Sample records for hall foundation based

  1. View looks northeast (44°) across concrete foundation for Second Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looks northeast (44°) across concrete foundation for Second Street Mess Hall. See HAER photo CA-170-Q-3 for view of Mess Hall building - Edwards Air Force Base, North Base, Second Street Mess Hall T-10, Second Street, Boron, Kern County, CA

  2. 9. PHOTOCOPY, FOUNDATION AND FLOORING PLANS FOR ADMINISTRATION BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. PHOTOCOPY, FOUNDATION AND FLOORING PLANS FOR ADMINISTRATION BUILDING. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  3. Credit BG. View looks south southwest (202°) across remains of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south southwest (202°) across remains of concrete pad foundation for the mess hall. North Base Road (3rd Street) passes nearby. Building 4318 is in the distance at the extreme left of view - Edwards Air Force Base, North Base, Base Mess Hall T-27, Third Street, Boron, Kern County, CA

  4. Prototype Space Technology Hall of Fame exhibit at Technology 2003: Analysis of data from computer-based questionaire

    NASA Technical Reports Server (NTRS)

    Ewell, Robert N.

    1994-01-01

    The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.

  5. KSC-2012-2719

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke speaks during the U.S. Astronaut Hall of Fame induction ceremony. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-2726

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Kevin Chilton into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2731

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Charlie Precourt into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  8. KSC-2013-2072

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Charmin Charlie Duke speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  9. KSC-2012-2721

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Franklin Chang Diaz into the U.S. Astronaut Hall of Fame Class of 2012. At the podium to the left, is CNN correspondent and Master of Ceremonies John Zarrella. Also inducted into the Hall of Fame were shuttle astronauts Kevin Chilton and Charlie Precourt. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-2720

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke spoke during the U.S. Astronaut Hall of Fame induction ceremony and recognized former shuttle launch director Bob Sieck. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-2722

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz at right shares a humorous moment with Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  12. KSC-2013-2071

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Kennedy Space Center Director and Hall of Famer Robert Cabana speaks during the U.S. Astronaut Hall of Fame 2013 induction ceremony. Curt Brown, Eileen Collins and Bonnie Dunbar were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  13. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Thomas D. Jones, Ph.D., in the center, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. At left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Jones into the Hall of Fame Class of 2018. At right is Hall of Famer Storey Musgrave, who spoke on Jones behalf during the ceremony. Also inducted was retired astronaut Scott D. Altman. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  14. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, two space explorers, Scott D. Altman, second from left, and Thomas D. Jones, Ph.D., far right, are inducted into the U.S. Astronaut Hall of Fame Class of 2018. At far left is Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation, who inducted Altman and Jones into the AHOF. Second from right is Hall of Famer John Grunsfeld, who spoke on behalf of Altman during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  15. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Scott D. Altman, second from left, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA's Kennedy Space Center Visitor Complex in Florida. At far left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Altman into the Hall of Fame Class of 2018. At right is Hall of Famer John Grunsfeld, who spoke on Altman's behalf during the ceremony. At far right is Thomas D. Jones, Ph.D., who also was inducted into the AHOF Class of 2018. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  16. Research of information classification and strategy intelligence extract algorithm based on military strategy hall

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Dehua; Yang, Jie

    2007-12-01

    Constructing virtual international strategy environment needs many kinds of information, such as economy, politic, military, diploma, culture, science, etc. So it is very important to build an information auto-extract, classification, recombination and analysis management system with high efficiency as the foundation and component of military strategy hall. This paper firstly use improved Boost algorithm to classify obtained initial information, then use a strategy intelligence extract algorithm to extract strategy intelligence from initial information to help strategist to analysis information.

  17. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Michael Foale with his hall of fame medal. Former NASA Administrator Charlie Bolden, right, a Hall of Fame member, presented Foale for induction. During this year's ceremonies, space shuttle astronaut Ellen Ochoa also was enshrined.

  18. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Ellen Ochoa with her hall of fame medal. Former Johnson Space Center Director Mike Coats, right, a Hall of Fame member, presented Ochoa for induction. During this year's ceremonies, space shuttle astronaut Michael Foale also was enshrined.

  19. KSC-2013-2070

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, agency Administrator Charles Bolden speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  20. KSC-2013-2060

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Steven Hawley is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  1. KSC-2013-2059

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member George "Pinky" Nelson is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  2. KSC-2013-2063

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Charlie Bolden, who is also NASA administrator, is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  3. KSC-2013-2064

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Franklin Chang Diaz is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  4. KSC-2013-2054

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Rick Hauck is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  5. KSC-2013-2058

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Master of Ceremonies John Zarrella, CNN's principal correspondent for coverage of NASA’s space programs, introduces Hall of Fame astronauts who gathered to honor 2013 inductees Curt Brown, Eileen Collins and Bonnie Dunbar. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  6. KSC-2013-2055

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Dan Brandenstein is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  7. KSC-2013-2066

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Kathy Thornton is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  8. KSC-2013-2065

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member John Blaha is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  9. KSC-2013-2051

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Bob Crippen is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  10. KSC-2013-2061

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Loren Shriver is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  11. KSC-2013-2056

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Brewster Shaw is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  12. KSC-2013-2053

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Karol Bobko is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  13. KSC-2013-2052

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Joe Allen is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  14. KSC-2013-2062

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Jeff Hoffman is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  15. KSC-2013-2057

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Robert "Hoot" Gibson is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  16. Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach

    NASA Astrophysics Data System (ADS)

    Yin, Gen; Zang, Jiadong; Lake, Roger

    2014-03-01

    Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.

  17. KSC-2013-2073

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Master of Ceremonies John Zarrella, CNN's principal correspondent for coverage of NASA’s space programs, addresses the inductees and visitors with opening remarks. Hall of Fame astronauts and visitors gathered to honor 2013 inductees Curt Brown, Eileen Collins and Bonnie Dunbar. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  18. KSC-2013-2069

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Master of Ceremonies John Zarrella, CNN's principal correspondent for coverage of NASA’s space programs, addresses the inductees and visitors with opening remarks. Hall of Fame astronauts and visitors gathered to honor 2013 inductees Curt Brown, Eileen Collins and Bonnie Dunbar. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  19. KSC-2013-2068

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Bob Cabana, who is also director of NASA’s Kennedy Space Center in Florida, is introduced at the spaceport's Visitor Complex, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  20. KSC-2013-2067

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Master of Ceremonies John Zarrella, CNN's principal correspondent for coverage of NASA’s space programs, addresses the inductees and visitors with opening remarks. Hall of Fame astronauts and visitors gathered to honor 2013 inductees Curt Brown, Eileen Collins and Bonnie Dunbar. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  1. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Li, Xiao-Li

    2015-12-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. Project supported by the National Natural Science Foundation of China (Grant Nos. 61273063 and 61503321), the China Postdoctoral Science Foundation (Grant No. 2013M540215), the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161), and the Youth Research Program of Yanshan University, China (Grant No. 02000134).

  2. 18. Photocopy of architectural drawing, September 1942 (original on file ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of architectural drawing, September 1942 (original on file at U.S. Army Intelligence Security Command, Fort Belvoir, Virginia). OPERATIONS BUILDING 'A', ARLINGTON HALL STATION. OFFICE BUILDING -- FOUNDATION PLAN -- HEATING. DRAWING M-24-161-24. - Arlington Hall Station, Building No. 401, 4000 Arlington Boulevard, Arlington, Arlington County, VA

  3. KSC-2013-2077

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Curt Brown listens as he is being introduced for induction into the U.S. Astronaut Hall of Fame AHOF. Brown, a veteran of six spaceflights, began his career with NASA in 1987 as a pilot and has logged more than 1,383 hours in space. Brown’s missions aboard the space shuttle include STS-47, STS-66, STS-77, STS-85, STS-95 and STS-103. Shuttle astronauts Eileen Collins and Bonnie Dunbar also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  4. KSC-2013-2076

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Bonnie Dunbar speaks after being inducted into the U.S. Astronaut Hall of Fame AHOF. Dunbar received NASA’s Outstanding Leadership Award in 1993 and NASA’s Exceptional Service Medal in 1998 and 1991. During her career with NASA, she served as a mission specialist and a payload commander. Dunbar logged 1,208 hours in space, and her spaceflights include STS 61-A, STS-32, STS-50, STS-71 and STS-89. Shuttle astronauts Curt Brown and Eileen Collins also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  5. Hydrodynamic Electron Flow and Hall Viscosity

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Moll, Philip; Kushwaha, Pallavi; Nandi, Nabhanila; Schmidt, Burkhard; MacKenzie, Andrew; Moore, Joel

    In metallic samples of small enough size and sufficiently strong electron-electron scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory for which bounds on diffusion were conjectured based on an holographic correspondence. Furthermore, breaking time-reversal symmetry can lead to the appearance of an odd component to the viscosity called the Hall viscosity which has attracted a lot of attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields. Gordon and Betty Moore Foundation.

  6. KSC-2012-2725

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz, at the podium, speaks during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  7. KSC-2012-2732

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Charlie Precourt speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-2727

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-2728

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-2729

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-2724

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz, at the podium, speaks during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  12. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers, Thomas D. Jones, Ph.D., and Scott D. Altman, front row, center, left and right, respectively, were inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They are standing with previous Hall of Famers, including, Curt Brown, back row, far left, chairman of the board, Astronaut Scholarship Foundation. Brown performed the induction ceremony. Also in the group is former astronaut and NASA administrator Charlie Bolden, in the center, behind Jones and Altman. In the back row, second from left is John Grunsfeld, who spoke on behalf of Altman during the ceremony. Directly behind Altman is Storey Musgrave, who spoke on behalf of Jones during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  13. KSC-2012-2716

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Boy Scout Troop 369 from Merritt Island, Florida presents the colors as Jennifer Fiore sings the National Anthem to open the U.S. Astronaut Hall of Fame induction ceremony. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  14. KSC-2013-2075

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Bonnie Dunbar listens as she is being introduced for induction into the U.S. Astronaut Hall of Fame AHOF. Dunbar received NASA’s Outstanding Leadership Award in 1993 and NASA’s Exceptional Service Medal in 1998 and 1991. During her career with NASA, she served as a mission specialist and a payload commander. Dunbar logged 1,208 hours in space, and her spaceflights include STS 61-A, STS-32, STS-50, STS-71 and STS-89. Shuttle astronauts Curt Brown and Eileen Collins also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  15. KSC-2013-2074

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Bonnie Dunbar listens as she is being introduced for induction into the U.S. Astronaut Hall of Fame AHOF. Dunbar received NASA’s Outstanding Leadership Award in 1993 and NASA’s Exceptional Service Medal in 1998 and 1991. During her career with NASA, she served as a mission specialist and a payload commander. Dunbar logged 1,208 hours in space, and her spaceflights include STS 61-A, STS-32, STS-50, STS-71 and STS-89. Shuttle astronauts Curt Brown and Eileen Collins also were inducted into the AHOF. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  16. KSC-06pd0790

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Brewster H. Shaw Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Shaw, Henry "Hank" Hartsfield Jr., and Charles F. Bolden Jr. Shaw flew on three space shuttle missions including STS-9, STS-61B, STS-28, logging 533 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd0789

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Henry "Hank" Hartsfield Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Hartsfield, Brewster H. Shaw Jr. and Charles F. Bolden Jr. Hartsfield flew on three space shuttle missions including STS-4, STS-41D and STS-61A, logging 482 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  18. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, past and present recipients of college scholarships awarded by the Astronaut Scholarship Foundation stand up to be recognized by the audience. The occasion was the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame, including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. The Foundation awards 17 scholarships annually, each worth $8,500, to students interested in studying science and engineering. Since 1984, more than $1.7 million in scholarship funds have been awarded.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, past and present recipients of college scholarships awarded by the Astronaut Scholarship Foundation stand up to be recognized by the audience. The occasion was the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame, including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. The Foundation awards 17 scholarships annually, each worth $8,500, to students interested in studying science and engineering. Since 1984, more than $1.7 million in scholarship funds have been awarded.

  19. Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valenti, Roser

    We present a theoretical investigation of doped copper kagome materials based on natural minerals Herbertsmithite [ZnCu3(OH)6Cl2] and Barlowite[Cu4(OH)6FBr]. Using ab-initio density functional theory calculations we estimate the stability of the hypothetical compounds against structural distortions and analyze their electronic and magnetic properties. We find that materials based on Herbertsmithite present an ideal playground for investigating the interplay of non-trivial band-topology and strong electronic correlation effects. In particular, we propose candidates for the Quantum Spin Hall effect at filling 4/3 and the Quantum Anomalous Hall effect at filling 2/3. For the Barlowite system we point out a route to realize a Quantum Spin Liquid. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49 and the National Science Foundation under Grant No. PHY11-25915.

  20. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Kelvin Manning, associate director of NASA's Kennedy Space Center in Florida, welcomes guests to the 2018 U.S. Astronaut Hall of Fame (AHOF) Induction inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex (KSCVC). Two veteran space explorers were inducted into the Hall of Fame Class of 2018. They are Scott D. Altman and Thomas D. Jones, Ph.D. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  1. KSC-06pd0791

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Charles F. Bolden Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Bolden, Henry "Hank" Hartsfield Jr. and Brewster H. Shaw Jr. Bolden flew on four space shuttle missions including STS-61C, STS-31, STS-45 and STS-60, logging 680 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-2733

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronauts Franklin Chang Diaz, at left, Kevin Chilton and Charlie Precourt stand together after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  3. Ferromagnetism of vanadium doped Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Liguo; Zhao, Dapeng; Zang, Yunyi; Yuan, Yonghao; Jiang, Gaoyuan; He, Ke; Ma, Xucun; Xue, Qikun

    Bi2Se3 is a representative three-dimensional topological insulator with a bulk band gap of about 300 meV. The quantum anomalous Hall effect (QAHE) has never been realized in Bi2Se3-based magnetic topological insulators due to the difficulties in introducing ferromagnetism in them. With molecular beam epitaxy (MBE), we have grown vanadium-doped Bi2Se3 films with decent crystalline quality and homogeneous distribution of V impurities. The films are all electron-doped and show square-shaped hysteresis loops of Hall resistance with coercivity up to 0.2T at 2K, indicating ferromagnetism with perpendicular magnetic anisotropy in them. Both the ferromagnetism and anomalous Hall resistance are enhanced by decreasing electron density. We have systematically studied the magneto-transport properties of the films with varying V concentration, film thickness, and carrier density and discussed the mechanism of ferromagnetic coupling. The study demonstrates that V-doped Bi2Se3 films are candidate QAHE materials if their electron density can be further reduced. This work was supported by National Natural Science Foundation of China.

  4. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  5. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in the Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  6. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  7. KSC-2014-2448

    NASA Image and Video Library

    2014-05-03

    CAPE CANAVERAL, Fla. -- Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, former NASA astronaut and Hall of Famer Brewster Shaw walks the red carpet at the 2014 U.S. Astronaut Hall of Fame Induction ceremony. Space shuttle astronauts and space explorers Shannon Lucid and Jerry Ross were inducted into the Hall of Fame Class of 2014. The 2014 inductees are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Lucid and Ross, 87 astronauts have been inducted into the AHOF. Photo credit: NASA/Kim Shiflett

  8. Jeffrey Modell Foundation

    MedlinePlus

    ... Educational materials & the 10 Warning Signs MEDICAL ACADEMY Access Research Grants, Travel Grants & more WJMF Read breaking news & view our PSA Campaign TOWN HALL Advocate with JMF about important PI topics INTERNET CAFÉ Connect with the PI Community VILLAGE PARK ...

  9. Results from the First Observing Season of PIQUE

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Barkats, D.; Gundersen, J. O.; Staggs, S. T.; Winstein, B.

    2000-12-01

    The Princeton IQU Experiment (PIQUE) is a ground-based telescope designed to measure the polarization of the Cosmic Microwave Background (CMB). Between 19 January 2000 and 2 April 2000, this telescope observed one of the Stokes parameters (Q) on the ring at δ = 89o from the roof of Jadwin Hall, Princeton, NJ. The telescope had a beam full-width-half-maximum of 0.24o and the detector was a single correlation polarimeter operating at 90 GHz. These observations have yielded a new limit on the polarization of the CMB in the multipole range 100 < l < 600. This work was supported by NIST precision measurement grant #60NANB8D0061 and by NSF grant #PHY9600015. Additional support was provided by the Alfred P. Sloan Foundation and the Guggenheim Foundation through their fellowships for STS and BW respectively.

  10. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  11. Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min

    2014-03-01

    We study a two-dimensional fermionic square lattice, which supports the existence of two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2 π -flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2 π -flux topological semimetal are protected by two distinct novel hidden symmetries, which both corresponds to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry. [PRL 111, 130403(2013)] This work was supported by the National Natural Science Foundation of China under Grants No. 11004028 and No. 11274061.

  12. Geometric Transformations in Middle School Mathematics Textbooks

    ERIC Educational Resources Information Center

    Zorin, Barbara

    2011-01-01

    This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…

  13. Does the world need a global project on artificial photosynthesis?

    PubMed Central

    Faunce, Thomas

    2015-01-01

    This paper introduces a theme issue of Interface Focus derived from papers presented at the Royal Society supported meeting ‘Do we need a global project on artificial photosynthesis?’ held at Chicheley Hall in July 2014. At that meeting, leaders of national solar fuels and chemicals projects and research presented ‘state of the art’ on artificial photosynthesis (AP) in the context of the policy challenges for globalizing a practical technology to address climate change and energy and food security concerns. The discussions included contributions from many experts with legal and policy skills and uniquely focused on producing principles for prioritizing and specializing work while enhancing the funding and attendant public policy profile. To this end, representatives of major public, philanthropic and private potential stakeholders in such a project (such as the Wellcome Trust, the Moore Foundation, Shell, the Leighty Foundation, the EPSRC and Deutsche Alternative Asset Management) were invited to provide feedback at various points in the meeting. For this Interface Focus issue, speakers at the Chicheley Hall meeting were required to present a snapshot of their cutting edge research related to AP and then draw upon the Chicheley Hall discussions to innovatively analyse how their research could best be advanced by a global AP project. Such multidisciplinary policy analysis was not a skill many of these researchers were experienced or trained in. Nonetheless their efforts here represent one of the first published collections to attempt such a significant task. This introduction contains a brief summary of those papers, focusing particularly on their policy aspects. It then summarizes the core discussions that took place at the Chicheley Hall meeting and sets out some of the central ethical principles that were considered during those discussions.

  14. Disorders of Articulation. Prentice-Hall Foundations of Speech Pathology Series.

    ERIC Educational Resources Information Center

    Carrell, James A.

    Designed for students of speech pathology and audiology and for practicing clinicians, the text considers the nature of the articulation process, criteria for diagnosis, and classification and etiology of disorders. Also discussed are phonetic characteristics, including phonemic errors and configurational and contextual defects; and functional…

  15. KSC-2014-2390

    NASA Image and Video Library

    2014-05-03

    CAPE CANAVERAL, Fla. – John Zarrella, a former CNN news reporter, served as the emcee for the U.S. Astronaut Hall of Fame Induction ceremony held inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. Space shuttle astronauts and space explorers Shannon Lucid and Jerry Ross were inducted into the Hall of Fame Class of 2014. The 2014 inductees are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Lucid and Ross, 87 astronauts have been inducted into the AHOF. Photo credit: NASA/Kim Shiflett

  16. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report

    ERIC Educational Resources Information Center

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam

    2009-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  17. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report

    ERIC Educational Resources Information Center

    Phillips, Michelle; St. John, Mark

    2010-01-01

    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  18. DIAGNOSIS AND APPRAISAL OF COMMUNICATION DISORDERS. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.

    ERIC Educational Resources Information Center

    DARLEY, FREDERIC L.

    THIS TEXT GIVES THE STUDENT AN OUTLINE OF THE BASIC PRINCIPLES OF SCIENTIFIC METHODOLOGY WHICH UNDERLIE EVALUATIVE WORK IN SPEECH DISORDERS. RATIONALE AND ASSESSMENT TECHNIQUES ARE GIVEN FOR EXAMINATION OF THE BASIC COMMUNICATION PROCESSES OF SYMBOLIZATION, RESPIRATION, PHONATION, ARTICULATION-RESONANCE, PROSODY, ASSOCIATED SENSORY AND PERCEPTUAL…

  19. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  20. KSC-03PD-2016

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. At the KSC Visitor Complex, past and present recipients of college scholarships awarded by the Astronaut Scholarship Foundation stand up to be recognized by the audience. The occasion was the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame, including Daniel Brandenstein, Robert 'Hoot' Gibson, Story Musgrave, and Sally K. Ride. The Foundation awards 17 scholarships annually, each worth $8,500, to students interested in studying science and engineering. Since 1984, more than $1.7 million in scholarship funds have been awarded.

  1. Our use, misuse, and abandonment of a concept: Whither habitat?

    PubMed

    Kirk, David Anthony; Park, Allysia C; Smith, Adam C; Howes, Briar J; Prouse, Brigid K; Kyssa, Naschelly G; Fairhurst, Elizabeth N; Prior, Kent A

    2018-04-01

    The foundational concept of habitat lies at the very root of the entire science of ecology, but inaccurate use of the term compromises scientific rigor and communication among scientists and nonscientists. In 1997, Hall, Krausman & Morrison showed that 'habitat' was used correctly in only 55% of articles. We ask whether use of the term has been more accurate since their plea for standardization and whether use varies across the broader range of journals and taxa in the contemporary literature (1998-2012). We searched contemporary literature for 'habitat' and habitat-related terms, ranking usage as either correct or incorrect, following a simplified version of Hall et al.'s definitions. We used generalized linear models to compare use of the term in contemporary literature with the papers reviewed by Hall et al. and to test the effects of taxa, journal impact in the contemporary articles and effects due to authors that cited Hall et al. Use of the term 'habitat' has not improved; it was still only used correctly about 55% of the time in the contemporary data. Proportionately more correct uses occurred in articles that focused on animals compared to ones that included plants, and papers that cited Hall et al. did use the term correctly more often. However, journal impact had no effect. Some habitat terms are more likely to be misused than others, notably 'habitat type', usually used to refer to vegetation type, and 'suitable habitat' or 'unsuitable habitat', which are either redundant or nonsensical by definition. Inaccurate and inconsistent use of the term can lead to (1) misinterpretation of scientific findings; (2) inefficient use of conservation resources; (3) ineffective identification and prioritization of protected areas; (4) limited comparability among studies; and (5) miscommunication of science-based findings. Correct usage would improve communication with scientists and nonscientists, thereby benefiting conservation efforts, and ecology as a science.

