Sample records for hall current plasma

  1. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  2. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  3. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  4. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  5. Impact of the Hall effect on high-energy-density plasma jets.

    PubMed

    Gourdain, P-A; Seyler, C E

    2013-01-04

    Using a 1-MA, 100 ns-rise-time pulsed power generator, radial foil configurations can produce strongly collimated plasma jets. The resulting jets have electron densities on the order of 10(20) cm(-3), temperatures above 50 eV and plasma velocities on the order of 100 km/s, giving Reynolds numbers of the order of 10(3), magnetic Reynolds and Péclet numbers on the order of 1. While Hall physics does not dominate jet dynamics due to the large particle density and flow inside, it strongly impacts flows in the jet periphery where plasma density is low. As a result, Hall physics affects indirectly the geometrical shape of the jet and its density profile. The comparison between experiments and numerical simulations demonstrates that the Hall term enhances the jet density when the plasma current flows away from the jet compared to the case where the plasma current flows towards it.

  6. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  7. Mode transition of a Hall thruster discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro, E-mail: kenhara@umich.edu; Sekerak, Michael J., E-mail: msekerak@umich.edu; Boyd, Iain D.

    2014-05-28

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulationmore » that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.« less

  8. Instabilities and transport in Hall plasmas with ExB drift

    NASA Astrophysics Data System (ADS)

    Smolyakov, Andrei

    2016-10-01

    Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.

  9. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  10. Experimental Investigation of a Hall-Current Accelerator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Plank, G. M.

    1983-01-01

    The Hall-current accelerator is being investigated for use in the 1000-2000 sec. range of specific impulse. Three models of this thruster were tested. The first two models had three permanent magnets to supply the magnetic field and the third model had six magnets to supply the field. The third model thus had approximately twice the magnetic field of the first two. The first and second models differ only in the shape of the magnetic field. All other factors remained the same for the three models except for the anode-cathode distance, which was changed to allow for the three thrusters to have the same magnetic field integral between the anode and the cathode. These Hall thrusters were tested to determine the plasma properties, the beam characteristics, and the thruster characteristics. The thruster operated in three modes: (1) main cathode only, (2) main cathode with neutralizer cathode, and (3) neutralizer cathode only. The plasma properties were measured along an axial line, 1 mm inside the cathode radius, at a distance of 0.2 to 6.2 cm from the anode. Results show that the current used to heat the cathode produced nonuniformities in the magnetic field, hence also in the plasma properties. In a Hall thruster this general design appears to provide the most thrust when operated at a magnetic field less than the maximum value studied.

  11. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  12. Diffusion in plasma: The Hall effect, compositional waves, and chemical spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urpin, V., E-mail: Vadim.urpin@uv.es

    2017-03-15

    Diffusion caused by a combined influence of the electric current and Hall effect is considered, and it is argued that such diffusion can form inhomogeneities of a chemical composition in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type of waves in which the impurity number density oscillates alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure.

  13. Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters

    NASA Astrophysics Data System (ADS)

    Singh, Sukhmander

    2017-10-01

    There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.

  14. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jankovsky, Robert S.

    2003-01-01

    Recent studies of xenon Hall thrusters have shown peak efficiencies at specific impulses of less than 3000 s. This was a consequence of modern Hall thruster magnetic field topographies, which have been optimized for 300 V discharges. On-going research at the NASA Glenn Research Center is investigating this behavior and methods to enhance thruster performance. To conduct these studies, a laboratory model Hall thruster that uses a pair of trim coils to tailor the magnetic field topography for high specific impulse operation has been developed. The thruster-the NASA-173Mv2 was tested to determine how current density and magnetic field topography affect performance, divergence, and plasma oscillations at voltages up to 1000 V. Test results showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. At 1000 V, 10 milligrams per second the total specific impulse was 3390 s and the total efficiency was 60.8%. Plume divergence decreased at 400-1000 V, but increased at 300-400 V as the result of plasma oscillations. The dominant oscillation frequency steadily increased with voltage, from 14.5 kHz at 300 V, to 22 kHz at 1000 V. An additional oscillatory mode in the 80-90 kHz frequency range began to appear above 500 V. The use of trim coils to modify the magnetic field improved performance while decreasing plume divergence and the frequency and magnitude of plasma oscillations.

  15. Numerical Study of Current Driven Instabilities and Anomalous Electron Transport in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan

    Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.

  16. Cross-field diffusion in Hall thrusters and other plasma thrusters

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.

    2012-10-01

    Understanding and quantifying electron transport perpendicular to the magnetic field is a challenge in many low temperature plasma applications. Hall effect thrusters (HETs) provide an excellent example of cross-field transport. The HET is a very successful concept that can be considered both as a gridless ion source and an electromagnetic thruster. In HETs, the electric field E accelerating the ions is a consequence of the Lorentz force due to an external magnetic field B acting on the ExB Hall electron current. An essential aspect of HETs is that the ExB drift is closed, i.e. is in the azimuthal direction of a cylindrical channel. In the first part of this presentation we will discuss the physics of cross-field electron transport in HETs, and the current understanding (or non-understanding) of the possible role of turbulence and wall collisions on cross-field diffusion. We will also briefly comment on alternative designs of ion sources based on the same principles as the conventional HET (Anode Layer Thruster, Diverging Cusp Field Thrusters, End-Hall ion sources). In a second part of the presentation we show that the Lorentz force acting on diamagnetic currents (associated with the ∇PexB term in the electron momentum equation) can also provide thrust. This is the case for example in helicon thrusters where the plasma expands in a magnetic nozzle. We will report and discuss recent work on helicon thrusters and other devices where the diamagnetic current is dominant (with some examples where the ∇PexB current is not closed and is directed toward a wall!).

  17. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  18. Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  19. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  20. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  1. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  2. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    DTIC Science & Technology

    2014-03-06

    Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse

  3. Non-invasive Hall current distribution measurement in a Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Mullins, Carl R.; Farnell, Casey C.; Farnell, Cody C.; Martinez, Rafael A.; Liu, David; Branam, Richard D.; Williams, John D.

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  4. Non-invasive Hall current distribution measurement in a Hall effect thruster.

    PubMed

    Mullins, Carl R; Farnell, Casey C; Farnell, Cody C; Martinez, Rafael A; Liu, David; Branam, Richard D; Williams, John D

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  5. Effects of wall electrodes on Hall effect thruster plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langendorf, S., E-mail: samuel.langendorf@gatech.edu; Walker, M., E-mail: mitchell.walker@ae.gatech.edu; High-Power Electric Propulsion Laboratory, 625 Lambert St NW, Atlanta, Georgia 30318

    2015-02-15

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potentialmore » rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.« less

  6. Performance Potential of Plasma Thrusters: Arcjet and Hall Thruster Modeling

    DTIC Science & Technology

    1993-09-17

    FUNDING NUMBERS Performance Potential of Plasma Thrusters: \\ Arcjet and Hall Thruster Modeling FQ 8671-9300908 S ,,G-AFOSR-91-0256 6. AUTHOR(S) Manuel...models for the internal physics and the performance of hydrogen arcjets and Hall thrusters , respectively. These are thought to represent the state of...work. 93-24268 14. SUBJECT TERMS IS. NUMBER OF PAGES Electric Propulsion, Arcjets, Hall Thrusters 15 16. PRICE COOE 17. SECURITY CLASSIFICATION I18

  7. Effect of Time Dependent Bending of Current Sheets in Response to Generation of Plasma Jets and Reverse Currents

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse

  8. Simulations of Hall reconnection in partially ionized plasmas

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  9. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Zubair, T.

    In this article, we developed a computer code of Galerikan Finite Element method (GFEM) for three dimensional flow equations of nano-plasma fluid (blood) in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm's law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8 . Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood) are influenced significantly by the inclusion of nano-particles of Copper (Cu) and Silver (Ag). Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid). Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field.

  10. Intrinsic superspin Hall current

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  11. Improving Hall Thruster Plume Simulation through Refined Characterization of Near-field Plasma Properties

    NASA Astrophysics Data System (ADS)

    Huismann, Tyler D.

    Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous

  12. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  13. Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.

    1998-11-01

    Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.

  14. Hall effect and fine structures in magnetic reconnection with high plasma {beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, S.P.; Yang, H.A.; Wang, X.G.

    2005-04-15

    Magnetic reconnection with various plasma {beta} (the ratio of plasma pressure to the magnetic pressure) is studied numerically using a 2.5 dimensional Hall magnetohydrodynamics (MHD) code developed from a multistep implicit scheme. The initial state of the Hall MHD simulation is an equilibrium Harris sheet with L{sub c}=0.5d{sub i} (where L{sub c} is the half-width of the equilibrium current layer and d{sub i} is the ion inertial length) and a zero guide field (i.e., B{sub y0}=0 at t=0). Driven by a constant boundary inflow a quasisteady fast reconnection occurs in the plasma with a low uniform resistivity. The out-of-plane magneticmore » field component B{sub y} is then spontaneously generated and its quadrupolar structure is shown around the X point. It is demonstrated by the comparing studies that the reconnection dynamics is controlled by the Hall effect and the effect of scalar electron pressure gradient is negligible in the generalized Ohm's law. It is also found that the openness of the magnetic separatrix angle and associated quadrupolar B{sub y} structure is enlarged as {beta} increases. When {beta}>2.0 fine structures of B{sub y} contours with reversed sign emerge. The numerical results indicate that the variations in electron velocity V{sub e} are greater than those in ion velocity V{sub i} and the decoupling of electron and ion occurs in larger scale lengths than d{sub i} as {beta} increases. Clearly, the reserve current, which is associated with the relative motion between electrons and ions, generates the fine structures of B{sub y} contours in the outflow region. Then the corresponding profile of B{sub y} component exhibits a static whistler wave signature. Enhanced wave activities observed during a Cluster crossing of the high-{beta} exterior cusp region [Y. Khotyaintsev, A. Vaivads, Y. Ogawa, B. Popielawska, M. Andre, S. Buchert, P. Decreau, B. Lavraud, and H. Reme, Ann. Geophys. 22, 2403 (2004)] might be related to the Hall effects of magnetic

  15. Rotating plasma structures in the cross-field discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin

    2016-09-01

    Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.

  16. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  17. An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.

    2016-12-01

    Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.

  18. Interior and Exterior Laser-Induced Fluorescence and Plasma Measurements within a Hall Thruster (Postprint)

    DTIC Science & Technology

    2002-02-01

    ionized xenon in the plume and interior portions of the acceleration channel of a Hall thruster plasma discharge operating at powers ranging from 250...performed in the interior of the Hall thruster with resonance fluorescence collection. Optical access to the interior of the Hall thruster is

  19. Development Status of the Helicon Hall Thruster

    DTIC Science & Technology

    2009-09-15

    Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low

  20. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  1. Effect of multiply charged ions on the performance and beam characteristics in annular and cylindrical type Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2014-10-06

    Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.

  2. Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Sim, Lik; Zueco, J.; Bhargava, R.

    2010-02-01

    A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the x-z plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the x-z plane). The Navier-Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u‧) and secondary velocity (v‧) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845-856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous

  3. Influence of the magnetic field configuration on the plasma flow in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Andreussi, T.; Giannetti, V.; Leporini, A.; Saravia, M. M.; Andrenucci, M.

    2018-01-01

    In Hall propulsion, the thrust is provided by the acceleration of ions in a plasma generated in a cross-field configuration. Standard thruster configurations have annular channels with an almost radial magnetic field at the channel exit. A potential difference is imposed in the axial direction and the intensity of the magnetic field is calibrated in order to hinder the electron motion, while leaving the ions non-magnetised. Magnetic field lines can be assumed, as a first approximation, as lines of constant electron temperature and of thermalized potential. In typical thruster configurations, the discharge occurs inside a ceramic channel and, due to plasma-wall interactions, the electron temperature is typically low, less than few tens of eV. Hence, the magnetic field lines can be effectively used to tailor the distribution of the electrostatic potential. However, the erosion of the ceramic walls caused by the ion bombardment represents the main limiting factor of the thruster lifetime and new thruster configurations are currently under development. For these configurations, classical first order models of the plasma dynamics fail to grasp the influence of the magnetic topology on the plasma flow. In the present paper, a novel approach to investigate the correlation between magnetic field topology and thruster performance is presented. Due to the anisotropy induced by the magnetic field, the gradients of the plasma properties are assumed to be mainly in the direction orthogonal to the local magnetic field, thus enabling a quasi-one-dimensional description in magnetic coordinates. Theoretical and experimental investigations performed on a 5 kW class Hall thruster with different magnetic field configurations are then presented and discussed.

  4. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  5. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  6. The rotation of discs around neutron stars: dependence on the Hall diffusion

    NASA Astrophysics Data System (ADS)

    Faghei, Kazem; Salehi, Fatemeh

    2018-01-01

    In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.

  7. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  8. Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability

    NASA Astrophysics Data System (ADS)

    Lim, Youbong; Choe, Wonho; Mazouffre, Stéphane; Park, Jae Sun; Kim, Holak; Seon, Jongho; Garrigues, L.

    2017-03-01

    High-energy tail formation in an ion energy distribution function (IEDF) is explained in a Hall thruster plasma with the stationary crossed electric and magnetic fields whose discharge current is oscillated at the ion transit-time scale with a frequency of 360 kHz. Among ions in different charge states, singly charged Xe ions (Xe+) have an IEDF that is significantly broadened and shifted toward the high-energy side, which contributes to tail formation in the entire IEDF. Analytical and numerical investigations confirm that the IEDF tail is due to nonlinear ion dynamics in the ion transit-time oscillation.

  9. Plasma Instabilities in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-10-01

    We describe theoretically waves in the channel of a Hall thruster, propagating transversely to the accelerated ion flow. In slab geometry, a two-fluid hydrodynamic theory with collisional terms shows that azimuthal lower-hybrid and Alfven waves will be unstable due to electron collisions in the presence of ExB drift. In addition, plasma inhomogeneities can drive other instabilities that can be analyzed through a dispersion relation in the well-known form of the Rayleigh equation. An instability condition is derived for azimuthal electrostatic waves, synchronized with the electron drift flow. Propagation with nonzero wavenumber along the magnetic field is also studied. Thus, several different aspects of wave propagation during thruster operation are explored. These waves may be important to understand and possibly to control in view of the possible influence of thruster electromagnetic effects on communication signal propagation.

  10. Field-aligned current and auroral Hall current characteristics derived from the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Wang, Hui; Hermann, Luehr

    2017-04-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types simultaneously and for both hemispheres. The FAC distribution, derived from the Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their direction depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The most prominent auroral electrojets are found to be closely controlled by the solar wind input. But there is no dependence on the IMF By orientation. The eastward electrojet is about twice as strong in summer as in winter. Conversely, the westward electrojet shows less dependence on season. Part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. There is a clear channeling of return currents over the polar cap. Depending on IMF By orientation most of the current is flowing either on the dawn or dusk side. The direction of Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. But largest differences between summer and winter seasons are found for northward IMF Bz. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but shows only little response to the IMF By polarity.

  11. Another Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Thibodeau, Phillip E.; Sullender, Craig C.

    1993-01-01

    Lightweight, low-power circuit provides noncontact measurement of alternating or direct current of many ampheres in main conductor. Advantages of circuit over other nulling Hall-effect current-measuring circuits is stability and accuracy increased by putting both analog-to-digital and digital-to-analog converters in nulling feedback loop. Converters and rest of circuit designed for operation at sampling rate of 100 kHz, but rate changed to alter time or frequency response of circuit.

  12. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  13. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less

  14. Current flow instability and nonlinear structures in dissipative two-fluid plasmas

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.

    2018-01-01

    The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.

  15. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  16. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  17. HEDSA Town Hall Meeting

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros

    2017-10-01

    HEDSA will hold its Town Hall meeting on Wednesday October 25 at 12:30pm in the Wisconsin Center. The new steering committee members and HEDSA leadership will be announced. A report will be given on 2017 HEDSA activities. Program Managers from Federal Funding Agencies such as OFES, NNSA, AFOSR and NSF will provide updates on the state of sponsored research in HED plasmas, and to engage the community in an open dialogue. The HEDSA Town Hall is a ``bring your own lunch'' meeting. Current members of HEDSA and all graduate students are strongly encouraged to attend. To join HEDSA please visit HEDSA.org

  18. The Kelvin-Helmhotz instability and thin current sheets in the MHD and Hall MHD formalisms

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D.

    2005-12-01

    Sheared magnetic fields and sheared flows co-exist in many space, astrophysical, and laboratory plasmas. In such situations the evolution of the Kelvin-Helmhotz instability (KHI) can have a significant impact on the topology of the magnetic field. In particular, it can result in current sheet thinning [2,3], which may allow Hall scales to become relevant and result in fast reconnection rates [1]. There are a number of interesting applications of this phenomena in the magnetosphere. We will discuss some of our recent work in this area [1,2,3] with special focus on Hall MHD effects on the KHI [1]. As an example, we will discuss the parameter regime in which the 2-D parallel KHI can evolve for sub-Alfvenic flows [1]. This may have important implication for dayside reconnection in the magnetopause. [1] Chacon, Knoll, and Finn, Phys. Lett. A, vol. 308, 2003 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Brackbill and Knoll, PRL, vol. 86, 2001

  19. Numerical study of influence of hydrogen backflow on krypton Hall effect thruster plasma focusing

    NASA Astrophysics Data System (ADS)

    Yan, Shilin; Ding, Yongjie; Wei, Liqiu; Hu, Yanlin; Li, Jie; Ning, Zhongxi; Yu, Daren

    2017-03-01

    The influence of backflow hydrogen on plasma plume focusing of a krypton Hall effect thruster is studied via a numerical simulation method. Theoretical analysis indicates that hydrogen participates in the plasma discharge process, changes the potential and ionization distribution in the thruster discharge cavity, and finally affects the plume focusing within a vacuum vessel.

