Sample records for halley comet

  1. Halley's Comet.

    ERIC Educational Resources Information Center

    Carey, Tom

    1985-01-01

    Provides tips for viewing Comet Halley in the Northeast including best viewing dates from November 1985-January 1986. Discusses going south to view the comet in March-April 1986 and gives specific information about accommodations for the Halley Rally in Everglades National Park, southernmost site in the contiguous 48 states. (JHZ)

  2. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.

  3. Thermal modeling of Halley's comet

    USGS Publications Warehouse

    Weissman, P.R.; Kieffer, H.H.

    1984-01-01

    The comet thermal model of Weissman and Kieffer is used to calculate gas production rates and other parameters for the 1986 perihelion passage of Halley's Comet. Gas production estimates are very close to revised pre-perihelion estimates by Newburn based on 1910 observations of Halley; the increase in observed gas production post-perihelion may be explained by a variety of factors. The energy contribution from multiply scattered sunlight and thermal emission by coma dust increases the total energy reaching the Halley nucleus at perihelion by a factor of 2.4. The high obliquity of the Halley nucleus found by Sekanina and Larson may help to explain the asymmetry in Halley's gas production rates around perihelion. ?? 1984.

  4. The Comet Halley archive: Summary volume

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek (Editor); Fry, Lori (Editor)

    1991-01-01

    The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.

  5. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    ERIC Educational Resources Information Center

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  6. The natural history of Halley's comet

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1981-07-01

    The 1986 apparition of Halley's comet will be the subject of numerous space probes, planned to determine the chemical nature and physical structure of comet nuclei, atmospheres, and ionospheres, as well as comet tails. The problems of cometary origin remain inconclusive, with theories ranging from a purely interstellar origin to their being ejecta from the Galilean satellites of Jupiter. Comets can be grouped into one of two classes, depending on their periodicity, and statistical mechanics of the entire Jovian family of comets can be examined under the equilibrium hypothesis. Comet anatomy estimations have been determined, and there is speculation that comet chemistry may have been a factor in the origin of life on earth. Halley's comet was first noted using Newton's dynamical methods, and Brady (1972) attempted to use the comet as a gravitational probe in search of a trans-Plutonian planet. Halley's orbit is calculated by combination of ancient observations and modern scientific methods.

  7. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. It is shown that a large science return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds of almost 60 km/sec that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. In one scenario two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a three-year period. One spacecraft would intercept Halley before its perihelion passage in December 1985 and then go on to comet Borrelly witn an encounter in January 1988. The other spacecraft would be targeted for a post-perihelion Halley intercept in March 1986 before proceeding towards an encounter with comet Tempel-2 in September 1988. The flyby speeds for the Borrelly and Tempel-2 intercepts are 21 and 13 km/sec, respectively.

  8. The Archive of the Amateur Observation Network of the International Halley Watch. Volume 2; Comet Halley

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J. (Editor)

    1996-01-01

    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Halley's Comet (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Sun-Earth Explorer 3 (ISEE-3) spacecraft, subsequently renamed the International Cometary Explorer (ICE), toward Comet Giacobini- Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience).

  9. Comet Halley: The Curtis Schmidts-Isla de Pascua observations

    NASA Technical Reports Server (NTRS)

    Miller, Freeman D.; Liller, William

    1986-01-01

    Halley's comet plasma tail disturbances and attendant tail phenomena were observed. Nearly simultaneous exposures with two telescopes serve to correlate information obtained with the two instruments. Photographs of 14 pre-Halley comets taken on 54 nights were examined with a view to cross-interpretation of phenomena seen in Halley with the earlier comets, as recorded on a homogenous collection of plates taken with the same instrument. The tail of Halley was highly active. This contrasts sharply with pre-Halley comets where undisturbed tails are the rule. During March and April, disturbances appeared in the tail of Halley at an average of 1 new distrubance every 3.7 days. It is considered that 10 of the 11 observed disturbances had common characteristics which allow them to be characterized as disconnections.

  10. Finding Comet Halley.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1985-01-01

    Provides background information and references on Comet Halley (which will be observable by telescope in October 1985 and reach its most brilliant appearance in March and April of 1986). Suggestions for equipment and maps of its path through the sky are included. (DH)

  11. Halley's Comet Makes a Comeback.

    ERIC Educational Resources Information Center

    Glenn, William H.

    1984-01-01

    Presents information on Halley's Comet including its discovery, impact on history, planned investigations related to its 1986 return, where and when to make observations, and predicted calendar of events. Gives general information on comets such as physical structure, theoretical origin, and paths and provides an annotated reference list. (JM)

  12. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  13. New Image of Comet Halley in the Cold

    NASA Astrophysics Data System (ADS)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an

  14. Make a Halley's Comet Orbit Model.

    ERIC Educational Resources Information Center

    Podmore, Francis; Fleet, Richard W.

    1985-01-01

    Describes a simple three-dimensional model of Halley's Comet orbit (which is much more informative than a two-dimensional drawing) to illustrate spatial relationships and visualize how the comet moves relative to the earth. Instructions for model assembly are given along with a template which can be photocopied and glued to cardboard. (JN)

  15. Colour, albedo and nucleus size of Halley's comet

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  16. Halley's Comet: A Bibliography.

    ERIC Educational Resources Information Center

    Freitag, Ruth S., Comp.

    Included in this bibliography are over 3,200 references to publications on Halley's Comet, its history, orbital motion, and physical characteristics, meteor streams associated with it, preparations for space missions to study it in 1986, and popular reaction to its appearances. Also cited are a few papers that, although they devote little…

  17. Records of Halley's comet on Babylonian tablets

    NASA Astrophysics Data System (ADS)

    Stephenson, F. R.; Yau, K. K. C.; Hunger, H.

    1985-04-01

    The late Babylonian texts in the British Museum are shown to contain probable observations of Halley's comet at both its 164 BC and 87 BC apparitions. These texts have important bearing on the orbital motion of the comet in the ancient past.

  18. Astronomical Resources: A Selected Halley's Comet Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1985-01-01

    Presents annotated lists of: (1) general introductory books about comets and Comet Halley; (2) books about comet history and lore; (3) introductory books for younger children; and (4) books for the serious amateur astronomer. A list of magazine and journal articles is included. (JN)

  19. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, M.; Altwegg, K.; Dishoeck, E. F. van

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained bymore » the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.« less

  20. Electron plasma environment at comet Grigg-Skjellerup: General observations and comparison with the environment at comet Halley

    NASA Technical Reports Server (NTRS)

    Reme, H.; Mazelle, C.; Sauvaud, J. A.; D'Uston, C.; Froment, F.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Larson, D. E.; Korth, A.

