhongxi; Yu, Daren

    2013-02-01

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings help to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.

  2. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and

  3. Restructuring Residence Hall Programming: Residence Hall Educators with a Curriculum

    ERIC Educational Resources Information Center

    Buckner, Donald R.

    1977-01-01

    Development of residence hall learning environments through comprehensive educational programming has been inhibited by both the generalist nature of live-in professional staff positions and the retention of a student committee-centered programming philosophy. A rationale is developed in this article for a revised staffing pattern and a different…

  4. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  5. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  6. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  7. A Gift for Reading Hall No. 1

    ERIC Educational Resources Information Center

    MacWilliams, Bryon

    2009-01-01

    In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…

  8. Berry curvature and various thermal Hall effects

    NASA Astrophysics Data System (ADS)

    Zhang, Lifa

    2016-10-01

    Applying the approach of semiclassical wave packet dynamics, we study various thermal Hall effects where carriers can be electron, phonon, magnon, etc. A general formula of thermal Hall conductivity is obtained to provide an essential physics for various thermal Hall effects, where the Berry phase effect manifests naturally. All the formulas of electron thermal Hall effect, phonon Hall effect, and magnon Hall effect can be directly reproduced from the general formula. It is also found that the Strěda formula can not be directly applied to the thermal Hall effects, where only the edge magnetization contributes to the Hall effects. Furthermore, we obtain a combined formula for anomalous Hall conductivity, thermal Hall electronic conductivity and thermal Hall conductivity for electron systems, where the Berry curvature is weighted by a different function. Finally, we discuss particle magnetization and its relation to angular momentum of the carrier, change of which could induce a mechanical rotation; and possible experiments for thermal Hall effect associated with a mechanical rotation are also proposed.

  9. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  10. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  11. Overview of Hall D Complex

    SciTech Connect

    Chudakov, Eugene A.

    2016-04-01

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillator hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is

  12. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  13. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  14. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  15. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  16. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  17. Optical Hall effect-model description: tutorial.

    PubMed

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis.

  18. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. The Transient Response of Cooling Ponds

    NASA Astrophysics Data System (ADS)

    Adams, E. Eric

    1982-10-01

    Cooling ponds are a form of closed cycle cooling used for steam-electric power plants. Because of their thermal inertia they provide an advantage over cooling towers in filtering fluctuations in intake temperature, which results in improved plant efficiency. By using linear systems theory, the transient behavior of various types of ponds is analyzed in response to periodic meteorological conditions (characterized by equilibrium temperature) and plant operational conditions (characterized by condenser temperature rise). Frequency response is expressed in terms of dimensionless ratios involving frequency of input forcing, characteristic hydraulic residence and surface response times, and appropriate mixing parameters. Results are also interpreted with respect to physical design variables, such as pond area, depth, degree of stratification, intake submergence, discharge entrance mixing, condenser flow rate, and temperature rise.

  20. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  1. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  2. Engineering photochemical smog through convection towers

    SciTech Connect

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L.; Jacobson, M.Z.; Turco, R.P. |

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  3. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    SciTech Connect

    Du, Rui-Rui

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focus on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under time

  4. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  5. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  6. 27. STATIC TEST TOWER CLOSEUP VIEW OF CONTROL PANEL AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. STATIC TEST TOWER CLOSE-UP VIEW OF CONTROL PANEL AT REAR OF TOWER UNDER SHED ROOF. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  7. 2. Detail of tower foundation with lightning transfer wire, southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Detail of tower foundation with lightning transfer wire, southeast corner - Cold Mountain Fire Lookout Station, Lookout Tower, Krassel District, Frank Church River of No Return Wilderness, Dixie, Idaho County, ID

  8. 1. Keeper's house and light tower, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house and light tower, view north northeast, southwest and southeast sides of house, northwest and southwest sides of tower - Wood Island Light Station, East end of Wood Island, at mouth of Soo River, Biddeford Pool, York County, ME