  2. THE HARD OF HEARING. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.

    ERIC Educational Resources Information Center

    O'NEILL, JOHN J.

    BASIC INFORMATION ABOUT TESTING, DIAGNOSING, AND REHABILITATING THE HARD OF HEARING IS OFFERED IN THIS INTRODUCTORY TEXT. THE PHYSICS OF SOUND, AUDITORY THEORY, ANATOMY AND PATHOLOGY OF THE EAR, AND DIAGNOSTIC ROUTINES ARE DISCUSSED. A CHAPTER ON AURAL REHABILITATION INCLUDES AN OVERVIEW OF LIPREADING AND AUDITORY TRAINING TECHNIQUES FOR ADULTS…

  3. THE DEAF. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.

    ERIC Educational Resources Information Center

    DI CARLO, LOUIS M.

    DESIGNED FOR STUDENTS OF SPEECH PATHOLOGY AND AUDIOLOGY AND PRACTICING CLINICIANS, THIS BOOK PRESENTS AN HISTORICAL OVERVIEW OF ATTEMPTS TO TEACH THE DEAF FROM BEFORE THE 15TH CENTURY THROUGH THE 20TH CENTURY. A DISCUSSION OF DIAGNOSTIC PROCEDURES FOR AUDITORY DISORDERS IN CHILDREN INCLUDED INFORMAL TESTING, PLAY AUDIOMETRY, SPEECH TESTS,…

  4. 77 FR 10543 - Announcement of Funding Awards for the Capacity Building for Sustainable Communities Program for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... coalition and leadership network of the Sustainable Communities Grantees. The purpose of the network is to..., Montpelier, VT Minnesota Housing Partnership, 2446 University Avenue West, 550,000 Saint Paul, MN PolicyLink........... 400,000 University of Louisville Research Foundation, Inc., 400,000 Stevenson Hall Room, 521 Sponsored...

  5. Predicting Achievement, Distress, and Retention among Lower-Income Latino Youth

    ERIC Educational Resources Information Center

    Close, Wendy; Solberg, Scott

    2008-01-01

    This study used structural equation modeling to evaluate whether a combination of social cognitive and self-determination theories [Bandura, A. (1986). "Social foundations of thought and action: A social cognitive theory." Englewood Cliffs, NJ: Prentice-Hall; Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior.…

  6. NASA and X PRIZE Announce Winners of Lunar Lander Challenge

    NASA Image and Video Library

    2009-11-05

    NASA and the X PRIZE Foundation announced the winners of the Northrop Grumman Lunar Lander Challenge at an awards ceremony at the Rayburn House Office Building, Thursday, Nov. 5, 2009 in Washington, DC. From left to right, George Nield, Associate Administrator of Commercial Space Transportation, FAA; Charles Bolden, NASA Administrator; Doug Comstock, Director, Innovative Partnerships Program, NASA; David Masten, CEO, Masten Space Systems; Phil Eaton, VP, Operations, Armadillo Aerospace; U.S. Rep. Ralph Hall (R-TX); Peter Diamandis, Chairman and CEO, X PRIZE Foundation and Mitch Waldman, VP, Advanced Programs & Technology, Northrop Grumman. Photo Credit: (NASA/Carla Cioffi)

  7. Media Advisory -- Director of National Science Foundation to Visit Colorado

    Science.gov Websites

    Mines Green Center located 924 16th Street, Golden. Media may also join Dr. Lane at any of the following faculty and federal laboratory scientists, Colorado School of Mines Green Center, Metals Hall (180A School of Mines Green Center, Ted Adams Room (270), Golden. Maps and parking information are available

  8. A Unique Delivery System to Rural Schools: The NMSU-Space Center Microcomputer Van Program.

    ERIC Educational Resources Information Center

    Amodeo, Luiza B.; And Others

    Collaboration between New Mexico State University's College of Education and three other entities has led to the computer experience microvan program, implemented in 1983, a unique system for bringing microcomputers into rural New Mexico K-12 classrooms. The International Space Hall of Fame Foundation provides the van, International Space Center…

  9. Research pilot and former astronaut Gordon Fullerton is congratulated by retired astronaut Fred Haise upon Fullerton's induction into the Astronaut Hall of Fame

    NASA Image and Video Library

    2005-04-30

    Former astronaut Gordon Fullerton (left), currently chief research pilot at NASA's Dryden Flight Research Center at Edwards Air Force Base, is congratulated by former astronaut Fred Haise (right) upon Fullerton's induction into the Astronaut Hall of Fame at the Kennedy Space Center (KSC) in Florida on April 30, 2005. Fullerton and Haise were one of two flight crews who flew the Approach and Landing Tests of the prototype Space Shuttle orbiter Enterprise at Dryden in 1977. Fullerton, who had served on the support crews for four Apollo moon landing missions in the early 1970s, went on to fly two Shuttle missions, STS-3 in 1982 and STS-51F in 1985. STS-3 became the only Shuttle mission to date to land at White Sands, N.M., and STS-51F was completed successfully despite the failure of one of the Shuttle's main engines during ascent to orbit. Haise, a member of the crew on the ill-fated Apollo 13 mission, was also a research pilot at NASA Dryden during his pre-astronaut career. Former astronauts Joseph Allen and Bruce McCandless were also inducted during the 2005 ceremonies at the KSC Visitor Center. In addition to honoring former members of NASA's astronaut corps who have made significant contributions to the advancement of space flight, the annual induction ceremonies serve as a fund-raiser for the Astronaut Scholarship Foundation. The foundation funded 17 $10,000 scholarships to college students studying science and engineering in 2004.

  10. Reframing Alice's Restaurant: Reflections on Globalisation, Adult Education, and Transformative Learning

    ERIC Educational Resources Information Center

    Etmanski, Catherine

    2005-01-01

    In the mid-1960s, the foundations of Participatory Research were being laid in Tanzania and around the world through the work of muckraking adult educators--President Julius Nyerere, Marja-Liisa Swantz, Orlando Fals Borda, Rajesh Tandon, Budd Hall and many more of their friends and colleagues. At the same time, a bunch of American kids were over…

  11. Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao

    2016-01-01

    Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

  12. Collapse of the ν = 1 quantum Hall effect near a Landau level crossing

    NASA Astrophysics Data System (ADS)

    Hasdemir, Sukret; Liu, Yang; Mueed, M. A.; Pfeiffer, Loren; West, Ken; Baldwin, Kirk; Shayegan, Mansour

    2015-03-01

    We report magneto-resistance measurements of 2D hole systems (density 2 . 1 ×1011 cm-2) confined to a 40-nm-wide GaAs quantum well as a function of tilted magnetic fields. We observe a strong ν = 1 quantum Hall effect (QHE) at zero parallel field (B| |). The ν = 1 QHE disappears at B| | ~= 4 . 8 T , where we expect a crossing between the lowest two Landau levels. Near this crossing, the energy gap for the ν = 1 QHE collapses from 6 K to zero in a very small B| | range of 0.3 T. The ν = 1 QHE comes back at B| | ~= 8 . 1 T and eventually disappears at B| | > 17 T where the system becomes bilayer-like. The sudden collapse of the ν = 1 QHE and the fact that it comes back after a large B| | range of 3.3 T is intriguing and suggests a pinning of the Landau levels near the crossing. We acknowledge support through the NSF (DMR-1305691, DMR-1310199 and MRSEC DMR-0819860), the DOE BES (DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (Grant GBMF4420), and the Keck Foundation.

  13. Multisensory integration and the concert experience: An overview of how visual stimuli can affect what we hear

    NASA Astrophysics Data System (ADS)

    Hyde, Jerald R.

    2004-05-01

    It is clear to those who ``listen'' to concert halls and evaluate their degree of acoustical success that it is quite difficult to separate the acoustical response at a given seat from the multi-modal perception of the whole event. Objective concert hall data have been collected for the purpose of finding a link with their related subjective evaluation and ultimately with the architectural correlates which produce the sound field. This exercise, while important, tends to miss the point that a concert or opera event utilizes all the senses of which the sound field and visual stimuli are both major contributors to the experience. Objective acoustical factors point to visual input as being significant in the perception of ``acoustical intimacy'' and with the perception of loudness versus distance in large halls. This paper will review the evidence of visual input as a factor in what we ``hear'' and introduce concepts of perceptual constancy, distance perception, static and dynamic visual stimuli, and the general process of the psychology of the integrated experience. A survey of acousticians on their opinions about the auditory-visual aspects of the concert hall experience will be presented. [Work supported in part from the Veneklasen Research Foundation and Veneklasen Associates.

  14. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  15. 3. MESS HALL, REAR SIDE, LOOKING NORTH. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MESS HALL, REAR SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  16. 2. MESS HALL, RIGHT SIDE, LOOKING EAST. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MESS HALL, RIGHT SIDE, LOOKING EAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  17. 5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  18. 6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  19. 7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  20. 4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  1. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topologicalmore » insulators can be induced by strong correlations alone.« less

  2. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  3. New on the Shelf: Teens in the Library--Summary of Key Findings from the Evaluation of Public Libraries as Partners in Youth Development, A Wallace Foundation Initiative. Chapin Hall Discussion Paper

    ERIC Educational Resources Information Center

    Spielberger, Julie; Horton, Carol; Michels, Lisa

    2004-01-01

    Public libraries that engage and employ teenagers can realize mutual benefits, including meaningful activities for young people and strengthened ties between libraries and their communities. This report summarizes both the potential benefits and challenges learned from Wallace's Public Libraries as Partners in Youth Development initiative. The…

  4. KENNEDY SPACE CENTER, FLA. - Friends, co-workers and families gather at the Space Memorial Mirror for KSC’s special service remembering and honoring the crew of Columbia. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service held at the KSC Visitor Complex. Participants included Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, and dancers from the Shoshone-Bannock Native American community in Fort Hall, Idaho.

    NASA Image and Video Library

    2004-02-01

    KENNEDY SPACE CENTER, FLA. - Friends, co-workers and families gather at the Space Memorial Mirror for KSC’s special service remembering and honoring the crew of Columbia. Feb. 1 is the one-year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service held at the KSC Visitor Complex. Participants included Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, and dancers from the Shoshone-Bannock Native American community in Fort Hall, Idaho.

  5. Space technology: A study of the significance of recognition for innovators of spinoff technologies. 1993 activities/1994, 1995 plans

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.

  6. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  7. Juvenile delinquency, the juvenile courts and the settlement movement 1908-1950: Basil Henriques and Toynbee Hall.

    PubMed

    Bradley, Katharine

    2008-01-01

    This article explores the relationship between the voluntary sector and the juvenile courts in the period c.1908-1950. It specifically examines the relationship between the settlement movement and the early juvenile courts by analysing the Inner London Juvenile Court, which sat at Toynbee Hall in the East End of London between 1929 and 1953. The settlements, which brought young graduates to deprived urban areas to undertake voluntary social work, were heavily involved in boys' clubs. Many of those who began their careers in settlement youth work went on to work with the early juvenile courts, viewing their experience in clubs as a vital foundation for this work. This article focuses on Basil Henriques, a former resident of Toynbee Hall, warden of the Bernhard Baron Settlement in Stepney and magistrate at the Inner London Juvenile Court, and his 1950 book, Indiscretions of a Magistrate. It concludes that, by critically examining Basil Henriques and Indiscretions, it is possible to begin to fully explore the discourses around citizenship, gender, class and race that informed the views and practices of juvenile court magistrates in the period in which the voluntary sector and the welfare state underwent profound change.

  8. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  9. Lasker Awards Honor Three Researchers.

    PubMed

    2017-10-01

    Three top cancer researchers were among recipients of the prestigious Albert and Mary Lasker Foundation awards. Douglas R. Lowy, MD, and John T. Schiller, PhD, were honored for research leading to the development of the first human papillomavirus vaccine. The prize for basic medical research went to Michael N. Hall, PhD, who discovered the TOR signaling pathway and its role in regulating cell growth and metabolism. ©2017 American Association for Cancer Research.

  10. 4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. - NIKE Missile Base C-84, Mess Hall, North of Launch Area Entrance Drive, east of Officers' Quarters & Administration Building, Barrington, Cook County, IL

  11. Electrostatic and Quantum Transport Simulations of Quantum Point Contacts in the Integer Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard

    Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.

  12. Interior of Mess Hall, showing original columns and quarry tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Mess Hall, showing original columns and quarry tile floor - U.S. Naval Base, Pearl Harbor, Barracks & Mess Hall, Hornet Avenue between Liscome Bay & Enterprise Streets, Pearl City, Honolulu County, HI

  13. Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure

    NASA Astrophysics Data System (ADS)

    Mong, Roger S. K.; Clarke, David J.; Alicea, Jason; Lindner, Netanel H.; Fendley, Paul; Nayak, Chetan; Oreg, Yuval; Stern, Ady; Berg, Erez; Shtengel, Kirill; Fisher, Matthew P. A.

    2014-01-01

    Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.

  14. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  15. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  16. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  17. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  18. Literature Review: Materials with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence

    DTIC Science & Technology

    2006-08-01

    and defence industries. In fact, some materials with such anomalous (i.e. NPR) properties have been used in applications such as pyrolytic graphite...real applications such as pyrolytic graphite with NPR of -0.21 for thermal protection in aerospace (Garber, 1963), large single crystals of Ni3Al with...Foundations of Solid Mechanics, Prentice-Hall, p.353, 1968. Garber, A.M., Pyrolytic materials for thermal protection systems, Aerospace Eng., Vol

  19. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  20. Valley-chiral quantum Hall state in graphene superlattice structure

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  1. Batch-fabricated high-performance graphene Hall elements

    PubMed Central

    Xu, Huilong; Zhang, Zhiyong; Shi, Runbo; Liu, Honggang; Wang, Zhenxing; Wang, Sheng; Peng, Lian-Mao

    2013-01-01

    Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. PMID:23383375

  2. SET Careers: An interactive science, engineering, and technology career education exhibit. Final report to the United States Department of Energy Science Museum Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, P.R.

    1994-04-01

    The New York Hall of Science in collaboration with the Educational Film Center and the Consortium for Mathematics and its Applications developed and pilot tested a unique interactive, video-based/hypermedia series on energy related and other science and engineering careers for middle and junior high school students. The United States Department of Energy Science Museum Program supported the development of one energy-related career profile (Susan Fancy--mechanical engineer) and the development and printing of 100 copies of a career-related workbook. Additional funding from the National Science Foundation and the Sloan Foundation resulted in the development of 3 additional career profiles, a relatedmore » Data Base and Career Match Self Assessment for 16 careers, available both on screen and in print in this pilot phase. The SET CAREERS Exhibit is a video-based/hypermedia series which contains profiles of people working in Science, Engineering and Technology fields, interactive opportunities for users including interviews with profiled persons, opportunities to attempt work-related tasks through animated simulations, a Data Base of career-related information available both on-screen and in print, and a Career Match Self Assessment. The screen is in an attract loop mode, inviting visitors to interact with the exhibit. A menu of choices is provided so that users may begin by selecting a profiled person, choosing the Career Match Self Assessment or the Data Base. The Data Base is available in print if the user chooses that mode.« less

  3. Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Sarwar, Tuba; Dinh, Toan; Foisal, A. R. M.; Phan, Hoang-Phuong; Viet Dao, Dzung

    2017-04-01

    A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors.

  4. Effects of Surface Structure and of Embedded-Atom Pair Functionals on Adatom Diffusion on FCC Metallic Surfaces

    DTIC Science & Technology

    1992-11-01

    total-energy calculations that this complex mechanism for diffusion can be invoked for surface self-diffusion on the (100) surface ( Kellog and...Woodland Hills, CA 91364 National Science Foundation 3 SRI International ATIN: A.B. Harvey ATIN: G. Smith Washington, DC 20550 D. Crosley D. Golden...Aeronautics and Astronautics ATTN: H. Krier ATfN: J.R. Osborn 144MEB, 1206 W. Green St. Grissom Hall Urbana, IL 61801 West Lafayette, IN 47906 The Johns

  5. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors, speaks to guests during the opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  6. Development of a Multilevel Prevention Program for Improved Relationship Functioning in Active Duty Military Members

    DTIC Science & Technology

    2015-06-01

    8: 345-79. 7. Bandura A: Social Foundations of Thought and Action: A Social and Cognitive Theory . Englewood Cliffs, NJ, Prentice Hall, 1986. 8...Some of you may have experienced the end of the romantic relationship you were in prior to your deployment). We’re interested in learning what have...practices and discipline (e.g., what is cor­ rect child behavior, how to respond to misbehavior) and the need to learn how to constructively

  7. The watershed years of 1958-1962 in the Harvard Pigeon Lab.

    PubMed Central

    Catania, A Charles

    2002-01-01

    During the years 1958-1962, the final years of support by the National Science Foundation for B. F. Skinner's Pigeon Lab in Memorial Hall at Harvard University, 20 or so pigeon experiments (plus some with other organisms) ran concurrently 7 days a week. The research style emphasized experimental analyses, exploratory procedures, and the parametric exploration of variables. This reminiscence describes some features of the laboratory, the context within which it operated, and the activities of some of those who participated in it. PMID:12083685

  8. The Cuban Missile Crisis of 1962: A Case Study of the Tailored Use of Instruments of National Power

    DTIC Science & Technology

    2008-01-01

    Counsel 0 Sorensen the President General Maxwell CJCS Llewellyn E. U.S. Ambassador at D. Taylor Thompson Large Table 1. EXCOM Members The Foundations...Prentice Hall, 1970. 5. 12 Knappen, M. M. An Introduction to American Foreign Policy. New York: Harper, 1956. 1. 13 Jones , Howard. Crucible ofPower: A...History ofAmerican Foreign Relationsfrom 1897. Wilmington: SR Books, 2001. 233. 14 Jones 227. 15 Freedman, Lawrence. Kennedy’s Wars: Berlin, Cuba

  9. Large thermal Hall effect in a frustrated pyrochlore magnet

    NASA Astrophysics Data System (ADS)

    Hirschberger, Max; Krizan, Jason; Cava, Robert J.; Ong, N. Phuan

    2015-03-01

    In frustrated magnetism, the nature of the ground state and its elementary excitations are a matter of considerable debate. We present a detailed study of the full thermal conductivity tensor κij, including the Righi-Leduc (or thermal Hall) effect, in single crystals of the frustrated quantum spin-ice pyrochlore Tb2Ti2O7. The off-diagonal response κxy / T is large in this insulating material, despite the absence of itinerant electrons experiencing the Lorentz force. Our experiments over the temperature range of 0 . 8 - 200 K and in fields up to 14 T reveal a remarkable phenomenology: A sizeable field-linear Hall effect κxy / T is observed below 100 K, and its slope with respect to magnetic field increases strongly as we cool the sample. We observe significant curvature in the field dependence of κxy / T below 15 K. At the lowest temperatures, both κxx / T and the initial slope limB-->0 [κxy / TB ] are constant in temperature, behavior reminiscent of fermionic heat conduction in dirty metals. Experimental methods and verification of the intrinsic nature of the effect will be discussed. R.J.C. and N.P.O. are supported by a MURI Grant (ARO W911NF-12-1-0461) and by the US National Science Foundation (Grant Number DMR 0819860).

  10. Induced Superconductivity in the Quantum Spin Hall Edge

    NASA Astrophysics Data System (ADS)

    Ren, Hechen; Hart, Sean; Wagner, Timo; Leubner, Philipp; Muehlbauer, Mathias; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Yacoby, Amir

    2014-03-01

    Two-dimensional topological insulators have a gapped bulk and helical edge states, making it a quantum spin Hall insulator. Combining such edge states with superconductivity can be an excellent platform for observing and manipulating localized Majorana fermions. In the context of condensed matter, these are emergent electronic states that obey non-Abelian statistics and hence support fault-tolerant quantum computing. To realize such theoretical constructions, an essential step is to show these edge channels are capable of carrying coherent supercurrent. In our experiment, we fabricate Josephson junctions with HgTe/HgCdTe quantum wells, a two-dimensional material that becomes a quantum spin Hall insulator when the quantum well is thicker than 6.3 nm and the bulk density is depleted. In this regime, we observe supercurrents whose densities are confined to the edges of the junctions, with edge widths ranging from 180 nm to 408 nm. To verify the topological nature of these edges, we measure identical junctions with HgTe/HgCdTe quantum wells thinner than 6.3 nm and observe only uniform supercurrent density across the junctions. This research is supported by Microsoft Corporation Project Q, the NSF DMR-1206016, the DOE SCGF Program, the German Research Foundation, and EU ERC-AG program.

  11. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi 2Te 3 topological insulator thin films

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  12. A fully implicit Hall MHD algorithm based on the ion Ohm's law

    NASA Astrophysics Data System (ADS)

    Chacón, Luis

    2010-11-01

    Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.

  13. Graphene-based quantum Hall resistance standards grown by chemical vapor deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien

    2015-03-01

    Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.