    1993-01-01

    The three-dimensional electron spectrometer of the Reme plasma analyzer-complete positive ion, electron and ram negative ion measurements near comet Halley (RPA-COPERNIC) experiment aboard the Giotto spacecraft, although damaged during the comet Halley encounter in March 1986, has provided very new results during the encounter on July 10, 1992, with the weakly active comet Grigg-Skjellerup (G-S). The main characteristic features of the highly structured interaction region extending from approximately 26,500 km inbound to approximately 37,200 km outbound are presented. These results are compared to the results obtained by the same instrument during the Giotto comet Halley fly-by. Despite the large difference in the size of the interaction regions (approximately 60,000 km for G-S, approximately 2000,000 km for Halley) due to 2 orders of magnitude difference in cometary neutral gas production rate, there are striking similarities in the solar wind interactions with the two comets.

  1. On the past orbital history of Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Carusi, A.; Valsecchi, G. B.; Kresak, L.; Perozzi, E.

    The results of backward integration of the Comet P/Halley behavior over the time span from 1585 AD to 9367 BC (a total of 4 million days) are discussed. The integration was performed on the FPS 364, using the integrator described by Everhart (1985); planets from Venus to Neptune were included, and nongravitational forces were neglected. Graphs are presented for the temporal evolution of the orbital eccentricity (computed along the barycentric orbit at each aphelion passage), orbital inclination, the argument of perihelion of the orbit, perihelion distance, and the two nodal distances of P/Halley comet. A more or less continuous decrease of the orbital eccentricity and inclination were found, as well as of the argument of perihelion. It is suggested that Comet P/Halley may have undergone strong gravitational interactions with Jupiter about 11,000 years ago, and that the time span spent by the comet in a short period orbit may be as short as that.

  2. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  3. Dynamical and collisional evolution of Halley-type comets

    NASA Astrophysics Data System (ADS)

    van der Helm, E.; Jeffers, S. V.

    2012-03-01

    The number of observed Halley-type comets is hundreds of times less than predicted by models (Levison, H.F., Dones, L., Duncan, M.J. [2001]. Astron. J. 121, 2253-2267). In this paper we investigate the impact of collisions with planetesimals on the evolution of Halley-type comets. First we compute the dynamical evolution of a sub-set of 21 comets using the MERCURY integrator package over 100 Myr. The dynamical lifetime is determined to be of the order of 105-106 years in agreement with previous work. The collisional probability of Halley-type comets colliding with known asteroids, a simulated population of Kuiper-belt objects, and planets, is calculated using a modified, Öpik-based collision code. Our results show that the catastrophic disruption of the cometary nucleus has a very low probability of occurring, and disruption through cumulative minor impacts is concluded to be negligible. The dust mantle formed from ejected material falling back to the comet’s surface is calculated to be less than a few centimeters thick, which is insignificant compared to the mantle formed by volatile depletion, while planetary encounters were found to be a negligible disruption mechanism.

  4. The Photometric lightcurve of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  5. The Comet Halley dust and gas environment

    NASA Technical Reports Server (NTRS)

    Divine, N.; Hanner, M. S.; Newburn, R. L., Jr.; Sekanina, Z.; Yeomans, D. K.

    1986-01-01

    Quantitative descriptions of environments near the nucleus of comet P/Halley have been developed to support spacecraft and mission design for the flyby encounters in March, 1986. To summarize these models as they exist just before the encounters, the relevant data from prior Halley apparitions and from recent cometary research are reviewed. Orbital elements, visual magnitudes, and parameter values and analysis for the nucleus, gas and dust are combined to predict Halley's position, production rates, gas and dust distributions, and electromagnetic radiation field for the current perihelion passage. The predicted numerical results have been useful for estimating likely spacecraft effects, such as impact damage and attitude perturbations. Sample applications are cited, including design of a dust shield for spacecraft structure, and threshold and dynamic range selection for flight experiments. It is expected that the comet's activity may be more irregular than these smoothly varying models predict, and that comparison with the flyby data will be instructive.

  6. The comet Halley meteoroid stream: just one more model

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2003-05-01

    The present attempt to simulate the formation and evolution of the comet Halley meteoroid stream is based on a tentative physical model of dust ejection of large particles from comet Halley. Model streams consisting of 500-5000 test particles have been constructed according to the following ejection scheme. The particles are ejected from the nucleus along the cometary orbit (r < 9 au) within the sunward 70° cone, and the rate of ejection has been taken as proportional to r-4. Two kinds of spherical particles have been considered: 1 and 0.001 g with density equal to 0.25 g cm-3. Ejections have been simulated for 1404 BC, 141 AD and 837 AD. The equations of motion have been numerically integrated using the Everhart procedure. As a result, a complicated fine structure of the comet Halley meteoroid stream, consisting not of filaments but of layers, has been revealed.

  7. Halley's Comet: A Bibliographic Essay.

    ERIC Educational Resources Information Center

    Gallant, Stephen L.

    1985-01-01

    This bibliographic essay evaluates six books on Halley's Comet as science writings that fall into three categories: middle school and junior high-level books; senior high to adult-level books; and advanced level. Author, number of pages, publication date, price, International Standard Book Number, and publisher information are provided. (EJS)

  8. The Archive of the Amateur Observation Network of the International Halley Watch. Volume 1; Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J. (Editor)

    1996-01-01

    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Comet Halley (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Cometary Explorer (ICE), toward Comet Giacobini-Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience).

  9. Comet Halley - The orbital motion

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The orbital motion of Comet Halley is investigated over the interval from A.D. 837 to 2061. Using the observations from 1607 through 1911, least-squares differential orbit corrections were successfully computed using the existing model for the nongravitational forces. The nongravitational-force model was found to be consistent with the outgassing-rocket effect of a water-ice cometary nucleus and, prior to the 1910 return, these forces are time-independent for nearly a millennium. For the 1986 return, viewing conditions are outlined for the comet and the related Orionid and Eta Aquarid meteor showers.

  10. International Halley watch amateur observers' manual for scientific comet studies. Part 1: Methods

    NASA Technical Reports Server (NTRS)

    Edberg, S. J.

    1983-01-01

    The International Halley Watch is described as well as comets and observing techniques. Information on periodic Comet Halley's apparition for its 1986 perihelion passage is provided. Instructions are given for observation projects valuable to the International Halley Watch in six areas of study: (1) visual observations; (2) photography; (3) astrometry; (4) spectroscopic observations; (5) photoelectric photometry; and (6) meteor observations.