  20. Modeling an anode layer Hall thruster and its plume

    NASA Astrophysics Data System (ADS)

    Choi, Yongjun

    This thesis consists of two parts: a study of the D55 Hall thruster channel using a hydrodynamic model; and particle simulations of plasma plume flow from the D55 Hall thruster. The first part of this thesis investigates the xenon plasma properties within the D55 thruster channel using a hydrodynamic model. The discharge voltage (V) and current (I) characteristic of the D55 Hall thruster are studied. The hydrodynamic model fails to accurately predict the V-I characteristics. This analysis shows that the model needs to be improved. Also, the hydrodynamic model is used to simulate the plasma flow within the D55 Hall thruster. This analysis is performed to investigate the plasma properties of the channel exit. It is found that the hydrodynamic model is very sensitive to initial conditions, and fails to simulate the complete domain of the D55 Hall thruster. However, the model successfully calculates the channel domain of the D55 Hall thruster. The results show that, at the thruster exit, the plasma density has a maximum value while the ion velocity has a minimum at the channel center. Also, the results show that the flow angle varies almost linearly across the exit plane and increases from the center to the walls. Finally, the hydrodynamic model results are used to estimate the plasma properties at the thruster nozzle exit. The second part of the thesis presents two dimensional axisymmetric simulations of xenon plasma plume flow fields from the D55 anode layer Hall thruster. A hybrid particle-fluid method is used for the simulations. The magnetic field near the Hall thruster exit is included in the calculation. The plasma properties obtained from the hydrodynamic model are used to determine boundary conditions for the simulations. In these simulations, the Boltzmann model and a detailed fluid model are used to compute the electron properties, the direct simulation Monte Carlo method models the collisions of heavy particles, and the Particle-In-Cell method models the

  1. Tutorial: Physics and modeling of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Boeuf, Jean-Pierre

    2017-01-01

    Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.

  2. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  3. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    NASA Astrophysics Data System (ADS)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  4. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  5. Experimental and Numerical Examination of a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2007-07-31

    Hall thruster has been characterized through measurements from various plasma electrostatic probes. Ion current flux, plasma potential, plasma density, and electron temperatures were measured from the near-field plume to 60 cm downstream of the exit plane. These experimentally derived measurements were compared to numerical simulations run with the plasma plume code DRACO. A major goal of this study was to determine the fidelity of the DRACO numerical simulation. The effect of background pressure on the thruster plume was also examined using ion current flux measurements

  6. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  7. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  8. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    DTIC Science & Technology

    2014-06-01

    Hall thruster , a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper will focus on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of

  9. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  10. A programmable quantum current standard from the Josephson and the quantum Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, W., E-mail: wilfrid.poirier@lne.fr; Lafont, F.; Djordjevic, S.

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  11. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.

  12. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  13. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  14. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor); Jankovsky, Robert S. (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  15. Low operational current spin Hall nano-oscillators based on NiFe/W bilayers

    NASA Astrophysics Data System (ADS)

    Mazraati, Hamid; Chung, Sunjae; Houshang, Afshin; Dvornik, Mykola; Piazza, Luca; Qejvanaj, Fatjon; Jiang, Sheng; Le, Tuan Q.; Weissenrieder, Jonas; Åkerman, Johan

    2016-12-01

    We demonstrate highly efficient spin Hall nano-oscillators (SHNOs) based on NiFe/β-W bilayers. Thanks to the very high spin Hall angle of β-W, we achieve more than a 60% reduction in the auto-oscillation threshold current compared to NiFe/Pt bilayers. The structural, electrical, and magnetic properties of the bilayers, as well as the microwave signal generation properties of the SHNOs, have been studied in detail. Our results provide a promising path for the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque from β-W.

  16. A one-dimensional with three-dimensional velocity space hybrid-PIC model of the discharge plasma in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry

    2017-04-01

    According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.

  17. Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; deGrys, Kristi; Mathers, Alex

    2011-01-01

    In a qualification life test of a Hall thruster it was found that the erosion of the acceleration channel practically stopped after approx 5,600 h. Numerical simulations using a two-dimensional axisymmetric plasma solver with a magnetic field-aligned mesh reveal that when the channel receded from its early-in-life to its steady-state configuration the following changes occurred near the wall: (1) reduction of the electric field parallel to the wall that prohibited ions from acquiring significant impact kinetic energy before entering the sheath, (2) reduction of the potential fall in the sheath that further diminished the total energy ions gained before striking the material, and (3) reduction of the ion number density that decreased the flux of ions to the wall. All these changes, found to have been induced by the magnetic field, constituted collectively an effective shielding of the walls from any significant ion bombardment. Thus, we term this process in Hall thrusters "magnetic shielding."

  18. Plasma oscillations in a 6-kW magnetically shielded Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorns, Benjamin A., E-mail: benjamin.a.jorns@jpl.nasa.gov; Hofer, Richard R.

    2014-05-15

    Plasma oscillations from 0–100 kHz in a 6-kW magnetically shielded Hall thruster are experimentally characterized with a high-speed, optical camera. Two modes are identified at 7–12 kHz and 70–90 kHz. The low frequency mode is found to be azimuthally uniform across the thruster face, while the high frequency oscillation is peaked close to the centerline-mounted cathode with an m = 1 azimuthal dependence. An analysis of these results in the context of wave-based theory suggests that the low frequency wave is the breathing mode oscillation, while the higher frequency mode is gradient-driven. The effect of these oscillations on thruster operation is examined through an analysismore » of thruster discharge current and a comparison with published observations from an unshielded variant of the thruster. Most notably, it is found that although the oscillation spectra of the two thrusters are different, they exhibit nearly identical steady-state behavior.« less

  19. Correction to the paper “a simple model to determine the interrelation between the integral characteristics of hall thrusters” [Plasma Physics Reports 40, 229 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumilin, V. P.; Shumilin, A. V.; Shumilin, N. V., E-mail: vladimirshumilin@yahoo.com

    2015-11-15

    The paper is devoted to comparison of experimental data with theoretical predictions concerning the dependence of the current of accelerated ions on the operating voltage of a Hall thruster with an anode layer. The error made in the paper published by the authors in Plasma Phys. Rep. 40, 229 (2014) occurred because of a misprint in the Encyclopedia of Low-Temperature Plasma. In the present paper, this error is corrected. It is shown that the simple model proposed in the above-mentioned paper is in qualitative and quantitative agreement with experimental results.

  20. Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lühr, Hermann; Wang, Hui

    2017-11-01

    On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic

  1. Optically adjustable valley Hall current in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Pavlidis, Dimitris; Shi, Junxia

    2018-02-01

    The illumination of a single-layer transition metal dichalcogenide with an elliptically polarized light beam is shown to give rise to a differential rate of inter-band carrier excitation between the valence and conduction states around the valley edges, K and K' . This rate with a linear dependence on the beam ellipticity and inverse of the optical gap manifests as an asymmetric Fermi distribution between the valleys or a non-equilibrium population which under an external field and a Berry curvature induced anomalous velocity, results in an externally tunable finite valley Hall current. Surface imperfections that influence the excitation rates are included through the self-consistent Born approximation. Further, we describe applications centered around circular dichroism, quantum computing, and spin torque via optically excited spin currents within the framework of the suggested formalism. A closing summary points to the possibility of extending the calculations to composite charged particles like trions. The role of the substrate in renormalizing the fundamental band gap and moderating the valley Hall current is also discussed.

  2. Plasma oscillation effects on nested Hall thruster operation and stability

    NASA Astrophysics Data System (ADS)

    McDonald, M. S.; Sekerak, M. J.; Gallimore, A. D.; Hofer, R. R.

    High-power Hall thrusters capable of throughput on the order of 100 kW are currently under development, driven by more demanding mission profiles and rapid growth in on-orbit solar power generation capability. At these power levels the nested Hall thruster (NHT), a new design that concentrically packs multiple thrusters into a single body with a shared magnetic circuit, offers performance and logistical advantages over conventional single-channel Hall thrusters. An important area for risk reduction in NHT development is quantifying inter-channel coupling between discharge channels. This work presents time- and frequency-domain discharge current and voltage measurements paired with high-speed video of the X2, a 10-kW class dual channel NHT. Two “ triads” of operating conditions at 150 V, 3.6 kW and 250 V, 8.6 kW were examined, including each channel in individual operation and both channels in joint operation. For both triads tested, dual-channel operation did not noticeably destabilize the discharge. Partial coupling of outer channel oscillations into the inner channel occurred at 150 V, though oscillation amplitudes did not change greatly. As a percentage of mean discharge current, RMS oscillations at 150 V increased from 8% to 13% on the inner channel and decreased from 10% to 8% on the outer channel from single- to dual-channel operation. At 250 V the RMS/mean level stayed steady at 13% on the inner channel and decreased from 7% to 6% on the outer channel. The only mean discharge parameter noticeably affected was the cathode floating potential, which decreased in magnitude below ground with increased absolute cathode flow rate in dual-channel mode. Rotating spokes were detected on high-speed video across all X2 operating cases with wavelength 12-18 cm, and spoke velocity generally increased from single- to dual-channel operation.

  3. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year, NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: We Characterized Hall thruster [and arcjet] performance by measuring ion exhaust velocity with probes at various thruster conditions. Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e), ion current density and ion energy distribution, and electric fields by mapping plasma potential. Used emission spectroscopy to identify species within the plume and to measure electron temperatures.

  4. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.

    2017-09-01

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.

  5. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator.

    PubMed

    Yasuda, K; Tsukazaki, A; Yoshimi, R; Kondou, K; Takahashi, K S; Otani, Y; Kawasaki, M; Tokura, Y

    2017-09-29

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5×10^{10}  A m^{-2}, showing its potential as a spintronic material.

  6. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  7. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    NASA Technical Reports Server (NTRS)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HP Hall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  8. Ion and neutral dynamics in Hall plasma accelerator ionization instabilities

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2015-09-01

    Hall thrusters, the extensively studied E × B devices used for space propulsion applications, are rife with instabilities and fluctuations. Many are thought to be fundamentally linked to microscopic processes like electron transport across magnetic field lines and propellant ionization that in turn affect macroscopic properties like device performance and lifetime. One of the strongest oscillatory regimes is the ``breathing mode,'' characterized by a propagating ionization front, time-varying ion acceleration profiles, and quasi-periodic 10-50 kHz current oscillations. Determining the temporal and spatial evolution of plasma properties is critical to achieving a fundamental physical understanding of these processes. We present non-intrusive laser-induced fluorescence measurements of the local ion and neutral velocity distribution functions synchronized with the breathing mode oscillations. Measurements reveal strong ion velocity fluctuations, multiple ion populations arising in narrow time windows throughout the near-field plume, and the periodic population and depopulation of neutral excited states. Analyzing these detailed experimental results in the context of the existing literature clarifies the fundamental physical processes underlying the breathing mode. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  9. Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows.

    PubMed

    Gómez, Daniel O; Bejarano, Cecilia; Mininni, Pablo D

    2014-05-01

    We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the Hall-magnetohydrodynamic equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magnetoshear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability.

  10. Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo

    2017-03-01

    Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.

  11. Hall Thruster Thermal Modeling and Test Data Correlation

    NASA Technical Reports Server (NTRS)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  12. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  13. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2006-01-01

    Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating

  14. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengkui, E-mail: fengkuizhang@163.com; Kong, Lingyi; Li, Chenliang

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current.more » The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.« less

  15. Hall current effects in the Lewis magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.; Sovie, R. J.

    1972-01-01

    Data obtained in a magnetohydrodynamic generator are compared with theoretical values calculated by using the Dzung theory. The generator was operated with cesium-seeded argon as the working fluid. The gas temperature varied from 1800 to 2100 K, the gas pressure from 19 to 22 N/sq cm, the Mach number from 0.3 to 0.5, and the magnetic field strength from 0.2 to 1.6 T. The analysis indicates that there is incomplete seed vaporization and that Hall current shorting paths (through the working fluid to ground at both the entrance and exit of the channel) limit generator performance.

  16. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2008-12-31

    Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties

  17. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments frommore » interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.« less

  18. Acceleration and focusing of plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Martin Elias

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, producemore » plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  19. Oscillatory nonohomic current drive for maintaining a plasma current

    DOEpatents

    Fisch, N.J.

    1984-01-01

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  20. Oscillatory nonhmic current drive for maintaining a plasma current

    DOEpatents

    Fisch, Nathaniel J.

    1986-01-01

    Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  1. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  2. Bulk electron spin polarization generated by the spin Hall current

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  3. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  4. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e2, and 1/e3 times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  5. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  6. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    . The main difficulty to reach these minor bodies is related to their specific orbits with high eccentricity and inclination. A good example is the case for sample return missions to NEOs-Near Earth Objects. They are small bodies consisting of primitive left over building blocks of the Solar System formation processes. These missions can be accomplished by using low thrust trajectories with spacecrafts propelled by plasma thrusters with total thrust below 0.5 N, and a specific impulse around2500 s. In this work, we will show the brazilian contribution to the development of a compact electrical propulsion engine named PHALL III, designed with DCFH and foreseen to be used in future cubesats microsatellites but with possible applications in geostationary attitude control systems and on low thrust trajectory missions to the Near Earth Asteroids region. We will show a particular new permanent magnet field designed for PHALL III . Computer based simulation codes such as VSIM are also used on the design of this new proposed cuped magnet field Hall Thruster. Based on the first results wee believed PHALL III will also allow a good spacecraft performance of long duration space missions for small size spacecrafts with limited low electric source power consumption. The PHALL III plasma source characterization is presented together with the ejected plasma plume ion current intensity, ion energy and plasma flow velocity parameters measured by an integrated Plasma Diagnostic Bench (BID). Based on plasma source and plume ejected parameters a merit figure of PHALL III is constructed and compared to computer calculated low thrust transfer requirements. From these results it is goig to be possible to analyse the potential use of PHALL III on future brazillian space missions , its working parameters are compared with parameters of existing space tested plasma thrusters already used on moon , deep space missions and also on satellite geostationary positioning using low thrust orbit

  7. Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration

    2016-09-01

    Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.

  8. Iodine Plasma Species Measurements in a Hall Effect Thruster Plume

    DTIC Science & Technology

    2013-04-01

    direction f = species fraction 0g = gravitational constant at Earth’s surface, 9.81 m/s 2 I = current, subscripts b for beam, c for cathode, d for...Hall effect thruster uses crossed electric and magnetic fields to generate and accelerate ions. The gas in the discharge is partially ionized, although...early 1960s.10 Ions are weakly magnetized and most are accelerated directly out of the channel, forming the ion beam. The bulk of the cathode

  9. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics characterized the thruster performance, the plume, and the plasma oscillations in the thruster. Thruster performance and plume characteristics as functions of background pressure were previously published. This paper focuses on changes in the plasma oscillation characteristics with changing background pressure. The diagnostics used to study plasma oscillations include a high-speed camera and a set of high-speed Langmuir probes. The results show a rise in the oscillation frequency of the "breathing" mode with rising background pressure, which is hypothesized to be due to a shortening acceleration/ionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  10. Dissipationless Hall current in dense quark matter in a magnetic field

    DOE PAGES

    Ferrer, Efrain J.; de la Incera, V.

    2017-03-29

    Here, we show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. This system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. This connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  11. Nondestructive hall coefficient measurements using ACPD techniques

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  12. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  13. Neutralization of an ion beam from the end-Hall ion source by a plasma electron source based on a discharge in crossed E × H fields

    NASA Astrophysics Data System (ADS)

    Dostanko, A. P.; Golosov, D. A.

    2009-10-01

    The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the

  14. Levitation of current carrying states in the lattice model for the integer quantum Hall effect.

    PubMed

    Koschny, T; Potempa, H; Schweitzer, L

    2001-04-23

    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.

  15. Magnetic Field Tailored Annular Hall Thruster with Anode Layer

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration

    2016-09-01

    Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.

  16. Hall Thruster Plume Measurements On-Board the Russian Express Satellites

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jankovsky, Robert; Elliott, Frederick; Mikellides, Ioannis; Jongeward, Gary; Allen, Doug

    2001-01-01

    The operation of North-South and East-West station-keeping Hall thruster propulsion systems on-board two Russian Express-A geosynchronous communication satellites were investigated through a collaborative effort with the manufacturer of the spacecraft. Over 435 firings of 16 different thrusters with a cumulative run time of over 550 hr were reported with no thruster failures. Momentum transfer due to plume impingement was evaluated based on reductions in the effective thrust of the SPT-100 thrusters and induced disturbance torques determined based on attitude control system data and range data. Hall thruster plasma plume effects on the transmission of C-band and Ku-band communication signals were shown to be negligible. On-orbit ion current density measurements were made and subsequently compared to predictions and ground test data. Ion energy, total pressure, and electric field strength measurements were also measured on-orbit. The effect of Hall thruster operation on solar array performance over several months was investigated. A subset of these data is presented.

  17. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  18. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  19. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  20. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less

  1. Plasma Properties in the Plume of a Hall Thruster Cluster

    DTIC Science & Technology

    2003-06-04

    The Hall thruster cluster is an attractive propulsion approach for spacecraft requiring very high-power electric propulsion systems. This article...probes in the plume of a low-power, four-engine Hall thruster cluster. Simple analytical formulas are introduced that allow these quantities to be

  2. Conducting wall Hall thrusters in magnetic shielding and standard configurations

    NASA Astrophysics Data System (ADS)

    Grimaud, Lou; Mazouffre, Stéphane

    2017-07-01

    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  3. Multiscale Currents Observed by MMS in the Flow Braking Region

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  4. Multiscale Currents Observed by MMS in the Flow Braking Region.

    PubMed

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A; Apatenkov, Sergey; Ergun, Robert E; Fuselier, Stephen A; Gershman, Daniel J; Giles, Barbara J; Khotyaintsev, Yuri V; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T; Stawarz, Julia; Strangeway, Robert J; Anderson, Brian; Burch, James L; Bromund, Ken R; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J; Slavin, James A; Torbert, Roy B; Turner, Drew L

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  5. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  6. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  7. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  8. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  9. The Hall-induced stability of gravitating fluids

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  10. Hall viscosity of hierarchical quantum Hall states

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  11. Towards Reduced Wall Effect Hall Plasma Accelerators

    DTIC Science & Technology

    2007-07-01

    Unpublished Conference Presentations E. Fernandez, N. Borelli , M. Cappelli, N. Gascon, "Investigation of Fluctuation-Induced Electron Transport in Hall...International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005. 38. E. Fernandez, N. Borelli , M. Cappelli, N. Gascon

  12. Hall effect in the coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Tóth, G.; Gombosi, T. I.; Jia, X.; Combi, M. R.; Hansen, K. C.; Fougere, N.; Shou, Y.; Tenishev, V.; Altwegg, K.; Rubin, M.