  14. DIVA (Data Intensive Architecture)

    DTIC Science & Technology

    2004-06-01

    Itanium-based workstation as a test bench for the larger system concepts. 44 10. Publications [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz ...White, Dr. Pedro Diniz . Mr. Pablo Moissett • Caltech: Dr. Thomas Sterling, Mr. Daniel Savarese • University of Notre Dame: Dr. Peter Kogge, Dr. Jay...IEEE Computer, April 1995, pp. 23-31. [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz , J. Chame, J. Draper, J. LaCoss, J. Granacki, J. Brockman

  15. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  16. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  17. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  18. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  19. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  20. Experimental test of 200 W Hall thruster with titanium wall

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  1. Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors

    NASA Astrophysics Data System (ADS)

    König, Elio; Levchenko, Alex

    We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.

  2. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  3. Mini array of quantum Hall devices based on epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed thatmore » the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.« less

  4. 78 FR 59011 - Information on Surplus Land at a Military Installation Designated for Disposal: Ernest Veuve Hall...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Installation Designated for Disposal: Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana AGENCY... of surplus property at the Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana. This notice..., T-25, Fort Missoula. Authority: This action is authorized by the Defense Base Closure and...

  5. Jere Brophy: The Texas Years

    ERIC Educational Resources Information Center

    Hall, Gene E.

    2015-01-01

    Based on his career-long experiences with Jere Brophy, Gene Hall uses this article to not only point out Brophy's pioneering contributions to research on teaching and learning, but also offers a few personal reflections about what it was like to work with Jere. In addition, Hall shares a story about how Brophy's works had a direct impact on Hall's…

  6. A Precise Measurement of the Deuteron Elastic Structure Function A(Q 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honegger, Andrian

    1999-12-07

    During summer 1997 experiment 394-018 measured the deuteron tensor polarization in D(e,e'more » $$vec\\{d}$$) scattering in Hall C at Jefferson Laboratory. In a momentum transfer range between 0.66 and 1.8 (GeV=c) 2, with slight changes in the experimental setup, the collaboration performed six precision measurements of the deuteron structure function A(Q 2) in elastic D(e,e'd) scattering . Scattered electrons and recoil deuterons were detected in coincidence in the High Momentum Spectrometer and the recoil polarimeter POLDER, respectively. At every kinematics H(e,e') data were taken to study systematic effects of the measurement. These new precise measurements resolve discrepancies between older data sets and put significant constraints on existing models of the deuteron electromagnetic structure. This work was supported by the Swiss National Science Foundation, the French Centre National de la Recherche Scientifique and the Commissariat 'a l'Energie Atomique, the U.S. Department of Energy and the National Science Foundation and the K.C. Wong Foundation.« less

  7. Nanofiber Filters Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  8. Hearing is Believing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This paper presents a discussion on the cochlear implant. This device was developed by Adam Kissiah, who suffers from hearing loss. Driven by his own hearing problem and three failed corrective surgeries, Kissiah started working in the mid-1970s on this surgically implantable device that provides hearing sensation to persons with severe-to-profound hearing loss who receive little or no benefit from hearing aids. Uniquely, the cochlear implant concept was not based on theories of medicine, as Kissiah had no medical background whatsoever. Instead, he utilized the technical expertise he learned while working as an electronics instrumentation engineer at NASA s Kennedy Space Center for the basis of his invention. This took place over 3 years, when Kissiah would spend his lunch breaks and evenings in Kennedy s technical library, studying the impact of engineering principles on the inner ear. In April of 2003, Kissiah was inducted into the Space Foundation's U.S. Space Technology Hall of Fame for his invention

  9. Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Bian, Xingyu; Cao, Anning; Liu, Guangrui; Chen, Long; Yin, Yan

    2016-05-01

    The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of the segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected. supported by National Natural Science Foundation of China (Nos. 11375039 and 11275034) and the Key Project of Science and Technology of Liaoning Province, China (No. 2011224007) and the Fundamental Research Funds for the Central Universities, China (No. 3132014328)

  10. Hidden Fermi liquid: Self-consistent theory for the normal state of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Casey, Philip A.

    The anomalous "strange metal" properties of the normal, non-superconducting state of the high-Tc cuprate superconductors have been extensively studied for over two decades. The resistivity is robustly T-linear at high temperatures, while at low T it appears to maintain linearity near optimal doping and is T2 at higher doping. The inverse Hall angle is strictly T2 and hence has a distinct scattering lifetime from the resistivity. The transport scattering lifetime is highly anisotropic as directly measured by angle-dependent magnetoresistance (ADMR) and indirectly in more traditional transport experiments. The IR conductivity exhibits a non-integer power-law in frequency, which we take as a defining characteristic of the "strange metal". A phenomenological theory of the transport and spectroscopic properties at a self-consistent and predictive level has been much sought after, yet elusive. Hidden Fermi liquid theory (HFL) explicitly accounts for the effects of Gutzwiller projection in the t-J Hamiltonian, widely believed to contain the essential physics of the high-Tc superconductors. We show this theory to be the first self-consistent description for the normal state of the cuprates based on transparent, fundamental assumptions. Our well-defined formalism also serves as a guide for further experimental confirmation. Chapter 1 reviews the "strange metal" properties and the relevant aspects of competing models. Chapter 2 presents the theoretical foundations of the formalism. Chapters 3 and 4 derive expressions for the entire normal state relating many of the properties, for example: angle-resolved photoemission, IR conductivity, resistivity, Hall angle, and by generalizing the formalism to include the Fermi surface topology---ADMR. Self-consistency is demonstrated with experimental comparisons, including the most recent laser-ARPES and ADMR. Chapter 5 discusses entropy transport, as in the thermal conductivity, thermal Hall conductivity, and consequent metrics of non-Fermi liquid behavior such as the Wiedemann-Franz and Kadowaki-Woods ratios.

  11. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  12. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less

  13. Hall coefficient measurement for residual stress assessment in precipitation hardened IN718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2017-02-01

    We investigated the feasibility of residual stress assessment based on Hall coefficient measurements in precipitation hardened IN718 nickel-base superalloy. As a first step, we studied the influence of microstructural variations on the galvanomagnetic properties of IN718 nickel-base superalloy. We found that the Hall coefficient of IN718 increases from ≈ 8.0×10-11 m3/C in its fully annealed state of 15 HRC Rockwell hardness to ≈ 9.4×10-11 m3/C in its fully hardened state of 45 HRC. We also studied the influence of cold work, i.e., plastic deformation, at room temperature and found that cold work had negligible effect on the Hall coefficient of fully annealed IN718, but significantly reduced it in hardened states of the material. For example, measurements conducted on fully hardened IN718 specimens showed that the Hall coefficient decreased more or less linearly with cold work from its peak value of ≈ 9.4×10-11 m3/C in its intact state to ≈ 9.0×10-11 m3/C in its most deformed state of 22% plastic strain. We also studied the influence of applied stress and found that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain was measured as a unitless gauge factor K that is defined as the ratio of the relative change of the Hall coefficient ΔRH/RH divided by the axial strain ɛ = σ/E, where σ is the applied uniaxial stress and E is the Young's modulus of the material. We determined that the galvanomagnetic gauge factor of IN718 is κ ≈ 2.6 - 2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements will not happen in this case. Additionally, the temperature dependence of the Hall coefficient was measured at three different hardness levels and the influence of thermal exposure was studied in fully hardened IN718 up to 700 °C.

  14. A binaural Web-based tour of the acoustics of Troy Music Hall

    NASA Astrophysics Data System (ADS)

    Torres, Rendell R.; Cooney, James; Shimizu, Yasushi

    2004-05-01

    For classical music to become more widely enjoyed, it must sound exciting. We hypothesize that if people could hear examples of truly exciting acoustics, classical music would be perceived less as a rarefied delicacy and more as a viscerally engaging listening experience. The Troy Savings Bank Music Hall in Troy, New York, is a legendary 1200-seat concert hall famous for its acoustics. Such landmarks are commonly documented architecturally but with few attempts to document their acoustics in a way that it is listenable. Thus, the goal is to capture and sonically disseminate the hall's acoustics through a Web-based acoustical tour, where one can click on various seats to hear binaural auralizations of different instruments and see corresponding views of the stage. The hope is that these auralizations will not only sonically document the acoustics of the hall but also tantalize even geographically distant listeners with binaural samples of how exciting music can be in excellent acoustics. The fun and challenges of devising (let alone standardizing) such an auralization-based system of documentation will be discussed, and a demonstration given. This process can be applied to other historically and acoustically significant spaces. [Work supported by the National Endowment for the Arts.

  15. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  16. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  17. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.

  18. Credit USAF, 7 September 1945. Original housed in the Muroc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of the mess hall, looking to the north. Sign over door reads "MFTB Muroc Flight Test Base Base Mess." - Edwards Air Force Base, North Base, Base Mess Hall T-27, Third Street, Boron, Kern County, CA

  19. Low operational current spin Hall nano-oscillators based on NiFe/W bilayers

    NASA Astrophysics Data System (ADS)

    Mazraati, Hamid; Chung, Sunjae; Houshang, Afshin; Dvornik, Mykola; Piazza, Luca; Qejvanaj, Fatjon; Jiang, Sheng; Le, Tuan Q.; Weissenrieder, Jonas; Åkerman, Johan

    2016-12-01

    We demonstrate highly efficient spin Hall nano-oscillators (SHNOs) based on NiFe/β-W bilayers. Thanks to the very high spin Hall angle of β-W, we achieve more than a 60% reduction in the auto-oscillation threshold current compared to NiFe/Pt bilayers. The structural, electrical, and magnetic properties of the bilayers, as well as the microwave signal generation properties of the SHNOs, have been studied in detail. Our results provide a promising path for the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque from β-W.

  20. Influence of Mn concentration on magnetic topological insulator Mn xBi 2−xTe 3 thin-film Hall-effect sensor

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  1. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjun; Yao, Yingxue; Chen, Lei; Huang, Haoliang; Zhang, Benjian; Lin, Hui; Luo, Zhenlin; Gao, Chen; Lu, Y. L.; Li, Xiaoguang; Xiao, Gang; Feng, Ce; Zhao, Y. G.

    2018-01-01

    Electric-field control of the anomalous Hall effect (AHE) was investigated in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 (FePt/PMN-PT) multiferroic heterostructures at room temperature. It was observed that a very large Hall resistivity change of up to 23.9% was produced using electric fields under a magnetic field bias of 100 Oe. A pulsed electric field sequence was used to generate nonvolatile strain to manipulate the Hall resistivity. Two corresponding nonvolatile states with distinct Hall resistivities were achieved after the electric fields were removed, thus enabling the encoding of binary information for memory applications. These results demonstrate that the Hall resistivity can be reversibly switched in a nonvolatile manner using programmable electric fields. Two remanent magnetic states that were created by electric-field-induced piezo-strain from the PMN-PT were attributed to the nonvolatile and reversible properties of the AHE. This work suggests that a low-energy-consumption-based approach can be used to create nonvolatile resistance states for spintronic devices based on electric-field control of the AHE.

  2. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    NASA Astrophysics Data System (ADS)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  3. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  4. Interior view of entry hall in Communication Center (now Break ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of entry hall in Communication Center (now Break Room and Storage Area), facing north - MacDill Air Force Base, Fire & Guard House, 2709 Florida Keys Avenue, Tampa, Hillsborough County, FL

  5. NAS Decadal Review Town Hall

    NASA Astrophysics Data System (ADS)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  6. Precision Møller Polarimetry

    NASA Astrophysics Data System (ADS)

    Henry, William; Jefferson Lab Hall A Collaboration

    2017-09-01

    Jefferson Lab's cutting-edge parity-violating electron scattering program has increasingly stringent requirements for systematic errors. Beam polarimetry is often one of the dominant systematic errors in these experiments. A new Møller Polarimeter in Hall A of Jefferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized scattering experiment. Upcoming parity violation experiments in Hall A include CREX, PREX-II, MOLLER and SOLID with the latter two requiring <0.5% precision on beam polarization measurements. The polarimeter measures the Møller scattering rates of the polarized electron beam incident upon an iron target placed in a saturating magnetic field. The spectrometer consists of four focusing quadrapoles and one momentum selection dipole. The detector is designed to measure the scattered and knock out target electrons in coincidence. Beam polarization is extracted by constructing an asymmetry from the scattering rates when the incident electron spin is parallel and anti-parallel to the target electron spin. Initial data will be presented. Sources of systematic errors include target magnetization, spectrometer acceptance, the Levchuk effect, and radiative corrections which will be discussed. National Science Foundation.

  7. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Boeing Vice President and General Manager John Elbon addresses the crowd gathered for the grand opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. Boeing is sponsoring the new attraction. Seated, to the left, is former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  8. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  9. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  10. Robust emergence of a topological Hall effect in MnGa/heavy metal bilayers

    NASA Astrophysics Data System (ADS)

    Meng, K. K.; Zhao, X. P.; Liu, P. F.; Liu, Q.; Wu, Y.; Li, Z. P.; Chen, J. K.; Miao, J.; Xu, X. G.; Zhao, J. H.; Jiang, Y.

    2018-02-01

    We have investigated the topological Hall effect (THE) in MnGa/Pt and MnGa/Ta bilayers induced by the inter- facial Dzyaloshinskii-Moriya interaction (DMI). By varying the growth parameters, we can modulate the domain wall energy, and the largest THE signals are found when the domain wall energy is the smallest. The large topological portion of the Hall signal from the total Hall signal has been extracted in the whole temperature range from 5 to 300 K. These results open up the exploration of the DMI induced magnetic behavior based on the bulk perpendicular magnetic anisotropy materials for fundamental physics and magnetic storage technologies.

  11. Quantum Hall effect in ac driven graphene: From the half-integer to the integer case

    NASA Astrophysics Data System (ADS)

    Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu

    2018-01-01

    We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.

  12. Spontaneous Hall effect in a chiral p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  13. Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C

    NASA Astrophysics Data System (ADS)

    Faulkner, Adam; I&C Group Collaboration

    2013-10-01

    Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.

  14. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  15. Observation hall along west side. Looking south to escape ladder. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Observation hall along west side. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. 37. Hall of Dwing looking to cafeteria doors at end, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Hall of D-wing looking to cafeteria doors at end, from A-wing, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  17. Students' Sense of Community Based on Experiences with Residence Hall Design

    ERIC Educational Resources Information Center

    Heasley, Christopher L.

    2013-01-01

    This study seeks to determine students' sense of community outcomes based on experiences with different residence hall architectural designs. Sense of community is a "feeling that members have of belonging, a feeling that members matter to one another and to the group, and a shared faith that members' needs will be met through their…

  18. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.

  19. A Design Method for Topologically Insulating Metamaterials

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara

    Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.

  20. 14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. OBSERVATION HALL ALONG WEST SIDE. Looking south to escape ladder. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  1. A holographic model for the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  2. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  3. 13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBSERVATION HALL ALONG WEST SIDE. DOUBLE DOORS LEAD TO MAIN ROOM. Looking north. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 11. Interior view of former mess hall; showing closed doorway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of former mess hall; showing closed doorway to former food storage; near northwest corner of building on main floor; view to east. - Ellsworth Air Force Base, Mess & Administration Building, 1561 Ellsworth Street, Blackhawk, Meade County, SD

  5. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide designers the information to predict acoustical measures in buildings at very early stages of the design process without using computer models or scale models.

  6. Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

    NASA Astrophysics Data System (ADS)

    Hu, Ting-Jing; Cui, Xiao-Yan; Li, Xue-Fei; Wang, Jing-Shu; Lv, Xiu-Mei; Wang, Ling-Sheng; Yang, Jing-Hai; Gao, Chun-Xiao

    2015-11-01

    We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure. Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).

  7. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  8. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  9. Moiré assisted fractional quantum Hall state spectroscopy

    DOE PAGES

    Wu, Fengcheng; MacDonald, A. H.

    2016-12-14

    Intra-Landau level excitations in the fractional quantum Hall regime are not accessible via optical absorption measurements. Here we point out that optical probes are enabled by the periodic potentials produced by a moire pattern. Our observation is motivated by the recent observations of fractional quantum Hall incompressible states in moire-patterned graphene on a hexagonal boron nitride substrate, and is theoretically based on f-sum rule considerations supplemented by a perturbative analysis of the influence of the moire potential on many-body states.

  10. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, S.; Walter Schottky Institut and Physik-Department, Technische Universität München, 85748 Garching; Tshitoyan, V.

    2016-05-09

    We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe mainly to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.

  11. An Interpolation Procedure to Patch Holes in a Ground and Flight Test Data Base (MARS)

    DTIC Science & Technology

    2010-08-01

    FAIRFAX VA 22030 DR N RAO CHAGANTY 1 DEPT OF MATHEMATICS AND STATISTICS OLD DOMINION UNIVERSITY HAMPTON BLVD NORFOLK VA 23529 DR SAID E SAID 1 DEPT OF...DR EDWARD R SCHEINERMAN 1 DEPT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY 104 WHITEHEAD HALL BALTIMORE MD 21218 DR BENJAMIN KADEM 1 DEPT OF MATHEMATICS ... ACTUARIAL SCIENCE UNIVERSITY OF IOWA 241 SCHAEFFER HALL IOWA CITY IA 52242-1409 DR JOHN E BOYER 1 DEPT OF STATISTICS KANSAS STATE UNIVERSITY DICKENS HALL

  12. Hall mobility in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Geilker, J.; Kwapil, W.; Warta, W.; Schubert, M. C.

    2011-08-01

    Knowledge of the carrier mobility in silicon is of utmost importance for photovoltaic applications, as it directly influences the diffusion length and thereby the cell efficiency. Moreover, its value is needed for a correct quantitative evaluation of a variety of lifetime measurements. However, models that describe the carrier mobility in silicon are based on theoretical calculations or fits to experimental data in monocrystalline silicon. Multicrystalline (mc) silicon features crystal defects such as dislocations and grain boundaries, with the latter possibly leading to potential barriers through the trapping of charge carriers and thereby influencing the mobility, as shown, for example, by Maruska et al. [Appl. Phys. Lett. 36, 381 (1980)]. To quantify the mobilities in multicrystalline silicon, we performed Hall measurements in p-type mc-Si samples of various resistivities and different crystal structures and compared the data to majority carrier Hall mobilities in p-type monocrystalline floatzone (FZ) silicon. For lack of a model that provides reliable values of the Hall mobility in silicon, an empirical fit similar to existing models for conductivity mobilities is proposed based on Hall measurements of monocrystalline p-type FZ silicon. By comparing the measured Hall mobilities obtained from mc silicon with the corresponding Hall mobilities in monocrystalline silicon of the same resistivity, we found that the mobility reduction due to the presence of crystal defects in mc-Si ranges between 0% and 5% only. Mobility decreases of up to 30% as reported by Peter et al. [Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008], or even of a factor of 2 to 3 as detected by Palais et al. [Mater. Sci. Eng. B 102, 184 (2003)], in multicrystalline silicon were not observed.

  13. Pedestrians’ behavior in emergency evacuation: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian

    2016-11-01

    The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).

  14. AHP based Anthropometric Analysis of University Hall Bed Design in Bangladesh

    NASA Astrophysics Data System (ADS)

    Halder, Pobitra; Sarker, Eity; Karmaker, Chitralekha

    2018-05-01

    In university hall, different types of bed are used for providing sleeping environment to the students. Although there are wide variations in the design of students' bed in Bangladeshi university hall, none of them are designed properly considering the anthropometric data. In this study, four anthropometric measurements related to normal students' bed dimensions were measured from 300 students from a public university hall in Bangladesh. The feedbacks regarding different health problems and their reasons were collected from considering practical situations of the students and gathering experts' opinions. Chi-square test showed that back pain, blood circulation problem, fatigue, comfort, and sleeping problem are related to students' anthropometric measurements. The analytic hierarchy process (AHP) analysis identified students' bed length as the most responsible attribute for ergonomic problems of the students. Finally, the linear regression and correlation analysis suggested the bed dimensions based on stature of the students. This study can be a helpful guideline for industrial engineers and manufacturers in designing more comfortable students' bed.

  15. Hall Thruster Plume Measurements On-Board the Russian Express Satellites

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jankovsky, Robert; Elliott, Frederick; Mikellides, Ioannis; Jongeward, Gary; Allen, Doug

    2001-01-01

    The operation of North-South and East-West station-keeping Hall thruster propulsion systems on-board two Russian Express-A geosynchronous communication satellites were investigated through a collaborative effort with the manufacturer of the spacecraft. Over 435 firings of 16 different thrusters with a cumulative run time of over 550 hr were reported with no thruster failures. Momentum transfer due to plume impingement was evaluated based on reductions in the effective thrust of the SPT-100 thrusters and induced disturbance torques determined based on attitude control system data and range data. Hall thruster plasma plume effects on the transmission of C-band and Ku-band communication signals were shown to be negligible. On-orbit ion current density measurements were made and subsequently compared to predictions and ground test data. Ion energy, total pressure, and electric field strength measurements were also measured on-orbit. The effect of Hall thruster operation on solar array performance over several months was investigated. A subset of these data is presented.

  16. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention.

    PubMed

    McClain, Arianna D; Hekler, Eric B; Gardner, Christopher D

    2013-01-01

    Previous research from the fields of computer science and engineering highlight the importance of an iterative design process (IDP) to create more creative and effective solutions. This study describes IDP as a new method for developing health behavior interventions and evaluates the effectiveness of a dining hall-based intervention developed using IDP on college students' eating behavior and values. participants were 458 students (52.6% female, age = 19.6 ± 1.5 years [M ± SD]). The intervention was developed via an IDP parallel process. A cluster-randomized controlled study compared differences in eating behavior among students in 4 university dining halls (2 intervention, 2 control). The final intervention was a multicomponent, point-of-selection marketing campaign. Students in the intervention dining halls consumed significantly less junk food and high-fat meat and increased their perceived importance of eating a healthful diet relative to the control group. IDP may be valuable for the development of behavior change interventions.