  11. The Archive of the Amateur Observation Network of the International Halley Watch. Volume 1; Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J. (Editor)

    1966-01-01

    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Halley's Comet (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Sun-Earth Explorer 3 (ISEE-3) spacecraft, subsequently renamed the International Cometary Explorer (ICE), toward Comet Giacobini-Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience).

  12. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  13. The International Cometary Explorer (ICE) mission to Comets Giacobini-Zinner and Halley

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1986-01-01

    Use of the ISEE-3 satellite (renamed ICE) to study the interaction between the solar wind and a cometary atmosphere by passing through the plasma tail by intercepting Comet Giacobini-Zinner on 11 September 1985 is described. Details of the targeting strategy are discussed. Additional scientific objectives following the tail intercept of Comet Giacobini-Zinner include the support of Comet Halley studies through the measurement of solar-wind conditions upstream of P/Halley in October 1985 and March 1986.

  14. The spacecraft encounters of Comet Halley

    NASA Technical Reports Server (NTRS)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  15. Rocket ultraviolet observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Mccoy, Robert P.; Woods, Thomas N.; Feldman, Paul D.; Opal, Chet B.

    1987-01-01

    Ultraviolet observations of Comet Halley have been obtained in February and March, 1986 with two instrument payloads, one with the Faint Object Telescope and one with a direct imaging electrographic Schmidt camera and an objective grating spectrograph. The observations include spectroscopic imagery in the 1200-200 A wavelength range and imagery of the comet in hydrogen Lyman-alpha (1216 A) radiation. The present observations have been reduced to intensity contour plots in the different emission wavelengths, and production rates are given for the emitting species H, C, O, S, and CO.

  16. A worldwide photographic network for wide-field observations of Halley's Comet in 1985-1986

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.; Rahe, J.

    1982-01-01

    A global network of ground-based observatories for the study of Halley's Comet in 1985/1986 is discussed. Recommendations are made with respect to improving coordination between reporting observatories, in order to ensure detailed imaging of such fast-generating cometary phenomena as plasma-tail knots, helices, disconnected tails, rays and condensations. A method for calibrating telescopes is considered by which well-studied objects will be photographed to provide references for images of Halley's Comet. This procedure is expected to reduce errors to approximately 0.05 mag. A coordinated study of Halley's Comet will provide important data on the physical properties of the Comet. Examples of the topics of study related to the plasma physics of the Comet's tail include: magnetic reconnection, rippling and tearing modes, kink instability, Kelvin-Helmholtz instability, and the flute instability.

  17. Radar observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Shapiro, I. I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity.

  18. Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy

    NASA Astrophysics Data System (ADS)

    Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.

    2015-03-01

    The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.

  19. A study of ion composition and dynamics at Comet Halley

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Fuselier, S. A.

    1991-01-01

    This report details the participation by Lockheed co-investigators in the reduction, analysis, and interpretation of data obtained by the Ion Mass Spectrometer onboard the Giotto mission to Comet Halley. The data analysis activities and much of the scientific collaboration was shared by this team. One objective of the effort under this contract was to use data obtained by the Giotto Ion Mass Spectrometer (IMS) during the encounter with comet Halley for the purpose of advancing our understanding of the chemistry and physics of the interaction of the solar wind with comets and obtaining new information on the comet's composition. An additional objective was to make this unique data set available in a format which can be easily used by the reset of the cometary science community for other analysis in the future. The IMS has two sensors: the High Intensity Spectrometer (HIS) and the High Energy Range Spectrometer (HERS).

  20. Carbonaceous Components in the Comet Halley Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  1. The composition of heavy molecular ions inside the ionopause of Comet Halley

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Korth, A.; Reme, H.; Sauvaud, J. A.; Duston, C.; Mendis, D. A.

    1989-01-01

    The RPA2-PICCA instrument aboard the Giotto spacecraft obtained 10-210 amu mass spectral of cold thermal molecular ions in the coma of Comet Halley. The dissociation products of the long chain formaldehyde polymer polyoxymethylene (POM) have recently been proposed as the dominant complex molecules in the coma of Comet Halley; however, POM alone cannot account for all of the features of the high resolution spectrum. An important component of the dust at Comet Halley is particles highly enriched in carbon, hydrogen, oxygen, and nitrogen relative to the composition of carbonaceous chondrites. Since this dust could be a source for the heavy molecules observed by PICCA, a search was conducted for other chemical species by determining all the molecules with mass between 20 and 120 amu which can be made from the relatively abundant C, H, O, and N, without regard to chemical structure.

  2. Iron, magnesium, and silicon in dust from Comet Halley

    NASA Technical Reports Server (NTRS)

    Lawler, Mark E.; Brownlee, Donald E.; Temple, Scott; Wheelock, Maya M.

    1989-01-01

    The highest-quality impact mass spectrometer data from the Vega-1 and Giotto spacecraft are presently used to study the Mg, Si, and Fe composition of dust grains in Comet Halley. The results thus obtained are in general agreement with previously reported data, but differ with respect to ion ratio dispersions. A lack of sharp clustering in the data indicates that none of the detected particles can be characterized as single mineral grains; an abundant glass content in the solids may be indicated. The best match of the distribution of Fe/(Fe+Mg) is with interplanetary particles containing high temperature, Mg-rich silicates dominated by anhydrous minerals, so that Comet Halley may be a mixture of ice and high-temperature anhydrous minerals.

  3. The 2.4 micron spectrum of Comet Halley - A search for H2 emission

    NASA Astrophysics Data System (ADS)

    Smith, W. H.; Wolstencroft, R. D.; Lutz, B. L.

    1989-02-01

    A 2.4-micron spectrum of Comet Halley was obtained on April 1, 1986 with the UKIRT scanning Fabry-Perot-CVF equipped with an InSb detector. From the ratio of the measured flux from comet Halley to Zeta Her in the 8.8 x 10 to the -4th micron bandwidth, Comet Halley produced a detected flux of about 1.3 x 10 to the 5th photons/sec with a 1-sigma variance of 385 photons. The flux detected in the same spectral region by Maillard et al. (1986) agrees with the measurements reported here to within a factor of two. The data obtained are examined from the standpoint of the possible mechanisms of H2 production.