  9. 2. Light tower and keeper's house, view southwest, north northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower and keeper's house, view southwest, north northeast side of tower, northeast and northwest sides of keeper's house - Wood Island Light Station, East end of Wood Island, at mouth of Soo River, Biddeford Pool, York County, ME

  10. Overall view of tower and adjacent aircraft shelters on flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of tower and adjacent aircraft shelters on flight line. View to east. - Plattsburgh Air Force Base, Security Guard Tower, Florida Street at Aircraft Shelters Area, Plattsburgh, Clinton County, NY

  11. Cell block one and southeast guard tower, looking from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block one and southeast guard tower, looking from the central guard tower, facing southeast (note view also includes cell block ten (left) and cell block nine (right)) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  12. 3. View looking E from top of World Trade Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View looking E from top of World Trade Tower with World Trade Tower parapet in foreground. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  13. TOWER S389, MAGAZINES IN BACKGROUND. Naval Magazine Lualualei, West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER S389, MAGAZINES IN BACKGROUND. - Naval Magazine Lualualei, West Loch Branch, Guard-Watch Tower Type, Near A Avenue between Fourth & Sixth Streets, Ninth Street & D Avenue intersection, & F Avenue, Pearl City, Honolulu County, HI

  14. TOWER 450 WITH POLE. Naval Magazine Lualualei, West Loch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER 450 WITH POLE. - Naval Magazine Lualualei, West Loch Branch, Guard-Watch Tower Type, Near A Avenue between Fourth & Sixth Streets, Ninth Street & D Avenue intersection, & F Avenue, Pearl City, Honolulu County, HI

  15. TOWER S389, WITH POLE. MAGAZINES IN BACKGROUND. Naval Magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER S389, WITH POLE. MAGAZINES IN BACKGROUND. - Naval Magazine Lualualei, West Loch Branch, Guard-Watch Tower Type, Near A Avenue between Fourth & Sixth Streets, Ninth Street & D Avenue intersection, & F Avenue, Pearl City, Honolulu County, HI

  16. S316, GUARD TOWER INTERIOR. Naval Magazine Lualualei, Headquarters Branch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    S316, GUARD TOWER INTERIOR. - Naval Magazine Lualualei, Headquarters Branch, Guard-Watch Tower Type, Off Dent Road & on Kolekole Road near north boundary of installation, Pearl City, Honolulu County, HI

  17. 8. LOOKING EAST FROM TOP OF WATER TOWER: VIEW SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LOOKING EAST FROM TOP OF WATER TOWER: VIEW SHOWS BUILDING #626 AND PORTION OF QUADRANGLE - Fort Sam Houston, San Antonio Depot, Water-Watch Tower, Grayson Street & New Braunfels Avenue, San Antonio, Bexar County, TX

  18. S316, GUARD TOWER ON KOLEKOLE PASS RD. Naval Magazine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    S316, GUARD TOWER ON KOLEKOLE PASS RD. - Naval Magazine Lualualei, Headquarters Branch, Guard-Watch Tower Type, Off Dent Road & on Kolekole Road near north boundary of installation, Pearl City, Honolulu County, HI

  19. 10. View west along carillon tower axis from base of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View west along carillon tower axis from base of tower to gates in western estate wall at SR 141 - A. I. Du Pont Estate, Junction of State Route 141 & Rockland Road, Wilmington, New Castle County, DE

  20. 1. VIEW NORTHWEST, operations building, height finder radar tower, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, operations building, height finder radar tower, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  1. 29. Photocopy of 1921 photograph. Glass Negative Box IX, Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of 1921 photograph. Glass Negative Box IX, Tower Grove, Missouri Botanical Garden. ITALIAN GARDEN AND NEW PALM HOUSE (DEMOLISHED), LOOKING NORTHEAST - Missouri Botanical Garden, 2345 Tower Grove Avenue, Saint Louis, Independent City, MO