  17. Chronological analysis of architectural and acoustical indices in music performance halls.

    PubMed

    Kwon, Youngmin; Siebein, Gary W

    2007-05-01

    This study aims to identify the changes in architectural and acoustical indices in halls for music performance built in the 18th through the 20th Centuries. Seventy-one halls are classified in five specific periods from the Classical Period (1751-1820) to the Contemporary Period (1981-2000) based on chronology in music and architectural acoustics. Architectural indices such as room shape, seating capacity, room volume, balcony configuration, and the like as well as acoustical indices such as RT, EDT, G, C80, IACC, and the like for the halls found in the literature are chronologically tabulated and statistically analyzed to identify trends and relationships in architectural and acoustical design for each of the historical periods identified. Some indices appear correlated with each other.

  18. Experiment to measure vacuum birefringence: Conceptual design

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno

    2016-03-01

    Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.

  19. KSC-04PD-0107

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Friends, co-workers and families gather at the Space Memorial Mirror for KSCs special service remembering and honoring the crew of Columbia. Feb. 1 is the one- year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service held at the KSC Visitor Complex. Participants included Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, and dancers from the Shoshone-Bannock Native American community in Fort Hall, Idaho.

  20. KSC-04PD-0100

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Friends, co-workers and families gather at the Space Memorial Mirror for KSCs special service remembering and honoring the crew of Columbia. Feb. 1 is the one- year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service held at the KSC Visitor Complex. Participants included Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, and dancers from the Shoshone-Bannock Native American community in Fort Hall, Idaho.

  1. KSC-04PD-0101

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Friends, co-workers and families gather at the Space Memorial Mirror for KSCs special service remembering and honoring the crew of Columbia. Feb. 1 is the one- year anniversary of the loss of the crew and orbiter Columbia in a tragic accident as the ship returned to Earth following mission STS-107. The public was invited to the memorial service held at the KSC Visitor Complex. Participants included Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, and dancers from the Shoshone-Bannock Native American community in Fort Hall, Idaho.

  2. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  3. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array

    PubMed Central

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Tao, Yuan

    2018-01-01

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%. PMID:29734742

  4. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

    PubMed

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Abu-Siada, Ahmed; Tao, Yuan

    2018-05-05

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%.

  5. Electrochemistry of the Hall-Heroult Process for Aluminum Smelting.

    ERIC Educational Resources Information Center

    Haupin, W. E.

    1983-01-01

    Nearly all aluminum is produced by the electrolysis of alumina dissolved in a molten cryolite-based electrolyte, the Hall-Heroult Process. Various aspects of the procedure are discussed, focusing on electrolyte chemistry, dissolution of alumina, electrode reactions, current efficiency, and cell voltage. Suggestions for graduate study related to…

  6. Acquisition Risks in a World of Joint Capabilities: A Study of Interdependency Complexity

    DTIC Science & Technology

    2013-04-01

    key to benefit attainment (Comfort, 1994), whereas others claim that more information leads to a false sense of security (Hall, Ariss , & Todorov...knowledge-based theory of the firm. Strategic Management Journal, 17, 109–122. Hall, C. C., Ariss , L., & Todorov, A. (2007). The illusion of

  7. Credit USAF, 7 September 1945. Original housed in the Muroc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Photo captioned "Oblique view of Recreation Hall/Chapel Bldg. T73." Movies on marquee were "Why Girls Leave Home" and "Blazing the Western Trail." View looks west from camera position across E Street - Edwards Air Force Base, North Base, Recreation Hall & Chapel T-73, E Street near North Base Road, Boron, Kern County, CA

  8. Chemical and Biological Defense: DOD Needs to Continue to Collect and Provide Information on Tests and Potentially Exposed Personnel

    DTIC Science & Technology

    2004-05-01

    or Naval officer as test director. Ship-based tests were conducted in the open waters of the North Atlantic and Pacific Oceans and near the...BG, FP Oct. 9, 2002 (ship-based) Granville S. Hall and surround- ing waters and airspace A-4, F-105, and an Aero Commander 65-12, Devil Hole I...Apr.-May 1968 USS Carbonero, USS Oahu, Hawaii, BG June 30, 03 Arrow (ship-based) Granville S. Hall and surrounding waters 69-31 (ship-based) 313 Aug

  9. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  10. Energy-related environmental and economic performance analysis of two different types of electrically heated student residence halls

    NASA Astrophysics Data System (ADS)

    Amber, Khuram Pervez; Aslam, Muhammad Waqar

    2018-03-01

    Student residence halls occupy 26% of the total area of a typical university campus in the UK and are directly responsible for 24% of university's annual CO2 emissions. Based on five years measured data, this paper aims to investigate the energy-related environmental and economic performance of electrically heated residence halls in which space heating is provided by two different types of electric heaters, that is, panel heater (PHT) and storage heater (SHT). Secondly, using statistical and machine learning methods, the paper attempts to investigate the relationship between daily electricity consumption and five factors (ambient temperature, solar radiation, relative humidity, wind speed and type of day). Data analysis revealed that electricity consumption of both halls is mainly driven by ambient temperature only, whereas SHT residence has 39% higher annual electricity bill and emits 70% higher CO2 emissions on a per square metre basis compared to the PHT residence hall.

  11. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  12. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  13. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  14. The Entertainment-Education Strategy in Sexual Assault Prevention: A Comparison of Theoretical Foundations and a Test of Effectiveness in a College Campus Setting.

    PubMed

    Hust, Stacey J T; Adams, Paula M; Willoughby, Jessica Fitts; Ren, Chunbo; Lei, Ming; Ran, Weina; Marett, Emily Garrigues

    2017-09-01

    Among the existing sexual assault prevention efforts on college campuses, few use mass communication strategies designed to simultaneously entertain and educate. Although many entertainment-education efforts are guided by social cognitive theory, other theories may be useful in entertainment-education design. Previous research has found that social cognitive theory and social norms theory can successfully influence participants' perceived norms and efficacy related to sexual assault reduction; however, whether such results can be replicated in a naturalistic setting and the extent to which the guiding theoretical foundation may influence outcomes remain unknown. We used a pre- and posttest field experiment with college students in residence halls to assess how different theoretical foundations may influence effects. Over the course of a semester, the participants viewed eight mini-magazines developed using (1) social cognitive theory, (2) social norms theory, (3) a combination of both theoretical frameworks, or (4) a control condition with no sexual assault prevention messaging. Participants in the combined content condition had greater levels of self-efficacy related to sexual assault prevention and more accurate norm perceptions. There were also effects for the mini-magazines developed with only one theoretical framework. Overall, we found that multiple theories can effectively guide entertainment-education message development.

  15. The science experience: The relationship between an inquiry-based science program and student outcomes

    NASA Astrophysics Data System (ADS)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  16. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  17. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  18. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing

    PubMed Central

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-01-01

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method. PMID:28383505

  19. The Virtual Lecture Hall: Utilisation, Effectiveness and Student Perceptions

    ERIC Educational Resources Information Center

    Cramer, Kenneth M.; Collins, Kandice R.; Snider, Don; Fawcett, Graham

    2007-01-01

    We presently introduce the Virtual Lecture Hall (VLH), an instructional computer-based platform for delivering Microsoft PowerPoint slides threaded with audio clips for later review. There were 839 male and female university students enrolled in an introductory psychology class who had access to review class lectures via the VLH. This tool was…

  20. Involving Students in Residence Halls in Hong Kong

    ERIC Educational Resources Information Center

    Ting, S. Raymond; Chan, Rebecca; Lee, Esther

    2016-01-01

    This article reports a study based on A. W. Astin's (1984) involvement theory applied in residence halls at a public university in Hong Kong, China. The resident students who were involved as participants or student leaders in this study were found to be better developed in terms of leadership, career development, multicultural experience,…

  1. Hall-petch law revisited in terms of collective dislocation dynamics.

    PubMed

    Louchet, François; Weiss, Jérôme; Richeton, Thiebaud

    2006-08-18

    The Hall-Petch (HP) law, that accounts for the effect of grain size on the plastic yield stress of polycrystals, is revisited in terms of the collective motion of interacting dislocations. Sudden relaxation of incompatibility stresses in a grain triggers aftershocks in the neighboring ones. The HP law results from a scaling argument based on the conservation of the elastic energy during such transfers. The Hall-Petch law breakdown for nanometric sized grains is shown to stem from the loss of such a collective behavior as grains start deforming by successive motion of individual dislocations.

  2. "Back-fire to lust": G. Stanley Hall, sex-segregated schooling, and the engine of sublimation.

    PubMed

    Graebner, William

    2006-08-01

    G. Stanley Hall was an advocate of sex-segregated schooling long after most Americans had accepted coeducation. His position was based in part on personal experience: observations of his father and mother, a repressed and guilt-ridden boyhood sexuality, and his conviction that his own career success was a product of sublimated sexual desire, of erotic energy converted into mental energy. Hall theorized that coeducation put sublimation at risk, and that sex-segregated schools, by contributing to proper gendered development and by prolonging and sublimating the sexual tensions of adolescence, would produce social progress.

  3. A programmable quantum current standard from the Josephson and the quantum Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, W., E-mail: wilfrid.poirier@lne.fr; Lafont, F.; Djordjevic, S.

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  4. Laying the Foundations of Contemporary Romanian Astronomy

    NASA Astrophysics Data System (ADS)

    Marin, Sorin

    2017-11-01

    This article describes the first stage in the history of Romanian astronomy represented by the events, processes and evolution which led to the formation of great scientific personalities, development drives and the creation of the material base for the contemporary Romanian astronomy, having a focus point on the activity of Bucharest Observatory. The article discusses the roots of an evolution pathway determined and inspired by the activity of several scientific personalities of Romania such as Stefan Hepites, Spiru Haret, Nicolae Coculescu and others. It also underlines that a great importance for the astronomical research in Romania was given by the outstanding technical value of the main instruments used at the Observatory in the first decades of activity and, consequentially, by their longevity in service: in the Equatorial Dome - the impressive 6 m. Prin-Mertz telescope and in the Meridian Hall - the GautierPrin telescope. This determined the formation of a powerful astrometry division and a research drive which led over time to important scientific works such as the ultraprecise stellar catalogues developed in Romania at Bucharest Observatory, which were appreciated and awarded nationally and internationally. Therefore, the article includes the moments and the people which determined the success of laying the foundations of the Observatory in 1908 and then having completed the initial scientific infrastructure in 1912 when the construction work was finished, and briefly presents the features, scientific utilisation and outputs of its telescopes, some of the best in the world in their golden years.

  5. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  6. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    PubMed Central

    Zhao, Bo; Wang, Lei; Tan, Jiu-Bin

    2015-01-01

    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system. PMID:26370993

  7. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  8. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  9. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    PubMed

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  10. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  11. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-06-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  12. Positive changes in perceptions and selections of healthful foods by college students after a short-term point-of-selection intervention at a dining hall.

    PubMed

    Peterson, Sharon; Duncan, Diana Poovey; Null, Dawn Bloyd; Roth, Sara Long; Gill, Lynn

    2010-01-01

    Determine the effects of a short-term, multi-faceted, point-of-selection intervention on college students' perceptions and selection of 10 targeted healthful foods in a university dining hall and changes in their self-reported overall eating behaviors. 104 college students, (age 18-23) completed pre-I and post-I surveys. Pre-survey collected at dining hall in April 2007, followed by 3-week intervention then post-survey collected via email. Healthy choice indicators, large signs, table tents, flyers and colorful photographs with "benefit-based messages" promoted targeted foods. Response rate to both surveys was 38%. Significantly more participants reported that healthful choices were clearly identified in the dining hall after the intervention. Over 20% of participants reported becoming more aware of healthful food choices in the dining hall after the intervention. Significant increases in self-reported intake were reported for cottage cheese and low-fat salad dressing, with a trend toward increased consumption of fresh fruit. Seven of the 14 assessed eating behaviors had significant changes in the desired direction. Increased awareness of healthful foods was the top reason for self-reported changes in overall eating behaviors. Short-term, multi-faceted, point-of-selection marketing of healthful foods in university dining halls may be beneficial for improving college students' perceptions and selections of targeted healthful foods in the dining hall and may improve overall eating behaviors of college students.

  13. Chiral transport along magnetic domain walls in the quantum anomalous Hall effect

    DOE PAGES

    Rosen, Ilan T.; Fox, Eli J.; Kou, Xufeng; ...

    2017-12-01

    The recent prediction, and subsequent discovery, of the quantum anomalous Hall (QAH) effect in thin films of the three-dimensional ferromagnetic topological insulator (MTI) (Crmore » $$_y$$Bi$$_x$$Sb$$_{1-x-y}$$)$$_2$$Te$$_3$$ has opened new possibilities for chiral-edge-state-based devices in zero external magnetic field. Like the $$\

  14. Outcomes of a Technology-Based Social Norms Intervention to Deter Alcohol Use in Freshman Residence Halls

    ERIC Educational Resources Information Center

    Thombs, Dennis L.; Olds, R. Scott; Osborn, Cynthia J.; Casseday, Sarah; Glavin, Kevin; Berkowitz, Alan D.

    2007-01-01

    Objective: The authors tested a prototype intervention designed to deter alcohol use in residence halls. Participants: Approximately 384 freshmen participated in the study over a 2-year period. Methods: The authors devised a feedback method that assessed residents' blood alcohol concentration (BAC) at night and allowed the readings to be retrieved…

  15. Incorporating Prototyping and Iteration into Intervention Development: A Case Study of a Dining Hall-Based Intervention

    ERIC Educational Resources Information Center

    McClain, Arianna D.; Hekler, Eric B.; Gardner, Christopher D.

    2013-01-01

    Background: Previous research from the fields of computer science and engineering highlight the importance of an iterative design process (IDP) to create more creative and effective solutions. Objective: This study describes IDP as a new method for developing health behavior interventions and evaluates the effectiveness of a dining hall--based…

  16. Prentice Hall/Pearson Literature© (2007-15). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Prentice Hall/Pearson Literature©" (2007-15) is an English language arts curriculum designed for students in grades 6-12 that focuses on building reading, vocabulary, literary analysis, and writing skills. It uses passages from fiction and nonfiction texts, poetry, and contemporary digital media. The curriculum is based on a textbook.…

  17. Evaluation of a Digital Learning Object for the Monty Hall Dilemma

    ERIC Educational Resources Information Center

    DiBattista, David

    2011-01-01

    The Monty Hall dilemma (MHD) is a remarkably difficult probability problem with a counterintuitive solution. Undergraduate students used an interactive digital learning object that provided a set-based, animated explanation of the solution to the MHD and let them play games designed to increase understanding of the solution. More than 60% of users…

  18. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  19. Fort Yukon, Alaska DOE Implementation Grant Gwich'in Solar and Energy Efficiency in the Arctic Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadzow, Janet; Messier, Dave

    Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assistmore » with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!« less

  20. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2LiMn 3F 12

    DOE PAGES

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs 2Mn 3F 12 kagome lattice and on the (001) surface of a Cs 2LiMn 3F 12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding modelmore » based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.« less

  1. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  2. Linear-hall sensor based force detecting unit for lower limb exoskeleton

    NASA Astrophysics Data System (ADS)

    Li, Hongwu; Zhu, Yanhe; Zhao, Jie; Wang, Tianshuo; Zhang, Zongwei

    2018-04-01

    This paper describes a knee-joint human-machine interaction force sensor for lower-limb force-assistance exoskeleton. The structure is designed based on hall sensor and series elastic actuator (SEA) structure. The work we have done includes the structure design, the parameter determination and dynamic simulation. By converting the force signal into macro displacement and output voltage, we completed the measurement of man-machine interaction force. And it is proved by experiments that the design is simple, stable and low-cost.

  3. Aspirin: 120 years of innovation. A report from the 2017 Scientific Conference of the International Aspirin Foundation, 14 September 2017, Charité, Berlin.

    PubMed

    Walker, Jaqui; Hutchison, Pippa; Ge, Junbo; Zhao, Dong; Wang, Yongjun; Rothwell, Peter M; Gaziano, J Michael; Chan, Andrew; Burn, John; Chia, John; Langley, Ruth; O'Donnell, Valerie; Rocca, Bianca; Hawkey, Chris

    2018-01-01

    Acetylsalicylic acid was first synthesised by Dr FeIix Hoffman on 10th August 1897 and Aspirin was born. It quickly became the best-known pain killer in the world and in the 120 years since this event, aspirin has continued to attract interest, innovation and excitement. Set within the walls of the preserved ruins of Rudolf Virchow's lecture hall at Charité, within Berlin's Museum of Medical History, the International Aspirin Foundation's 28th Scientific Conference served to facilitate international, multi-disease, multidisciplinary discussion about the current understanding of aspirin's mechanisms of action and its utility in modern medicine as well as ideas for future research into its multifaceted applications to enhance global health. In addition to the delegates in Berlin, 300 medical doctors at the 19th Annual Scientific Congress of the Chinese Society of Cardiology were able to join the cardiology sessions from Taiyuan, Shangxi province via a live streaming link to and from China. This led to useful discussion and allowed a truly international perspective to the meeting.

  4. Disorder effects in topological states: Brief review of the recent developments

    NASA Astrophysics Data System (ADS)

    Wu, Binglan; Song, Juntao; Zhou, Jiaojiao; Jiang, Hua

    2016-11-01

    Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review the work completed over the last few years, including our own, regarding recent developments in several topics about disorder effects in topological states. For weak disorder, the robustness of topological states is demonstrated, especially for both quantum spin Hall states with Z 2 = 1 and size induced nontrivial topological insulators with Z 2 = 0. For moderate disorder, by increasing the randomness of both the impurity distribution and the impurity induced potential, the topological insulator states can be created from normal metallic or insulating states. These phenomena and their mechanisms are summarized. For strong disorder, the disorder causes a metal-insulator transition. Due to their topological nature, the phase diagrams are much richer in topological state systems. Finally, the trends in these areas of disorder research are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374219, 11474085, and 11534001) and the Natural Science Foundation of Jiangsu Province, China (Grant No BK20160007).

  5. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  6. Quantum Hall Effect near the Charge Neutrality Point in a Two-Dimensional Electron-Hole System

    NASA Astrophysics Data System (ADS)

    Gusev, G. M.; Olshanetsky, E. B.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Portal, J. C.

    2010-04-01

    We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity σxy≈0 and in a minimum of diagonal conductivity σxx at ν=νp-νn=0, where νn and νp are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole “snake states” propagating along the ν=0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

  7. Comparison of two data acquisition and processing systems of Moller polarimeter in Hall A of Jefferson Lab

    DOE PAGES

    Vereshchaka, Vadym V.; Glamazdin, Oleksandr V.; Pomatsalyuk, Roman I.

    2014-07-01

    Two data acquisition and processing systems are used simultaneously to measure electron beam polarization by Moller polarimeter in Hall A of Jefferson Lab (Newport News, VA, USA). The old system (since 1997) is fully functional, but is not repairable in case of malfunction (system modules arenot manufactured anymore). The new system (since 2010) based on flash-ADC is more accurate, but currently requires more detailed adjustment and further improvement. Description and specifications of two data acquisition and processing systems have been given. The results of polarization measurements during experiments conducted in Hall A from 2010 to 2012 are compared.

  8. Impact of external conditions on energy consumption in industrial halls

    NASA Astrophysics Data System (ADS)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  9. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  10. Theory of the Quantized Hall Conductance in Periodic Systems: a Topological Analysis.

    NASA Astrophysics Data System (ADS)

    Czerwinski, Michael Joseph

    The integral quantization of the Hall conductance in two-dimensional periodic systems is investigated from a topological point of view. Attention is focused on the contributions from the electronic sub-bands which arise from perturbed Landau levels. After reviewing the theoretical work leading to the identification of the Hall conductance as a topological quantum number, both a determination and interpretation of these quantized values for the sub-band conductances is made. It is shown that the Hall conductance of each sub-band can be regarded as the sum of two terms which will be referred to as classical and nonclassical. Although each of these contributions individually leads to a fractional conductance, the sum of these two contributions does indeed yield an integer. These integral conductances are found to be given by the solution of a simple Diophantine equation which depends on the periodic perturbation. A connection between the quantized value of the Hall conductance and the covering of real space by the zeroes of the sub-band wavefunctions allows for a determination of these conductances under more general potentials. A method is described for obtaining the conductance values from only those states bordering the Brillouin zone, and not the states in its interior. This method is demonstrated to give Hall conductances in agreement with those obtained from the Diophantine equation for the sinusoidal potential case explored earlier. Generalizing a simple gauge invariance argument from real space to k-space, a k-space 'vector potential' is introduced. This allows for a explicit identification of the Hall conductance with the phase winding number of the sub-band wavefunction around the Brillouin zone. The previously described division of the Hall conductance into classical and nonclassical contributions is in this way made more rigorous; based on periodicity considerations alone, these terms are identified as the winding numbers associated with (i) the basis states and (ii) the coefficients of these basis states, respectively. In this way a general Diophantine equation, independent of the periodic potential, is obtained. Finally, the use of the 'parallel transport' of state vectors in the determination of an overall phase convention for these states is described. This is seen to lead to a simple and straightforward method for determining the Hall conductance. This method is based on the states directly, without reference to the particular component wavefunctions of these states. Mention is made of the generality of calculations of this type, within the context of the geometric (or Berry) phases acquired by systems under an adiabatic modification of their environment.

  11. Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Roy, Subrata

    2004-01-01

    This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.