  4. Carbon-rich particles in Comet Halley

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1990-01-01

    The majority of particles detected in the coma of Comet Halley contain carbon atoms; many of these grains appear to consist preponderately or only of light elements. These light-element particles may be composed of organic compounds. Of the possible combinations of the elements hydrogen, carbon, nitrogen, and oxygen, numerous examples are found of particles containing the combinations (H,C,O,N), (H,C,N), (H,C,O), and (H,C). These results may bear on the recent detection of polyoxymethylene fragments, the observation of cyanojets (CN patterns consistent with release from solid particles), the possible presence of cyanopolyacetylenes or HCN polymer and the make-up of the CHON particles. If cometary matter could reach the surface of the earth without complete disruption, these diverse organic and mixed particles could create unique microenvironments, possibly with significant or even pivotal prebiotic chemical activity. Here a speculative insight into possible relationships between carbon in comets and carbon in life is given, as well as a brief overview of on-going analysis of data from the highly successful Particle Impact Analyzer (PIA) experiment flown on the Giotto spacecraft for the flyby of Comet Halley (development and implementation of PIA was under the direction of J. Kissel of the Max Planck Institute for Kernphysik, Heidelberg). PIA is a time-of-flight analyzer which obtains mass spectra of ions from individual particles impacting on a Pt-Ag foil target within the instrument.

  5. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  6. Observing Comet Halley with Space Telescope

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1983-01-01

    The NASA Space Telescope (ST) to be launched into LEO by STS in late 1985 is characterized, and its potential use for observations of Comet Halley shortly after the perihelion passage in February, 1986, is discussed. The ST comprises a 2.4-m MgF2-coated primary reflector (with maximum field of view 2.7 x 2.7 arcmin, wavelength coverage 120-1100 nm, and maximum tracking rate 0.21 arcsec/sec) and five first-generation scientific instruments (wide-field planetary camera, faint-object camera, high-resolution and faint-object spectrographs, and high-speed photometer). Planned ST observations of Halley include periods of continuous observation much longer than can be obtained from the ground, provision of supplementary data and navigation information to Giotto and other deep-space missions, emission spectroscopy, UV polarimetry, and possible detection of 124-nm H2O absorption. Before March 11, 1986, earth occultation or similar procedures will be required to observe Halley because it will be within the ST 50-deg solar-elongation-distance limit.

  7. Analysis of the Tail Structures of Comet 1P/Halley 1910 II

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2013-11-01

    For the purpose of identifying, measuring, and correlating the morphological structures along the plasma tail of 1P/Halley, 886 images from September 1909 to May 1911 are analysed. These images are from the Atlas of Comet Halley 1910 II (DONN; RAHE; BRANDT, 1986).

  8. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  9. Solar wind mass-loading at Comet Halley - A lesson from Venus?

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.; Luhmann, J. G.

    1987-05-01

    Recent observations at comet Halley show that the region within which cometary ions become the dominant component lies outside of the magnetic field-free cavity. This behavior resembles that found at Venus under conditions where the incident solar wind dynamic pressure exceeds the ionospheric pressure. On these occasions the magnetosheath magnetic field is found well inside of the region where planetary ions are observed. Although scaling and the details of formation of the inner boundary of the magnetic field are different for these two objects, the processes by which the interplanetary magnetic field penetrates into the ionospheres at Venus and at comet Halley are in many ways analogous.

  10. Infrared Observations of Comets Halley and Wilson and Properties of the Grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S. (Editor)

    1988-01-01

    The presented papers and discussions at a workshop held at Cornell Univ. are summarized. The infrared observations of Comet Halley and Comet Wilson are reviewed and they are related to optical properties and composition of cometary grains. Relevant laboratory studies are also discussed. Recommendations are made for future infrared comet observations and supporting laboratory investigations.

  11. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  12. The cyanogen band of Comet Halley

    NASA Astrophysics Data System (ADS)

    Tatum, J. B.; Campbell, E. C.

    The results of improved whole disk solar irradiance spectrum calculations performed for projected Halley's Comet heliocentric radial velocity and distance are provided. The computations were carried out to account for Doppler effects in the Fraunhofer lines of rotational excitation bands of violet CN emissions from the comet in its encounters with solar radiation. The calculations spanned every half-day for 200 days before and after perihelion. The 801 computer images of the expected intensities were photographed in sequence to form an animated film paced by background music from Liszt's Second Hungarian Rhapsody. The results are intended for accounting for spectral changes observed due to Doppler effects induced by changing velocity and distance, rather than physical mechanisms of the emitting processes.

  13. The long-term motion of comet Halley

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Kiang, T.

    1981-01-01

    The orbital motion of comet Halley is numerically integrated back to 1404 BC. Starting with an orbit based on the 1759, 1682, and 1607 observations of the comet, the integration was run back in time with full planetary perturbations and nongravitational forces taken into account at each 0.5 day time-step. Small empirical corrections were made to the computed perihelion passage time in 837 and to the osculating orbital eccentricity in 800. In nine cases, the perihelion passage times calculated by Kiang (1971) from Chinese observations have been redetermined, and osculating orbital elements are given at each apparition from 1910 back to 1404 BC.

  14. Analysis of hydrogen H-alpha observations of the coma of Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.; Scherb, Frank; Roesler, Fred L.

    1993-01-01

    The Monte Carlo Particle Trajectory Model of Combi and Smyth (1988) is used here to analyze observations of the H-alpha coma of Comet Halley. The solar excitation mechanism for the H-alpha emissions line is described. The H2O production rates derived for the H-alpha brightness measurements are shown to be very consistent with the H2O production rates determined from other Comet Halley observations of the H, O, and OH comae. Revised H2O production rates determined from 6300 A brightness measurements are presented.

  15. Comet Halley passes the halfway mark. Very distant image obtained with the ESO NTT.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet. A DIFFICULT OBSERVATION The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes. In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km. At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were

  16. Primitive bodies - Molecular abundances in Comet Halley as probes of cometary formation environments

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1989-01-01

    The most recent results on abundances of molecules in Halley's comet are examined in the context of various models for the environment in which comets formed. These environments include molecular clouds associated with star-forming regions, the solar nebula, gaseous disks around proto-planets, and combinations of these. Of all constituents in a cometary nucleus, the highly volatile molecules such as methane, ammonia, molecular nitrogen, and carbon monoxide are most sensitive to the final episode of cometary grain formation and incorporation in the comet's nucleus; hence they likely reflect at least some chemical processing in the solar nebula. Proper interpretation requires modeling of a number of physical processes including gas phase chemistry, chemistry on grain surfaces, and fractionation effects resulting from preferential incorporation of certain gases in proto-cometary grains. The abundance of methane in Halley's comet could be a key indicator of where that comet formed, provided the methane abundance on grains in star-forming regions can be observationally constrained.