  2. 1. Keeper's house and light tower, view northwest, south and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house and light tower, view northwest, south and east sides of keeper's house, southwest and southeast sides of light tower - Curtis Island Light Station, Curtis Island, at entrance to Camden Harbor, Camden, Knox County, ME

  3. 1. Keeper's house and light tower, view north, south and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house and light tower, view north, south and east sides of keeper's house, southwest and southeast sides of tower - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  4. 2. Light tower, keeper's house and shed, view south southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower, keeper's house and shed, view south southwest, northwest and northeast sides of tower, east and north sides of keeper's house and shed - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  5. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  6. View of the campanile and southeast tower looking from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the campanile and southeast tower looking from the south tower roof (duplicate of HABS No. DC-141-40) - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) AND 24. NOTE “LAZY JACK” TEMPERATURE COMPENSATOR IN FOREGROUND. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  8. 4. VIEW, LOOKING SOUTHEAST, SHOWING NORTHWEST ELEVATION OF TOWER ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW, LOOKING SOUTHEAST, SHOWING NORTHWEST ELEVATION OF TOWER ND SIGNAL BRIDGE No. 6 AND DWARF SIGNAL IN FOREGROUND - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  9. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  10. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. View of EPA Farm metal weather tower, facing east, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of EPA Farm metal weather tower, facing east, showing thirty-acre irrigated field - Nevada Test Site, Environmental Protection Agency Farm, Weather Tower, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  12. A simple wrist arthroscopy tower: the wrist triangle.

    PubMed

    Sraj, Shafic A

    2013-12-01

    Several wrist arthroscopy towers are commercially available. In this report, the use of a triangular holder as a cheap, mobile, radiolucent tower for wrist arthroscopy is described, which can be useful in a cost-conscious surgical practice.

  13. 3. General view showing north elevation of Shell Interlocking Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view showing north elevation of Shell Interlocking Tower and electric relay station. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  14. APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    APPROACH BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE, AS SEEN FROM ENTRY. VIEW FACING NORTHWEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower Foot Bridge, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  15. Cooling technique

    DOEpatents

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  16. Low-cost Triangular Lattice Towers for Small Wind Turbines

    NASA Astrophysics Data System (ADS)

    Adhikari, Ram Chandra

    This thesis focuses on the study of low-cost steel and bamboo triangular lattice towers for small wind turbines. The core objective is to determine the material properties of bamboo and assess the feasibility of bamboo towers. Using the experimentally determined buckling resistance, elastic modulus, and Poisson's ratio, a 12 m high triangular lattice tower for a 500W wind turbine has been modeled as a tripod to formulate the analytical solutions for the stresses and tower deflections, which enables design of the tower based on buckling strength of tower legs. The tripod formulation combines the imposed loads, the base distance between the legs and tower height, and cross-sectional dimensions of the tower legs. The tripod model was used as a reference for the initial design of the bamboo tower and extended to finite element analysis. A 12 m high steel lattice tower was also designed for the same turbine to serve as a comparison to the bamboo tower. The primary result of this work indicates that bamboo is a valid structural material. The commercial software package ANSYS APDL was used to carry out the tower analysis, evaluate the validity of the tripod model, and extend the analysis for the tower design. For this purpose, a 12 m high steel lattice tower for a 500 W wind turbine was examined. Comparison of finite element analysis and analytical solution has shown that tripod model can be accurately used in the design of lattice towers. The tower designs were based on the loads and safety requirements of international standard for small wind turbine safety, IEC 61400-2. For connecting the bamboo sections in the lattice tower, a steel-bamboo adhesive joint combined with conventional lashing has been proposed. Also, considering the low durability of bamboo, periodic replacement of tower members has been proposed. The result of this study has established that bamboo could be used to construct cost-effective and lightweight lattice towers for wind turbines of 500 Watt

  17. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  18. Hall sensors for extreme temperatures.