  12. Virtual Lecture Hall for In-Class and Online Sections: A Comparison of Utilization, Perceptions, and Benefits

    ERIC Educational Resources Information Center

    Cramer, Kenneth M.; Collins, Kandice R.; Snider, Don; Fawcett, Graham

    2006-01-01

    We further evaluated the Virtual Lecture Hall (VLH) (Cramer, Collins, Snider, & Fawcett, in press), an instructional computer-based platform to deliver PowerPoint slides threaded with audio clips for later review. Students from either an in-class or online section (ns = 810 and 74 respectively) of introductory psychology had access to live…

  13. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  14. Current-Driven Dynamics of Skyrmions Stabilized in MnSi Nanowires Revealed by Topological Hall Effect

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Degrave, John; Stolt, Matthew; Tokura, Yoshinori; Jin, Song

    2015-03-01

    Skyrmions, novel topologically stable spin vortices, hold promise for next-generation high-density magnetic storage technologies due to their nanoscale domains and ultralow energy consumption. One-dimensional (1D) nanowires are ideal hosts for skyrmions since they not only serve as a natural platform for magnetic racetrack memory devices but also can potentially stabilize skyrmions. We use the topological Hall effect (THE) to study the phase stability and current-driven dynamics of the skyrmions in MnSi nanowires. The THE was observed in an extended magnetic field-temperature window (15 to 30 K), suggesting stabilization of skyrmion phase in nanowires compared with the bulk (27 to 29.5 K). Furthermore, we study skyrmion dynamics in this extended skyrmion phase region and found that under the high current-density of 108-109Am-2 enabled by nanowire geometry, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field. These results open up the exploration of nanowires as an attractive platform for investigating skyrmion physics in 1D systems and exploiting skyrmions in magnetic storage concepts. This work is supported by US National Science Foundation (ECCS-1231916) and JSPS Grant-in-Aid for Scientific Research No. 24224009.

  15. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  16. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors

    NASA Astrophysics Data System (ADS)

    Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel

    A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.

  17. Anomalous magnetotransport properties of high-quality single crystals of Weyl semimetal WTe2: Sign change of Hall resistivity

    NASA Astrophysics Data System (ADS)

    Jha, Rajveer; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Ribeiro, Raquel A.; Aoki, Yuji

    2018-05-01

    We report on a systematic study of Hall effect using high quality single crystals of type-II Weyl semimetal WTe2 with the applied magnetic field B//c. The residual resistivity ratio of 1330 and the large magnetoresistance of 1.5 × 106 % in 9 T at 2 K, being in the highest class in the literature, attest to their high quality. Based on a simple two-carrier model, the densities (ne and nh) and mobilities (μe and μh) for electron and hole carriers have been uniquely determined combining both Hall- and electrical-resistivity data. The difference between ne and nh is 1% at 2 K, indicating that the system is in an compensated condition. The negative Hall resistivity growing rapidly below 20 K is due to a rapidly increasing μh/μe approaching one. Below 3 K in a low field region, we found the Hall resistivity becomes positive, reflecting that μh/μe finally exceeds one in this region. These anomalous behaviors of the carrier densities and mobilities might be associated with the existence of a Lifshitz transition and/or the spin texture on the Fermi surface.

  18. Spin-Dependent Processes Measured without a Permanent Magnet.

    PubMed

    Fontanesi, Claudio; Capua, Eyal; Paltiel, Yossi; Waldeck, David H; Naaman, Ron

    2018-05-07

    A novel Hall circuit design that can be incorporated into a working electrode, which is used to probe spin-selective charge transfer and charge displacement processes, is reviewed herein. The general design of a Hall circuit based on a semiconductor heterostructure, which forms a shallow 2D electron gas and is used as an electrode, is described. Three different types of spin-selective processes have been studied with this device in the past: i) photoinduced charge exchange between quantum dots and the working electrode through chiral molecules is associated with spin polarization that creates a local magnetization and generates a Hall voltage; ii) charge polarization of chiral molecules by an applied voltage is accompanied by a spin polarization that generates a Hall voltage; and iii) cyclic voltammetry (current-voltage) measurements of electrochemical redox reactions that can be spin-analyzed by the Hall circuit to provide a third dimension (spin) in addition to the well-known current and voltage dimensions. The three studies reviewed open new doors into understanding both the spin current and the charge current in electronic materials and electrochemical processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Study on the influences of ionization region material arrangement on Hall thruster channel discharge characteristics

    NASA Astrophysics Data System (ADS)

    Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN

    2018-02-01

    There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.

  20. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    NASA Astrophysics Data System (ADS)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  1. 8. Photocopy of photograph, date unknown (original print on file ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of photograph, date unknown (original print on file at U.S. Army Intelligence Security Command, Fort Belvoir, Virginia). VIEW OF SULLINS COLLEGE, BRISTOL, VIRGINIA. SULLINS COLLEGE PRESIDENT WILLIAM MARTIN FOUNDED ARLINGTON HALL JUNIOR COLLEGE, AND APPEARS TO HAVE LOOSELY BASED THE DESIGN OF THE NEW SCHOOL'S BUILDINGS UPON THOSE AT SULLINS. - Arlington Hall Station, 4000 Arlington Boulevard, Arlington, Arlington County, VA

  2. 76 FR 81665 - Endangered and Threatened Wildlife and Plants; Revising the Listing of the Gray Wolf (Canis lupus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... reverted back to endangered status, as had been the case prior to the 2003 reclassification. The courts... was followed by Hall and Kelson (1959, p. 849) and Hall (1981, p. 932). Based on a study of DNA... Wilson et al. (2000). Several recent studies conclude that the eastern wolf is a unique species and...

  3. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yang; Feng, Xiao; Ou, Yunbo

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less

  4. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  5. Conference report: the Nour Foundation Georgetown University & Blackfriars Hall,Oxford University Symposium Series Technology, Neuroscience & the Nature of Being: Considerations of Meaning, Morality and Transcendence part I: The Paradox of Neurotechnology 8 May 2009.

    PubMed

    Palchik, Guillermo

    2009-07-17

    This reviews the first of a tripartite symposia series dealing with novel neuroscientific technologies, the nature of consciousness and being, and the questions that arise from such interactions. The event took place on May 8 2009, at Georgetown University, and brought together ten leading figures on fields ranging from Neuroscience and Robotics to Philosophy, that commented on their research and provided ethical, moral and practical insight and perspectives into how these technologies can shape the future of neuroscientific and human development, as well as denoting the potential abuses and the best way to proceed about them.

  6. Mission and System Advantages of Iodine Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (<1kW) and high power (>10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  7. Non-volatile logic gates based on planar Hall effect in magnetic films with two in-plane easy axes.

    PubMed

    Lee, Sangyeop; Bac, Seul-Ki; Choi, Seonghoon; Lee, Hakjoon; Yoo, Taehee; Lee, Sanghoon; Liu, Xinyu; Dobrowolska, M; Furdyna, Jacek K

    2017-04-25

    We discuss the use of planar Hall effect (PHE) in a ferromagnetic GaMnAs film with two in-plane easy axes as a means for achieving novel logic functionalities. We show that the switching of magnetization between the easy axes in a GaMnAs film depends strongly on the magnitude of the current flowing through the film due to thermal effects that modify its magnetic anisotropy. Planar Hall resistance in a GaMnAs film with two in-plane easy axes shows well-defined maxima and minima that can serve as two binary logic states. By choosing appropriate magnitudes of the input current for the GaMnAs Hall device, magnetic logic functions can then be achieved. Specifically, non-volatile logic functionalities such as AND, OR, NAND, and NOR gates can be obtained in such a device by selecting appropriate initial conditions. These results, involving a simple PHE device, hold promise for realizing programmable logic elements in magnetic electronics.

  8. Aperture size, materiality of the secondary room, and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2002-11-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer modeled. It has a fixed geometric volume, form, and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound-absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  9. Aperture size, materiality of the secondary room and listener location: Impact on the simulated impulse response of a coupled-volume concert hall

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.; Harrison, Byron W.

    2003-04-01

    By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume concert hall based on an existing performing arts center is conceived and computer-modeled. It has a fixed geometric volume, form and primary-room sound absorption. Ray-tracing software simulates impulse responses, varying both aperture size and secondary-room sound absorption level, across a grid of receiver (listener) locations. The results are compared with statistical analysis that suggests a highly sensitive relationship between the double-sloped condition and the architecture of the space. This line of study aims to quantitatively and spatially correlate the double-sloped condition with (1) aperture size exposing the chamber, (2) sound absorptance in the coupled volume, and (3) listener location.

  10. Direct comparison of fractional and integer quantized Hall resistance

    NASA Astrophysics Data System (ADS)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  11. Quantum Entanglement and the Topological Order of Fractional Hall States

    NASA Astrophysics Data System (ADS)

    Rezayi, Edward

    2015-03-01

    Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.

  12. Dynamics Of Human Motion The Case Study of an Examination Hall

    NASA Astrophysics Data System (ADS)

    Ogunjo, Samuel; Ajayi, Oluwaseyi; Fuwape, Ibiyinka; Dansu, Emmanuel

    Human behaviour is difficult to characterize and generalize due to ITS complex nature. Advances in mathematical models have enabled human systems such as love interaction, alcohol abuse, admission problem to be described using models. This study investigates one of such problems, the dynamics of human motion in an examination hall with limited computer systems such that students write their examination in batches. The examination is characterized by time (t) allocated to each students and difficulty level (dl) associated with the examination. A stochastic model based on the difficulty level of the examination was developed for the prediction of student's motion around the examination hall. A good agreement was obtained between theoretical predictions and numerical simulation. The result obtained will help in better planning of examination session to maximize available resources. Furthermore, results obtained in the research can be extended to other areas such as banking hall, customer service points where available resources will be shared amongst many users.

  13. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-04-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10-9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices.

  14. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  15. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  16. 5. View of Community Hall, first floor interior, entrance hall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Community Hall, first floor interior, entrance hall on east side of building, facing southeast. Ticket booth center foreground, stairway to auditorium right foreground. - Community Hall, Rainier Avenue & View Drive, Port Gamble, Kitsap County, WA

  17. ENCOURAGING ELECTRICITY SAVINGS IN A UNIVERSITY RESIDENTIAL HALL THROUGH A COMBINATION OF FEEDBACK, VISUAL PROMPTS, AND INCENTIVES

    PubMed Central

    Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909

  18. Error modelling of quantum Hall array resistance standards

    NASA Astrophysics Data System (ADS)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  19. Tuning the stability and the skyrmion Hall effect in magnetic skyrmions by adjusting their exchange strengths with magnetic disks

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wu, H. Z.; Miao, B. F.; Wu, D.; Ding, H. F.

    2018-06-01

    Magnetic skyrmion is a promising candidate for the future information technology due to its small size, topological protection and the ultralow current density needed to displace it. The applications, however, are currently limited by its narrow phase diagram and the skyrmion Hall effect which prevents the skyrmion motion at high speed. In this work, we study the Dzyaloshinskii-Moriya interaction induced magnetic skyrmion that exchange coupled with magnetic nano-disks utilizing the micromagnetic simulation. We find that the stability and the skyrmion Hall effect of the created skyrmion can be tuned effectively with the coupling strength, thus opens the space to optimize the performance of the skyrmion based devices.

  20. Giant photonic Hall effect in magnetophotonic crystals.

    PubMed

    Merzlikin, A M; Vinogradov, A P; Inoue, M; Granovsky, A B

    2005-10-01

    We have considered a simple, square, two-dimensional (2D) PC built of a magneto-optic matrix with square holes. It is shown that using such a magnetophotonic crystal it is possible to deflect a light beam at very large angles by applying a nonzero external magnetic field. The effect is called the giant photonic Hall effect (GPHE) or the magnetic superprism effect. The GPHE is based on magneto-optical properties, as is the photonic Hall effect [B. A. van Tiggelen and G. L. J. A. Rikken, in, edited by V. M. Shalaev (Springer-Verlag, Berlin, 2002), p. 275]; however GPHE is not caused by asymmetrical light scattering but rather by the influence of an external magnetic field on the photonic band structure.

  1. Anomalous Nernst and Hall effects in magnetized platinum and palladium

    NASA Astrophysics Data System (ADS)

    Guo, G. Y.; Niu, Q.; Nagaosa, N.

    2014-06-01

    We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band-structure calculations. We find that both the anomalous Hall (σxyA) and Nernst (αxyA) conductivities can be related to the spin Hall conductivity (σxyS) and band exchange splitting (Δex) by relations σxyA=ΔexeℏσxyS(EF)' and αxyA=-π23kB2TΔexℏσxys(μ )'', respectively. In particular, these relations would predict that the σxyA in the magnetized Pt (Pd) would be positive (negative) since the σxyS(EF)' is positive (negative). Furthermore, both σxyA and αxyA are approximately proportional to the induced spin magnetic moment (ms) because the Δex is a linear function of ms. Using the reported ms in the magnetized Pt and Pd, we predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic platinum and palladium would be gigantic, being up to ten times larger than, e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be significant.

  2. Hall viscosity of hierarchical quantum Hall states

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  3. Deficiency of the bulk spin Hall effect model for spin-orbit torques in magnetic-insulator/heavy-metal heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junxue; Yu, Guoqiang; Tang, Chi; Liu, Yizhou; Shi, Zhong; Liu, Yawen; Navabi, Aryan; Aldosary, Mohammed; Shao, Qiming; Wang, Kang L.; Lake, Roger; Shi, Jing

    2017-06-01

    Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit torques (SOTs) on the magnetic-insulator side. Within the framework of a pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the fieldlike torque (FLT) to the dampinglike torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or T m3F e5O12/Pt heterostructures with different T m3F e5O12 thicknesses, where T m3F e5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. We find the ratio between the measured effective fields of FLT and DLT is at least two times larger than the ratio of the SH-AHE to SMR. In addition, the bulk SHE model grossly underestimates the spin-torque efficiency of FLT. Our results reveal deficiencies of the bulk SHE model and also address the importance of interfacial effects such as the Rashba and magnetic proximity effects in magnetic-insulator/heavy-metal heterostructures.

  4. Dysgenesis of the Middle Turbinate: A Unique Cause of Nasal airway obstruction

    DTIC Science & Technology

    2010-02-01

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wilford Hall Medical Center,Department of Otolaryngology? Head and Neck Surgery...the choana. Otolaryngology– Head and Neck Surgery (2010) 143, 317-318 0194-5998/$36.00 © 2010 American Academy of Otolaryngology– Head and Neck Surgery...From the Department of Otolaryngology– Head and Neck Surgery, Wilford Hall Medical Center, Lackland Air Force Base, TX. Corresponding author: Wesley M

  5. Holographic anyonic superfluidity

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  6. Giant spin Hall effect in graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Jayakumar; Koon, Gavin Kok Wai; Avsar, Ahmet; Ho, Yuda; Lee, Jong Hak; Jaiswal, Manu; Baeck, Seung-Jae; Ahn, Jong-Hyun; Ferreira, Aires; Cazalilla, Miguel A.; Neto, Antonio H. Castro; Özyilmaz, Barbaros

    2014-09-01

    Advances in large-area graphene synthesis via chemical vapour deposition on metals like copper were instrumental in the demonstration of graphene-based novel, wafer-scale electronic circuits and proof-of-concept applications such as flexible touch panels. Here, we show that graphene grown by chemical vapour deposition on copper is equally promising for spintronics applications. In contrast to natural graphene, our experiments demonstrate that chemically synthesized graphene has a strong spin-orbit coupling as high as 20 meV giving rise to a giant spin Hall effect. The exceptionally large spin Hall angle ~0.2 provides an important step towards graphene-based spintronics devices within existing complementary metal-oxide-semiconductor technology. Our microscopic model shows that unavoidable residual copper adatom clusters act as local spin-orbit scatterers and, in the resonant scattering limit, induce transverse spin currents with enhanced skew-scattering contribution. Our findings are confirmed independently by introducing metallic adatoms-copper, silver and gold on exfoliated graphene samples.

  7. Silicon-based microfabricated tin oxide gas sensor incorporating use of Hall effect measurement

    NASA Astrophysics Data System (ADS)

    Hammond, Joseph Wilson

    2000-10-01

    Characterization of a microfabricated sol-gel derived nano-particle tin oxide thin film on a silicon substrate, through simultaneous measurement of conductivity, Hall mobility and electron density, had not been accomplished before this study. Conductivity is a function of carrier density and Hall mobility. Therefore, a full understanding of the sensing mechanism of tin oxide requires knowledge of the sensor conductivity, electron density and Hall mobility. A tin oxide thin film (1100A thick), derived by the sol-gel method, was deposited on a Si/SiO2 substrate by means of spin coating method. The sol-gel method produces films of porous interconnected nano-sized particles and is relatively inexpensive and easy to produce compared to existing methods of tin oxide thin film deposition. A goal of this study was to determine the compatibility of sol-gel derived tin oxide thin films with silicon based microfabrication procedures. It was determined that conductivity sensitivity is strongly dependant on electron density level and shows very weak dependence on Hall mobility. Lack of Hall mobility sensitivity to H2 concentration suggests that conduction is grain control limited. In this regime, in which the grain size (D) is less than twice the characteristic Debye length (LD), a change in reducing gas concentration results in a nearly simultaneous change in carrier density throughout the entire grain, while the Hall mobility remains unchanged. The sensor calcined at 500°C and operated at 250°C showed maximum conductivity sensitivity to H2 in air. The sensor exhibited a high conductivity sensitivity of 10.6 to 100ppm H2 in air with response time of (˜1) minute and recovery time of (˜4) minutes. Images of the thin film surface, obtained by SEM, were used to study the effects of calcination temperature and operating conditions on the tin oxide structure. Sensitivity decreased as average grain size increased from 7.7nm to 14.7nm, with increasing calcination temperature from 500°C to 800°C. The sensors displayed slight drift in long term baseline stability and good long term sensitivity stability (14 days). Long term operation (30 days) at elevated temperatures had no noticeable effect on the thin film structure.

  8. Phonology, reading, and Chomsky and Halle's optimal orthography.

    PubMed

    Steinberg, D D

    1973-09-01

    Chomsky and Halle claim that an orthography based on their underlying phonological representations (UPR) of lexical items would be optimal for English. This paper challenges three of C & H's basic phonological assumptions, that their vowel shift rule is valid, that the UPR is the only sound representation to be listed in the lexicon, and that derived words do not appear as wholes in the lexicon. A less abstract phonological representation level based on the conscious perceptions of speakers, the surface phonemic (SPR), is proposed. An SPR-based orthography has advantages which a UPR-based orthography would not: it is easy to learn and teach, it can be learned at an early age, and it permits rapid detection of rhyme. It is concluded that an orthography based on SPRs, and not UPRs, would be optimal.

  9. Magnetotransport of High Mobility Holes in Monolayer and Bilayer WSe2

    NASA Astrophysics Data System (ADS)

    Tutuc, Emanuel

    Transition metal dichalcogenides have attracted significant interest because of their two-dimensional crystal structure, large band-gap, and strong spin-orbit interaction which leads to spin-valley locking. Recent advances in sample fabrication have allowed the experimental study of low temperature magneto-transport of high mobility holes in WSe2. We review here the main results of these studies which reveal clear quantum Hall states in mono- and bilayer WSe2. The data allows the extraction of an effective hole mass of m* = 0.45me (me is the bare electron mass) in both mono and bilayer WSe2. A systematic study of the carrier distribution in bilayer WSe2 determined from a Fourier analysis of the Shubnikov-de Haas oscillations indicates that the two layers are weakly coupled. The individual layer density dependence on gate bias shows negative compressibility, a signature of strong electron-electron interaction in these materials associated with the large effective mass. We discuss the interplay between cyclotron and Zeeman splitting using the dependence of the quantum Hall state sequence on carrier density, and the angle between the magnetic field and the WSe2 plane. Work done in collaboration with B. Fallahazad, H. C. P. Movva, K. Kim, S. K. Banerjee, T. Taniguchi, and K. Watanabe. This work supported by the Nanoelectronics Research Initiative SWAN center, Intel Corp., and National Science Foundation.

  10. Preliminary Study of Arcjet Neutralization of Hall Thruster Clusters (Postprint)

    DTIC Science & Technology

    2007-01-18

    Clustered Hall thrusters have emerged as a favored choice for extending Hall thruster options to very high powers (50 kW - 150 kW). This paper...examines the possible use of an arcjet to neutralize clustered Hall thrusters, as the hybrid arcjet- Hall thruster concept can fill a performance niche...and helium, and then demonstrate the first successful operation of a low power Hall thruster -arcjet neutralizer package. In the surrogate anode studies

  11. Development Status of the Helicon Hall Thruster

    DTIC Science & Technology

    2009-09-15

    Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low

  12. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    NASA Astrophysics Data System (ADS)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  13. Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    Using a particle-based simulation model, we show that quenched disorder creates a drive-dependent skyrmion Hall effect as measured by the change in the ratiomore » $$R={V}_{\\perp }/{V}_{| | }$$ of the skyrmion velocity perpendicular (V ⊥) and parallel ($${V}_{| | }$$) to an external drive. R is zero at depinning and increases linearly with increasing drive, in agreement with recent experimental observations. At sufficiently high drives where the skyrmions enter a free flow regime, R saturates to the disorder-free limit. In addition, this behavior is robust for a wide range of disorder strengths and intrinsic Hall angle values, and occurs whenever plastic flow is present. For systems with small intrinsic Hall angles, we find that the Hall angle increases linearly with external drive, as also observed in experiment. In the weak pinning regime where the skyrmion lattice depins elastically, R is nonlinear and the net direction of the skyrmion lattice motion can rotate as a function of external drive. We show that the changes in the skyrmion Hall effect correlate with changes in the power spectrum of the skyrmion velocity noise fluctuations. The plastic flow regime is associated with $1/f$ noise, while in the regime in which R has saturated, the noise is white with a weak narrow band signal, and the noise power drops by several orders of magnitude. Finally, at low drives, the velocity noise in the perpendicular and parallel directions is of the same order of magnitude, while at intermediate drives the perpendicular noise fluctuations are much larger.« less

  14. Spin Hall effect and Landau spectrum of Dirac electrons in bismuth

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki

    2015-03-01

    Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).