    2018-04-01

    Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic field regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.

  13. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  14. Transition in discharge plasma of Hall thruster type in presence of secondary electron emissive surface

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Yadrenkin, M. A.; Fomichev, V. P.

    2017-11-01

    Modification of the sheath structure near the emissive plate placed in magnetized DC discharge plasma of Hall thruster type was studied in the experiment and in kinetic simulations. The plate is made from Al2O3 which has enhanced secondary electron emission yield. The energetic electrons emitted by heated cathode provide the volume ionization and the secondary electron emission from the plate. An increase of the electron beam energy leads to an increase of the secondary electron generation, which initiates the transition in sheath structure over the emissive plate.

  15. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  16. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    NASA Astrophysics Data System (ADS)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  17. Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.

    2016-01-01

    The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.

  18. Study on the influences of ionization region material arrangement on Hall thruster channel discharge characteristics

    NASA Astrophysics Data System (ADS)

    Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN

    2018-02-01

    There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.

  19. Optical Boron Nitride Insulator Erosion Characterization of a 200 W Xenon Hall Thruster

    DTIC Science & Technology

    2005-05-01

    Hall thruster boron nitride insulator is evaluated as a diagnostic for real-time evaluation of thruster insulator erosion. Three Hall thruster plasma control variables are examined: ion energy (discharge potential), ion flux (propellant flow), and plasma conductivity (magnetic field strength). The boron emission, and hence the insulator erosion rate, varies linearly with ion energy and ion flux. A minimum erosion rate appears at intermediate magnetic field strengths. This may indicate that local plasma conductivity significantly affects the divergence

  20. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    PubMed

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  1. Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements

    DTIC Science & Technology

    2011-08-01

    With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of

  2. Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet

    NASA Astrophysics Data System (ADS)

    Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.

    2017-12-01

    Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.

  3. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  4. High current plasma electron emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current,more » small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications.« less

  5. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2005-01-01

    Hall thruster simulation capability that begins with propellant injection at the thruster anode, and ends in the plume far field. The development of a comprehensive simulation capability is critical for a number of reasons. The main motivation stems from the need to directly couple simulation of the plasma discharge processes inside the thruster and the transport of the plasma to the plume far field. The simulation strategy will employ two existing codes, one for the Hall thruster device and one for the plume. The coupling will take place in the plume

  6. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA 300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.

  7. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  8. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  9. Thermally driven anomalous Hall effect transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.

    2018-04-01

    Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.

  10. Ebw Assisted Plasma Current Startup in Mast

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Saveliev, Alexander

    2009-04-01

    EBW current drive assisted plasma current start-up has been demonstrated for the first time in a tokamak. It was shown that plasma currents up to 17 kA can be generated non-inductively by 100 kW of RF power injected. With optimized vertical field ramps, plasma currents up to 33 kA have been achieved without the use of solenoid flux. With limited solenoid assist (0.2 V × 20 ms, less than 0.5% of total solenoid flux), plasma currents up to 55 kA have been generated and sustained further non-inductively. Experimentally obtained plasma currents are consistent with Fokker-Planck modelling.

  11. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  12. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  13. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  14. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    DTIC Science & Technology

    2017-06-30

    17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current

  15. Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line

    NASA Astrophysics Data System (ADS)

    Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.

    2004-11-01

    Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.

  16. Wire-positioning algorithm for coreless Hall array sensors in current measurement

    NASA Astrophysics Data System (ADS)

    Chen, Wenli; Zhang, Huaiqing; Chen, Lin; Gu, Shanyun

    2018-05-01

    This paper presents a scheme of circular-arrayed, coreless Hall-effect current transformers. It can satisfy the demands of wide dynamic range and bandwidth current in the distribution system, as well as the demand of AC and DC simultaneous measurements. In order to improve the signal to noise ratio (SNR) of the sensor, a wire-positioning algorithm is proposed, which can improve the measurement accuracy based on the post-processing of measurement data. The simulation results demonstrate that the maximum errors are 70%, 6.1% and 0.95% corresponding to Ampère’s circuital method, approximate positioning algorithm and precise positioning algorithm, respectively. It is obvious that the accuracy of the positioning algorithm is significantly improved when compared with that of the Ampère’s circuital method. The maximum error of the positioning algorithm is smaller in the experiment.

  17. Characterisation of plasma in a rail gun

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  18. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  19. Remnant Geometric Hall Response in a Quantum Quench.

    PubMed

    Wilson, Justin H; Song, Justin C W; Refael, Gil

    2016-12-02

    Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

  20. Interior and Exterior Laser-Induced Fluorescence and Plasma Potential Measurements on a Laboratory Hall Thruster (Postprint)

    DTIC Science & Technology

    1999-06-01

    Hall thruster is provided by a 1 mm axial slot in the insulator outer wall. Axial ion velocity profiles for four discharge voltages (100 V, 160 V, 200 V, 250 V) are measured as are radial velocity profiles in the near field plume. Internal neutral xenon axial velocity profiles are also measured at these conditions. For comparison, the plume plasma potential profile is measured with an emissive probe. These probe based potential measurements extend from 50 mm outside the plume to the near anode region for all but the highest discharge voltage condition. For each condition,

  1. Kinetic Alfven wave explanation of the Hall signals in magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wang, C.; Zhang, Y.; Duan, S.; Lavraud, B.; Burch, J. L.; Pollock, C.; Torbert, R. B.

    2017-12-01

    Magnetic reconnection is initiated in a small diffusion region but can drive global-scale dynamics in Earth's magnetosphere, solar flares, and astrophysical systems. Understanding the processes at work in the diffusion region remains a main challenge in space plasma physics. Recent in-situ observations from MMS and THEMIS reveal that the electric field normal to the reconnection current layer, often called the Hall electric field (En), is mainly balanced by the ion pressure gradient. Here we present theoretical explanations indicating that this observation fact is a manifestation of Kinetic Alfven Waves (KAW) physics. The ion pressure gradient represents the finite gyroradius effect of KAW, leading to ion intrusion across the magnetic field lines. Electrons stream along the magnetic field lines to track ions, resulting in field-aligned currents and the associated pattern of the out-of-plane Hall magnetic field (Bm). The ratio En/Bm is on the order of the Alfven speed, as predicted by the KAW theory. The KAW physics further provides new perspectives on how ion intrusion may trigger electric fields suitable for reconnection to occur.

  2. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  3. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  4. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  5. a Permanent Magnet Hall Thruster for Satellite Orbit Maneuvering with Low Power

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    Plasma thrusters are known to have some advantages like high specific impulse. Electric propulsion is already recognized as a successful technology for long duration space missions. It has been used as primary propulsion system on earth-moon orbit trnsfer missions, comets and asteroids exploration and on commercially geosyncronous satellite attitude control systems. Closed Drift Plasma Thrusters, also called Hall Thrusters or SPT (Stationary Plasma Thruster) was conceived inthe USSR and, since then, they have been developed in several countries such as France, USA, Japan and Brazil. In this work, introductory remarks are made with focus on the most significant contributions of the electric propulsion to the progress of space missions and its future role on the brazillian space program. The main features of an inedit Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia is presented. The idea of using an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is a very important improvement, because it allows the possibility of developing a Hall Thruster with electric power consumption low enough to be used in small and medium size satellites. The new Halĺplasma source characterization is presented with plasma density, temperature and potential space profiles. Ion temperature mesurements based on Doppler broadening of spectral lines and ion energy measurements of the ejected plasma plume are also shown. Based on the mesured parameters of the accelerated plasma we constructed a merit figure for the PMHT. We also perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN to 500 mN thrust range. In order to perform these caculations, integration techniques of spacecraft trajectory were used. The main simulation parameters were: orbit raising time

  6. Recent advances in plasma modeling for space applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin

    2017-02-01

    This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.

  7. Hall viscosity and electromagnetic response of electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni

    The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.

  8. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  9. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  10. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  11. Spacecraft Interactions Studies with a 1 Kw Class Closed-Drift Hall Thruster

    DTIC Science & Technology

    1998-01-31

    Closed Drift Hall thruster plume with spacecraft surfaces and systems. Two basic interaction modes were investigated: (1) the influence of the plume...Spectrometer (MBMS) capable of discerning both the mass and energy of Hall thruster plume species, and the ion acoustic wave probe to measure the drift velocity of the plume plasma.

  12. Magnetic field deformation due to electron drift in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  13. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  14. Time-Synchronized Continuous Wave Laser Induced Fluorescence Velocity Measurements of a 600 Watt Hall Thruster

    DTIC Science & Technology

    2015-07-01

    channel and near- field plume region of a 600 W Hall thruster operating on xenon. Results show significant fluctuations in LIF signal intensity... LIF signal intensity (corre- lated with the density of the probed excited metastable state) in time during the discharge current cycle, with the peak...fluorescence ( LIF ).1 LIF provides the opportunity to investigate plasma sources non-intrusively with higher spatial resolution (typically < 1 mm) than

  15. Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Bei

    This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure

  16. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    NASA Technical Reports Server (NTRS)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  17. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  18. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    NASA Astrophysics Data System (ADS)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ < 0.2). Faraday probe measurements revealed that ion beams are finely collimated, and plumes have Gaussian distributions. Mass utilization efficiencies, beam utilization efficiencies, and plume divergence efficiencies ranged from 28 to 62%, 78 to 99%, and 40 to 48%, respectively. Electron densities and electron temperatures were found to reach 4 × 1018 m-3 ( ∂ n e / n e = ±52%) and 15 eV ( ∂ T e / T e = ±10%-30%), respectively, at 10 mm axial distance from the anode centerline. An ionization mean free path analysis revealed that electron density in the ionization region is substantially higher than the conventional Hall thrusters, which explain why the XPT is as efficient as conventional ones even without a physical ionization chamber. Our findings

  19. Asymmetric SOL Current in Vertically Displaced Plasma

    NASA Astrophysics Data System (ADS)

    Cabrera, J. D.; Navratil, G. A.; Hanson, J. M.

    2017-10-01

    Experiments at the DIII-D tokamak demonstrate a non-monotonic relationship between measured scrape-off layer (SOL) currents and vertical displacement event (VDE) rates with SOL currents becoming largely n=1 dominant as plasma is displaced by the plasma control system (PCS) at faster rates. The DIII-D PCS is used to displace the magnetic axis 10x slower than the intrinsic growth time of similar instabilities in lower single-null plasmas. Low order (n <=2) mode decomposition is done on toroidally spaced current monitors to attain measures of asymmetry in SOL current. Normalized to peak n=0 response, a 2-4x increase is seen in peak n=1 response in plasmas displaced by the PCS versus previous VDE instabilities observed when vertical control is disabled. Previous inquiry shows VDE asymmetry characterized by SOL current fraction and geometric parameters of tokamak plasmas. We note that, of plasmas displaced by the PCS, short displacement time scales near the limit of the PCS temporal control appear to result in larger n=1/n=2 asymmetries. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-FG02-04ER54761.

  20. A fully implicit Hall MHD algorithm based on the ion Ohm's law

    NASA Astrophysics Data System (ADS)

    Chacón, Luis

    2010-11-01

    Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.

  1. One-Dimensional Analysis of Hall Thruster Operating Modes

    DTIC Science & Technology

    2001-08-01

    Hall thruster structure with no screens or other control surfaces makes it difficult to understand the interrelationships which, in the end, localize and shape the various plasma regions existing in the accelerating channel. Since the radial magnetic field is usually shaped with a peak near the channel exit, the plasma structure has often been explained as simply a reflection of the magnetic field distribution. However, this is inadequate to explain the plasma dynamics inside the accelerating channel. We develop a macroscopic model gathering reliability and clarity.

  2. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  3. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  4. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

  5. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  6. Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range.

    PubMed

    Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias

    2018-02-14

    We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.

  7. Reverse Current Shock Induced by Plasma-Neutral Collision

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul

    2017-10-01

    The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.

  8. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  9. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Postprint)

    DTIC Science & Technology

    2007-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high

  10. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  11. Modeling of Hall Thruster Lifetime and Erosion Mechanisms (Preprint)

    DTIC Science & Technology

    2007-09-01

    Hall thruster plasma discharge has been upgraded to simulate the erosion of the thruster acceleration channel, the degradation of which is the main life-limiting factor of the propulsion system. Evolution of the thruster geometry as a result of material removal due to sputtering is modeled by calculating wall erosion rates, stepping the grid boundary by a chosen time step and altering the computational mesh between simulation runs. The code is first tuned to predict the nose cone erosion of a 200 W Busek Hall thruster , the BHT-200. Simulated erosion

  12. Tunable-φ Josephson junction with a quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro

    2017-12-01

    We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.

  13. Emission current formation in plasma electron emitters

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-01

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  14. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites

    PubMed Central

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2017-01-01

    Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions. PMID:28317883

  15. Evidence of Collisionless Shocks in a Hall Thruster Plume

    DTIC Science & Technology

    2003-04-25

    Triple Langmuir probes and emissive probes are used to measure the electron number density, electron temperature, and plasma potential downstream of a low-power Hall thruster . The results show a high density plasma core with elevated electron temperature and plasma potential along the thruster centerline. These properties are believed to be due to collisionless shocks formed as a result of the ion/ion acoustic instability. A simple model is presented that shows the existence of a collisionless shock to be consistent with the observed phenomena.

  16. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  17. Laser characterization of electric field oscillations in the Hall thruster breathing mode

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature technology for space propulsion applications that exhibit a wide array of dynamic behavior, including plasma waves, instabilities and turbulence. One common low frequency (10-50 kHz) discharge current oscillation is the breathing mode, a cycle of neutral propellant injection, strong ionization, and ion acceleration by a steep potential gradient. A time-resolved laser-induced fluorescence diagnostic non-intrusively captures this propagating ionization front in the channel of a commercial BHT-600 Hall thruster manufactured by Busek Co. Measurements of ion velocity and relative ion density (using the 5 d[ 4 ] 7 / 2 - 6 p[ 3 ] 5 / 2 Xe II transition at 834.95 nm, vacuum) reveal a dynamic electric field structure traversing the channel throughout the breathing mode cycle. This work is sponsored by the U.S. Air Force Office of Scientific Research, with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  18. Current drive for stability of thermonuclear plasma reactor

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  19. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  20. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al.

  1. Low-Cost, High-Performance Hall Thruster Support System

    NASA Technical Reports Server (NTRS)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  2. Observation of a high-energy tail in ion energy distribution in the cylindrical Hall thruster plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Youbong; Kim, Holak; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2014-10-15

    A novel method is presented to determine populations and ion energy distribution functions (IEDFs) of individual ion species having different charge states in an ion beam from the measured spectrum of an E × B probe. The inversion of the problem is performed by adopting the iterative Tikhonov regularization method with the characteristic matrices obtained from the calculated ion trajectories. In a cylindrical Hall thruster plasma, an excellent agreement is observed between the IEDFs by an E × B probe and those by a retarding potential analyzer. The existence of a high-energy tail in the IEDF is found to be mainly due to singlymore » charged Xe ions, and is interpreted in terms of non-linear ion acceleration.« less

  3. Ring current dynamics and plasma sheet sources. [magnetic storms

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1984-01-01

    The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.

  4. Current collection in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  5. Plasma propulsion for space applications

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon

    2000-04-01

    The various mechanisms for plasma acceleration employed in electric propulsion of space vehicles will be described. Special attention will be given to the Hall thruster. Electric propulsion utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a result, the required propellant mass is reduced. Because of limitations on electric power density, electric thrusters will be low thrust engines compared with chemical rockets. The large jet velocity and small thrust of electric thrusters make them most suitable for space applications such as station keeping of GEO communication satellites, low orbit drag compensation, orbit raising and interplanetary missions. The acceleration in the thruster is either thermal, electrostatic or electromagnetic. The arcjet is an electrothermal device in which the propellant is heated by an electric arc and accelerated while passing through a supersonic nozzle to a relatively low velocity. In the Pulsed Plasma Thruster a solid propellant is accelerated by a magnetic field pressure in a way that is similar in principle to pulsed acceleration of plasmas in other, very different devices, such as the railgun or the plasma opening switch. Magnetoplasmadynamic thrusters also employ magnetic field pressure for the acceleration but with a reasonable efficiency at high power only. In an ion thruster ions are extracted from a plasma through a double grid structure. Ion thrusters provide a high jet velocity but the thrust density is low due to space-charge limitations. The Hall thruster, which in recent years has enjoyed impressive progress, employs a quasi-neutral plasma, and therefore is not subject to a space-charge limit on the current. An applied radial magnetic field impedes the mobility of the electrons so that the applied potential drops across a large region inside the plasma. Methods for separately controlling the profiles of the electric and the magnetic fields will

  6. Alfven wave dispersion behavior in single- and multicomponent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahbarnia, K.; Grulke, O.; Klinger, T.

    Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.

  7. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  8. What do you measure when you measure the Hall effect?

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Knickerbocker, C. J.

    1993-02-01

    A formalism for calculating the sensitivity of Hall measurements to local inhomogeneities of the sample material or the magnetic field is developed. This Hall weighting function g(x,y) is calculated for various placements of current and voltage probes on square and circular laminar samples. Unlike the resistivity weighting function, it is nonnegative throughout the entire sample, provided all probes lie at the edge of the sample. Singularities arise in the Hall weighting function near the current and voltage probes except in the case where these probes are located at the corners of a square. Implications of the results for cross, clover, and bridge samples, and the implications of our results for metal-insulator transition and quantum Hall studies are discussed.