  17. Halley's Comet - Canadian Observations and Reactions 1835-36 and 1910

    NASA Astrophysics Data System (ADS)

    Smith, J. A.

    1986-02-01

    The files of old newspapers provide a rich source of Canadian data about the past returns of Halley's comet. A description is presented of the 1835 - 36 and 1910 stories, editorials, advertisements, poems, and columns that are informative.

  18. VEGA - EN route to Venus and comet Halley

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.

    1985-01-01

    In December 1984, the Soviet Union launched the two spacecraft Vega 1 and Vega 2. After reaching Venus and releasing entry probes for a study of the planet, the two modified Venera-class, three-axis stabilized spacecraft will continue their voyage toward an encounter with the comet Halley. The two spacecraft carry an international scientific payload. The instruments will be used in a study of the comet. Scientific objectives are related to the determination of the physical characteristics and chemical structure of the nucleus, the identification of the parent molecules of the coma, the characteristics of the dust particles at different distances from the nucleus, and the interaction between the solar wind and the comet. The various instruments are discussed in some detail.

  19. From the Vega mission to comet Halley to the Rosetta mission to comet 67/P Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Zelenyi, L. M.; Ksanfomality, L. V.

    2016-12-01

    The data acquired by the Vega and Giotto spacecraft, while investigating comet 1P/Halley in 1986, are compared to the results of the first phase of exploration of the nucleus of comet 67P/Churyumov-Gerasimenko performed with the Rosetta and Philae modules. The course of the Rosetta mission activity and the status of the modules after the Philae probe landing on the comet's nucleus are overviewed. Since some elements of the touchdown equipment failed, a number of in-situ experiments on the comet's nucleus were not carried out.

  20. Comet Science Working Group report on the Halley Intercept Mission

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Halley Intercept Mission is described and the scientific benefits expected from the program are defined. One characteristic of the mission is the optical navigation and resulting accurate delivery of the spacecraft to a desired point near the nucleus. This accuracy of delivery has two important implications: (1) high probability that the mass spectrometers and other in situ measurement devices will reach the cometary ionosphere and the zone of parent molecules next to the nucleus; (2) high probability that sunlit, high resolution images of Halley's nucleus will be obtained under proper lighting conditions. In addition an observatory phase is included during which high quality images of the tail and coma structure will be obtained at progressively higher spatial resolutions as the spacecraft approaches the comet. Complete measurements of the comet/solar wind interaction can be made around the time of encounter. Specific recommendations are made concerning project implementation and spacecraft requirements.

  1. Mass spectra of heavy ions near comet Halley

    NASA Astrophysics Data System (ADS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Lin, R. P.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Cotin, F.; Cros, A.; Mendis, D. A.

    1986-05-01

    The heavy-ion analyser aboard the Giotto spacecraft, detected the first cometary ions at a distance of ≡1.05x106km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  2. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  3. The International Halley Watch

    NASA Technical Reports Server (NTRS)

    1980-01-01

    In preparation for the 1985 to 1986 apparition of Halley's Comet, the International Halley Watch (IHW) has initiated a comprehensive program to simulate, encourage, and coordinate scientific observation of the apparition. The observing groups with which the IHW plans to interact are discussed and the ground based observing nets are described in detail. An outline of the history of observations of Halley's Comet and a synopsis of comet properties and physics are included.

  4. Comet P/Halley 1910, 1986: An objective-prism study

    NASA Technical Reports Server (NTRS)

    Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.

    1986-01-01

    V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.

  5. Observations of Halley's Comet by the Solar Maximum Mission (SMM)

    NASA Technical Reports Server (NTRS)

    Niedner, M. B.

    1986-01-01

    Solar Maximum Mission coronagraph/polarimeter observations of large scale phenomena in Halley's Comet are discussed. Observations of the hydrogen coma with the UV spectrometer are considered. It is concluded that coronograph/polarimeter observations of the disconnection event, in which the entire plasma tail uproots itself from the head of the comet, is convected away in the solar wind at speeds in the 50 to 100 km/sec range (relative to the head), and is replaced by a plasma tail constructed from folding ion-tail rays, are the most interesting.

  6. Comparison of Wave Energy Transport at the Comets p/Halley and p/Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Sding, A.; Glassmeir, K. H.; Fuselier, S. A.; Neubauer, Fritz M.; Tsurutani, B. T.

    1995-01-01

    Using magnetic field, plasma density and flow observations from spacecraft flybys of two comets, Eler variables are determined in order to study wave propogation directions. We investigate the inbound path of the Giotto spacecraft flyby of comet p/Halley outside the bow shock, and the inbound and outbound path of the ICE spacecraft flyby of comet p/Giacobini-Zinner outsinde of the bow wave.

  7. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  8. Plasma-tail activity and the interplanetary medium at Halley's Comet during Armada Week: 6-14 March 1986

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm B., Jr.; Schwingenschuh, Konrad; Hoeksema, J. Todd; Dryer, Murray; Mcintosh, Patrick S.

    1987-01-01

    The encounters of five spacecraft with Halley's Comet during 6-14 March 1986 offered a unique opportunity to calibrate the solar-wind interaction with cometary plasmas as recorded by remote wide-field and narrow-field/narrowband imaging. Perhaps not generally recognized in the comet community is the additional opportunity offered by the Halley Armada to study the structure of the solar-wind and interplanetary magnetic field (IMF) in three dimensions using five sets of data obtained over similar time intervals and heliocentric distances, but at somewhat different heliolatitudes. In fact, the two problems, i.e., comet physics and the structure of the interplanetary medium, are coupled if one wants to understand what conditions pertained at the comet between the encounters. This relationship is discussed.

  9. Analysis of the perihelic passages of the comet 1P/Halley in 1910 and in 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2016-07-01

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km/s; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km/s. The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 10 ^{6} km and in 1986 is (2.2 ± 0.2) x 10 ^{6} km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 10 ^{5} km and in 1986 it is equal to (2.8 ± 0.5) x 10 ^{5} km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  10. Charge exchange of solar wind ions in the Comet Halley coma

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.

    1986-01-01

    The He(2+) and He(+) radial profiles measured by the Giotto mass spectrometer on the inbound trajectory to comet Halley are compared to a simple 1-dimensional charge exchange model. Results indicate that charge exchange alone cannot account for the observed radial profiles of He(2+) and He(+).