  15. Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-09-29

    Using a particle-based simulation model, we show that quenched disorder creates a drive-dependent skyrmion Hall effect as measured by the change in the ratiomore » $$R={V}_{\\perp }/{V}_{| | }$$ of the skyrmion velocity perpendicular (V ⊥) and parallel ($${V}_{| | }$$) to an external drive. R is zero at depinning and increases linearly with increasing drive, in agreement with recent experimental observations. At sufficiently high drives where the skyrmions enter a free flow regime, R saturates to the disorder-free limit. In addition, this behavior is robust for a wide range of disorder strengths and intrinsic Hall angle values, and occurs whenever plastic flow is present. For systems with small intrinsic Hall angles, we find that the Hall angle increases linearly with external drive, as also observed in experiment. In the weak pinning regime where the skyrmion lattice depins elastically, R is nonlinear and the net direction of the skyrmion lattice motion can rotate as a function of external drive. We show that the changes in the skyrmion Hall effect correlate with changes in the power spectrum of the skyrmion velocity noise fluctuations. The plastic flow regime is associated with $1/f$ noise, while in the regime in which R has saturated, the noise is white with a weak narrow band signal, and the noise power drops by several orders of magnitude. Finally, at low drives, the velocity noise in the perpendicular and parallel directions is of the same order of magnitude, while at intermediate drives the perpendicular noise fluctuations are much larger.« less

  16. An exploratory cluster randomised trial of a university halls of residence based social norms intervention in Wales, UK

    PubMed Central

    2012-01-01

    Background Excessive alcohol consumption amongst university students has received increasing attention. A social norms approach to reducing drinking behaviours has met with some success in the USA. Such an approach is based on the assumption that student's perceptions of the norms of their peers are highly influential, but that these perceptions are often incorrect. Social norms interventions therefore aim to correct these inaccurate perceptions, and in turn, to change behaviours. However, UK studies are scarce and it is increasingly recognised that social norm interventions need to be supported by socio ecological approaches that address the wider determinants of behaviour. Objectives To describe the research design for an exploratory trial examining the acceptability, hypothesised process of change and implementation of a social norm marketing campaign designed to correct misperceptions of normative alcohol use and reduce levels of misuse, implemented alongside a university wide alcohol harm reduction toolkit. It also assesses the feasibility of a potential large scale effectiveness trial by providing key trial design parameters including randomisation, recruitment and retention, contamination, data collection methods, outcome measures and intracluster correlations. Methods/design The study adopts an exploratory cluster randomised controlled trial design with halls of residence as the unit of allocation, and a nested mixed methods process evaluation. Four Welsh (UK) universities participated in the study, with residence hall managers consenting to implementation of the trial in 50 university owned campus based halls of residence. Consenting halls were randomised to either a phased multi channel social norm marketing campaign addressing normative discrepancies (n = 25 intervention) or normal practice (n = 25 control). The primary outcome is alcohol consumption (units per week) measured using the Daily Drinking Questionnaire. Secondary outcomes assess frequency of alcohol consumption, higher risk drinking, alcohol related problems and change in perceptions of alcohol-related descriptive and injunctive norms. Data will be collected for all 50 halls at 4 months follow up through a cross-sectional on line and postal survey of approximately 4000 first year students. The process evaluation will explore the acceptability and implementation of the social norms intervention and toolkit and hypothesised process of change including awareness, receptivity and normative changes. Discussion Exploratory trials such as this are essential to inform future definitive trials by providing crucial methodological parameters and guidance on designing and implementing optimum interventions. Trial registration number ISRCTN: ISRCTN48556384 PMID:22414293

  17. Gearing Up for the Big Game...and More

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bill Elkins, a member of the U.S. Space Foundation's Space Technology Hall of Fame, is using his experience in developing cooling garments for use in sports and medicine. His company, CoolSystems, has developed the Game Ready[TM] Accelerated Recovery System. Game Ready[TM] ergonomic wraps are designed to custom fit the ankle, knee, back, torso, shoulder, elbow, and wrist and provide deep tissue cooling therapy with intermittent compression to reduce pain, swelling, and tissue damage. Recharge[TM] cooling garments have been developed to lower core body temperature in people with heat-sensitive multiple sclerosis, reducing symptoms such as fatigue, decreased balance, impaired vision, and decreased endurance. The company currently is collaborating with Stanford University Medical Center's Stanford Stroke Center to investigate the effectiveness of discrete hypothermia in stroke and head trauma patients.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Türkoğlu, Emir Alper, E-mail: eaturkoglu@yandex.com; Ağrı İbrahim Çeçen University, Central Research and Application Laboratory, Ağrı; Kurt, Murat, E-mail: muratkurt60@hotmail.com

    Ağrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keepmore » it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.« less

  19. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less

  20. Admittance measurements in the quantum Hall effect regime

    NASA Astrophysics Data System (ADS)

    Hernández, C.; Consejo, C.; Chaubet, C.

    2014-11-01

    In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz-1 MHz. Our interpretation is based on the Landauer-Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.

  1. Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Jiang, Shaolong; Teng, Jiao

    2018-05-01

    To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.

  2. Effect of matching between the magnetic field and channel length on the performance of low sputtering Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren

    2018-02-01

    Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.

  3. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    DTIC Science & Technology

    2015-10-01

    addresses these needs, and additionally has “smart” features that adjust integrated circuits ( ICs ) on the sensor during start-up based upon the...Hall effect sensors, the datasheet information on the MLX91205 gives a dynamic range of 66 to 96 dB for frequencies of 10 Hz and 10 kHz, respectively...Electric Field Sensors. 18 August 2009. 4. Melexis. IMC-Hall Current Sensor, MLX91205 Datasheet . June. 2012 5. Vinci SJ, Hull DM. Electrostatic

  4. Extraordinary Hall resistance and unconventional magnetoresistance in Pt/LaCoO 3 hybrids

    NASA Astrophysics Data System (ADS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Zhang, Y.; Liu, L. P.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2015-10-01

    We report an investigation of transverse Hall resistance and longitudinal resistance on Pt thin films sputtered on epitaxial LaCoO3 (LCO) ferromagnetic insulator films. The LaCoO3 films were deposited on several single crystalline substrates [LaAlO3,(La,Sr)(Al,Ta)O3, and SrTiO3] with (001) orientation. The physical properties of LaCoO3 films were characterized by the measurements of magnetic and transport properties. The LaCoO3 films undergo a paramagnetic to ferromagnetic (FM) transition at Curie temperatures ranging from 40 to 85 K, below which the Pt/LCO hybrids exhibit significant extraordinary Hall resistance up to 50 m Ω and unconventional magnetoresistance ratio Δ ρ /ρ0 about 1.2 ×10-4 , accompanied by the conventional magnetoresistance. The observed spin transport properties share some common features as well as some unique characteristics when compared with well-studied Y3Fe5O12 -based Pt thin films. Our findings call for new theories since the extraordinary Hall resistance and magnetoresistance cannot be consistently explained by the existing theories.

  5. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    PubMed Central

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-01-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices. PMID:25891533

  6. Time-resolved ion velocity distribution in a cylindrical Hall thruster: heterodyne-based experiment and modeling.

    PubMed

    Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S

    2015-03-01

    Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF.

  7. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  8. Robust integer and fractional helical modes in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  9. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  10. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  11. Two-band analysis of hole mobility and Hall factor for heavily carbon-doped p-type GaAs

    NASA Astrophysics Data System (ADS)

    Kim, B. W.; Majerfeld, A.

    1996-02-01

    We solve a pair of Boltzmann transport equations based on an interacting two-isotropic-band model in a general way first to get transport parameters corresponding to the relaxation time. We present a simple method to calculate effective relaxation times, separately for each band, which compensate for the inherent deficiencies in using the relaxation time concept for polar optical-phonon scattering. Formulas for calculating momentum relaxation times in the two-band model are presented for all the major scattering mechanisms of p-type GaAs for simple, practical mobility calculations. In the newly proposed theoretical framework, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain direct comparisons between the theory and recently available experimental results. In the calculations, the light-hole-band nonparabolicity is taken into account on the average by the use of energy-dependent effective mass obtained from the kṡp method and valence-band anisotropy is taken partly into account by the use the Wiley's overlap function.. The calculated Hall mobilities show a good agreement with our experimental data for carbon-doped p-GaAs samples in the range of degenerate hole densities. The calculated Hall factors show rH=1.25-1.75 over hole densities of 2×1017-1×1020 cm-3.

  12. 5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. 110), MELVILLE HALL (BUILDING NO. 116) LOOKING WEST FROM CLOCK TOWER OF MAHAN HALL - U.S. Naval Academy, Annapolis, Anne Arundel County, MD

  13. Transitions Towards Operational Space-Based Ocean Observations: From Single Research Missions into Series and Constellations

    DTIC Science & Technology

    2011-02-16

    Meleorol. Soc... 88 (8). 1197-121.1. 2007 . (DOI: 10.1175/ BAMS-88-8-1197) 4. GCOS Implementation Plan for the Global Observing System for Climate...21-25 September 2009, Hall, J.. Harrison 1) 1 and Stammer . D., Eds., ESA Publication WPP-306, 2010. 6. Le Traon, P.-Y.. and Co-Authors (2010...Information for Society" Conference (Vol. 2), Venice, Italy, 21-25 September 2009, Hall, J., Harrison D.E. and Stammer , D., Eds., ESA Publication WPP

  14. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    DTIC Science & Technology

    2017-06-30

    17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current

  15. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  16. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e2, and 1/e3 times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  17. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  18. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    PubMed Central

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-01-01

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864

  19. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    PubMed

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  20. Hall effect of copper nitride thin films

    NASA Astrophysics Data System (ADS)

    Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.

    2005-08-01

    The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.

  1. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    PubMed Central

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  2. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    NASA Astrophysics Data System (ADS)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  3. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  4. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran.

    PubMed

    Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-04-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.

  5. 27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE SHOWING EGG AND DART OVOLO AND GUTTAE OF THE THIRD MUTULE FROM THE SOUTHEAST CORNER - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  6. Nondestructive hall coefficient measurements using ACPD techniques

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a strong enough Hall electric field that produces measurable potential differences between points lying on the path followed by the Hall current even when it is not intercepted by either the edge of the specimen or the edge of the magnetic field. The induced Hall voltage increases proportionally to the square root of frequency as the current is squeezed into a shallow electromagnetic skin of decreasing depth. This approach could be exploited to measure the Hall coefficient near the surface at high frequencies without cutting the specimen.

  7. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  8. Hole mobilities and the effective Hall factor in p-type GaAs

    NASA Astrophysics Data System (ADS)

    Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.

    1997-06-01

    We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.

  9. The first vineyard concert hall in North America

    NASA Astrophysics Data System (ADS)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  10. Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.

    The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.

  11. 8. PHOTOCOPY, HEATING DRAWING FOR ADMINISTRATION BUILDING. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOCOPY, HEATING DRAWING FOR ADMINISTRATION BUILDING. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  12. 1. ADMINISTRATION BUILDING, RIGHT SIDE, LOOKING SOUTH. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ADMINISTRATION BUILDING, RIGHT SIDE, LOOKING SOUTH. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  13. 7. PHOTOCOPY, ELEVATION DRAWING OF ADMINISTRATION BUILDING. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, ELEVATION DRAWING OF ADMINISTRATION BUILDING. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  14. 2. ADMINISTRATION BUILDING, REAR SIDE, LOOKING EAST. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ADMINISTRATION BUILDING, REAR SIDE, LOOKING EAST. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  15. 3. ADMINISTRATION BUILDING, LEFT SIDE, LOOKING NORTH. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ADMINISTRATION BUILDING, LEFT SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  16. Nonlinearity in the effect of an inhomogeneous Hall angle

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2007-03-01

    The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.

  17. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    PubMed

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Piezo-Hall effect and fundamental piezo-Hall coefficients of single crystal n-type 3C-SiC(100) with low carrier concentration

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Phan, Hoang-Phuong; Hold, Leonie; Dimitrijev, Sima

    2017-04-01

    This article reports the results on the piezo-Hall effect in single crystal n-type 3C-SiC(100) having a low carrier concentration. The effect of the crystallographic orientation on the piezo-Hall effect has been investigated by applying stress to the Hall devices fabricated in different crystallographic directions. Single crystal n-type 3C-SiC(100) and 3C-SiC(111) were grown by low pressure chemical vapor deposition at 1250 °C. Fundamental piezo-Hall coefficients were obtained using the piezo-Hall effect measurements as P11 = (-29 ± 1.3) × 10-11 Pa-1, P12 = (11.06 ± 0.5)× 10-11 Pa-1, and P44 = (-3.4 ± 0.7) × 10-11 Pa-1. It has been observed that the piezo-Hall coefficients of n-type 3C-SiC(100) show a completely different behavior as compared to that of p-type 3C-SiC.

  19. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    DOE PAGES

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; ...

    2015-04-08

    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10 10 cm -2 to 2.7 × 10 11 cm -2 were achieved, yielding a maximal combined Hall mobility (μ Hall ) of 7.7 × 10 5 cm 2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to n Hall > 3.3 × 10 10 cm -2,more » consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less

  20. Nontrivial transition of transmission in a highly open quantum point contact in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir

    2017-11-01

    Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.

  1. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2014-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date

  2. High-Power Hall Propulsion Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.

    2012-01-01

    The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.

  3. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    NASA Astrophysics Data System (ADS)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The decrease of efficiency due to multiply-charged ions was minor. Efficiency was largely determined by the current utilization, which suggested maximum Hall thruster efficiency has yet to be reached. The electron Hall parameter was approximately constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400--900 V, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  4. Mass media and environmental issues: a theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlour, J.W.

    1980-01-01

    A critique of the weak empirical and theoretical foundations of commentaries on the mass media in the environmental literature argues that they stem from the incidental rather than fundamental concern for the social dimensions of environmental problems. The contributions of information theory, cybernetics, sociology, and political science to micro and macro theories of mass communications are reviewed. Information from empirical analyses of the mass media's portrayal of social issues, including the environment, is related to Hall's dominant ideology thesis of the mass media and the elitist-conflict model of society. It is argued that the media's portrayal of environmental issues ismore » structured by dominant power-holding groups in society with the result that the media effectively function to maintain and reinforce the status quo to the advantage of these dominant groups. 78 references.« less

  5. Assessment method of accessibility conditions: how to make public buildings accessible?

    PubMed

    Andrade, Isabela Fernandes; Ely, e Vera Helena Moro Bins

    2012-01-01

    The enforcement of accessibility today has faced several difficulties, such as intervention in historic buildings that now house public services and cultural activities, such as town halls, museums and theaters and should allow access, on equal terms to all people. The paper presents the application of a method for evaluating the spatial accessibility conditions and their results. For this, we sought to support the theoretical foundation about the main issue involved and legislation. From the method used--guided walks--it was possible to identify the main barriers to accessibility in historic buildings. From the identified barriers, possible solutions are presented according to the four components of accessibility: spatial orientation, displacement, use and communication. It is hoped also that the knowledge gained in this research contributes to an improvement of accessibility legislation in relation to the listed items.

  6. Sky and Ocean Joined

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2007-07-01

    Acknowledgements; Abbreviations; Introduction; Prelude: perspectives and problems: the nation, the navy, the stars; Part I. The Founding Era, 1830-65: 1. From depot to national observatory, 1830-46; 2. A choice of roles: the Maury years, 1844-61; 3. Foundations of the American Nautical Almanac Office, 1849-65; 4. Gilliss and the Civil War years; Part II. The Golden Era, 1866-93: 5. Scientific life and work; 6. Asaph Hall, the great refractor and the moons of Mars; 7. William Harkness and the transits of Venus of 1874 and 1882; 8. Simon Newcomb and his work; Part III. The Twentieth Century: 9. Observatory circle: a new site and administrative challenges for the twentieth century; 10. Space: the astronomy of position and its uses; 11. Time: a service for the world; 12. Navigation: from stars to satellites; Summary; Select bibliographical essay; Appendices; Index.

  7. Sky and Ocean Joined

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2002-10-01

    Acknowledgements; Abbreviations; Introduction; Prelude: perspectives and problems: the nation, the navy, the stars; Part I. The Founding Era, 1830-65: 1. From depot to national observatory, 1830-46; 2. A choice of roles: the Maury years, 1844-61; 3. Foundations of the American Nautical Almanac Office, 1849-65; 4. Gilliss and the Civil War years; Part II. The Golden Era, 1866-93: 5. Scientific life and work; 6. Asaph Hall, the great refractor and the moons of Mars; 7. William Harkness and the transits of Venus of 1874 and 1882; 8. Simon Newcomb and his work; Part III. The Twentieth Century: 9. Observatory circle: a new site and administrative challenges for the twentieth century; 10. Space: the astronomy of position and its uses; 11. Time: a service for the world; 12. Navigation: from stars to satellites; Summary; Select bibliographical essay; Appendices; Index.

  8. Profile of central research and application laboratory of Aǧrı İbrahim Çeçen University

    NASA Astrophysics Data System (ADS)

    Türkoǧlu, Emir Alper; Kurt, Murat; Tabay, Dilruba

    2016-04-01

    Aǧrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keep it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.

  9. Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David

    2006-01-01

    Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

  10. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David

    2008-01-01

    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  11. Constructing the quantum Hall system on the Grassmannians Gr2(CN)

    NASA Astrophysics Data System (ADS)

    Ballı, F.; Behtash, A.; Kürkçüoğlu, S.; Ünal, G.

    2015-04-01

    In this talk, we give the formulation of Quantum Hall Effects (QHEs) on the complex Grassmann manifolds Gr2(CN). We set up the Landau problem in Gr2(CN), solve it using group theoretical techniques and provide the energy spectrum and the eigenstates in terms of the SU(N) Wigner D-functions for charged particles on Gr2(CN) under the influence of abelian and non-abelian background magnetic monopoles or a combination of these thereof. For the simplest case of Gr2(C4) we provide explicit constructions of the single and many- particle wavefunctions by introducing the Plucker coordinates and show by calculating the two-point correlation function that the lowest Landau level (LLL) at filling factor v = 1 forms an incompressible fluid. Finally, we heuristically identify a relation between the U(1) Hall effect on Gr2(C4) and the Hall effect on the odd sphere S5, which is yet to be investigated in detail, by appealing to the already known analogous relations between the Hall effects on CP3 and CP7 and those on the spheres S4 and S8, respectively. The talk is given by S. Kürkçüoğlu at the Group 30 meeting at Ghent University, Ghent, Belgium in July 2014 and based on the article by F.Ballı, A.Behtash, S. Kürkçüoğlu, G.Ünal [1].

  12. Kertha Gosa Court Hall of Klungkung Bali as an effort to conserve cultural heritage based on traditional culture

    NASA Astrophysics Data System (ADS)

    Kurnia Widianti, An-nisaa; Bambang Studyanto, Anung

    2018-03-01

    Kertha Gosa Klungkung Court Hall in Bali is one of the relics of the cultural heritage of The Kingdom of Bali which is a part of the Klungkung Castle. The existence of Kertha Gosa Architecture Hall as one of the relics of cultural heritage holds historical values, especially Bali traditional values. Indonesia is a country which has the rich culture heritage history, especially on historical buildings. This research seeks for a redenomination to solve problems being faced recently, namely the lack of activities to conserve a historic building as an asset of the country and source of knowledge in education. Listed in Law Number 11 of 2010 the conservation has some criteria, such as : 1.it has 50 years or more; represents the period of a certain style lat least 50 years; has special meaning for the history, science, education, religion, and culture or cultural value as a nation’s personality. The procedure to conduct this research uses a descriptive method by doing observation, interviews, taking some pictures, official documents or personal and other data that have a relevance to the research related to object to describing the condition of the building systematically, factual and actual. Consideration of the selection of objects is based on research by looking at the criteria of architectural, historical and symbolic criteria. Kertha Gosa Hall classic has been there for 395 years was built with zoning system called Sanga Mandala or similar to a chess board using natural materials such as eben wood, and padas rocks which make it authentic and possesses characteristic values of patriotism expression. During the kingdom of Kertha Gosa, Court Hall was like a court nowadays, but people still trust the constructive value of Hindu religion and culture as a product of thinking and live experience.

  13. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  14. Current-induced switching in a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  15. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  16. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    NASA Astrophysics Data System (ADS)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  17. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Soni, Vishal; Lee, Michael

    2017-05-01

    A successful demonstration of applying integrated strengthening using Hall-Petch strengthening (grains size effect) and precipitation strengthening is shown in the fcc based high entropy alloy (HEA) Al0.3CoCrFeNi, leading to quantitative determinations of the Hall-Petch coefficients for both hardness and tensile yield strength, aswell as the enhancements in the yield strength fromtwo distinct types of ordered precipitates, L12 and B2. An excellent combination of yield strength (~490MPa), ultimate tensile strength (~850MPa), and ductility (~45% elongation) was achieved by optimizing and coupling both strengtheningmechanisms, resulting from a refined grain size as well as both L12 and B2 ordered precipitates. This opens upmore » new avenues for the future development of HEAs, with the appropriate balance of properties required for engineering applications.« less

  18. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.

    PubMed

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-12-20

    Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO(3) bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in e(g) systems are also discussed.