  9. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  10. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  11. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  12. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  13. Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster

    NASA Astrophysics Data System (ADS)

    Le, YANG; Tianping, ZHANG; Juanjuan, CHEN; Yanhui, JIA

    2018-07-01

    A two-dimensional particle-in-cell plasma model is built in the R–Z plane to investigate the low-frequency plasma oscillations in the discharge channel of a 5 kW LHT-140 Hall thruster. In addition to the elastic, excitation, and ionization collisions between neutral atoms and electrons, the Coulomb collisions between electrons and electrons and between electrons and ions are analyzed. The sheath characteristic distortion is also corrected. Simulation results indicate the capability of the built model to reproduce the low-frequency oscillation with high accuracy. The oscillations of the discharge current and ion density produced by the model are consistent with the existing conclusions. The model predicts a frequency that is consistent with that calculated by the zero-dimensional theoretical model.

  14. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  15. Inverse spin Hall effect in a closed loop circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Y.; Auvray, F.; Wakamura, T.

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  16. Contactless measurement of alternating current conductance in quantum Hall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less

  17. Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma

    NASA Astrophysics Data System (ADS)

    Shagayda, Andrey; Tarasov, Alexey

    2017-10-01

    The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.

  18. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  19. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  20. New pathways towards efficient metallic spin Hall spintronics

    DOE PAGES

    Jungfleisch, Matthias Benjamin; Zhang, Wei; Jiang, Wanjun; ...

    2015-11-16

    Spin Hall effects (SHEs) interconvert spin- and charge currents due to spin- orbit interaction, which enables convenient electrical generation and detection of diffusive spin currents and even collective spin excitations in magnetic solids. Here, we review recent experimental efforts exploring efficient spin Hall detector materials as well as new approaches to drive collective magnetization dynamics and to manipulate spin textures by SHEs. As a result, these studies are also expected to impact practical spintronics applications beyond their significance in fundamental research.

  1. Roles of nonlocal conductivity on spin Hall angle measurement

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Zhang, Shufeng

    2017-10-01

    Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most important material parameters for spintronics physics and device application. A long-standing controversy is that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport coefficients from experimental data.

  2. Integrity of the Plasma Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Gerwin, Richard A.

    2009-01-01

    This report examines the physics governing certain aspects of plasma propellant flow through a magnetic nozzle, specifically the integrity of the interface between the plasma and the nozzle s magnetic field. The injection of 100s of eV plasma into a magnetic flux nozzle that converts thermal energy into directed thrust is fundamental to enabling 10 000s of seconds specific impulse and 10s of kW/kg specific power piloted interplanetary propulsion. An expression for the initial thickness of the interface is derived and found to be approx.10(exp -2) m. An algorithm is reviewed and applied to compare classical resistivity to gradient-driven microturbulent (anomalous) resistivity, in terms of the spatial rate and time integral of resistive interface broadening, which can then be related to the geometry of the nozzle. An algorithm characterizing plasma temperature, density, and velocity dependencies is derived and found to be comparable to classical resistivity at local plasma temperatures of approx. 200 eV. Macroscopic flute-mode instabilities in regions of "adverse magnetic curvature" are discussed; a growth rate formula is derived and found to be one to two e-foldings of the most unstable Rayleigh-Taylor (RT) mode. After establishing the necessity of incorporating the Hall effect into Ohm s law (allowing full Hall current to flow and concomitant plasma rotation), a critical nozzle length expression is derived in which the interface thickness is limited to about 1 ion gyroradius.

  3. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  4. Coalescence of Magnetic Islands in the low resistivity Hall MHD Regime.

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Chacon, L.; Simakov, A. N.

    2006-10-01

    We revisit the well-known problem of the coalescence of magnetic islands in the context of Hall MHD. Unlike previous work, we focus on regimes of small resistivity (S ˜10^6) and where the ion skin depth diL (system size). These conditions are of relevance, for instance, in the solar corona and the earth's magnetotail. We aim to address under which conditions such systems can exhibit fast reconnection. First, we revisit the resistive MHD problem to further understand the well-known sloshing result. Next, the interaction between the ion inertial length, di, and the dynamically evolving current sheet scale length, (δJ), is established. Initially, diδJ. If η is such that (δJ) dynamically thins down to di prior to the well-known sloshing phenomena, then sloshing is avoided. This results in peak reconnection rates which are η-independent and scale as √di. However, if di is small enough that resistivity prevents (δJ) from thinning down to this scale prior to sloshing, then reconnection (and sloshing) proceeds as in the resistive MHD model. Finally, we discuss our development of a semi-analytical model to describe the well-known sloshing result in the resistive MHD model, and our plans to extend it to Hall MHD. D. A. Knoll, L. Chac'on, Phys. Plasmas, 13 (3), p.032307 (2006). D. A. Knoll, L. Chac'on, Phys. Rev. Lett., 96, 135001 (2006). A. Simakov, L. Chac'on, D. A. Knoll, Phys. Plasmas, accepted (2006).

  5. A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)

    DTIC Science & Technology

    2007-08-24

    Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and

  6. Influence of Hall Effect on Magnetic Control of Stagnation Point Heat Transfer

    NASA Astrophysics Data System (ADS)

    Poggie, Jonathan; Gaitonde, Datta

    2001-11-01

    Electromagnetic control is an appealing possibility for mitigating the thermal loads that occur in hypersonic flight. There was extensive research on this technique in the past (up to about 1970), but enthusiasm waned because of problems of system cost and weight. Renewed interest has arisen recently due to developments in the technology of super-conducting magnets and the understanding of the physics of weakly-ionized, non-equilibrium plasmas. A problem of particular interest is the reduction of stagnation point heating during atmospheric entry by magnetic deceleration of the flow in the shock layer. For the case of hypersonic flow over a sphere, a reduction in heat flux has been observed with the application of a dipole magnetic field (Poggie and Gaitonde, AIAA Paper 2001-0196). The Hall effect has a detrimental influence on this control scheme, tending to rotate the current vector out of the circumferential direction and to reduce the impact of the applied magnetic field on the fluid. In the present work we re-examine this problem by using modern computational methods to simulate flow past a hemispherical-nosed vehicle in which a axially-oriented magnetic dipole has been placed. The deleterious effects of the Hall current are characterized, and are observed to diminish when the surface of the vehicle is conducting.

  7. Optimum Design Rules for CMOS Hall Sensors

    PubMed Central

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-01-01

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes. PMID:28375191

  8. Optimum Design Rules for CMOS Hall Sensors.

    PubMed

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-04-04

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes.

  9. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yang; Feng, Xiao; Ou, Yunbo

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less

  10. Current halo structures in high-current plasma experiments: θ-pinch

    NASA Astrophysics Data System (ADS)

    Matveev, Yu. V.

    2007-03-01

    Experimental data elucidating mechanisms for halo formation in θ-pinch discharges are presented and discussed. The experiments were performed with different gases (H2, D2, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 μs, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  11. Current driven instabilities of an electromagnetically accelerated plasma

    NASA Technical Reports Server (NTRS)

    Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1988-01-01

    A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.

  12. Role of ionization and electron drift velocity profile to Rayleigh instability in a Hall thruster plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sukhmander; Malik, Hitendra K.

    Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speedmore » V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.« less

  13. Plume Characteristics of the BHT-HD-600 Hall Thruster (Preprint)

    DTIC Science & Technology

    2006-07-01

    Hall thruster on spacecraft, a number of plume properties have been measured. These include current density using a Faraday probe, ion energy distribution using a retarding potential analyzer, and ion species fractions using an E x B probe. The BHT-HD-600 Hall thruster is a nominally 600 W xenon Hall thruster developed by Busek Co. Inc. for the U.S. Air Force Research Laboratory. Plume characterization of Hall thrusters is required to fully understand the impacts of thruster operation on spacecraft. Much of these plume data are

  14. 5. View of Community Hall, first floor interior, entrance hall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Community Hall, first floor interior, entrance hall on east side of building, facing southeast. Ticket booth center foreground, stairway to auditorium right foreground. - Community Hall, Rainier Avenue & View Drive, Port Gamble, Kitsap County, WA

  15. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less

  16. Current Collection from Space Plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra (Editor); Wright, K. H., Jr. (Editor); Stone, Nobie H. (Editor)

    1990-01-01

    The First Workshop on Current Collection from Space Plasmas was held at the Tom Bevil Center on the campus of The University of Alabama in Huntsville on April 24 to 25, 1989. The intent of the workshop was to assemble experts on various topics related to the problem of current collection for deliberations that would elucidate the present understanding of the overall current collection problem. Papers presented at the workshop are presented.

  17. Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect

    NASA Astrophysics Data System (ADS)

    Wang, Te-Chun; Gou, Yih-Shun

    1997-08-01

    A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.

  18. UCB current detector experiment on Swedish auroral payloads. [ionospheric current and plasma flow measurements

    NASA Technical Reports Server (NTRS)

    Mozer, F.

    1974-01-01

    A split Langmuir probe has been developed to make in situ measurements of ionospheric current density and plasma bulk flow. The probe consists of two conducting elements that are separated by a thin insulator that shield each other over a 2 pi solid angle, and that are simultaneously swept from negative to positive with respect to the plasma. By measuring the current to each plate and the difference current between plates, information is obtained on the plasma's current density, bulk flow, electron temperature, and density. The instrument was successfully flown twice on sounding rockets into auroral events. Measurement data indicate that the total auroral current configuration is composed of several alternating east and west electrojets associated with several alternating up and down Birkeland currents.

  19. Ion properties in a Hall current thruster operating at high voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L., E-mail: laurent.garrigues@laplace.univ-tlse.fr

    2016-04-28

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s{sup −1} have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron–wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe{sup 2+} ion production becomes stepwisemore » ionization of Xe{sup +} ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8–1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.« less

  20. Fractional quantum Hall effect in strained graphene: Stability of Laughlin states in disordered pseudomagnetic fields

    NASA Astrophysics Data System (ADS)

    Bagrov, Andrey A.; Principi, Alessandro; Katsnelson, Mikhail I.

    2017-03-01

    We address the question of the stability of the fractional quantum Hall effect in the presence of pseudomagnetic disorder generated by mechanical deformations of a graphene sheet. Neglecting the potential disorder and taking into account only strain-induced random pseudomagnetic fields, it is possible to write down a Laughlin-like trial ground-state wave function explicitly. Exploiting the Laughlin plasma analogy, we demonstrate that in the case of fluctuating pseudomagnetic fluxes of a relatively small amplitude, the fractional quantum Hall effect is always stable upon the deformations. By contrast, in the case of bubble-induced pseudomagnetic fields in graphene on a substrate (a small number of large fluxes) the disorder can be strong enough to cause a glass transition in the corresponding classical Coulomb plasma, resulting in the destruction of the fractional quantum Hall regime and in a quantum phase transition to a nonergodic state of the lowest Landau level.

  1. Stability of plasma cylinder with current in a helical plasma flow

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang

    2018-04-01

    Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.

  2. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun

    2006-01-01

    The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.

  3. Performance Characteristics of a 5 kW Laboratory Hall Thruster

    DTIC Science & Technology

    1996-07-01

    Characteristics of a 5 kW Laboratory Hall Thruster James M. Haas’, Frank S. Gulczinski III%, and Alec D. Gallimoret Plasmadynamics and Electric Propulsion...the information learned from the study of this thruster applicable to the understanding of its commercial counterparts. INTRODUCTION Hall thrusters are...few in number at this time; and those that do exist are intended primarily Current generation Hall thruster research has for flight qualification

  4. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A.; Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection,more » the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.« less

  5. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin

    2017-10-01

    Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.

  6. High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2003-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.

  7. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  8. Magnetic mirror effect in a cylindrical Hall thruster

    NASA Astrophysics Data System (ADS)

    Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin

    2018-01-01

    For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0-5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.

  9. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    NASA Astrophysics Data System (ADS)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  10. Hot spots and dark current in advanced plasma wakefield accelerators

    DOE PAGES

    Manahan, G. G.; Deng, A.; Karger, O.; ...

    2016-01-29

    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  11. Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Roy, Subrata

    2004-01-01

    This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.

  12. Proton Knock-Out in Hall A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kees de Jager

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the {sup 16}O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from {sup 2}H to {sup 16}O. In this review the results of this program will be summarized and an outlook given of future accomplishments.

  13. Spin torque efficiency of Ta, W, and Pt in metallic bilayers evaluated by harmonic Hall and spin Hall magnetoresistance measurements

    NASA Astrophysics Data System (ADS)

    Lau, Yong-Chang; Hayashi, Masamitsu

    2017-08-01

    We investigate the efficiency of current-induced torque, i.e., the spin torque efficiency, in in-plane magnetized heavy metal/CoFeB/MgO heterostructures (heavy metals = Pt, W, and Ta) using the harmonic Hall technique and the spin Hall magnetoresistance. We find that the amplitude of the external magnetic field has a strong influence on the spin torque efficiency evaluation by the harmonic Hall measurements. This can be corrected by measuring the corresponding Hall resistance susceptibility. The sign and magnitude of the resulting Slonczewski-like spin torque efficiencies are in agreement with previous reports and the measurements utilizing the spin Hall magnetoresistance, except for the Pt underlayer films. The origin of the discrepancy for the Pt underlayer films is unclear. The field like torque efficiencies, upon subtracting the Oersted field contribution, are quite low or negligible. This is in significant contrast to what has been found for the field like torque in heterostructures with perpendicular magnetization. These results suggest that a more advanced model is required in order to describe accurately spin transport and momentum transfer at metallic interfaces.

  14. Direct observation of the skyrmion Hall effect

    DOE PAGES

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; ...

    2016-09-19

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  15. Plasmon Geometric Phase and Plasmon Hall Shift

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  16. Direct observation of the skyrmion Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  17. SAMPIE Measurements of the Space Station Plasma Current Analyzed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In March of 1994, STS-62 carried the NASA Lewis Research Center's Solar Array Module Plasma Interactions Experiment (SAMPIE) into orbit, where it investigated the plasma current collected and the arcs from solar arrays and other space power materials immersed in the low-Earth-orbit space plasma. One of the important experiments conducted was the plasma current collected by a four-cell coupon sample of solar array cells for the international space station. The importance of this experiment dates back to the 1990 and 1991 meetings of the Space Station Electrical Grounding Tiger Team. The Tiger Team determined that unless the electrical potentials on the space station structure were actively controlled via a plasma contactor, the space station structure would arc into the plasma at a rate that would destroy the thermal properties of its surface coatings in only a few years of operation. The space station plasma contactor will control its potentials by emitting electrons into the surrounding low-Earth-orbit plasma at the same rate that they are collected by the solar arrays. Thus, the level at which the space station solar arrays can collect current is very important in verifying that the plasma contactor design can do its job.

  18. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  19. Ring current impoundment of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Thorne, R. M.; Richardson, J. D.; Bagenal, F.; Sullivan, J. D.; Eviatar, A.

    1981-01-01

    A newly discovered feature in the Io plasma formation that may be described as a ramp separating a high-density plasma ledge on its Jupiterward side from the lower-density radially distended Io plasma disc on its anti-Jupiterward side is observed to coincide with a marked inward decrease in the ring current population. The spatial congruency of the counter-directed maximal gradients in both plasma bodies reveals a profound coupling between them. The existence of the ramp requires a local order-of-magnitude reduction in the diffusion coefficient that governs radial mass transport. It is demonstrated that the diminished diffusive efficiency there is caused by strong pressure gradient inhibition of the interchange instability that underlies mass transport. The Io plasma torus, which is defined as the region of strong ultraviolet emissions, is identified as the plasma ledge. The plasma density in the ledge is high and, incidentally therefore, able to emit strongly because it is impounded against rapid, centrifugal expulsion by the inwardly directed pressure of the ring current at its inner edge.

  20. Nonuniform discharge currents in active plasma lenses

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Tsai, H. -E.; ...

    2017-03-24

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  1. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  2. Determination of intrinsic spin Hall angle in Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  3. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-02-15

    We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less

  4. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  5. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  6. [Plasma fractionation in the world: current status].

    PubMed

    Burnouf, T

    2007-05-01

    From 22 to 25 million liters of plasma are fractionated yearly in about 70 fractionation plants, either private or government-owned, mainly located in industrialized countries, and with a capacity ranging from 50000 to three million liters. In an increasingly global environment, the plasma industry has recently gone through a major consolidation phase that has seen mergers and acquisitions, and has led to the closure of a number of small plants in Europe. Currently, some fifteen countries are involved into contract plasma fractionation programs to ensure a supply of plasma-derived medicinal products. The majority of the plasma for fractionation is obtained by automated plasmapheresis, the remaining (recovered plasma) being prepared from whole blood as a by-product of red cell production. Plasma for fractionation should be produced, and controlled following well established procedures to meet the strict quality requirements set by regulatory authorities and fractionators. The plasma fractionation technology still relies heavily on the cold ethanol fractionation process, but has been improved by the introduction of modern chromatographic purification methods, and efficient viral inactivation and removal treatments, ensuring quality and safety to a large portfolio of fractionated plasma products. The safety of these products with regards to the risk of transmission of variant Creutzfeldt-Jakob disease seems to be provided, based on current scientific data, by extensive removal of the infectious agent during certain fractionation steps. The leading plasma product is now the intravenous immunoglobulin G, which has replaced factor VIII and albumin in this role. The supply of plasma products (most specifically coagulation products and immunoglobulin) at an affordable price and in sufficient quantity remains an issue; the problem is particularly acute in developing countries, as the switch to recombinant factor VIII in rich countries has not solved the supply issue and has

  7. Separation of Evans and Hiro currents in VDE of tokamak plasma

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2014-10-01

    Progress on the Disruption Simulation Code (DSC-3D) development and benchmarking will be presented. The DSC-3D is one-fluid nonlinear time-dependent MHD code, which utilizes fully 3D toroidal geometry for the first wall, pure vacuum and plasma itself, with adaptation to the moving plasma boundary and accurate resolution of the plasma surface current. Suppression of fast magnetosonic scale by the plasma inertia neglecting will be demonstrated. Due to code adaptive nature, self-consistent plasma surface current modeling during non-linear dynamics of the Vertical Displacement Event (VDE) is accurately provided. Separation of the plasma surface current on Evans and Hiro currents during simulation of fully developed VDE, then the plasma touches in-vessel tiles, will be discussed. Work is supported by the US DOE SBIR Grant # DE-SC0004487.

  8. Valley Hall effect and Nernst effect in strain engineered graphene

    NASA Astrophysics Data System (ADS)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  9. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladii, O.; Henry, Y.; Bailleul, M.