    PubMed

    Jankowski, Jakub; El-Ahmar, Semir; Oszwaldowski, Maciej

    2011-01-01

    We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from -270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  19. A model for radionuclide transport in the Cooling Water System

    SciTech Connect

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  20. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, {le}{approximately}{ovr J} {times} {approximately}{ovr B}{ge}, has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  1. The fluctuation induced Hall effect

    SciTech Connect

    Shen, W.; Prager, S.C.

    1993-02-01

    The fluctuation induced Hall term, [le][approximately][ovr J] [times] [approximately][ovr B][ge], has been measured in the MST reversed field pinch. The term is of interest as a possible source of current self-generation (dynamo). It is found to be non-negligible, but small in that it can account for less than 25% of the dynamo driven current.

  2. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  3. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Łydżba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  4. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  5. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  6. 8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER S-111 FACING NORTHEAST. BUILDING 1 AND ANTENNA TOWER S-110 IN THE BACKGROUND. - U.S. Naval Base, Pearl Harbor, Lualualei Radio Transmitter, Edison & Tower Drives, Pearl City, Honolulu County, HI

  7. 38. View from top of Brooklyn Tower showing man walking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. View from top of Brooklyn Tower showing man walking up main cable, stay cables radiating from top of tower and tower cornice. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  8. 3. View from former light tower to Cape Elizabeth Light ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View from former light tower to Cape Elizabeth Light Tower, view northeast, southwest side of Cape Elizabeth Tower - Cape Elizabeth Light Station, Near Two Lights State Park at end of Two Lights Road, off State Highway 77, Cape Elizabeth, Cumberland County, ME

  9. 78 FR 17183 - Information Collection: Grey Towers Visitor Comment Card

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Forest Service Information Collection: Grey Towers Visitor Comment Card AGENCY: Forest Service, USDA... collection 0596- 0222, ``Grey Towers Visitor Comment Card'' with 0596-0226, ``Forest Service Generic... addressed to Nicole Bernarsky, USDA Forest Service, Grey Towers National Historic Site, P.O. Box...

  10. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWERS THREE AND FOUR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWERS THREE AND FOUR WITH TOWERS FIVE AND SIX IN THE DISTANCE, LOOKING NORTHEAST. THE TWO INTACT CABLES RUNNING ALONG TOP OF THE TOWERS ARE FIXED. WHILE THE MOVING CABLE IS LYING SLACK ON THE GROUND. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. 6. Detail of northeast corner of Shell Interlocking Tower, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of northeast corner of Shell Interlocking Tower, showing ornamental east concrete beltcourse and tower shield with bronze numerals. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  12. CONCRETE PAD AND SUSPENSION BRIDGE TOWERS FOR CABLES FORMERLY SUPPORTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONCRETE PAD AND SUSPENSION BRIDGE TOWERS FOR CABLES FORMERLY SUPPORTING THE SUSPENSION BRIDGE PORTION OF VALVE TOWER FOOT BRIDGE. VIEW FACING NORTHEAST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower Foot Bridge, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  13. Troubleshooting crude vacuum tower overhead ejector systems

    SciTech Connect

    Lines, J.R.; Frens, L.L. )

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, and process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.

  14. Taking the Plunge off the Ivory Tower.

    ERIC Educational Resources Information Center

    Mauzerall, Jorgette

    1997-01-01

    Relates the experiences of a white academic teaching in a black rural state college--a plunge into the world of black experience which shocked the academic. States that everything was different--students' names, their manner of dress, their reaction to the O.J. Simpson verdict. Finds that leaving the ivory tower was not easy, but the job exceeded…

  15. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  16. 29 CFR 1926.1435 - Tower cranes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or under the tower, jib, or rotating portion of the crane during erecting, climbing and dismantling... structural supports (including both the portions of the structure used for support and the means of...) Loss of backward stability. Backward stability before swinging self erecting cranes or cranes...