  19. Oxidized Mn:Ge magnetic semiconductor: Observation of anomalous Hall effect and large magnetoresistance

    NASA Astrophysics Data System (ADS)

    Duc Dung, Dang; Choi, Jiyoun; Feng, Wuwei; Cao Khang, Nguyen; Cho, Sunglae

    2018-03-01

    We report on the structural and magneto-transport properties of the as-grown and oxidized Mn:Ge magnetic semiconductors. Based on X-ray diffraction and X-ray photoelectron spectroscopy results, the samples annealed at 650 and 700 °C became fully oxidized and the chemical binding energies of Mn was found to be Mn3O4. Thus, the system became Mn3O4 clusters embedded in Ge1-yOy. The as-grown sample showed positive linear Hall effect and negligible negative magnetoresistance (MR), which trend remained for the sample annealed up to 550 °C. Interestingly, for the samples annealed at above 650 °C, we observed the anomalous Hall effect around 45 K and the giant positive MR, which are respectively 59.2% and 78.5% at 7 kOe annealed at 650 °C and 700 °C.

  20. Anomalous Hall effect scaling in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Grigoryan, Vahram L.; Xiao, Jiang; Wang, Xuhui; Xia, Ke

    2017-10-01

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  1. Tuning charge transport in pentacene thin-film transistors using the strain-induced electron-phonon coupling modification

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan

    2015-03-01

    Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.

  2. 5. ADMINISTRATION BUILDING, RIGHT AND LEFT SIDES, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ADMINISTRATION BUILDING, RIGHT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  3. 6. ADMINISTRATION BUILDING WITH FLAG POLE, LOOKING SOUTH. NIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. ADMINISTRATION BUILDING WITH FLAG POLE, LOOKING SOUTH. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  4. 4. ADMINISTRATION BUILDING, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ADMINISTRATION BUILDING, FRONT AND RIGHT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  5. 1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PAINT AND OIL STORAGE SHED, FRONT, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL

  6. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  7. Antiferromagnetic and topological states in silicene: A mean field study

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui

    2015-08-01

    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).

  8. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  9. A Behavioral Weight Control Program for Residence Hall Students.

    ERIC Educational Resources Information Center

    Domke, Jane A.; And Others

    1981-01-01

    Compared a weight control treatment specifically tailored to the needs of residence hall students with a standardized behavioral procedure. Although posttreatment results indicated a very slight and nonsignificant advantage for the residence hall condition, this was not true at follow-up. Suggests the residence hall procedure may be overly…

  10. 78 FR 58338 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    .../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Crystal River City Hall, 123 NW U.S. Highway 19, Crystal River.../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Carbon Hill City Hall, 170 NW 2nd Avenue, Carbon Hill, AL 35549. City of Cordova City Hall, 74 Main Street, Cordova, AL 35550. City of Dora City Hall, 1485 Sharon...

  11. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  12. Facility Focus: Residence Halls.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes residence halls seeking to meet needs beyond traditional mass housing for the 18- to 22-year-old students: Whittemore Hall at the Tuck School of Business at Dartmouth College (for older students); Small Group Housing at Washington University (grouping students with common interests); and the renovation of the residence hall at Boston's…

  13. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  14. Quasiparticle interactions in fractional quantum Hall systems: Justification of different hierarchy schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojs, Arkadiusz; Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw,; Quinn, John J.

    2000-01-15

    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence {nu}=n(1+2pn){sup -1}, where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture. (c) 2000 The American Physical Society.

  15. Anti-commutative Gröbner-Shirshov basis of a free Lie algebra

    NASA Astrophysics Data System (ADS)

    Bokut, L. A.; Chen, Yuqun; Li, Yu

    2009-03-01

    One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).

  16. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  17. Reduced Spin Hall Effects from Magnetic Proximity.

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-26

    We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less

  18. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  19. Spontaneous Hall effects in the electron system at the SmTiO3/EuTiO3 interface

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-05-01

    Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ˜3.9 × 1014 cm-2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure, and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems.

  20. Thermally driven anomalous Hall effect transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.

    2018-04-01

    Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.

  1. Electronic Phenomena in Two-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Hart, Sean

    In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the nu = 2/3 fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the nu = 1integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.

  2. 78 FR 26682 - Culturally Significant Objects Imported for Exhibition Determinations: “Hall of Ancient Egypt”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Determinations: ``Hall of Ancient Egypt'' AGENCY: Department of State. ACTION: Notice, correction. SUMMARY: On... determinations made by the Department of State pertaining to the exhibition ``Hall of Ancient Egypt.'' The... additional objects to be included in the exhibition ``Hall of Ancient Egypt,'' imported from abroad for...

  3. Interior and Exterior Laser-Induced Fluorescence and Plasma Measurements within a Hall Thruster (Postprint)

    DTIC Science & Technology

    2002-02-01

    ionized xenon in the plume and interior portions of the acceleration channel of a Hall thruster plasma discharge operating at powers ranging from 250...performed in the interior of the Hall thruster with resonance fluorescence collection. Optical access to the interior of the Hall thruster is

  4. A New Definition in Atlanta: Q&A with Beverly Hall

    ERIC Educational Resources Information Center

    Crow, Tracy

    2010-01-01

    Beverly Hall has been superintendent of Atlanta Public Schools since 1999. Before coming to Atlanta, Hall was state district superintendent of Newark Public Schools, deputy chancellor for instruction of New York City Public Schools, superintendent of Community School District 27 in New York City, and a principal in Brooklyn. Hall chairs Harvard…

  5. 77 FR 21791 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Town Hall, 2 Renshaw Road, Darien, CT 06820. Town of Fairfield John J. Sullivan Independence Hall, 725 Old Post Road, Fairfield, CT 06824. Town of Greenwich Town Hall, 101 Field Point Road, Greenwich, CT... at: http://www.rampp-team.com/md.htm Town of Accident Town Hall, 104 South North Street, Accident, MD...

  6. Destruction of the Fractional Quantum Hall Effect by Disorder

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.

  7. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  8. Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Yoshikawa, A.; Tanaka, T.

    2017-12-01

    We investigate how the M-I coupling and boundary conditions affects the results of global simulations of the magnetosphere. More specifically, we examine the effects of ionospheric Hall polarization on magnetospheric convection and dynamics by using an MHD code developed by Tanaka et al. [2010]. This study is motivated by the recently proposed idea that the ionospheric convection is modified by the ionospheric polarization [Yoshikawa et al., 2013]. We perform simulations for the following pairs of Hall conductance and IMF-By; Hall conductance set by αH = 2, 3.5, 5, and uniform distribution (1.0 [S] everywhere), where RH is the ratio of Hall to Pedersen conductance, and IMF-By of positive, negative, and zero. The results are summarized as follows. (a) Large-scale structure: In the cases of uniform Hall conductance, the magnetosphere is completely symmetric under the zero IMF-By. In the cases of non-uniform Hall conductance, the magnetosphere shows asymmetries globally even under the zero IMF-By. Asymmetries become severe for larger αH. The results indicate that ionospheric Hall polarization is one of the important factors to determine the global structure. (b) Formation of NENL: The location becomes closer to the earth and timing becomes earlier for larger RH. The difference is considered to be related to the combined effects of field lines twisting due to ionospheric Hall polarization and M-I energy/current closures. (c) Near-earth convection: In the cases of non-uniform Hall conductance, an inflection structure is formed around premidnight sector on equatorial plane inside 10 RE. Considering that the region 2 FAC is not sufficiently generated in MHD models, the structure corresponds to a convection reversal often shown in the RCM. Previous studies regard the structure as the Harang Reversal in the magnetosphere. In the cases of uniform Hall conductance, by contrast, such structure is not formed, indicating that the Harang Reversal may not be formed without the effect of ionospheric Hall polarization. The above initial research strongly suggests that the ionospheric Hall polarization plays a significant role in the M-I system.

  9. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers, accepted after a rigorous peer review procedure. A group of about 90 outstanding scientists in the field reviewed and suggested revisions of the manuscripts to improve scientific presentation. As a result, we believe the entire volume has reached a high standard. The 19 topics covered are listed as follows: Theory Data analysis New technology and devices of XAFS Applications in Nano science and technology Applications in Life Science Applications in Chemistry Applications in Catalytic Science Applications in Surface and Interface Science Applications in Material Science Applications in Energy and Environmental Science Applications in Magnetic and Related Material Science Applications in Nuclear Science Applications in Disordered Systems Applications in Extreme Conditions Applications for Time-resolved experiments XMCD technology and its applications Advanced methods (e.g., new coherent sources and spectroscopic imaging techniques) XAFS combined with other experimental methods Other related studies We hope this volume will be a useful reference for the ongoing scientific activity in XAFS. We would also like to express our sincere appreciation to the sponsors for their generous support: Chinese Academy of Science, National Natural Science Foundation of China, China Center of Advanced Science and Technology World Laboratory, University of Science and Technology of China, National Synchrotron Radiation Laboratory, Institute of High Energy Physics Chinese Academy of Sciences, and our commercial sponsors (AREVA, Xi'an Action Power Electric Co., Ltd). Finally, we would like to acknowledge the entire local organizing staff (names are given below) and particularly the collaborators and members of the XAS group at the National Natural Science Foundation of China and Institute of High Energy Physics Chinese Academy of Sciences for their efforts to make the XAFS15 conference a success. Ziyu Wu Chair of the Conference and Proceedings Editor Hefei, P. R. China, 28 September 2012 Committees and Staff Chair of the Conference Ziyu Wu International Advisory Committee Adam Hitchcock, Canada Adriano Filipponi, Italy Alain Manceau, France Alexander Soldatov, Russia Andrea Di Cicco, Italy Britt Hedman, USA Bruce Bunker, USA Calogero R. Natoli, Italy Christopher T. Chantler, Australia Frank M. F. De Groot, Netherlands Hiroyuki Oyanagi, Japan Ingolf Lindau, USA J. Mustre de Leon, México James E Penner-Hahn, USA Joaquin Garcia Ruiz, Spain John Evans, UK John J. Rehr, USA Kiyotaka Asakura, Japan Majed Chergui, Switzerland Mark Newton, UK Shiqiang Wei, P. R. China Tsun-Kong Sham, Canada Ziyu Wu, P. R. China International Program Committee Antonio Bianconi, Italy Augusto Marcelli, Italy Emad Flear Aziz, Germany Jinghua Guo, USA Joly Yves, France Masaharu Nomura, Japan Maurizio Benfatto, Italy Pieter Glatzel, France Shiqiang Wei, China Tiandou Hu, China Toshihiko Yokoyama, Japan Way-Faung Pong, Taiwan Xinyi Zhang, China Yi Xie, China Yuying Huang, China Zhonghua Wu, China Ziyu Wu, China Local Organizing Committee Bo He Fengchun Hu Haifeng Zhao Jing Zhang Meijuan Yu Qin Yu Shuo Zhang Wangsheng Chu Wei He Wei Xu Wensheng Yan Xiaomei Gong Xing Chen Yang Zou Yi Xia Zheng Jiang Zhi Xie Zhihu Sun Zhiyun Pan Additional Staff Chengxun Liu

  10. Chills

    MedlinePlus

    ... Accessed February 20, 2017. Hall JE. Body temperature regulation and fever. In: Hall JE, ed. Guyton and Hall Textbook of Medical Physiology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 74. ...

  11. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  12. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  13. A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)

    DTIC Science & Technology

    2007-08-24

    Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and

  14. Plume Characteristics of the BHT-HD-600 Hall Thruster (Preprint)

    DTIC Science & Technology

    2006-07-01

    Hall thruster on spacecraft, a number of plume properties have been measured. These include current density using a Faraday probe, ion energy distribution using a retarding potential analyzer, and ion species fractions using an E x B probe. The BHT-HD-600 Hall thruster is a nominally 600 W xenon Hall thruster developed by Busek Co. Inc. for the U.S. Air Force Research Laboratory. Plume characterization of Hall thrusters is required to fully understand the impacts of thruster operation on spacecraft. Much of these plume data are

  15. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al.

  16. Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Son, Dam

    We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.

  17. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    NASA Astrophysics Data System (ADS)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  18. Graphene based d-character Dirac Systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang; Zhang, S. B.; Duan, Wenhui

    From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.

  19. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  20. An exploratory cluster randomised trial of a university halls of residence based social norms marketing campaign to reduce alcohol consumption among 1st year students.

    PubMed

    Moore, Graham F; Williams, Annie; Moore, Laurence; Murphy, Simon

    2013-04-18

    This exploratory trial examines the feasibility of implementing a social norms marketing campaign to reduce student drinking in universities in Wales, and evaluating it using cluster randomised trial methodology. Fifty residence halls in 4 universities in Wales were randomly assigned to intervention or control arms. Web and paper surveys were distributed to students within these halls (n = 3800), assessing exposure/contamination, recall of and evaluative responses to intervention messages, perceived drinking norms and personal drinking behaviour. Measures included the Drinking Norms Rating Form, the Daily Drinking Questionnaire and AUDIT-C. A response rate of 15% (n = 554) was achieved, varying substantially between sites. Intervention posters were seen by 80% and 43% of students in intervention and control halls respectively, with most remaining materials seen by a minority in both groups. Intervention messages were rated as credible and relevant by little more than half of students, though fewer felt they would influence their behaviour, with lighter drinkers more likely to perceive messages as credible. No differences in perceived norms were observed between intervention and control groups. Students reporting having seen intervention materials reported lower descriptive and injunctive norms than those who did not. Attention is needed to enhancing exposure, credibility and perceived relevance of intervention messages, particularly among heavier drinkers, before definitive evaluation can be recommended. A definitive evaluation would need to consider how it would achieve sufficient response rates, whilst hall-level cluster randomisation appears subject to a significant degree of contamination. ISRCTN: ISRCTN48556384.

  1. 2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PAINT AND OIL STORAGE SHED, FRONT AND RIGHT SIDES, LOOKING SOUTH. - NIKE Missile Base SL-40, Paint & Oil Storage Shed, North end of base, northwest of Mess Hall & south of Basketball Court, Hecker, Monroe County, IL

  2. Hall viscosity and electromagnetic response of electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni

    The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.

  3. 75 FR 58411 - Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...] Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010 AGENCY: Centers for... establish a Physician Compare Web site by January 1, 2011. This notice announces a Town Hall meeting to discuss the Physician Compare Web site. The purpose of this Town Hall meeting is to solicit input from...

  4. A Gift for Reading Hall No. 1

    ERIC Educational Resources Information Center

    MacWilliams, Bryon

    2009-01-01

    In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…

  5. Encouraging Electricity Savings in a University Residential Hall through a Combination of Feedback, Visual Prompts, and Incentives

    ERIC Educational Resources Information Center

    Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…

  6. Realizing the Educational Potential of Residence Halls. Jossey-Bass Higher and Adult Education Series.

    ERIC Educational Resources Information Center

    Schroeder, Charles C.; Mable, Phyllis

    This book addresses the need for integrating students' formal academic experiences with their informal out-of-class life in their residence halls. Organized in three parts, Part 1 focuses on the role of residence halls in educating students. Part 2 describes a variety of initiatives for promoting student learning in college residence halls. Part 3…

  7. Exposure and materiality of the secondary room and its impact on the impulse response of coupled-volume concert halls

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty

    2005-06-01

    How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.

  8. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  9. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  10. Magnetic field deformation due to electron drift in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  11. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  12. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  13. Turbulence Measurements in a Tropical Zoo Hall

    NASA Astrophysics Data System (ADS)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  14. Roles of nonlocal conductivity on spin Hall angle measurement

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Zhang, Shufeng

    2017-10-01

    Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most important material parameters for spintronics physics and device application. A long-standing controversy is that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport coefficients from experimental data.

  15. Interior detail of dispatch boards in main hall, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of dispatch boards in main hall, facing west - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  16. Improvement of the low frequency oscillation model for Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  17. Vector-mean-field theory of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Rejaei, B.; Beenakker, C. W. J.

    1992-12-01

    A mean-field theory of the fractional quantum Hall effect is formulated based on the adiabatic principle of Greiter and Wilczek. The theory is tested on known bulk properties (excitation gap, fractional charge, and statistics), and then applied to a confined region in a two-dimensional electron gas (quantum dot). For a small number N of electrons in the dot, the exact ground-state energy has cusps at the same angular momentum values as the mean-field theory. For large N, Wen's algebraic decay of the probability for resonant tunneling through the dot is reproduced, albeit with a different exponent.

  18. Bile Cast Nephropathy Caused by Obstructive Cholestasis.

    PubMed

    Aniort, Julien; Poyet, Anaïs; Kemeny, Jean-Louis; Philipponnet, Carole; Heng, Anne-Elisabeth

    2017-01-01

    Acute kidney injury (AKI) is a major complication in patients with liver disease. Although hepatorenal syndrome is frequently involved, bile cast nephropathy, characterized by tubular bile cast formation, has been scarcely described in the setting of severe liver failure. Few renal histology studies are available in these patients. We describe a case of bile cast nephropathy in a patient with obstructive cholestasis caused by stones in the common bile duct. The kidney biopsy confirmed this diagnosis, with several green casts in tubular lumens, tubular injury, and bilirubin composition of the tubular casts with Hall stain. The patient had no confounding cause of kidney failure, and complete kidney recovery followed removal of the bile duct obstruction. This case shows that severe cholestasis is sufficient to cause AKI, and that AKI can be reversible after treatment of the biliary obstruction. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Low-frequency oscillations in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning

    2015-05-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).

  20. Scripps museum receives NSF grant

    NASA Astrophysics Data System (ADS)

    Scripps Institution of Oceanography has been awarded a $500,000 grant from the National Science Foundation for a 37,000-square-foot museum exhibition on ocean sciences entitled “Exploring the Blue Planet.” The exhibition will be installed in the Scripps Hall of Oceanography of the new Stephen Birch Aquarium-Museum. The facility is under construction at the University of California, San Diego, and is scheduled to open in fall 1992.NSF is providing approximately half of the funds required for “Exploring the Blue Planet,” which is designed to help visitors explore the many fields of oceanography. “This NSF grant will fund interactive exhibits and changing displays featuring the latest Scripps research that will allow children and adults to experience science as an approachable, creative process that can be used to understand the changing world,” said Luther Williams, NSF Assistant Director for Education and Human Resources.

  1. Magical thinking and decision-making strategies among late adolescent regular gamblers: A mediation model.

    PubMed

    Passanisi, Alessia; Craparo, Giuseppe; Pace, Ugo

    2017-08-01

    In the present study, the relation between the tendency to seek supernatural connections between external events and one's own thoughts, words, and actions and gambling among late adolescents has been studied. Psychologists have called this tendency magical thinking. The principal aim of the present study was to test the fit of an explanatory model of risk that starts from magical thinking and passes through maladaptive decision-making strategies, culminating with pathological gambling. Two hundred twenty-two Italian late adolescents, regularly attending bingo halls, aged between 19 and 21 years, completed measures on magical thinking, decision-making strategies, and gambling. Results highlight that young adults adopting dysfunctional modes of thought (i.e. magical thinking) tend to engage with maladaptive styles of decision-making that predispose them to gamble. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. View of north front and west sides of hall, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north front and west sides of hall, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  3. "Nostalgia for What Cannot Be": An Interpretive and Social Biography of Stuart Hall's Early Years in Jamaica and England, 1932-1959

    ERIC Educational Resources Information Center

    Henry, Annette

    2015-01-01

    Much has been written about Stuart Hall's intellectual and theoretical contributions especially after the mid-1960s. This interpretive and social biography places Stuart Hall's life from 1932 to 1959 in a socio-historical context, beginning with his childhood in Jamaica and his early years in England. I draw on Hall's own biographical reflections…

  4. Military Space Doctrine: the Great Frontier.

    DTIC Science & Technology

    1981-04-03

    Hall 0745 Conference Registration Fairchild Hall H-1 (Continental breakfast served in conference area included in registration fee 0810 Movie : (optional...roundtable sign-ups 1200 Cadet Lunch Formation Review Eagle and Fledglings 1220 Lunch with Cadet Wing Mitchell Hall (cost collected at registration...Continental breakfast at conference area (included in the registration fee) 0755 Movie : (optional) Space - The New Ocean Fairchild Hall H-i 0800 Opening

  5. Perceived Effectiveness of Hall Director Leadership Style on the Satisfaction of Resident Assistants in Mississippi

    ERIC Educational Resources Information Center

    Morris, Rheo Joelyn Avorice

    2009-01-01

    The purpose of this study was to ascertain which leadership style correlates most with RA satisfaction in residence halls at three public universities in Mississippi. When satisfied, RAs will be more efficient in their roles and this will transfer to students residing in the halls. As a result more students in the residence halls will become more…

  6. 122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE HALL (LEE NELSON ON CORNER LEANING OVER) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  7. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  8. Detail of main hall porch on east elevation; camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of main hall porch on east elevation; camera facing west. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA

  9. Interior detail of platform in main hall, with desk, flag, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of platform in main hall, with desk, flag, and banners, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  10. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  11. Remote Diagnostic Measurements of Hall Thruster Plumes

    DTIC Science & Technology

    2009-08-14

    This paper describes measurements of Hall thruster plumes that characterize ion energy distributions and charge state fractions using remotely...charge state. Next, energy and charge state measurements are described from testing of a 200 W Hall thruster at AFIT. Measurements showed variation in...position. Finally, ExB probe charge state measurements are presented from a 6-kW laboratory Hall thruster operated at low discharge voltage levels at AFRL

  12. Performance Characteristics of a 5 kW Laboratory Hall Thruster

    DTIC Science & Technology

    1996-07-01

    Characteristics of a 5 kW Laboratory Hall Thruster James M. Haas’, Frank S. Gulczinski III%, and Alec D. Gallimoret Plasmadynamics and Electric Propulsion...the information learned from the study of this thruster applicable to the understanding of its commercial counterparts. INTRODUCTION Hall thrusters are...few in number at this time; and those that do exist are intended primarily Current generation Hall thruster research has for flight qualification

  13. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  14. General response formula and application to topological insulator in quantum open system.