    2016-05-16

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  10. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  11. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.

    2006-01-01

    The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.

  12. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

  13. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  14. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  15. Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp; Takamoto, Makoto

    2016-01-15

    We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modifiedmore » around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.« less

  16. Spontaneous Hall effect in a chiral p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  17. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  18. Theoretical relation between halo current-plasma energy displacement/deformation in EAST

    NASA Astrophysics Data System (ADS)

    Khan, Shahab Ud-Din; Khan, Salah Ud-Din; Song, Yuntao; Dalong, Chen

    2018-04-01

    In this paper, theoretical model for calculating halo current has been developed. This work attained novelty as no theoretical calculations for halo current has been reported so far. This is the first time to use theoretical approach. The research started by calculating points for plasma energy in terms of poloidal and toroidal magnetic field orientations. While calculating these points, it was extended to calculate halo current and to developed theoretical model. Two cases were considered for analyzing the plasma energy when flows down/upward to the diverter. Poloidal as well as toroidal movement of plasma energy was investigated and mathematical formulations were designed as well. Two conducting points with respect to (R, Z) were calculated for halo current calculations and derivations. However, at first, halo current was established on the outer plate in clockwise direction. The maximum generation of halo current was estimated to be about 0.4 times of the plasma current. A Matlab program has been developed to calculate halo current and plasma energy calculation points. The main objective of the research was to establish theoretical relation with experimental results so as to precautionary evaluate the plasma behavior in any Tokamak.

  19. Modeling of anomalous electron mobility in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Justin W.; Boyd, Iain D.

    Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less

  20. Periodical plasma structures controlled by external magnetic field

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  1. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  2. Electron current extraction from a permanent magnet waveguide plasma cathode.

    PubMed

    Weatherford, B R; Foster, J E; Kamhawi, H

    2011-09-01

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. © 2011 American Institute of Physics

  3. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, S.; Walter Schottky Institut and Physik-Department, Technische Universität München, 85748 Garching; Tshitoyan, V.

    2016-05-09

    We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe mainly to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.

  4. Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M. W.; Guild, T. B.

    2009-12-01

    Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.

  5. Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Summers, D.; Siscoe, G. L.

    1985-01-01

    The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.

  6. On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien

    2018-05-01

    Incompressible Hall magnetohydrodynamics (MHD) may be the subject of energy dissipation anomaly which stems from the lack of smoothness of the velocity and magnetic fields. I derive the exact expression of which appears to be closely connected with the well-known 4/3 exact law of Hall MHD turbulence theory. This remarkable similitude suggests a deeper mathematical property of the fluid equations. In the MHD limit, the expression of differs from the one derived by Gao et al (2013 Acta Math. Sci. 33 865–71) which presents miscalculations. The energy dissipation anomaly can be used to better estimate the local heating in space plasmas where in situ measurements are accessible.

  7. Laser Diagnostic Method for Plasma Sheath Potential Mapping

    NASA Astrophysics Data System (ADS)

    Walsh, Sean P.

    Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the

  8. THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Gregory G.

    2016-08-20

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less

  9. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  10. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  11. Magnetic Reconnection and Modification of the Hall Physics Due to Cold Ions at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Andre, M.; Li, W.; Toldeo-Redondo, S.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.; Burch, J.; Lindqvist, P.-A.; Marklund, G.; hide

    2016-01-01

    Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohms law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the v x B drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.

  12. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    NASA Astrophysics Data System (ADS)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  13. Hall Thruster With an External Acceleration Zone

    DTIC Science & Technology

    2005-09-14

    Hall Thruster in a high vacuum environment. The ionized propellant velocities were measured using laser induced fluorescence of the excited state xenon ionic transition at 834.7 nm. Ion velocities were interrogated from the channel exit plane to a distance 30 mm from it. Both axial and cross-field (along the electron Hall current direction) velocities were measured. The results presented here, combined with those of previous work, highlight the high sensitivity of electron mobility inside and outside the channel, depending on the background gas density, type of wall

  14. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents

    DOE PAGES

    Heinonen, Olle; Jiang, Wanjun; Somaily, Hamoud; ...

    2016-03-07

    Recent experiments have shown that magnetic skyrmion bubbles can be generated and injected at room temperature in thin films. In this study, we demonstrate, using micromagnetic modeling, that such skyrmions can be generated by an inhomogeneous spin Hall torque in the presence of Dzyaloshinskii-Moriya interactions (DMIs). In the experimental Ta-Co 20Fe 60B 20 thin films, the DMI is rather small; nevertheless, the skyrmion bubbles are stable, or at least metastable on observational time scales.

  15. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  16. Advanced Hybrid Modeling of Hall Thruster Plumes

    DTIC Science & Technology

    2010-06-16

    Hall thruster operated in the Large Vacuum Test Facility at the University of Michigan. The approach utilizes the direct simulation Monte Carlo method and the Particle-in-Cell method to simulate the collision and plasma dynamics of xenon neutrals and ions. The electrons are modeled as a fluid using conservation equations. A second code is employed to model discharge chamber behavior to provide improved input conditions at the thruster exit for the plume simulation. Simulation accuracy is assessed using experimental data previously

  17. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  18. Diagnostics of Plasma Propulsion Devices

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark A.

    1998-11-01

    Plasma rockets are rapidly emerging as critical technologies in future space flight. These devices take on various forms, ranging from electro-thermal to electromagnetic accelerators, generally categorized by the method in which electrical energy is converted to thrust. As is the case in many plasma devices, non-intrusive optical (emission, or laser-based) diagnostics is an essential element in the characterization of these plasma sources, as access to the discharges in these plasma engines is often limited. Furthermore, laser-based diagnostics offer additional benefits, including improved spatial resolution, and can provide state-specific measurements of species densities, velocities and energy distributions. In recent years, we have developed and applied a variety of emission and laser-based diagnostics strategies to the characterization of arcjet plasma and closed-drift xenon Hall plasma accelerators. Both of these types of plasma propulsion devices are of immediate interest to the space propulsion community, and are under varying stages of development. Arcjet thrusters have unique properties, with strong plasma density, temperature and velocity gradients, which enhance the coupling between the gasdynamic and plasma physics. Closed-drift Hall plasma thrusters are low density electrostatic devices that are inherently turbulent, and exhibit varying degrees of anomalous cross-field electron transport. Our most extensive, collective effort has been to apply laser-induced fluorescence, Doppler-free laser absorption, and Raman scattering to the characterization of hydrogen and helium arcjet flows. Detailed measurements of velocity, temperatures, and electron densities are compared to the results of magneto-hydrodynamic flowfield simulations. The results show that while the simulations capture many aspects of the flow, there are still some unresolved discrepancies. The database established for Hall thrusters is less extensive, as the laser absorption spectroscopy of

  19. The ``cinquefoil" resistive/Hall measurement geometry

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2000-03-01

    This talk begins by analyzing the charge transport weighting functions -- the sensitivity of resistive and Hall measurements to local macroscopic inhomogeneities -- of bridge-shaped transport specimens. As expected, such measurements sample only that region of the specimen between the central voltage electrodes, in the limit of narrow current channels connected by even narrower arms to the voltage electrodes. The bridge geometry has a few advantages over the van der Pauw cloverleaf geometry -- including ease in zeroing out the null-field Hall voltage -- but also some disadvantages. The talk concludes with an analysis of a hybrid geometry, the “cinquefoil” or five-leafed clover, which combines the best features of both.

  20. Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team

    2015-11-01

    The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.

  1. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  2. Observations of Hall Reconnection Physics Far Downstream of the X Line.

    PubMed

    Mistry, R; Eastwood, J P; Haggerty, C C; Shay, M A; Phan, T D; Hietala, H; Cassak, P A

    2016-10-28

    Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.

  3. Nonequilibrium Fractional Hall Response After a Topological Quench

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Mueller, Erich; Oktel, M. O.

    When a system is suddenly driven between two topologically different phases, aspects of the original topology survive the quench, but most physical observables (edge currents, Hall conductivity) appear to be non-universal. I will present the non-equilibrium Hall response of a Chern insulator following a quench where the mass term of a single Dirac cone changes sign. In the limit where the physics is dominated by a single Dirac cone, we theoretically find that the Hall conductivity universally changes by two-thirds of the quantum of conductivity. I will analyze this universal behavior by considering the Haldane model, and discuss experimental aspects for its observation in cold atoms. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.

  4. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  5. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    PubMed Central

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-01-01

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864

  6. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    PubMed

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  7. Model of vertical plasma motion during the current quench

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Kiramov, Dmitrii

    2017-10-01

    Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.

  8. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  9. Characterization of plasma current quench during disruptions at HL-2A

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  10. On neutral-beam injection counter to the plasma current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, P.; Akers, R.J.; Eriksson, L.-G.

    2005-11-15

    It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C.more » Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.« less

  11. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  12. An evaluation of krypton propellant in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  13. Improved Design of Stellarator Coils for Current Carrying Plasmas

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Strumberger, E.; Hirshman, S.; Boozer, A.; Brooks, A.; Valanju, P.

    1998-11-01

    The method of automatic optimization (P. Merkel, Nucl. Fus. 27), (1987) 867; P. Merkel, M. Drevlak, Proc 25th EPS Conf. on Cont. Fus. and Plas. Phys., Prague, in print. for the design of stellarator coils consists essentially of determining filaments such that the average relative field error int dS [ (B_coil + B_j) \\cdot n]^2/B^2_coil is minimized on the prescribed plasma boundary. Bj is the magnetic field produced by the plasma currents of the given finite β fixed boundary equilibrium. For equilibria of the W7-X type, Bj can be neglected, because of the reduced parallel plasma currents. This is not true for quasi-axisymmetric stellarator (QAS) configurations (A. Reiman, et al., to be published.) with large equilibrium and net plasma (bootstrap) currents. Although the coils for QAS exhibit low values of the field error, free boundary calculations indicate that the shape of the plasma is usually not accurately reproduced , particularly when saddle coils are used. We investigate if the surface reconstruction can be improved by introducing a modified measure of the field error based on a measure of the resonant components of the normal field.

  14. The Development of Plasma Thrusters and Its Importance for Space Technology and Science Education at University of Brasilia

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Calvoso, Lui; Gessini, Paolo; Ferreira, Ivan

    Since 2004 The Plasma Physics Laboratory of University of Brasilia (Brazil) is developing Hall Plasma Thurusters for Satellite station keeping and orbit control. The project is supported by CNPq, CAPES, FAP DF and from The Brazillian Space Agency-AEB. The project is part of The UNIESPAÇO Program for Space Activities Development in Brazillian Universities. In this work we are going to present the highlights of this project together with its vital contribution to include University of Brasilia in the Brazillian Space Program. Electric propulsion has already shown, over the years, its great advantages in being used as main and secondary thruster system of several space mission types. Between the many thruster concepts, one that has more tradition in flying real spacecraft is the Hall Effect Thruster (HET). These thrusters, first developed by the USSR in the 1960s, uses, in the traditional design, the radial magnetic field and axial electric field to trap electrons, ionize the gas and accelerate the plasma to therefore generate thrust. In contrast to the usual solution of using electromagnets to generate the magnetic field, the research group of the Plasma Physics Laboratory of University of Brasília has been working to develop new models of HETs that uses combined permanent magnets to generate the necessary magnetic field, with the main objective of saving electric power in the final system design. Since the beginning of this research line it was developed and implemented two prototypes of the Permanent Magnet Hall Thruster (PMHT). The first prototype, called P-HALL1, was successfully tested with the using of many diagnostics instruments, including, RF probe, Langmuir probe, Ion collector and Ion energy analyzer. The second prototype, P-HALL2, is currently under testing, and it’s planned the increasing of the plasma diagnostics and technology analysis, with the inclusion of a thrust balance, mass spectroscopy and Doppler broadening. We are also developing an

  15. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  16. Direct current modulation of spin-Hall-induced spin torque ferromagnetic resonance in platinum/permalloy bilayer thin films

    NASA Astrophysics Data System (ADS)

    Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya

    2018-06-01

    We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.

  17. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  18. Laser characterization of the unsteady 2-D ion flow field in a Hall thruster with breathing mode oscillations

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature form of electric propulsion for spacecraft. One commonly observed low frequency (10-50 kHz) discharge current oscillation in these E × B devices is the breathing mode, linked to a propagating ionization front traversing the channel. The complex time histories of ion production and acceleration in the discharge channel and near-field plume lead to interesting dynamics and interactions in the central plasma jet and downstream plume regions. A time-resolved laser-induced fluorescence (LIF) diagnostic non-intrusively measures 2-D ion velocity and relative ion density throughout the plume of a commercial BHT-600 Hall thruster manufactured by Busek Co. Low velocity classes of ions observed in addition to the main accelerated population are linked to propellant ionization outside of the device. Effects of breathing mode dynamics are shown to persist far downstream where modulations in ion velocity and LIF intensity are correlated with discharge current oscillations. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  19. Current-Driven Dynamics of Skyrmions Stabilized in MnSi Nanowires Revealed by Topological Hall Effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song

    2015-03-01

    Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.

  20. Dimensionless factors for an alternating-current non-thermal arc plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min

    2016-12-01

    A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.

  1. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    NASA Astrophysics Data System (ADS)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  2. Formation of Dawn-Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Three-Dimensional Particle-In-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-04-01

    Using a three-dimensional particle-in-cell simulation, we investigate the formation of dawn-dusk asymmetry in Earth's magnetotail. The magnetotail current sheet is compressed by an external driving electric field down to a thickness on the order of ion kinetic scales. In the resultant thin current sheet (TCS) where the magnetic field line curvature radius is much smaller than ion gyroradius, a significant portion of the ions becomes unmagnetized and decoupled from the magnetized electrons, giving rise to a Hall electric field Ez and an additional cross-tail current jy caused by the unmagnetized ions being unable to comove with the electrons in the Hall electric field. The Hall electric field transports via E × B drift magnetic flux and magnetized plasma dawnward, causing a reduction of the current sheet thickness and the normal magnetic field Bz on the duskside. This leads to an even stronger Hall effect (stronger jy and Ez) in the duskside TCS. Thus, due to the internal kinetic effects in the TCS, namely, the Hall effect and the associated dawnward E × B drift, the magnetotail dawn-dusk asymmetry forms in a short time without any global, long-term effects. The duskside preference of reconnection and associated dynamic phenomena (such as substorm onsets, dipolarizing flux bundles, fast flows, energetic particle injections, and flux ropes), which has been pervasively observed by spacecraft in the past 20 years, can thus be explained as a consequence of this TCS asymmetry.

  3. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  4. Hall Thruster Thermal Modeling and Test Data Correlation

    NASA Technical Reports Server (NTRS)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  5. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials.

    PubMed

    Sodemann, Inti; Fu, Liang

    2015-11-20

    It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

  6. Current sheet collapse in a plasma focus.

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.

    1972-01-01

    Collapse of the current sheets in a plasma focus has been recorded simultaneously through slits parallel and perpendicular to the symmetry axis in the streak mode. The dark period following the collapse is due to the plasma moving out of the field of view. Microdensitometric measurements of intensity variation also support this conclusion. A large anisotropy is also found in the x-ray radiation pattern. Effects of different vacuum vessels were investigated.

  7. Electrodeless plasma thrusters for spacecraft: A review

    NASA Astrophysics Data System (ADS)

    Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.

    2017-08-01

    The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.

  8. Facility Focus: Residence Halls.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes residence halls seeking to meet needs beyond traditional mass housing for the 18- to 22-year-old students: Whittemore Hall at the Tuck School of Business at Dartmouth College (for older students); Small Group Housing at Washington University (grouping students with common interests); and the renovation of the residence hall at Boston's…

  9. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Scott D. Altman, second from left, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA's Kennedy Space Center Visitor Complex in Florida. At far left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Altman into the Hall of Fame Class of 2018. At right is Hall of Famer John Grunsfeld, who spoke on Altman's behalf during the ceremony. At far right is Thomas D. Jones, Ph.D., who also was inducted into the AHOF Class of 2018. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  10. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Thomas D. Jones, Ph.D., in the center, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. At left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Jones into the Hall of Fame Class of 2018. At right is Hall of Famer Storey Musgrave, who spoke on Jones behalf during the ceremony. Also inducted was retired astronaut Scott D. Altman. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  11. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  12. Effect of dust on tilted electrostatic resistive instability in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Tyagi, Jasvendra; Singh, Sukhmander; Malik, Hitendra K.

    2018-03-01

    Effect of negatively charged dust on resistive instability corresponding to the electrostatic wave is investigated in a Hall thruster plasma when this purely azimuthal wave is tilted and strong axial component of wave vector is developed. Analytical calculations are done to obtain the relevant dispersion equation, which is solved numerically to investigate the growth rate of the instability. The magnitude of the growth rate in the plasma having dust particles is found to be much smaller than the case of pure plasma. However, the instability grows faster for the increasing dust density and the higher charge on the dust particles. The higher magnetic field is also found to support the instability.

  13. Use of the 'Hall technique' for management of carious primary molars among Scottish general dental practitioners.

    PubMed

    Dean, A A; Bark, J E; Sherriff, A; Macpherson, L M D; Cairns, A

    2011-06-01

    To assess the current awareness, usage and opinion of the Hall technique as a restorative option for primary molars in Scottish general dental practice; and to identify preferences for methods of further training, if desired, for those not currently using the technique. A postal questionnaire was sent to a random sample of Scottish general dental practitioners (GDPs) (n= 1207). Half of all GDPs within each health board were mailed. All analyses have been carried out in Minitab (version 15). The study is primarily descriptive and uses frequency distributions and cross-tabulations. Percentages are reported with p5% confidence intervals. Characteristics of the whole sample were reported. However when reporting the use of the Hall technique, only those GDP's reporting to treat children, at least sometimes are considered. Following two mail-shots, the overall response rate was 59% (715/1207). Eighty-six percent (616/715) of respondents were aware of the Hall technique as a method of restoring primary molars and 48 % (n=318) were currently using the Hall technique. Of those GDPs who never used the Hall technique (51% of total respondents; n=340), 46% (n=157) indicated they were either 'very interested' or 'interested' in adopting the Hall technique into their clinical practice. The preferred source for further training was via a section 63 continuing professional development (CPD) course, incorporating a practical element. Of those GDPs in Scotland who responded to the questionnaire, an unexpectedly high number were already using the Hall technique in their practice, and among those not currently using it, there is a demand for training.