  17. The Tower of Hanoi and Inductive Logic

    ERIC Educational Resources Information Center

    Merrotsy, Peter

    2015-01-01

    In the "Australian Curriculum," the concept of mathematical induction is first met in the senior secondary subject Specialist Mathematics. This article details an example, the Tower of Hanoi problem, which provides an enactive introduction to the inductive process before moving to more abstract and cognitively demanding representations.…

  18. The Legacy of the Texas Tower Sniper

    ERIC Educational Resources Information Center

    Lavergne, Gary

    2007-01-01

    In this article, the author relates the incident that happened at the University of Texas to the tragedy that took place at Virginia Tech. On August 1, 1966, Charles Joseph Whitman ascended the University of Texas Tower, in Austin, and in 96 minutes fired 150 high-powered rounds of ammunition down upon an unsuspecting university family. The…

  19. Balsa Tower Walls Brave "Big Buster"

    ERIC Educational Resources Information Center

    Granlund, George

    2008-01-01

    Like many technology teachers, the author, a technology education teacher at Arthur Hill High School in Saginaw, Michigan, tries to stretch his budget by "milking" each student activity for maximum benefit. In the technology department, they use balsa wood towers to teach the basics of structural engineering. To get the most from their materials,…

  20. 29 CFR 1926.1435 - Tower cranes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Deadman control or forced neutral return control (hand) levers. (ix) Emergency stop switch at the operator... moment overloading. Temporary alternative measures: A radius indicating device must be used (if the tower... overloading, including each individual gear ratio if equipped with a multiple speed hoist...

  1. The Tower and Glass Marbles Problem

    ERIC Educational Resources Information Center

    Denman, Richard T.; Hailey, David; Rothenberg, Michael

    2010-01-01

    The Catseye Marble company tests the strength of its marbles by dropping them from various levels of their office tower, to find the highest floor from which a marble will not break. We find the smallest number of drops required and from which floor each drop should be made. We also find out how these answers change if a restriction is placed on…

  2. Fort Hall air emissions study, Fort Hall Indian Reservation, Fort Hall, Idaho

    SciTech Connect

    Metcalf, S.W.; Sonnenfeld, N.L.; Rolka, D.L.; Kaye, W.E.

    1995-11-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) conducted a cross-sectional health study at the Fort Hall Indian Reservation in Idaho to investigate concerns about the health effects on reservation residents that might be attributed to two phosphate-processing plants located near the reservation`s southern border. In addition to increased particulates, air emissions from these plants included phosphorus pentoxide, cadmium, chromium, fluoride, uranium, and its daughter radionuclides. A total of 515 participants -- 229 from Fort Hall and 286 from a comparison group at the Duck Valley Indian Reservation -- were interviewed in person by trained American Indian interviewers. Approximately 100 residents of each reservation performed pulmonary function tests and provided urine specimens that were analyzed for cadmium, chromium, fluoride, and several renal biomarkers.

  3. Tall tower or mountain top measurements?

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Eugster, Werner; Oney, Brian; Brunner, Dominik; Leuenberger, Markus; Schanda, Rüdiger; Henne, Stephan; Buchmann, Nina

    2014-05-01

    Resolving the regional transport and distribution of greenhouse gases in the troposphere is a key topic that challenges both modelers and experimentalists. A dense network of measurement stations would be required, in particular including measurements at high elevation to better represent the entire lower troposphere, and not only small-scale local conditions in the near-surface atmosphere. While this can be achieved by tall towers, also mountain top stations (e.g. Schauinsland, Brocken) and other stations at high elevation (e.g., Mouna Loa, Jungfraujoch) are often appropriate, due to their extended concentration footprint. However, especially over complex, mountainous terrain, the transport of atmospheric gases and their spatio-temporal distribution is difficult to predict due to the development of thermally induced local wind patterns and boundary layer processes. Therefore, the main goal of our study is to test to what extend boundary layer processes at the surface and local wind patterns close to the ground at a mountain top site influence the ambient greenhouse gas patterns compared to measurements taken at a similar altitude but at a tall tower site. To this end we use measurements from the Zugerberg mountain top station, located at a pre-Alpine mountain ridge (987 m a.s.l., 4 m above ground) exposed to the prevailing synoptic winds in Switzerland, and compare these measurements with a neighboring tall tower site (Beromünster radio broadcast tower with its top at 1014 m a.s.l., 217 m above local ground level, and ≡500 m above the Swiss Plateau). The Beromünster tall tower is located at a distance of only 30 km from the mountain top station as the bird flies, and hence a direct comparison minimizes confounding factors that are not related to the tall tower vs. mountain top position of the measurements. Both stations are part of the CarboCount CH greenhouse gas observation network (http://www.carbocount.ch) initiated for long-term monitoring and modeling of