    PubMed

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  15. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  16. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  17. The effects of instructions, incentive, and feedback on a community problem: dormitory noise.

    PubMed

    Meyers, A W; Artz, L M; Craighead, W E

    A reinforcement system utilizing instructions, modelling, feedback, and group reinforcement was employed in an attempt to reduce disruptive noise on three university residence halls. A fourth hall received the same treatment program without the reinforcement component. Noise scores were determined by recording the number of discrete noise occurrences over a criterion decibel level. On all four residential floors, noise scores during treatment conditions were lower than initial and final baseline levels. Additionally, periods of noise reduction corresponded to the changing criterion multiple-baseline and reversal designs utilized. Pre- and posttreatment questionnaire responses from the three reinforcement floors paralleled changes in objective noise data. At posttreatment, residents reported less noise disturbance of study and sleep and more control over the noise situation and floor problems in general. These results indicated that a comprehensive behavior-modification treatment package was effective in reducing disruptive noise in university residence halls. Difficulties in data collection and anomalies in the data are discussed. Future directions for field-based behavior-modification research are outlined.

  18. Contactless measurement of alternating current conductance in quantum Hall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less

  19. Magnetotransport in Artificial Kagome Spin Ice

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    2017-12-01

    Magnetic nanoarrays with special geometries exhibit nontrivial collective behaviors similar to those observed in spin-ice materials. Here, we present a circuit model to describe the complex magnetotransport phenomena in artificial kagome spin ice. In this picture, the system can be viewed as a resistor network driven by voltage sources that are located at vertices of the honeycomb array. The differential voltages across different terminals of these sources are related to the ice rules that govern the local magnetization ordering. The circuit model relates the transverse Hall voltage of kagome ice to the underlying spin correlations. Treating the magnetic nanoarray as metamaterials, we present a mesoscopic constitutive equation relating the Hall resistance to magnetization components of the system. We further show that the Hall signal is significantly enhanced when the kagome ice undergoes a magnetic-charge-ordering transition. Our analysis can be readily generalized to other lattice geometries, providing a quantitative method for the design of magnetoresistance devices based on artificial spin ice.

  20. Spatially resolved Hall effect measurement in a single semiconductor nanowire.

    PubMed

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M; Monemar, Bo; Samuelson, Lars

    2012-11-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  1. Comparing Feedback Methods after Testing

    ERIC Educational Resources Information Center

    Forster, Jerald R.

    1969-01-01

    Based on the author's doctoral dissertation, University of Minnesota. Requestions for reprints should be sent to: Jerald Forster, Department of Educational Psychology, 318 Miller Hall, Univ. of Wash., Seattle, Washington 98105.

  2. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.

  3. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  4. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin

    2017-10-01

    Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.

  5. Comment on 'Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source' [J. Appl. Phys. 102, 123305 (2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].

  6. Geometry of quantum Hall states: Gravitational anomaly and transport coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Tankut, E-mail: tcan@scgp.stonybrook.edu; Laskin, Michael; Wiegmann, Paul B.

    2015-11-15

    We show that universal transport coefficients of the fractional quantum Hall effect (FQHE) can be understood as a response to variations of spatial geometry. Some transport properties are essentially governed by the gravitational anomaly. We develop a general method to compute correlation functions of FQH states in a curved space, where local transformation properties of these states are examined through local geometric variations. We introduce the notion of a generating functional and relate it to geometric invariant functionals recently studied in geometry. We develop two complementary methods to study the geometry of the FQHE. One method is based on iteratingmore » a Ward identity, while the other is based on a field theoretical formulation of the FQHE through a path integral formalism.« less

  7. Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements

    PubMed Central

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043

  8. Characterization of SiO{sub 2}/SiN{sub x} gate insulators for graphene based nanoelectromechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tóvári, E.; Csontos, M., E-mail: csontos@dept.phy.bme.hu; Kriváchy, T.

    2014-09-22

    The structural and magnetotransport characterization of graphene nanodevices exfoliated onto Si/SiO{sub 2}/SiN{sub x} heterostructures are presented. Improved visibility of the deposited flakes is achieved by optimal tuning of the dielectric film thicknesses. The conductance of single layer graphene Hall-bar nanostructures utilizing SiO{sub 2}/SiN{sub x} gate dielectrics were characterized in the quantum Hall regime. Our results highlight that, while exhibiting better mechanical and chemical stability, the effect of non-stoichiometric SiN{sub x} on the charge carrier mobility of graphene is comparable to that of SiO{sub 2}, demonstrating the merits of SiN{sub x} as an ideal material platform for graphene based nanoelectromechanical applications.

  9. 3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, Photo from 'West Shore' VILLIARD HALL, 1886, DEADY HALL, 1876. - University of Oregon, Deady Hall, University of Oregon Campus, Eugene, Lane County, OR

  10. 77 FR 18837 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall, 5047 Union...

  11. Contextual view of ILWU Hall, facing northwest with commercial port ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing northwest with commercial port buildings visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  12. Contextual view of ILWU Hall, facing southsouthwest, with ocean bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing south-southwest, with ocean bank visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  13. Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinsman, Colin; Li, Gang; Asaba, Tomoya

    2016-06-27

    The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less

  14. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  15. Magnetometry of micro-magnets with electrostatically defined Hall bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large currentmore » density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.« less

  16. New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Marcos, Jordi; Massana, Valentí

    ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.

  17. a Permanent Magnet Hall Thruster for Satellite Orbit Maneuvering with Low Power

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    Plasma thrusters are known to have some advantages like high specific impulse. Electric propulsion is already recognized as a successful technology for long duration space missions. It has been used as primary propulsion system on earth-moon orbit trnsfer missions, comets and asteroids exploration and on commercially geosyncronous satellite attitude control systems. Closed Drift Plasma Thrusters, also called Hall Thrusters or SPT (Stationary Plasma Thruster) was conceived inthe USSR and, since then, they have been developed in several countries such as France, USA, Japan and Brazil. In this work, introductory remarks are made with focus on the most significant contributions of the electric propulsion to the progress of space missions and its future role on the brazillian space program. The main features of an inedit Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia is presented. The idea of using an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is a very important improvement, because it allows the possibility of developing a Hall Thruster with electric power consumption low enough to be used in small and medium size satellites. The new Halĺplasma source characterization is presented with plasma density, temperature and potential space profiles. Ion temperature mesurements based on Doppler broadening of spectral lines and ion energy measurements of the ejected plasma plume are also shown. Based on the mesured parameters of the accelerated plasma we constructed a merit figure for the PMHT. We also perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN to 500 mN thrust range. In order to perform these caculations, integration techniques of spacecraft trajectory were used. The main simulation parameters were: orbit raising time, propellant mass, total satellite mass, thrust, specific impulse and exaust velocity. We conclude comparing our results with results obtained in Hall Thrusters whose magnetic fields are produced by eletromagnets.

  18. Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl

    NASA Astrophysics Data System (ADS)

    Shi, Wujun; Muechler, Lukas; Manna, Kaustuv; Zhang, Yang; Koepernik, Klaus; Car, Roberto; van den Brink, Jeroen; Felser, Claudia; Sun, Yan

    2018-02-01

    We predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl , a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over 650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points, which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from antiferromagnets Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the noncollinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks spin-rotation symmetry, the Weyl nodes are stable without SOC. Moreover, because of the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to 75 % of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl points, large anomalous Hall effect, and angle despite a vanishing net magnetic moment.

  19. An exploratory cluster randomised trial of a university halls of residence based social norms marketing campaign to reduce alcohol consumption among 1st year students

    PubMed Central

    2013-01-01

    Aims This exploratory trial examines the feasibility of implementing a social norms marketing campaign to reduce student drinking in universities in Wales, and evaluating it using cluster randomised trial methodology. Methods Fifty residence halls in 4 universities in Wales were randomly assigned to intervention or control arms. Web and paper surveys were distributed to students within these halls (n = 3800), assessing exposure/contamination, recall of and evaluative responses to intervention messages, perceived drinking norms and personal drinking behaviour. Measures included the Drinking Norms Rating Form, the Daily Drinking Questionnaire and AUDIT-C. Results A response rate of 15% (n = 554) was achieved, varying substantially between sites. Intervention posters were seen by 80% and 43% of students in intervention and control halls respectively, with most remaining materials seen by a minority in both groups. Intervention messages were rated as credible and relevant by little more than half of students, though fewer felt they would influence their behaviour, with lighter drinkers more likely to perceive messages as credible. No differences in perceived norms were observed between intervention and control groups. Students reporting having seen intervention materials reported lower descriptive and injunctive norms than those who did not. Conclusions Attention is needed to enhancing exposure, credibility and perceived relevance of intervention messages, particularly among heavier drinkers, before definitive evaluation can be recommended. A definitive evaluation would need to consider how it would achieve sufficient response rates, whilst hall-level cluster randomisation appears subject to a significant degree of contamination. Trial registration ISRCTN: ISRCTN48556384 PMID:23594918

  20. 78 FR 29762 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ..., Palmetto, GA 30268. City of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall...

  1. 71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE DETECTOR), ARCHWAY TO STAIR HALL 100, LOOKING UP, DETAIL OF ARCHWAY SOFFIT. - Octagon House, 1799 (1741) New York Avenue, Northwest, Washington, District of Columbia, DC

  2. Contextual view of ILWU Hall, facing east, with the city ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing east, with the city of Port Hueneme visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  3. Performance of an 8 kW Hall Thruster

    DTIC Science & Technology

    2000-01-12

    For the purpose of either orbit raising and/or repositioning the Hall thruster must be capable of delivering sufficient thrust to minimize transfer...time. This coupled with the increasing on-board electric power capacity of military and commercial satellites, requires a high power Hall thruster that...development of a novel, high power Hall thruster , capable of efficient operation over a broad range of Isp and thrust. We call such a thruster the bi

  4. Faraday Probe Analysis, Part 2: Evaluation of Facility Effects on Ion Migration in a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2010-02-24

    A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.

  5. Performance Potential of Plasma Thrusters: Arcjet and Hall Thruster Modeling

    DTIC Science & Technology

    1993-09-17

    FUNDING NUMBERS Performance Potential of Plasma Thrusters: \\ Arcjet and Hall Thruster Modeling FQ 8671-9300908 S ,,G-AFOSR-91-0256 6. AUTHOR(S) Manuel...models for the internal physics and the performance of hydrogen arcjets and Hall thrusters , respectively. These are thought to represent the state of...work. 93-24268 14. SUBJECT TERMS IS. NUMBER OF PAGES Electric Propulsion, Arcjets, Hall Thrusters 15 16. PRICE COOE 17. SECURITY CLASSIFICATION I18

  6. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Preprint)

    DTIC Science & Technology

    2007-06-05

    From - To) 05-06-2007 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements (Preprint) Taylor S. Matlock∗ Jackson...dimensional estimate of the plume electron temperature using a published xenon collisional radiative model. I. Introduction The Hall thruster is a high

  7. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    DTIC Science & Technology

    2014-03-06

    Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse

  8. Final analysis of proton form factor ratio data at Q 2 = 4.0, 4.8, and 5.6 GeV 2

    DOE PAGES

    Puckett, A. J. R.; Brash, E. J.; Gayou, O.; ...

    2012-04-11

    Recently published measurements of the proton electromagnetic form factor ratio R = μ p G E p/G M p at momentum transfers Q 2 up to 8.5 GeV 2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q 2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysismore » underestimated the background in the selection of elastic events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.« less

  9. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  10. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    NASA Astrophysics Data System (ADS)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  11. G. Stanley Hall and The Journal of Genetic Psychology: A Note.

    PubMed

    Hogan, John D

    2016-01-01

    The Journal of Genetic Psychology (originally called The Pedagogical Seminary) has a complicated history. Known primarily as a journal of development psychology, it was originally intended to be a journal of higher education. In addition, G. Stanley Hall created it, at least in part, to curry favor with Jonas Clark, the benefactor of Clark University. The journal had a cumbersome start, with irregular issues for most of its first decade. Hall was a hands-on editor, often contributing articles and reviews as well as the texts of many of his speeches. A substantial number of additional articles were written by Clark University faculty and fellows where Hall was president. After Hall.s death, the editor became Carl Murchison who eventually left Clark University with the journal and continued to publish it privately until his death. Through the years, the journal has been the source for many classic articles in developmental psychology.

  12. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  13. 68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  14. Interior view, groundfloor dining hall extending across the rotunda extension ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, ground-floor dining hall extending across the rotunda extension from it's northern exterior wall to its southern exterior wall, from the north. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  15. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  16. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    PubMed

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  17. Coherence length saturation at the low temperature limit in two-dimensional hole gas

    NASA Astrophysics Data System (ADS)

    Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi

    2018-05-01

    The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.

  18. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Postprint)

    DTIC Science & Technology

    2007-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high

  19. First Firing of a 100-kW Nested-Channel Hall Thruster

    DTIC Science & Technology

    2013-09-01

    Technical Paper 3. DATES COVERED (From - To) September 2013- December 2013 4. TITLE AND SUBTITLE First Firing of a 100-kW Nested-Channel Hall Thruster 5a...STATEMENT A: Approved for public release; distribution unlimited. 1 First Firing of a 100-kW Nested-channel Hall Thruster IEPC-2013-394...converting electrical power to directed kinetic power I. Introduction ESTING the channels of Hall thrusters has proven to be a viable method to increase

  20. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.

    PubMed

    Islam, S K Firoz

    2018-07-11

    The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.

  1. Extraction of carrier mobility and interface trap density in InGaAs metal oxide semiconductor structures using gated Hall method

    NASA Astrophysics Data System (ADS)

    Chidambaram, Thenappan

    III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies <1MHz, cannot distinguish conducting and trapped carriers. In addition, the CV methods have to deal with high dispersion in the accumulation region that makes it a difficult task to measure the true oxide capacitance, Cox value. Another implication of these properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for D it and mobility. Here we employ gated Hall method to quantify the D it spectrum at the high-K oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values.

  2. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  3. Detection of fractional solitons in quantum spin Hall systems

    NASA Astrophysics Data System (ADS)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  4. Dependence of defect introduction on temperature and resistivity and some long-term annealing effects

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.

    1971-01-01

    The effort reported here represents data of lithium properties in bulk-silicon samples before and after irradiation for analytical information required to characterize the interactions of lithium with radiation-induced defects in silicon. A model of the damage and recovery mechanisms in irradiated-lithium-containing solar cells is developed based on making measurements of the Hall coefficient and resistivity of samples irradiated by 1-MeV electrons. Experiments on bulk samples included Hall coefficient and resistivity measurements taken as a function of: (1) bombardment temperature, (2) resistivity, (3) fluence, (4) oxygen concentration, and (5) annealing time at temperatures from 300 to 373 K.

  5. Interior and Exterior Laser-Induced Fluorescence and Plasma Potential Measurements on a Laboratory Hall Thruster (Postprint)

    DTIC Science & Technology

    1999-06-01

    Hall thruster is provided by a 1 mm axial slot in the insulator outer wall. Axial ion velocity profiles for four discharge voltages (100 V, 160 V, 200 V, 250 V) are measured as are radial velocity profiles in the near field plume. Internal neutral xenon axial velocity profiles are also measured at these conditions. For comparison, the plume plasma potential profile is measured with an emissive probe. These probe based potential measurements extend from 50 mm outside the plume to the near anode region for all but the highest discharge voltage condition. For each condition,

  6. The temperature dependence of the conductivity peak values in the single and the double quantum well nanostructures n-InGaAs/GaAs after IR-illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapov, Yu. G.; Gudina, S. V.; Klepikova, A. S., E-mail: klepikova@imp.uran.ru

    2017-02-15

    The dependences of the longitudinal and Hall resistances on a magnetic field in n-InGaAs/GaAs heterostructures with a single and double quantum wells after infrared illumination are measured in the range of magnetic fields Ð’ = 0–16 T and temperatures T = 0.05–4.2 K. Analysis of the experimental results was carried out on a base of two-parameter scaling hypothesis for the integer quantum Hall effect. The value of the second (irrelevant) critical exponent of the theory of two-parameter scaling was estimated.

  7. Photonic spin Hall effect enabled refractive index sensor using weak measurements.

    PubMed

    Zhou, Xinxing; Sheng, Lijuan; Ling, Xiaohui

    2018-01-19

    In this work, we theoretically propose an optical biosensor (consists of a BK7 glass, a metal film, and a graphene sheet) based on photonic spin Hall effect (SHE). We establish a quantitative relationship between the spin-dependent shift in photonic SHE and the refractive index of sensing medium. It is found that, by considering the surface plasmon resonance effect, the refractive index variations owing to the adsorption of biomolecules in sensing medium can effectively change the spin-dependent displacements. Remarkably, using the weak measurement method, this tiny spin-dependent shifts can be detected with a desirable accuracy so that the corresponding biomolecules concentration can be determined.

  8. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  9. Spin torque efficiency of Ta, W, and Pt in metallic bilayers evaluated by harmonic Hall and spin Hall magnetoresistance measurements

    NASA Astrophysics Data System (ADS)

    Lau, Yong-Chang; Hayashi, Masamitsu

    2017-08-01

    We investigate the efficiency of current-induced torque, i.e., the spin torque efficiency, in in-plane magnetized heavy metal/CoFeB/MgO heterostructures (heavy metals = Pt, W, and Ta) using the harmonic Hall technique and the spin Hall magnetoresistance. We find that the amplitude of the external magnetic field has a strong influence on the spin torque efficiency evaluation by the harmonic Hall measurements. This can be corrected by measuring the corresponding Hall resistance susceptibility. The sign and magnitude of the resulting Slonczewski-like spin torque efficiencies are in agreement with previous reports and the measurements utilizing the spin Hall magnetoresistance, except for the Pt underlayer films. The origin of the discrepancy for the Pt underlayer films is unclear. The field like torque efficiencies, upon subtracting the Oersted field contribution, are quite low or negligible. This is in significant contrast to what has been found for the field like torque in heterostructures with perpendicular magnetization. These results suggest that a more advanced model is required in order to describe accurately spin transport and momentum transfer at metallic interfaces.

  10. The role of the men's hall in the development of the Anglo-Saxon superego.

    PubMed

    Earl, J W

    1983-05-01

    This paper is a historical study of ritual space--a bit of psychoanalytic anthropology applied to a particular case, the evolution of the men's hall among the early Anglo-Saxons. I focus particularly on the ritual functions of poetry in the hall, the same poetry which is our major evidence regarding the hall, especially the epic Beowulf. I define the hall as a cultural institution, and redefine the native poetic tradition in relation to the hall's varied ritual life, with which the poetry is so occupied. Though my argument is focused on the hall, it includes a framework of theoretical concerns. Early Anglo-Saxon culture is of anthropological interest chiefly because of its rapid and dramatic emergence from Germanic tribal prehistory into a leading role in the civilization of Christian Europe. The conquest of Britain by the Anglo-Saxons in the fifth and sixth centuries, and their conversion soon afterward, is a case history of the transformations of a tribal society suddenly introduced to the special forces of civilization and the higher religions that control them. The Anglo-Saxons are fascinating in this regard because of the fortuitous developments that prepared for this transformation and made it so successful.

  11. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  12. Concert halls with strong and lateral sound increase the emotional impact of orchestra music.

    PubMed

    Pätynen, Jukka; Lokki, Tapio

    2016-03-01

    An audience's auditory experience during a thrilling and emotive live symphony concert is an intertwined combination of the music and the acoustic response of the concert hall. Music in itself is known to elicit emotional pleasure, and at best, listening to music may evoke concrete psychophysiological responses. Certain concert halls have gained a reputation for superior acoustics, but despite the continuous research by a multitude of objective and subjective studies on room acoustics, the fundamental reason for the appreciation of some concert halls remains elusive. This study demonstrates that room acoustic effects contribute to the overall emotional experience of a musical performance. In two listening tests, the subjects listen to identical orchestra performances rendered in the acoustics of several concert halls. The emotional excitation during listening is measured in the first experiment, and in the second test, the subjects assess the experienced subjective impact by paired comparisons. The results showed that the sound of some traditional rectangular halls provides greater psychophysiological responses and subjective impact. These findings provide a quintessential explanation for these halls' success and reveal the overall significance of room acoustics for emotional experience in music performance.

  13. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  14. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  15. 12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ENTRY, LOOKING NORTH, WITH HALL LEADING TO GARAGE TO RIGHT OF STAIRWAY. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  16. 76 FR 53021 - Public Hearing and Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to conditions of the... Baltimore. Project Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md... Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to...

  17. 24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH HALL LINEN CLOSETS VISIBLE IN BACKGROUND, AND PARTIALLY OPEN DOOR TO CLOSET. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  18. KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

  19. Comparisons and Evaluation of Hall Thruster Models

    DTIC Science & Technology

    2002-03-20

    COVERED (FROM - TO) 20-04-2001 to 20-04-2002 4. TITLE AND SUBTITLE comparisons and Evaluation of Hall Thruster Models Unclassified 5a. CONTRACT NUMBER...TITLE AND SUBTITLE Comparisons and Evaluation of Hall Thruster Models 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S...evaluation of Hall thruster models G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J.-P. Boeuf CPAT, Bâtiment 3R2, Université Paul Sabatier 118 Route

  20. Observations of Hall Reconnection Physics Far Downstream of the X Line.

    PubMed

    Mistry, R; Eastwood, J P; Haggerty, C C; Shay, M A; Phan, T D; Hietala, H; Cassak, P A

    2016-10-28

    Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.

Top