  11. Photometry of the comet Halley : solar analogs selected along the path (November 1985 - Mat 1986)

    NASA Astrophysics Data System (ADS)

    Fracassini, M.; Pasinetti, L. E.

    1985-11-01

    108 solar analogs are selected within a strip along the path of the comet Halley (Δδ ≅ ±10°) for photometric observations of the comet from November 1985 to May 1986. Some criteria in the UBV and Geneva photometric systems were adopted for this selection.

  12. Temporal analysis of the morphological structures of comet 1P/Halley in the perihelion passages in 1910 and 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2016-11-01

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km/s; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km/s. The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 10^6 km and in 1986 is (2.2 ± 0.2) x 10^6 km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 10^5 km and in 1986 it is equal to (2.8 ± 0.5) x 10^5 km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work. Referências [1] Brandt, J.C., Niedner Jr., M.B. & Rahe, J. 1992. International Halley Watch Atlas of Large-Scale Phenomena. University of Colorado-Boulder (printed by Johnson Printing Co., Boulder, CO) [2] Donn, B., Rahe, J. & Brandt, J.C. 1986. Atlas of Comet Halley 1910 II. NASA SP-488

  13. Astronaut George Nelson working on Comet Halley Active monitoring program

    NASA Image and Video Library

    1986-01-14

    61C-05-026 (14 Jan. 1986) --- Astronaut George D. Nelson smiles for a fellow crew man's 35mm camera exposure while participating in the Comet Halley active monitoring program (CHAMP). Camera equipment and a protective shroud used to eliminate all cabin light interference surround the mission specialist. This is the first of three 1986 missions which are scheduled to monitor the rare visit by the comet. The principal investigators for CHAMP are S. Alan Stern of the Laboratory for Atmospheric and Space Physics at the University of Colorado; and Dr. Stephen Mende of Lockheed Palo Alto Research Laboratory.

  14. Analysis of the tail structures of comet P/Halley 1910 II

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Izaguirre, L. S.

    Eight hundred and eighty six images from September 1909 to May 1911 are analysed for the purpose of identifying, measuring and correlating the morphological structures along the plasma tail of P/Halley. These images are from the Atlas of Comet Halley 1910 II (Donn et al. 1986). A systematic visual analysis revealed 304 wavy structures along the main tail and 164 along the secondary tails, 41 solitary waves (solitons), 13 Swan-like tails, 26 disconnection events (DEs), 166 knots and six shells. While the wavy structures denote undulations or a train of waves, the solitons refer to the formations usually denominated kinks. In general, it is possible to associate the occurrence of a DE and/or a Swan-Tail with the occurrence of a knot, but the last one may occur independently. It is also possible to say that the solitons occur in association with the wavy structures, but the reverse is not true. The 26 DEs documented in 26 different images allowed the derivation of two onsets of DEs, i.e., the time when the comet supposedly crossed a frontier between magnetic sectors of the solar wind. Both onsets of DEs were determined after the perihelion passage with an average of the corrected velocities Vc equal to (57 ± 15) km s-1. The mean value of the corrected wavelength λ c measured in 70 different wavy structures is equal to (1.7 ± 0.1) × 106 km and the mean amplitude A of the wave (measured in the same 70 wavy structures cited above) is equal to (1.4 ± 0.1) × 105 km. The mean value of the corrected cometocentric phase velocity Vpc measured in 20 different wavy structures is equal to (168 ± 28) km s-1. The average value of the corrected velocities Vkc of the knots measured in 36 different images is equal to (128 ± 12) km s-1. There is a tendency for A and λ c to increase with increasing cometocentric distance. The preliminary results of this work agree with the earlier research from Voelzke and Matsuura (1998), which analysed comet P/Halley's tail structures in its

  15. Comparative analysis of images of comet 1P/Halley in their perihelion passages in 1910 and 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km s (-1) ; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km s (-1) .The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 10 (6) km and in 1986 is (2.2 ± 0.2) x 10 (6) km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 10 (5) km and in 1986 it is equal to (2.8 ± 0.5) x 10 (5) km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  16. The effects of electrostatic charging on the dust distribution at Halley's Comet

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Mendis, D. A.

    1986-01-01

    The distribution of fine dust near Comet Halley at its 1910 and 1986 apparitions is investigated by means of computer simulations, taking the effects of EM forces due to the dust electrostatic charge into account. It is found that the nucleus spin period and orbital obliquity estimated by Sekanina and Larson (1984) from the 1910 observations are unaffected by these EM forces because the 1910 dust morphology involved mainly large grains. For 1986, the orientation of the smaller dust is shown to depend on the interplanetary magnetic field, with implications for the dust distribution encountered by the Halley probes.

  17. Analysis of the morphological structures of comet 1P/Halley in their perihelion passages in 1910 and 1986

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2015-08-01

    This work is based on a systematic analysis of images of 1P/Halley comet collected during its penultimate and ultimate approaches, i.e., in 1910 and in 1986. The present research basically characterised, identified, classified, measured and compared some of the tail structures of comet 1P/Halley like DEs, wavy structures and solitons. The images illustrated in the Atlas of Comet Halley 1910 II (Donn et al., 1986), which shows the comet in its 1910 passage, were compared with the images illustrated in The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992), which shows the comet in its 1986 passage. While two onsets of DEs were discovered after the perihelion passage in 1910, the average value of the corrected cometocentric velocity Vc was (57 ± 15) km/s ; ten were discovered after the perihelion passage in 1986 with an average of corrected velocities equal to (130 ± 37) km/s .The mean value of the corrected wavelength of wavy structures, in 1910, is equal to (1.7 ± 0.1) x 106 km and in 1986 is (2.2 ± 0.2) x 106 km. The mean value of the amplitude A of the wave, in 1910, is equal to (1.4 ± 0.1) x 105 km and in 1986 it is equal to (2.8 ± 0.5) x 105 km. The goals of this research are to report the results obtained from the analysis of the P/Halleýs 1910 and 1986 images, to provide empirical data for comparison and to form the input for future physical/theoretical work.

  18. Scientific rationale and strategies for a first comet mission: Report of the Comet Halley science working group

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The science objectives of a first comet mission are reviewed and related to what is known or can be expected to be learned in the near future from ground-based and near earth observations. A set of instruments and their science objectives are defined for a mission to Comet Halley during its 1985/86 apparition. The benefits from a fast flyby, a slow flyby, or a rendezvous mission and the relative impact of each on the instrument payload were assessed. The relative scientific value of encounters with the comet at distances from the sun ranging from 1 AU to 2.5 AU, including possible tradeoffs between flyby velocity and distance was considered. Pre- and post-perihelion encounters were likewise evaluated.