  4. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  5. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  6. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  7. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator.

    PubMed

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-18

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  8. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    SciTech Connect

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  9. Scanning hall probe microscopy of AC losses in YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael; Daniels, George; Larbalestier, David; Gibbons, Brady; Matias, Vladimir; Moler, Kathryn; Beasley, Malcolm

    2005-03-01

    Magnetic imaging of current-induced vortex movement in superconducting films yields detailed information about dissipation and the path of an applied current. In our large-area scanning hall probe microscope, a flow cryostat cools a sample while a micro-Hall probe is rastered near its surface using a 3-axis stepper-motor-based stage with submicron resolution and centimeter scan range. Hall probe time traces taken at each point are assembled into movies of the flux penetration as a function of time over a cycle of AC sample current. YBCO films grown on several substrates are examined, including bicrystal substrates that induce a single grain boundary across the current path and metal tapes that give rise to a grain boundary network. An extended Bean model allows us to extract pinning forces and critical currents of the intragrain film and its grain boundaries.

  10. DEVELOPMENT OF IMPROVED HALL EFFECT SENSORS.

    DTIC Science & Technology

    HALL EFFECT , MAGNETOMETERS, GAIN, SENSITIVITY, MAGNETIC FIELDS, DETECTION, ELECTROMAGNETIC PROBES, WEIGHT, VOLUME, BATTERY COMPONENTS, INDIUM ALLOYS, ANTIMONY ALLOYS, FERRITES, MANPORTABLE EQUIPMENT.

  11. AN A. C. HALL EFFECT GAUSSMETER,

    DTIC Science & Technology

    MEASURING INSTRUMENTS, MEASURING INSTRUMENTS, HALL EFFECT , MAGNETOMETERS, MEASUREMENT, GENERATORS, CIRCUITS, ALTERNATING CURRENT, GERMANIUM, SEMICONDUCTOR DIODES, GALVANOMETERS, VOLTAGE, DIRECT CURRENT, MAGNETIC FIELDS.

  12. Listening to the acoustics in concert halls

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.; Griesinger, David

    2001-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  13. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  14. Listening to the acoustics in concert halls

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.; Griesinger, David

    2004-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  15. Cooling Atomic Gases With Disorder.

    PubMed

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G; Scalettar, Richard T

    2015-12-11

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  16. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  17. Hall-effect arc protector

    DOEpatents

    Rankin, Richard A.; Kotter, Dale K.

    1997-01-01

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

  18. Hall-effect arc protector

    DOEpatents

    Rankin, R.A.; Kotter, D.K.

    1997-05-13

    The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

  19. Town Hall with Secretary Moniz

    SciTech Connect

    Energy Secretary Ernest Moniz; Deputy Secretary of Energy Daniel Poneman

    2013-07-18

    In a town hall meeting with Department staff, Energy Secretary Ernest Moniz spoke about his plans for a reorganization of the Energy Department’s management structure. The plans will help better achieve the Department’s key priorities and those of the President, including implementing the President’s Climate Action Plan, “all of the above” energy strategy and nuclear security agenda. After his remarks, Moniz, joined by Deputy Secretary Dan Poneman, took questions from the audience in the Forrestal Auditorium as well as email questions from other Department locations.

  20. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.