  14. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  15. Direct comparison of fractional and integer quantized Hall resistance

    NASA Astrophysics Data System (ADS)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  16. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  17. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    NASA Astrophysics Data System (ADS)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  18. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10{sup 19} - 10{sup 20} m{sup -3}), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun viamore » the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm{sup 2}. The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications.« less

  19. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  20. Plasma Transfusion: History, Current Realities, and Novel Improvements.

    PubMed

    Watson, Justin J J; Pati, Shibani; Schreiber, Martin A

    2016-11-01

    Traumatic hemorrhage is the leading cause of preventable death after trauma. Early transfusion of plasma and balanced transfusion have been shown to optimize survival, mitigate the acute coagulopathy of trauma, and restore the endothelial glycocalyx. There are a myriad of plasma formulations available worldwide, including fresh frozen plasma, thawed plasma, liquid plasma, plasma frozen within 24 h, and lyophilized plasma (LP). Significant equipoise exists in the literature regarding the optimal plasma formulation. LP is a freeze-dried formulation that was originally developed in the 1930s and used by the American and British military in World War II. It was subsequently discontinued due to risk of disease transmission from pooled donors. Recently, there has been a significant amount of research focusing on optimizing reconstitution of LP. Findings show that sterile water buffered with ascorbic acid results in decreased blood loss with suppression of systemic inflammation. We are now beginning to realize the creation of a plasma-derived formulation that rapidly produces the associated benefits without logistical or safety constraints. This review will highlight the history of plasma, detail the various types of plasma formulations currently available, their pathophysiological effects, impacts of storage on coagulation factors in vitro and in vivo, novel concepts, and future directions.

  1. Electric currents in cosmic plasmas

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1977-01-01

    It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.

  2. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  3. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  4. Effect of Background Pressure on the Performance and Plume of the HiVHAc Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas

    2013-01-01

    During the Single String Integration Test of the NASA HiVHAc Hall thruster, a number of plasma diagnostics were implemented to study the effect of varying facility background pressure on thruster operation. These diagnostics include thrust stand, Faraday probe, ExB probe, and retarding potential analyzer. The test results indicated a rise in thrust and discharge current with background pressure. There was also a decrease in ion energy per charge, an increase in multiply-charged species production, a decrease in plume divergence, and a decrease in ion beam current with increasing background pressure. A simplified ingestion model was applied to determine the maximum acceptable background pressure for thrust measurement. The maximum acceptable ingestion percentage was found to be around 1%. Examination of the diagnostics results suggest the ionization and acceleration zones of the thruster were shifting upstream with increasing background pressure.

  5. Correcting magnetic probe perturbations on current density measurements of current carrying plasmas.

    PubMed

    Knoblauch, P; Raspa, V; Di Lorenzo, F; Lazarte, A; Clausse, A; Moreno, C

    2010-09-01

    A method to infer the current density distribution in the current sheath of a plasma focus discharge from a magnetic probe is formulated and then applied to experimental data obtained in a 1.1 kJ device. Distortions on the magnetic probe signal caused by current redistribution and by a time-dependent total discharge current are considered simultaneously, leading to an integral equation for the current density. Two distinct, easy to implement, numerical procedures are given to solve such equation. Experimental results show the coexistence of at least two maxima in the current density structure of a nitrogen sheath.

  6. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  7. Alternative model of space-charge-limited thermionic current flow through a plasma

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  8. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE PAGES

    Campanell, M. D.

    2018-04-19

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  9. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, M. D.

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  10. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  11. Overview of NASA Iodine Hall Thruster Propulsion System Development

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  12. Nonlinear chiral plasma transport in rotating coordinates

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Kilinçarslan, Eda

    2017-08-01

    The nonlinear transport features of inhomogeneous chiral plasma in the presence of electromagnetic fields, in rotating coordinates are studied within the relaxation time approach. The chiral distribution functions up to second order in the electric field in rotating coordinates and the derivatives of chemical potentials are established by solving the Boltzmann transport equation. First, the vector and axial current densities in the weakly ionized chiral plasma for vanishing magnetic field are calculated. They involve the rotational analogues of the Hall effect as well as several new terms arising from the Coriolis and fictitious centrifugal forces. Then in the short relaxation time regime the angular velocity and electromagnetic fields are treated as perturbations. The current densities are obtained by retaining the terms up to second order in perturbations. The time evolution equations of the inhomogeneous chemical potentials are derived by demanding that collisions conserve the particle number densities.

  13. Resistive and Hall weighting functions in three dimensions

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Knickerbocker, C. J.

    1998-10-01

    The authors extend their study of the effect of macroscopic impurities on resistive and Hall measurements to include objects of finite thickness. The effect of such impurities is calculated for a series of rectangular parallelepipeds with two current and two voltage contacts on the corners of one square face. The weighting functions display singularities near these contacts, but these are shown to vanish in the two-dimensional limit, in agreement with previous results. Finally, it is shown that while Hall measurements principally sample the plane of the electrodes, resistivity measurements sample more of the interior of an object of finite thickness.

  14. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  15. Role of casson fluid on MHD natural convective flow towards vertically inclined plate with hall current

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of the present investigation is to study the steady magnetohydrodynamic free convective Casson fluid flow of an electrically conducting gray gas near equilibrium in the optically thin limit along an infinite vertical plate in the presence of strong transverse magnetic field imposed perpendicularly to the plate, taking hall current and thermal radiation into account. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Using the non-dimensional quantities, the governing equations have been transformed into a set of ordinary differential equations. The influence of different pertinent parameters on the flow properties is studied. A comparison is made with the available results in the literature, and our numerical results are in very good agreement with the analytical results.

  16. Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor

    2007-01-01

    This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.

  17. Measurement realities of current collection in dynamic space plasma environments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1990-01-01

    Theories which describe currents collected by conducting and non-conducting bodies immersed in plasmas have many of their concepts based upon the fundamentals of sheath-potential distributions and charged-particle behavior in superimposed electric and magnetic fields. Those current-collecting bodies (or electrodes) may be Langmuir probes, electric field detectors, aperture plates on ion mass spectrometers and retarding potential analyzers, or spacecraft and their rigid and tethered appendages. Often the models are incomplete in representing the conditions under which the current-voltage characteristics of the electrode and its system are to be measured. In such cases, the experimenter must carefully take into account magnetic field effects and particle anisotropies, perturbations caused by the current collection process itself and contamination on electrode surfaces, the complexities of non-Maxwellian plasma distributions, and the temporal variability of the local plasma density, temperature, composition and fields. This set of variables is by no means all-inclusive, but it represents a collection of circumstances guaranteed to accompany experiments involving energetic particle beams, plasma discharges, chemical releases, wave injection and various events of controlled and uncontrolled spacecraft charging. Here, an attempt is made to synopsize these diagnostic challenges and frame them within a perspective that focuses on the physics under investigation and the requirements on the parameters to be measured. Examples include laboratory and spaceborne applications, with specific interest in dynamic and unstable plasma environments.

  18. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  19. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  20. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  1. Dynamics of tokamak plasma surface current in 3D ideal MHD model

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2013-10-01

    Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.

  2. Ion Velocity Measurements in a Linear Hall Thruster (Postprint)

    DTIC Science & Technology

    2005-06-14

    Hall Thruster in a high vacuum environment. The ionized propellant velocities were measured using laser induced fluorescence of the excited state xenon ionic transition at 834.7 nm. Ion velocities were interrogated from the channel exit plane to a distance 30 mm from it. Both axial and cross-field (along the electron Hall current direction) velocities were measured. The results presented here, combined with those of previous work, highlight the high sensitivity of electron mobility inside and outside the channel, depending on the background gas density, type of wall

  3. Investigations of an Environmentally Induced Long Duration Hall Thruster Start Transient (PREPRINT)

    DTIC Science & Technology

    2006-02-06

    Hall thruster start transient is produced by exposure of the thruster to ambient laboratory atmosphere. This behavior was first observed during operation of a cluster of four 200 W BHT-200 Hall effect thrusters where large anode discharge fluctuations, visible as increased anode current and a diffuse plume structure, occurred in an apparently random manner. During operation of a single thruster, the start transient appears as a quickly rising and later smoothly decaying elevated anode current with a diffuse plume that persists for less than 500 seconds. The start transient

  4. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  5. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  6. Pinch current limitation effect in plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai

    The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.

  7. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  8. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    2016-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.

  9. Evaluating the accuracy of recent electron transport models at predicting Hall thruster plasma dynamics

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark; Young, Christopher

    2016-10-01

    We present continued efforts towards introducing physical models for cross-magnetic field electron transport into Hall thruster discharge simulations. In particular, we seek to evaluate whether such models accurately capture ion dynamics, both averaged and resolved in time, through comparisons with measured ion velocity distributions which are now becoming available for several devices. Here, we describe a turbulent electron transport model that is integrated into 2-D hybrid fluid/PIC simulations of a 72 mm diameter laboratory thruster operating at 400 W. We also compare this model's predictions with one recently proposed by Lafluer et al.. Introducing these models into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. The models are tested for their ability to capture the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. Model predictions are also more rigorously evaluated against recent laser-induced fluorescence measurements of time-resolved ion velocity distributions.

  10. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, two space explorers, Scott D. Altman, second from left, and Thomas D. Jones, Ph.D., far right, are inducted into the U.S. Astronaut Hall of Fame Class of 2018. At far left is Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation, who inducted Altman and Jones into the AHOF. Second from right is Hall of Famer John Grunsfeld, who spoke on behalf of Altman during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  11. Boundary-value problem for plasma centrifuge at arbitrary magnetic Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    We solve in closed form the boundary-value problem for the partial differential equations which describe the (azimuthal) rotation velocity and induced magnetic fields in a cylindrical plasma centrifuge with ring electrodes of different radii and an external, axial magnetic field. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number H and the magnetic Reynolds number R. For small Hall coefficients, the induced magnetic field does not affect the plasma rotation. As a result of the Lorentz forces, the plasma rotates with speeds as high as 100,000 cm/sec around its axis of symmetry at typical conditions, so that the lighter (heavier) ion and atom components are enriched at (off) the center of the discharge cylinder.

  12. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  13. Comment on 'Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source' [J. Appl. Phys. 102, 123305 (2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].

  14. Modeling of the Convection and Interaction of Ring Current, Plasmaspheric and Plasma Sheet Plasmas in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex

    2010-01-01

    Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.

  15. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    PubMed

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  16. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  17. Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine

    NASA Astrophysics Data System (ADS)

    Porwitzky, A.; Dolan, D. H.; Martin, M. R.; Laity, G.; Lemke, R. W.; Mattsson, T. R.

    2018-06-01

    By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.

  18. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  19. Critical current density measurement of striated multifilament-coated conductors using a scanning Hall probe microscope

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fen; Kochat, Mehdi; Majkic, Goran; Selvamanickam, Venkat

    2016-08-01

    In this paper the authors succeeded in measuring the critical current density ({J}{{c}}) of multifilament-coated conductors (CCs) with thin filaments as low as 0.25 mm using the scanning hall probe microscope (SHPM) technique. A new iterative method of data analysis is developed to make the calculation of {J}{{c}} for thin filaments possible, even without a very small scan distance. The authors also discussed in detail the advantage and limitation of the iterative method using both simulation and experiment results. The results of the new method correspond well with the traditional fast Fourier transform method where this is still applicable. However, the new method is applicable for the filamentized CCs in much wider measurement conditions such as with thin filament and a large scan distance, thus overcoming the barrier for application of the SHPM technique on {J}{{c}} measurement of long filamentized CCs with narrow filaments.

  20. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  1. Equilibrium and magnetic properties of a rotating plasma annulus

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui

    2008-10-01

    Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 1019m-3, a temperature on the order of 10eV, and a magnetic field on the order of 100G. A laboratory plasma annulus experiment with a dimension of ˜1m, and rotation at ˜0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is ˜1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, ρUθ2/r =d(p+Bz2/2μ0)/dr=K0, with K0 being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-β plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (Jr) is produced through biasing the center rod at a negative electric potential relative to the outer wall. Jr×Bz torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (Bθ) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, Bθ∝r-1. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.

  2. Recent Results From Internal and Very-Near-Field Plasma Diagnostics of a High Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Gallimore, Alec D.; Jacobson, David (Technical Monitor)

    2003-01-01

    Floating potential and ion current density measurements were taken on the laboratory model NASA-173Mv2 in order to improve understanding of the physical processes affecting Hall thruster performance at high specific impulse. Floating potential was measured on discharge chamber centerline over axial positions spanning 10 mm from the anode to 100 mm downstream of the exit plane. Ion current density was mapped radially up to 300 mm from thruster centerline over axial positions in the very-near-field (10 to 250 mm from the exit plane). All data were collected using a planar probe in conjunction with a high-speed translation stage to minimize probe-induced thruster perturbations. Measurements of floating potential at a xenon flow rate of 10 mg/s have shown that the acceleration layer moved upstream 3 1 mm when the voltage increased from 300 to 600 V. The length of the acceleration layer was 14 2 mm and was approximately constant with voltage and magnetic field. Ion current density measurements indicated the annular ion beam crossed the thruster centerline 163 mm downstream of the exit plane. Radial integration of the ion current density at the cathode plane provided an estimate of the ion current fraction. At 500 V and 5 mg/s, the ion current fraction was calculated as 0.77.

  3. Anomalous cross-B field transport and spokes in HiPIMS plasma

    NASA Astrophysics Data System (ADS)

    Hecimovic, Ante; Maszl, Christian; Schulz-von der Gathen, Volker; von Keudell, Achim

    2016-09-01

    The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge is investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2) . The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. Up to discharge currents of several amperes, the spokes rotate in a retrograde ExB direction and beyond the spokes rotate in a ExB direction. In this contribution we present experimental evidence that anomalous diffusion is triggered by the appearance of spokes rotating in the ExB direction. The Hall parameter ωceτc , product of the electron cyclotron frequency and the classical collision time, reduces from Bohm diffusion values (16 and higher) down to the value of 3 as spokes appear, indicating anomalous cross-B field transport. The ion diffusion coefficients calculated from a sideways image of the spoke is six times higher than Bohm diffusion coefficients, which is consistent with the reduction of the Hall parameter.

  4. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  5. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  6. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  7. About an Extreme Achievable Current in Plasma Focus Installation of Mather Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulin, V. Ya.; Polukhin, S. N.; Vikhrev, V. V.

    A computer simulation and analytical analysis of the discharge process in Plasma Focus has shown that there is an upper limit to the current which can be achieved in Plasma Focus installation of Mather type by only increasing the capacity of the condenser bank. The maximum current achieved for various plasma focus installations of 1 MJ level is discussed. For example, for the PF-1000 (IFPiLM) and 1 MJ Frascati PF, the maximum current is near 2 MA. Thus, the commonly used method of increasing the energy of the PF installation by increasing of the capacity has no merit. Alternative optionsmore » in order to increase the current are discussed.« less

  8. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  9. The Role of Social Influence on How Residence Hall Inhabitants Respond to Fire Alarms

    ERIC Educational Resources Information Center

    Leytem, Michael; Stark, Emily

    2016-01-01

    College resident halls pose a threat for a catastrophic event in the case of fire, but little research has examined potential influences on students' responses to fire alarms, particularly the role of social influence in affecting their behaviors. In the current study, residence hall inhabitants reported their knowledge about fire safety, their…

  10. Field-aligned Currents in Io's Plasma Wake

    NASA Astrophysics Data System (ADS)

    Chen, Chuxin

    2008-09-01

    Since the discovery of Io-controlled decametric radio emissions, the interaction between Io and Jovian magnetosphere has been studied intensively. Two types of interaction have been proposed so far. One is electric circuit model, in which the induced currents flow between Io and the Jovian ionosphere along the magnetic flux tube threading Io. The other is Alfvén wing model. A wing forms in the perturbed magnetic field lines behind Io, the Alfvénic currents develop in the wing rather than along the magnetic flux tubes. More recently, auroral emission associated with Io's footprint and its trailing emission were observed. Such auroral arc may extend longitudinally westward for more than 100 degrees. This trail of aurora is brightest near Io and dims with increasing downstream distance. There is no clear theoretical understanding of the physics that generates this downstream aurora. However it is generally believed that Io's plasma wake is associated with this phenomenon and field-aligned currents lead to downstream emissions. Along with the above two types of the interaction between Io and its surrounding medium, there are also two theoretical frameworks in which these downstream emissions can be interpreted. The first one is corotational lag. When an Io-perturbed (mass loading and/or Io's conductivity) magnetic flux tube moves slowly relative to Jovian magnetosphere, an electric field would be induced at the equatorial plane of the flux tube, which in turn causes a current perpendicular to the field lines that is connected by field-aligned currents. The Lorentz force due to the perpendicular current would play the role of bring the lagged plasma up to corotation. The second is Alfvén wave, in which the Io-perturbed Alfvén wave is reflected between the Jovian ionosphere and the torus edge, driving particles into loss cone. Our present study attempts to use a MHD method to solve the above problem. MHD simulations of Io-Jupiter interaction has been carried out by

  11. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  12. Complementary Density Measurements for the 200W Busek Hall Thruster (PREPRINT)

    DTIC Science & Technology

    2006-07-12

    Hall thruster are presented. Both a Faraday probe and microwave interferometry system are used to examine the density distribution of the thruster plasma at regular spatial intervals. Both experiments are performed in situ under the same conditions. The resulting density distributions obtained from both experiments are presented. Advantages and uncertainties of both methods are presented, as well as how comparison between the two data sets can account for the uncertainties of each method

  13. 2D model of plasma current sheath propagation in a Mather type plasma focus device

    NASA Astrophysics Data System (ADS)

    Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil

    2018-06-01

    Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.

  14. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  15. Nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    2016-09-15

    It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency.