  19. The interactive astronomical data analysis facility - image enhancement techniques to Comet Halley

    NASA Astrophysics Data System (ADS)

    Klinglesmith, D. A.

    1981-10-01

    PDP 11/40 computer is at the heart of a general purpose interactive data analysis facility designed to permit easy access to data in both visual imagery and graphic representations. The major components consist of: the 11/40 CPU and 256 K bytes of 16-bit memory; two TU10 tape drives; 20 million bytes of disk storage; three user terminals; and the COMTAL image processing display system. The application of image enhancement techniques to two sequences of photographs of Comet Halley taken in Egypt in 1910 provides evidence for eruptions from the comet's nucleus.

  20. Negative Ion Chemistry in the Coma of Comet 1P/Halley

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Negative ions (anions) were identified in the coma of comet 1P/Halley from in-situ measurements performed by the Giotto spacecraft in 1986. These anions were detected with masses in the range 7-110 amu, but with insufficient mass resolution to permit unambiguous identification. We present details of a new chemical-hydrodynamic model for the coma of comet Halley that includes - for the first time - atomic and molecular anions, in addition to a comprehensive hydrocarbon chemistry. Anion number densities arc calculated as a function of radius in the coma, and compared with the Giotto results. Important anion production mechanisms arc found to include radiative electron attachment, polar photodissociation, dissociative electron attachment, and proton transfer. The polyyne anions C4H(-) and C6H(-) arc found to be likely candidates to explain the Giotto anion mass spectrum in the range 49-73 amu. Thc CN(-) anion probably makes a significant contribution to the mass spectrum at 26 amu. Larger carbon-chain anions such as C8H(1) can explain the peak near 100 amu provided there is a source of large carbon-chain-bearing molecules from the cometary nucleus.

  1. Halley's comet exploration and the Japanese Usuda large antenna

    NASA Technical Reports Server (NTRS)

    Nomura, T.

    1986-01-01

    An overview of the Japanese PLANET-A project to investigate Halley's Comet is given. The objectives and scientific challenges involved in the project are given, and the nature of the contribution made by the large antenna array located at Usuda-Cho, Nagano Prefecture, Japan is discussed. The structural design of the MS-T5 and PLANET-A probes are given, as well as the tracking and control network for the probes. The construction, design, operating system and site selection for the Usuda antenna station are discussed.

  2. Ammonia in comet P/Halley

    NASA Technical Reports Server (NTRS)

    Meier, R.; Eberhardt, P.; Krankowsky, D.; Hodges, R. R.

    1994-01-01

    In comet P/Halley the abundances of ammonia relative to water reported in the literature differ by about one order of magnitude from roughly 0.1% up to 2%. Different observational techniques seem to have inherent systematic errors. Using the ion mass channels m/q = 19 amu/e, 18 amu/e and 17 amu/e of the Neutral Mass Spectrometer experiment aboard the spacecraft Giotto, we derive a production rate of ammonia of (1.5(sub -0.7)(sup +0.5))% relative to water. Inside the contact surface we can explain our data by a nuclear source only. The uncertainty in our abundance of ammonia is primarily a result of uncertainties in some key reaction coefficients. We discuss in detail these reactions and the range of error indicated results from extreme assumptions in the rate coefficients. From our data, even in the worst case, we can exclude the ammonia abundance to be only of the order of a few per mill.

  3. Ion flow at comet Halley

    NASA Technical Reports Server (NTRS)

    Johnstone, A.; Coates, A.; Kellock, S.; Wilken, B.; Jockers, K.

    1986-01-01

    The three-dimensional positive ion analyzer aboard the Giotto spacecraft has been used to study the interaction between protons and alpha-particles in the solar wind and positive ions from comet Halley. Although the first impression of the overall structure is that the plasma flow evolves smoothly as the nucleus is approached, three sharp transitions of relatively small amplitude can be identified on both the inbound and outbound legs of the trajectory. The outermost one, at about one million km from the nucleus, appears to be a multiple crossing of a weak bow shock. The innermost one, at 80,000 km, is the boundary where the flowing plasma becomes depleted. On a microscopic scale, the turbulence created by the interaction between the two ion populations extends to a distance of several million km from the nucleus. At Giotto's closest approach to the nucleus, the plasma produced around the spacecraft by dust and gas impacts was much more energetic than had been expected.

  4. The International Cometary Explorer mission to comets Giacobini-Zinner and Halley - An update

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1986-01-01

    Aspects of the International Cometary Explorer (ICE) flight to the comet Giacobini-Zinner (GZ) are discussed. The most important experiments to be performed by ICE are reviewed, and the orbital parameters of GZ are described. The dust characteristics of GZ that pose a hazard to the spacecraft are addressed, and the ICE targeting strategy toward the comet is discussed. Requested ground-based coverage of GZ is indicated, and the complementarity of the GZ coverage with that given to the Halley mission is shown.

  5. A new calibration of the semi-empirical photometric theory for Halley and other comets

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.

    1984-01-01

    The semiempirical photometric theory of gas and dust production in comets (Newburn, 1979, 1981, and 1982) is recalibrated on the basis of the 17-comet compilation of spectrophotometric data of Newburn and Spinrad (1984). The results are presented in graphs and tables, and it is shown that no corrections are required for the constant R and the function delta, but that the mixing ratios (obtained as functions of heliocentric distance) can be improved, with implications for the visual-photometric comet model. Recently calculated light curves for comet Halley are compared, and the use of the nearly identical curves of Bortle and Morris (1984) and Marcus (1983) is recommended.

  6. Dust density and mass distribution near comet Halley from Giotto observations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Alexander, W. M.; Burton, W. M.; Bussoletti, E.; Clark, D. H.; Grard, J. L.; Gruen, E.; Hanner, M. S.; Sekanina, Z.; Hughes, D. W.

    1986-01-01

    The density and the mass spectrum of the dust near comet Halley have been measured by the Giotto space probe's dust impact detection system. The dust spectrum obtained at 291,000 km from the comet nucleus show depletion in small and intermediate masses; at about 600 km from the nucleus, however, the dust activity rises and the spectrum is dominated by larger masses. Most of the mass striking Giotto is noted to reside in the few large particles penetrating the dust shield. Momentum balances and energy considerations applied to an observed deceleration suggest that a large mass of the spacecraft was detached by an impact.