  16. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    NASA Technical Reports Server (NTRS)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  17. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y 3Fe 5O 12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc currentmore » through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. In conclusion, we find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.« less

  18. Concert halls with strong lateral reflections enhance musical dynamics.

    PubMed

    Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W; Lokki, Tapio

    2014-03-25

    One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians' skill, but here we show that interactions between the concert-hall acoustics and listeners' hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall's established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note's fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry.

  19. Mesoscopic spin Hall effect in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  20. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  1. Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Wu, Di; Jiang, Zhengsheng

    2014-02-14

    Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperaturemore » of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.« less

  2. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  3. Influence of the carrier mobility distribution on the Hall and the Nernst effect measurements in n-type InSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madon, B.; Wegrowe, J.-E.; Drouhin, H.-J.

    2016-01-14

    In this study, we report magneto-resistance measurements on an n-doped InSb film, to separate the contributions of the electrical currents from the heat currents. We have demonstrated a prototype for a magnetic field sensor which is powered by heat currents and does not require any electrical current. We fabricated two Hall bars, where a low frequency (f = 0.05 Hz) AC current, was applied between the two contacts in one of the Hall bars. Separating the f and 2f components of the voltage measured across the second Hall bar was used to distinguish between the electrical and the heat contributions to the electronmore » currents. Our observations can be modeled using a Gaussian distribution of mobility within the sample.« less

  4. The Importance of the Cathode Plume and Its Interactions with the Ion Beam in Numerical Simulations of Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2015-01-01

    Hall2De is a first-principles, 2-D axisymmetric code that solves the equations of motion for ions, electrons, and neutrals on a magnetic-field-aligned grid. The computational domain downstream of the acceleration channel exit plane is large enough to include self-consistently the cathode boundary. In this paper, we present results from numerical simulations of the H6 laboratory thruster with an internally mounted cathode, with the aim of highlighting the importance of properly accounting for the interactions between the ion beam and cathode plume. The anomalous transport of electrons across magnetic field lines in Hall2De is modelled using an anomalous collision frequency, ?anom, yielding ?anom approximately equal to omega ce (i.e., the electron cyclotron frequency) in the plume. We first show that restricting the anomalous collision frequency to only regions where the current density of ions is large does not alter the plasma discharge in the Hall thruster as long as the interaction between the ion beam and the cathode plume is captured properly in the computational domain. This implies that the boundary conditions must be placed sufficiently far as to not interfere with the electron transport in this region. These simulation results suggest that electron transport across magnetic field lines occurs largely inside the beam and may be driven by the interactions between beam ions and electrons. A second finding that puts in relevance the importance of including the cathode plume in numerical simulations is on the significance of accounting for the ion acoustic turbulence (IAT), now known to occur in the vicinity of the cathode exit. We have included in the Hall2De simulations a model of the IAT-driven anomalous collision frequency based on Sagdeev's model for saturation of the ion-acoustic instability. This implementation has allowed us to achieve excellent agreement with experimental measurements in the near plume obtained during the operation of the H6 thruster at

  5. Pt thickness dependence of spin Hall effect switching of in-plane magnetized CoFeB free layers studied by differential planar Hall effect

    NASA Astrophysics Data System (ADS)

    Mihajlović, G.; Mosendz, O.; Wan, L.; Smith, N.; Choi, Y.; Wang, Y.; Katine, J. A.

    2016-11-01

    We introduce a differential planar Hall effect method that enables the experimental study of spin orbit torque switching of in-plane magnetized free layers in a simple Hall bar device geometry. Using this method, we study the Pt thickness dependence of switching currents and show that they decrease monotonically down to the minimum experimental thickness of ˜5 nm, while the critical current and power densities are very weakly thickness dependent, exhibiting the minimum values of Jc0 = 1.1 × 108 A/cm2 and ρJc0 2=0.6 ×1012 W/cm 3 at this minimum thickness. Our results suggest that a significant reduction of the critical parameters could be achieved by optimizing the free layer magnetics, which makes this technology a viable candidate for fast, high endurance and low-error rate applications such as cache memories.

  6. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  7. Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.

    PubMed

    Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd

    2016-04-01

    In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.

  8. Low-temperature plasma simulations with the LSP PIC code

    NASA Astrophysics Data System (ADS)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  9. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  10. Does the Hall Effect Solve the Flux Pileup Saturation Problem?

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.

  11. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Kelvin Manning, associate director of NASA's Kennedy Space Center in Florida, welcomes guests to the 2018 U.S. Astronaut Hall of Fame (AHOF) Induction inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex (KSCVC). Two veteran space explorers were inducted into the Hall of Fame Class of 2018. They are Scott D. Altman and Thomas D. Jones, Ph.D. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  12. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  13. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in the Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  14. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  15. Observation of instability-induced current redistribution in a spherical-torus plasma.

    PubMed

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  16. Hall effects on the Walén relation in rotational discontinuities and Alfvén waves

    NASA Astrophysics Data System (ADS)

    Wu, B. H.; Lee, L. C.

    2000-08-01

    For Alfvénic fluctuations in magnetohydrodynamics (MHD) the perturbed transverse velocity Vt and magnetic field Bt can be related by the Walén relation, Vt = ±Bt/(μ0ρ)1/2 ≡;±VAt, where ρ is the plasma density, VAt is the transverse Alfvén velocity, and the plus (minus) sign is for antiparallel (parallel) propagation. However, observations of Vt and Bt for Alfvén waves and rotational discontinuities in the solar wind and at the magnetopause showed an obvious deviation from the relation. In this paper, modifications of the Walén relation for linear and nonlinear Alfvén waves and rotational discontinuities (RDs) are examined in the Hall-MHD formulation. Let Vit (≈ Vt) be the transverse ion velocity and Vet be the transverse electron velocity. It is found that Vit = ±Bt(z)/(μ0ρ1)1/2 = ±(ρ(z)/ρ1)1/2 VAt(z) and Vet = ±(ρ1/μ0)1/2Bt(z)/ρ(z) = ±(ρ1/ρ(z))1/2 VAt(z)for RDs in Hall-MHD, where ρ1 is the upstream plasma density. The ion and electron Walén ratios are defined as Ai = Vit/VAt and Ae = Vet/VAt, respectively. It is found in Hall-MHD that ?, AiAe = 1 and Ai < 1 (Ai > 1) for Alfvén waves and RDs with right-hand (left-hand) polarization. The Hall dispersive effect may modify the ion Walén ratio by ΔAi≈±0.14 for the magnetopause RDs and by ΔAi≈±0.07 for the interplanetary RDs.

  17. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  18. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  19. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  20. Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani

    2015-01-01

    Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.

  1. Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team

    2009-06-01

    The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.

  2. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  3. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  4. Kinetic particle simulation of discharge and wall erosion of a Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-06-15

    The primary lifetime limiting factor of Hall thrusters is the wall erosion caused by the ion induced sputtering, which is predominated by dielectric wall sheath and pre-sheath. However, so far only fluid or hybrid simulation models were applied to wall erosion and lifetime studies in which this non-quasi-neutral and non-equilibrium area cannot be treated directly. Thus, in this study, a 2D fully kinetic particle-in-cell model was presented for Hall thruster discharge and lifetime simulation. Because the fully kinetic lifetime simulation was yet to be achieved so far due to the high computational cost, the semi-implicit field solver and the techniquemore » of mass ratio manipulation was employed to accelerate the computation. However, other artificial manipulations like permittivity or geometry scaling were not used in order to avoid unrecoverable change of physics. Additionally, a new physics recovering model for the mass ratio was presented for better preservation of electron mobility at the weakly magnetically confined plasma region. The validity of the presented model was examined by various parametric studies, and the thrust performance and wall erosion rate of a laboratory model magnetic layer type Hall thruster was modeled for different operation conditions. The simulation results successfully reproduced the measurement results with typically less than 10% discrepancy without tuning any numerical parameters. It is also shown that the computational cost was reduced to the level that the Hall thruster fully kinetic lifetime simulation is feasible.« less

  5. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  6. Performance Evaluation of a 50kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.

    1999-01-01

    An experimental investigation was conducted on a laboratory model Hall thruster designed to operate at power levels up to 50 kW. During this investigation the engine's performance was characterized over a range of discharge currents from 10 to 36 A and a range of discharge voltages from 200 to 800 V Operating on the Russian cathode a maximum thrust of 966 mN was measured at 35.6 A and 713.0 V. This corresponded to a specific impulse of 3325 s and an efficiency of 62%. The maximum power the engine was operated at was 25 kW. Additional testing was conducted using a NASA cathode designed for higher current operation. During this testing, thrust over 1 N was measured at 40.2 A and 548.9 V. Several issues related to operation of Hall thrusters at these high powers were encountered.

  7. Theory and Numerical Simulation of Plasma-wall Interactions in Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Mikellides, Ioannis

    2016-10-01

    Electric propulsion (EP) can be an enabling technology for many science missions considered by NASA because it can produce high exhaust velocities, which allow for less propellant mass compared to typical chemical systems. Over the last decade two EP technologies have emerged as primary candidates for several proposed science missions, mainly due to their superior performance and proven record in space flight: the Ion and Hall thrusters. As NASA looks ahead to increasingly ambitious science goals, missions demand higher endurance from the propulsion system. So, by contrast to the early years of development of these thrusters, when the focus was on performance, considerable focus today is shifting towards extending their service life. Considering all potentially life-limiting mechanisms in Ion and Hall thrusters two are of primary concern: (a) the erosion of the acceleration channel in Hall thrusters and (b) the erosion of the hollow cathode. The plasma physics leading to material wear in these devices are uniquely challenging. For example, soon after the propellant is introduced into the hollow cathode it becomes partially ionized as it traverses a region of electron emission. Electron emission involves highly non-linear boundary conditions. Also, the sheath size is typically many times smaller than the characteristic physical scale of the device, yet energy gained by ions through the sheath must be accounted for in the erosion calculations. The plasma-material interactions in Hall thruster channels pose similar challenges that are further exacerbated by the presence of a strong applied magnetic field. In this presentation several complexities associated with plasma-wall interactions in EP will be discussed and numerical simulation results of key plasma properties in two examples, Hall thrusters and hollow cathodes, will be presented.

  8. Mini array of quantum Hall devices based on epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed thatmore » the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.« less

  9. The Hall Instability of Weakly Ionized, Radially Stratified, Rotating Disks

    NASA Astrophysics Data System (ADS)

    Liverts, Edward; Mond, Michael; Chernin, Arthur D.

    2007-09-01

    Cool weakly ionized gaseous rotating disks are considered by many models to be the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD) and, recently, Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum and of radial density stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluid in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and, thus, perhaps initiates the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period. This family of instabilities is introduced here for the first time in an astrophysical context.

  10. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  11. Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence

    NASA Astrophysics Data System (ADS)

    Andrés, N.; Galtier, S.; Sahraoui, F.

    2018-01-01

    We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium.

  12. Familial Pallister-Hall in adulthood.

    PubMed

    Talsania, Mitali; Sharma, Rohan; Sughrue, Michael E; Scofield, R Hal; Lim, Jonea

    2017-10-01

    Pallister Hall syndrome is autosomal dominant disorder usually diagnosed in infants and children. Current diagnostic criteria include presence of hypothalamic hamartoma, post axial polydactyly and positive family history, but the disease has variable manifestations. Herein we report Pallister Hall syndrome diagnosed in a family where both patients were adults. A 59 year old man developed seizures 4 years prior to our evaluation of him, at which time imaging showed a hypothalamic hamartoma. The seizures were controlled medically. He did well until he had visual changes after a traumatic head injury. Repeat MRI showed slight expansion of the mass with formal visual field testing demonstrating bitemporal hemianopsia. There was no evidence of pituitary dysfunction except for large urine volume. He underwent surgery to debulk the hamartoma and the visual field defects improved. There was no hypopituitarism post-operatively, and the polydyspia resolved. His 29 year old daughter also had seizures and hypothalamic hamartoma. Both patients had had polydactyly with prior surgical correction in childhood. The daughter underwent genetic testing, which revealed a previously undescribed heterozygous single base pair deletion in exon 13 of the GLI3 gene causing a frameshift mutation. Further investigation into family history revealed multiple members in previous generations with polydactyly and/or seizures. Pallister-Hall syndrome is caused by an inherited autosomal dominant or de novo mutation in GLI3 gene. This rare syndrome has not had prevalence defined, however. Generally, diagnoses are made in the pediatric population. Our report adds to the few cases detected in adulthood.

  13. Hall effect of copper nitride thin films

    NASA Astrophysics Data System (ADS)

    Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.

    2005-08-01

    The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.

  14. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  15. Semiclassical theory of Hall viscosity

    NASA Astrophysics Data System (ADS)

    Biswas, Rudro

    2014-03-01

    Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.

  16. Faraday Probe Analysis, Part 2: Evaluation of Facility Effects on Ion Migration in a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2010-02-24

    A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.

  17. Chiral Maxwell demon in a quantum Hall system with a localized impurity

    NASA Astrophysics Data System (ADS)

    Rosselló, Guillem; López, Rosa; Platero, Gloria

    2017-08-01

    We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.

  18. Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges

    NASA Astrophysics Data System (ADS)

    Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan

    2012-04-01

    Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.

  19. Determination of plasma displacement based on eddy current diagnostics for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Li, Hong; Liu, Adi; Li, Zichao; Zhang, Yuan; You, Wei; Tan, Mingsheng; Luo, Bing; Adil, Yolbarsop; Hu, Jintong; Wu, Yanqi; Yan, Wentan; Xie, Jinlin; Lan, Tao; Mao, Wenzhe; Ding, Weixing; Xiao, Chijin; Zhuang, Ge; Liu, Wandong

    2017-10-01

    The measurement of plasma displacement is one of the most basic diagnostic tools in the study of plasma equilibrium and control in a toroidal magnetic confinement configuration. During pulse discharge, the eddy current induced in the vacuum vessel and shell will produce an additional magnetic field at the plasma boundary, which will have a significant impact on the measurement of plasma displacement using magnetic probes. In the newly built Keda Torus eXperiment (KTX) reversed field pinch device, the eddy current in the composite shell can be obtained at a high spatial resolution. This device offers a new way to determine the plasma displacement for KTX through the multipole moment expansion of the eddy current, which can be obtained by unique probe arrays installed on the inner and outer surfaces of the composite shell. In an ideal conductor shell approximation, the method of multipole moment expansion of the poloidal eddy current for measuring the plasma displacement in toroidal coordinates, is more accurate than the previous method based on symmetrical magnetic probes, which yielded results in cylindrical coordinates. Through an analytical analysis of many current filaments and numerical simulations of the current distribution in toroidal coordinates, the scaling relation between the first moment of the eddy current and the center of gravity of the plasma current is obtained. In addition, the origin of the multipole moment expansion of the eddy current in KTX is retrieved simultaneously. Preliminary data on the plasma displacement have been collected using these two methods during short pulse discharges in the KTX device, and the results of the two methods are in reasonable agreement.

  20. Investigation of a staged plasma-focus apparatus. [pinch construction and current sheet dynamics investigation

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Harries, W. L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.

  1. Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.; Finn, J. M.

    2002-11-01

    The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.

  2. Field and plasma periodicities in Saturn's equatorial middle magnetosphere: Links between the asymmetric ring current and plasma circulation

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret; Southwood, David

    Superimposed on the predominantly dipolar field of Saturn's middle magnetosphere (here taken as between 5 and 10 RS) are perturbations of a few nT amplitude that vary with the SKR periodicity. Andrews and coworkers (2008) have determined that averages of the perturbations of the radial and azimuthal field components vary roughly sinusoidally and in quadrature, with the radial component leading. Thus these two components of the magnetic perturbations can be represented as an approximately uniform field rotating in the sense of Saturn's rotation (Espinosa et al., 2003). This perturbation field is referred to by Southwood and Kivelson (2007) as the cam field. Andrews et al. (2008) show that perturbation of the theta component, (theta is colatitude) is also nearly sinusoidal and in-phase with the radial perturbations. It follows that near the equator variations of the field magnitude are also in phase with the radial perturbations. Provan et al. (2009) and Khurana et al. (2009) have attributed the periodicity of the field magnitude to an asymmetric ring current. Saturn's asymmetric ring current is not fixed in local time,as it is at Earth, but rotates quasi-rigidly at the SKR period. A distributed, rotating field-aligned current (FAC) system must develop between regions with an excess of or a dearth of azimuthal current but, because those FACs spread over a large spatial region, the associated current density will be smaller than the current density of the more localized cam current system. Thus, it is the electrons associated with the latter currents that are likely to drive the periodically modulated SKR signals. The ring current of the middle magnetosphere is dominated by inertial currents carried by the thermal plasma (Sergis et al., 2010), but the variation of azimuthal current may arise either from density variations or variations of plasma beta. In either case, the current pattern must drive a circulation of the plasma in the middle magnetosphere. [A circulating

  3. Jefferson Lab Experimental Hall C

    NASA Astrophysics Data System (ADS)

    Carlini, Roger D.

    1996-10-01

    Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.

  4. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    NASA Astrophysics Data System (ADS)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  5. Current and Perspective Applications of Dense Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  6. Development of scanning graphene Hall probes for magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Brian T.; Wang, Lei; McEuen, Paul L.; Nowack, Katja C.

    We discuss our progress on developing scanning Hall probes fabricated from hexagonal boron nitride (hBN)-encapsulated graphene, with the goal to image magnetic fields with submicron resolution. In contrast to scanning superconducting quantum interference device (SQUID) microscopy, this technique is compatible with a large applied magnetic field and not limited to cryogenic temperatures. The field sensitivity of a Hall probe depends inversely on carrier density, while the primary source of noise in the measurement is Johnson noise originating from the device resistance. hBN-encapsulated graphene demonstrates high carrier mobility at low carrier densities, therefore making it an ideal material for sensitive Hall probes. Furthermore, engineering the dielectric environment of graphene by encapsulating in hBN reduces low-frequency charge noise and disorder from the substrate. We outline our plans for adapting these devices for scanning, including characterization of the point spread function with a scanned current loop and fabrication of a deep-etched structure that enables positioning the sensitive area within 100 nanometers of the sample surface.

  7. Fault Detection and Diagnosis In Hall-Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

    NASA Astrophysics Data System (ADS)

    Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey

    2018-04-01

    Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

  8. Substorm Birkeland currents and Cowling channels in the ionosphere

    NASA Astrophysics Data System (ADS)

    Fujii, R.

    2016-12-01

    Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.

  9. Precision Electron Beam Polarimetry in Hall C at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Gaskell, David

    2013-10-01

    The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.

  10. RF generator interlock by plasma grid bias current - An alternate to Hα interlock

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Gahlaut, A.; Yadav, R. K.; Pandya, K.; Tyagi, H.; Vupugalla, M.; Bhuyan, M.; Bhagora, J.; Chakraborty, A.

    2017-08-01

    ROBIN is inductively coupled plasma (ICP) based negative hydrogen ion source, operated with a 100kW, 1MHz Tetrode based RF generator (RFG). Inductive plasma ignition by the RFG in ROBIN is associated with electron seeding by a hot filament and a gas puff. RFG is triggered by the control system to deliver power just at the peak pressure of the gas puff. Once plasma is ignited due to proper impedance matching, a bright light, dominated by Hα (˜656nm wavelength) radiation is available inside RF driver which is used as a feedback signal to the RFG to continue its operation. If impedance matching is not correct, plasma is not produced due to lack of power coupling and bright light is not available. During such condition, reflected RF power may damage the RFG. Therefore, to protect the RFG, it needs to be switched off automatically within 200ms by the control system in such cases. This plasma light based RFG interlock is adopted from BATMAN ion source. However, in case of vacuum immersed RF ion source in reactor grade NBI system, such plasma light based interlock may not be feasible due to lack of adequate optical fiber interfaces. In reactor grade NBI system, neutron and gamma radiations have impact on materials which may lead to frequent maintenance and machine down time. The present demonstration of RFG interlock by Bias Current (BC) in ROBIN testbed gives an alternate option in this regard. In ROBIN, a bias plate (BP) is placed in the plasma chamber near the plasma grid (PG). BP is electrically connected to the plasma chamber wall of the ion source and PG is isolated from the wall. A high current ˜85 A direct current (DC) power supply of voltage in the range of 0 - 33V is connected between the PG and the BP in such a way that PG can be biased positively with respect to the BP or plasma chamber. This arrangement is actually made to absorb electrons and correspondingly reduce co-extracted electron current during beam extraction. However, in case of normal plasma

  11. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  12. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    PubMed

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  13. Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.

    2014-12-01

    How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.

  14. Electrochemistry of the Hall-Heroult Process for Aluminum Smelting.

    ERIC Educational Resources Information Center

    Haupin, W. E.

    1983-01-01

    Nearly all aluminum is produced by the electrolysis of alumina dissolved in a molten cryolite-based electrolyte, the Hall-Heroult Process. Various aspects of the procedure are discussed, focusing on electrolyte chemistry, dissolution of alumina, electrode reactions, current efficiency, and cell voltage. Suggestions for graduate study related to…

  15. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  16. Classical Hall Effect without Magnetic Field

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas; Tao, Chiao-Yu; Schuster, David; Nagel, Sidney

    We show that the sign and density of charge carriers in a material can be obtained without the presence of a magnetic field. This effect, analogous to the classical Hall effect, is due solely to the geometry of the current-carrying wire. When current flows, surface charges along the wire create small electric fields that direct the current to follow the path of the conductor. In a curved wire, the charge carriers must experience a centripetal force, which arises from an electric field perpendicular to the drift velocity. This electric field produces a potential difference between the sides of the wire that depends on the sign and density of the charge carriers. We experimentally investigate circuits made from superconductors or graphene to find evidence for this effect.

  17. High-Power Hall Thruster Technology Evaluated for Primary Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Jankovsky, Robert S.; Hofer, Richard R.

    2003-01-01

    High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.

  18. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less

  19. Observation of a stationary, current-free double layer in a plasma

    NASA Technical Reports Server (NTRS)

    Hairapetian, G.; Stenzel, R. L.

    1990-01-01

    A stationary, current-free, potential double layer is formed in a two-electron-population plasma due to self-consistent separation of the two electron species. The position and amplitude of the double layer are controlled by the relative densities of the two electron populations. The steady-state double layer traps the colder electrons on the high potential side, and generates a neutralized, monoenergetic ion beam on the low potential side. The field-aligned double layer is annihilated when an electron current is drawn through the plasma.

  20. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  1. A Comparative Study of the Efficacy of Intervention Strategies on Student Electricity Use in Campus Residence Halls

    ERIC Educational Resources Information Center

    Wisecup, Allison K.; Grady, Dennis; Roth, Richard A.; Stephens, Julio

    2017-01-01

    Purpose: The purpose of this study was to determine whether, and how, electricity consumption by students in university residence halls were impacted through three intervention strategies. Design/methodology/approach: The current investigation uses a quasi-experimental design by exposing freshman students in four matched residence halls and the…

  2. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, W.; Heinrich, B.; Zhou, H.

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less

  3. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  4. Spin-Hall Switching of In-plane Exchange Biased Heterostructures

    NASA Astrophysics Data System (ADS)

    Mann, Maxwell; Beach, Geoffrey

    The spin Hall effect (SHE) in heavy-metal/ferromagnet bilayers generates a pure transverse spin current from in-plane charge current, allowing for efficient switching of spintronic devices with perpendicular magnetic anisotropy. Here, we demonstrate that an AFM deposited adjacent to the FM establishes a large in-plane exchange bias field, allowing operation at zero HIP. We sputtered Pt(3nm)/Co(0.9nm)/Ni80Co20O(tAF) stacks at room-temperature in an in-plane magnetic field of 3 kOe. The current-induced effective field was estimated in Hall cross devices by measuring the variation of the out-of-plane switching field as a function of JIP and HIP. The spin torque efficiency, dHSL/dJIP, is measured versus HIP for a sample with tAF =30 nm, and for a control in which NiCoO is replaced by TaOx. In the latter, dHSL/dJIP varied linearly with HIP. In the former, dHSL/dJIP varied nonlinearly with HIP and exhibited an offset indicating nonzero spin torque efficiency with zero HIP. The magnitude of HEB was 600 Oe in-plane.

  5. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    NASA Astrophysics Data System (ADS)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  6. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  7. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  8. Control of plasma profiles and stability through localised Electron Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    Merkulov, Oleksiy

    2006-06-01

    The work presented in this thesis addresses several topics from the physics of the magnetically confined plasma inside a tokamak. At the moment, the tokamak is the most successful concept for becoming a future thermonuclear reactor. However, there are plenty of physics and engineering problems to surpass before the prototype can become an economically and environmentally feasible device. The plasma in the tokamak experiences periodic oscillations of the central temperature and density when the safety factor, q, drops below unity on-axis. These oscillations are called the sawtooth instability and are the subject of the first part of this thesis. The sawtooth oscillations are characterised by the relatively slow rise phase, when the central temperature increases, and a following crash phase, when the central temperature drops. The energy, particles and plasma current are redistributed during the sawtooth crash. Obviously, this leads to a confinement degradation and moreover, the sawtooth instability can trigger potentially other more dangerous instabilities, such as a neoclassical tearing mode. The sawtooth period control is realised on the basis of the sawtooth trigger model, derived by Porcelli. The main idea of this model is that the sawtooth crash is triggered when the magnetic shear at the q=1 surface, s1, reaches a critical value which depends on the local plasma parameters. The magnetic shear, s, is a measure for the rate of change in the direction of the field line as a function of the position in the plasma. The sawtooth period can be changed by affecting the evolution of s1. The effects of the electron cyclotron current drive (ECCD) on the shear evolution are studied with a simple model for the poloidal field evolution. The results of the model are summarised in a form of a criterion for the amount of the non-inductive current drive required for sawtooth period control. The effects of the ECCD have been studied in the TEXTOR tokamak in order to confirm the

  9. Quantum Hall effect breakdown in two-dimensional hole gases

    NASA Astrophysics Data System (ADS)

    Eaves, L.; Stoddart, S. T.; Wirtz, R.; Neumann, A. C.; Gallagher, B. L.; Main, P. C.; Henini, M.

    2000-02-01

    The breakdown of dissipationless current flow in the quantum Hall effect is studied for a two-dimensional hole gas at filling factors i=1 and 2. At high currents, the magnetoresistance curves at breakdown exhibit a series of steps accompanied by hysteresis and intermittent noise. These are compared with similar data for electron systems and are discussed in terms of a hydrodynamic model involving inter-Landau level scattering at the sample edge.

  10. Reduced Spin Hall Effects from Magnetic Proximity.

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-26

    We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less

  11. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  12. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  13. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  14. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  15. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  16. Current-induced switching in a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  17. Plasma rotation by electric and magnetic fields in a discharge cylinder

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  18. Laurance David Hall.

    PubMed

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  20. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  1. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  2. The first vineyard concert hall in North America

    NASA Astrophysics Data System (ADS)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  3. Turbulence Measurements in a Tropical Zoo Hall

    NASA Astrophysics Data System (ADS)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  4. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems

    NASA Astrophysics Data System (ADS)

    Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto

    2017-12-01

    We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

  5. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    NASA Astrophysics Data System (ADS)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  6. Expansion of a multicomponent current-carrying plasma jet into vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} =more » 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.« less

  7. Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Yoshikawa, A.; Tanaka, T.

    2017-12-01

    We investigate how the M-I coupling and boundary conditions affects the results of global simulations of the magnetosphere. More specifically, we examine the effects of ionospheric Hall polarization on magnetospheric convection and dynamics by using an MHD code developed by Tanaka et al. [2010]. This study is motivated by the recently proposed idea that the ionospheric convection is modified by the ionospheric polarization [Yoshikawa et al., 2013]. We perform simulations for the following pairs of Hall conductance and IMF-By; Hall conductance set by αH = 2, 3.5, 5, and uniform distribution (1.0 [S] everywhere), where RH is the ratio of Hall to Pedersen conductance, and IMF-By of positive, negative, and zero. The results are summarized as follows. (a) Large-scale structure: In the cases of uniform Hall conductance, the magnetosphere is completely symmetric under the zero IMF-By. In the cases of non-uniform Hall conductance, the magnetosphere shows asymmetries globally even under the zero IMF-By. Asymmetries become severe for larger αH. The results indicate that ionospheric Hall polarization is one of the important factors to determine the global structure. (b) Formation of NENL: The location becomes closer to the earth and timing becomes earlier for larger RH. The difference is considered to be related to the combined effects of field lines twisting due to ionospheric Hall polarization and M-I energy/current closures. (c) Near-earth convection: In the cases of non-uniform Hall conductance, an inflection structure is formed around premidnight sector on equatorial plane inside 10 RE. Considering that the region 2 FAC is not sufficiently generated in MHD models, the structure corresponds to a convection reversal often shown in the RCM. Previous studies regard the structure as the Harang Reversal in the magnetosphere. In the cases of uniform Hall conductance, by contrast, such structure is not formed, indicating that the Harang Reversal may not be formed without the

  8. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  9. The plasma environment, charge state, and currents of Saturn's C and D rings

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1991-01-01

    The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.

  10. Thermonuclear plasma with autocatalytic thermomagnetic current amplification by nuclear reactions from fusion neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    2006-03-15

    It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less

  11. Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Burke, W. J.

    2005-07-01

    We compare plasma and field disturbances observed in the ring current/plasmasphere overlap region and in the conjugate ionosphere during the magnetic storm of 5 June 1991. Data come from the Combined Release and Radiation Effects Satellite (CRRES) flying in a geostationary transfer orbit and three satellites of the Defense Meteorological Satellite Program (DMSP) series in Sun-synchronous polar orbits. In the region between ring current nose structures and the electron plasma sheet, CRRES detected wave-like features in local electric and magnetic fields, embedded in structured cold plasmas. Mapped to the ionosphere, these fields should reflect structuring within subauroral plasma streams (SAPS). Indeed, during the period of interest, DMSP F8, F9, and F10 satellites observed highly structured SAPS in the evening ionosphere at topside altitudes. They were collocated with precipitating ring current ions, enhanced fluxes of suprathermal electrons and ions, elevated electron temperatures, and irregular plasma density troughs. Overall, these events are similar to electromagnetic structures observed by DMSP satellites within SAPS during recent geomagnetic storms (Mishin et al., 2003, 2004). Their features can be explained in terms of Alfvén and fast magnetosonic perturbations. We developed a scenario for the formation of elevated electron temperatures at the equatorward side of the SAPS. It includes a lower-hybrid drift instability driven by diamagnetic currents, consistent with strong lower- and upper-hybrid plasma wave activity and intense fluxes of the low-energy electrons and ions near the ring current's inner edge.

  12. Chapin Hall Center for Children.

    ERIC Educational Resources Information Center

    Chicago Univ., IL. Chapin Hall Center for Children.

    This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…

  13. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    NASA Astrophysics Data System (ADS)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  14. Design and utilization of a top hat analyzer for Hall thruster plume diagnostics

    NASA Astrophysics Data System (ADS)

    Victor, Allen Leoraj

    Electric propulsion offers new capabilities for ambitious space missions of the future. However, coating, uneven heating, and the charging of spacecraft components have impeded the integration of Hall thrusters for space missions and encouraged plume diagnostics of the thruster plasma environment. Plume diagnostics are also important for the inference of thruster performance through plume properties downstream of the engine. While the top hat analyzer has been available for low-density space plasma diagnostics for over twenty years, the use of this instrument for plasma thruster plume diagnostics has been nonexistent. This thesis describes the development of a new diagnostics tool, the Top Hat Electric Propulsion Plume Analyzer (TOPAZ), which provides unprecedented insight into the physical mechanisms that govern the performance of Hall thrusters. Novel measurements conducted by TOPAZ on the BHT-600 Hall thruster cluster yielded interesting and undocumented phenomena in the far-field plume. SIMION, a commercial ion optics program, was used to design TOPAZ and estimate the energy and angular resolutions as well as the instrument's sensitivity and plate-voltage relationships. TOPAZ was experimentally characterized through an ion beam facility operating on air, xenon, and krypton gases. Measurements on the BHT-600 cluster indicated lower-energy ions emanated from positions closer to the cathode while higher-energy ions were measured from along the discharge channel centerlines. Low-energy ions were also measured from behind the cathodes only during cluster operation. Charge-exchange and ionization outside the primary acceleration region are believed to be the cause of the variance in the energy distributions. Cross pollination of the cathode plume with the opposite thruster is argued to create low-energy ions which emanate from behind the cathode. Time-of-flight measurements through TOPAZ allowed for charge-state and species fraction discriminations as functions of

  15. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  16. Plasma bullet current measurements in a free-stream helium capillary jet

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Walsh, James L.; Bradley, James W.

    2012-06-01

    A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ˜750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s-1 and 3.9 km s-1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10-9 C measured at all monitor positions, with estimated charged particle densities nb of ˜1010-1011 cm-3 in the bullet.

  17. Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D

    DOE PAGES

    Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...

    2015-01-12

    Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less

  18. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  19. Hall mobility in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Geilker, J.; Kwapil, W.; Warta, W.; Schubert, M. C.

    2011-08-01

    Knowledge of the carrier mobility in silicon is of utmost importance for photovoltaic applications, as it directly influences the diffusion length and thereby the cell efficiency. Moreover, its value is needed for a correct quantitative evaluation of a variety of lifetime measurements. However, models that describe the carrier mobility in silicon are based on theoretical calculations or fits to experimental data in monocrystalline silicon. Multicrystalline (mc) silicon features crystal defects such as dislocations and grain boundaries, with the latter possibly leading to potential barriers through the trapping of charge carriers and thereby influencing the mobility, as shown, for example, by Maruska et al. [Appl. Phys. Lett. 36, 381 (1980)]. To quantify the mobilities in multicrystalline silicon, we performed Hall measurements in p-type mc-Si samples of various resistivities and different crystal structures and compared the data to majority carrier Hall mobilities in p-type monocrystalline floatzone (FZ) silicon. For lack of a model that provides reliable values of the Hall mobility in silicon, an empirical fit similar to existing models for conductivity mobilities is proposed based on Hall measurements of monocrystalline p-type FZ silicon. By comparing the measured Hall mobilities obtained from mc silicon with the corresponding Hall mobilities in monocrystalline silicon of the same resistivity, we found that the mobility reduction due to the presence of crystal defects in mc-Si ranges between 0% and 5% only. Mobility decreases of up to 30% as reported by Peter et al. [Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008], or even of a factor of 2 to 3 as detected by Palais et al. [Mater. Sci. Eng. B 102, 184 (2003)], in multicrystalline silicon were not observed.

  20. Positive Voltage Hazard to EMU Crewman from Currents through Plasma

    NASA Astrophysics Data System (ADS)

    Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald; Thomas, Joseph; Koontz, Steven

    2010-09-01

    The International Space Station(ISS) in its transit through the ionosphere experiences a variable electrical potential between its bonded structure and the overlying ionospheric plasma. The 160 volt solar arrays on ISS are grounded negative and drive structure to negative floating potential(FP) relative to plasma. This potential is a result of the asymmetric collection properties of currents from ions and electrons moderated by geomagnetic; so called v Å~ B induction distributing an additional 20 volts both positive and negative across ISS’s main structural truss element. Since the space suit or extravehicular mobility unit(EMU) does not protect the crewperson from electrical shock, during extra vehicular activity(EVA) the person is exposed to a hazard from the potential when any of the several metallic suit penetrations come in direct contact with ISS structure. The moisture soaked garment worn by the crewperson and the large interior metal contact areas facilitate currents through the crewperson’s body. There are two hazards; Negative and Positive FP. The Negative hazard is the better known risk created by a shock hazard from arcing of anodized material on the EMU. Negative hazard has been controlled by plasma contactor units(PCU) containing a reserve of Xenon gas which is expelled from ISS. The PCU provide a ground path for the negative charge from the structure to flow to exterior plasma bringing ISS FP closer to zero. The understanding has now emerged that the operation of PCUs to protect the crewmen from negative voltage exposes him to low to moderate positive voltage(≤15V). Positive voltage is also a hazard as it focuses electrons onto exposed metal EMU penetrations completing a circuit from plasma through interior contact with the moist crewman’s body and on to ISS ground through any of several secondary isolated metal penetrations. The resulting direct current from positive voltage exposure is now identified as an electrical shock hazard. This