  7. Far-ultraviolet spectral images of comet Halley from sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Carruthers, G. R.; Opal, C. B.

    1986-01-01

    Far-ultraviolet images of comet Halley obtained from sounding rockets launched from White Sands Missile Range, New Mexico, on 24 February and 13 March, 1986, are presented. Direct electrographic images of the hydrogen coma of the comet were obtained at the Lyman-alpha wavelength along with objective spectra containing images of the coma at the oxygen, carbon, and sulfur resonance multiplets. Analysis of the Lyman-alpha images yields hydrogen atom production rates of 1.9 x 10 to the 30th/s and 1.4 x 120 to the 30th/s for the two observations. Images of oxygen, carbon, and sulfur emissions obtained with the objective grating spectrograph are presented for the first set of observations and preliminary production rates are derived for these elements.

  8. The ESA mission to Comet Halley

    NASA Technical Reports Server (NTRS)

    Reinhard, R.

    1981-01-01

    The Europeon Space Agency's approximately Giotto mission plans for a launch in July 1985 with a Halley encounter in mid-March 1986 4 weeks after the comet's perihelion passage. Giotto carries 10 scientific experiments, a camera, neutral, ion and dust mass spectrometers, a dust impact detector system, various plasma analyzers, a magnetometer and an optical probe. The instruments are described, the principles on which they are based are described, and the experiment key performance data are summarized. The launch constraints the helicentric transfer trajectory, and the encounter scenario are analyzed. The Giotto spacecraft major design criteria, spacecraft subsystem and the ground system are described. The problem of hypervelocity dust particle impacts in the innermost part of the coma, the problem of spacecraft survival, and the adverse effects of impact-generated plasma aroung the spacecraft are considered.

  9. Water and dust production rates in comet P/Halley derived from ultraviolet and optical observations

    NASA Technical Reports Server (NTRS)

    Festou, Michel C.

    1992-01-01

    We evaluate whether the activity of comet P/Halley is due solely to the presence of discrete active areas. We preliminarily conclude that the dark areas of the nucleus contribute to the formation of the coma.

  10. Comparison of the dust distributions in the innermost comae of comets-1P/Halley and 19P/Borrelly spacecraft observations

    USGS Publications Warehouse

    Ho, T.-M.; Thomas, N.; Boice, D.C.; Combi, M.; Soderblom, L.A.; Tenishev, V.

    2007-01-01

    We present a comparative study of the inner comae of comets 1P/Halley and 19P/Borrelly using data from the Halley Multicolour Camera (HMC) onboard Giotto and the Miniature Integrated Camera and Spectrometer onboard Deep Space 1 (DS1). We show that the dust brightness dependence as a function of radial distance is different for both comets. We suggest that optical depth or fragmentation effects dominate the brightness distribution at comet 1P/Halley whereas acceleration or non-point source geometry effects dominate at comet 19P/Borrelly. The nightside profiles of comet 19P/Borrelly suggest a continuing non-radial outflow from the nucleus out to several tens of kilometres. This modifies the observed dayside to nightside brightness ratio with distance and offers a further constraint on dust emission models. By setting up a linear system of equations to fit the dust intensity distribution, better fits could be obtained by incorporating acceleration into the equation of free-radial outflow. Finally, we estimate the dust production rate of 19P/Borrelly at the time of DS1 encounter as no higher than 324 kg/s based on comparisons with HMC intensity measurements. ?? 2007 Elsevier Ltd. All rights reserved.

  11. An interpretation of the ion pile-up region outside the ionospheric contact surface. [Halley's comet

    NASA Technical Reports Server (NTRS)

    Ip, WING-H.; Schwenn, R.; Rosenbauer, H.; Balsiger, H.; Neugebauer, M.; Shelley, E. G.

    1986-01-01

    The possibility that the formation of the plasma pile-up region at comet Halley as observed by Giotto could be the combined result of field-aligned transport and recombination process is discussed. Giotto measurements support the hypothesis.

  12. An extended source for CN jets in Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Klavetter, James Jay; A'Hearn, Michael F.

    1994-01-01

    We examined radial intensity profiles of CN jets in comparison with the diffuse, isotropic component of the CN coma of Comet P/Halley. All images were bias-subtracted, flat-fielded, and continuum-subtracted. We calculated the diffuse profiles by finding the azimuthal mean of the coma least contaminated by jets yielding profiles similar to those of vectorial and Haser models of simple photodissociation. We found the jet profiles by calculating a mean around a Gaussian-fitted center in r-theta space. There is an unmistakable difference between the profiles of the CN jets and the profiles of the diffuse CN. Spatial derivatives of these profiles, corrected for geometrical expansion, show that the diffuse component is consistent with a simple photodissociation process, but the jet component is not. The peak production of the jet profile occurs 6000 km from the nucleus at a heliocentric distance of 1.4 AU. Modeling of both components of the coma indicate results that are consistent with the diffuse CN photochemically produced, but the CN jets need an additional extended source. We found that about one-half of the CN in the coma of Comet P/Halley originated from the jets, the rest from the diffuse component. These features, along with the width of the jet being approximately constant, are consistent with a CHON grain origin for the jets.

  13. Spectrophotometry of comets Giacobini-Zinner and Halley

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; O'Dell, C. R.

    1987-01-01

    Optical window spectrophotometry was performed on comets Giacobini-Zinner and Halley over the interval 300-1000 nm. Band and band-sequence fluxes were obtained for the brightest features of OH, CN, NH, and C2, special care having been given to determinations of extinction, instrumental sensitivities, and corrections for Fraunhofer lines. C2 Swan band-sequence flux ratios were determined with unprecedented accuracy and compared with the predictions of the detailed equilibrium models of Krishna Swamy et al. (1977, 1979, 1981, and 1987). It is found that these band sequences do not agree with the predictions, which calls into question the assumptions made in deriving the model, namely resonance fluorescence statistical equilibrium. Suggestions are made as to how to resolve this discrepancy.

  14. A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: implications for Rosetta

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Glassmeier, K.-H.; Delva, M.; Schmid, D.; Koenders, C.; Richter, I.; Szegö, K.

    2014-11-01

    Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx directions) can occur within a few days, possibly influenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.

  15. A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: Implications for Rosetta

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Glassmeier, Karl-Heinz; Delva, Magda; Schmid, Daniel; Koenders, Christoph; Richter, Ingo; Szegö, Karoly

    2015-04-01

    Three flybys of comet 1P/Halley, by VEGA 1, 2 and Giotto, are investigated with respect to the occurrence of mirror mode waves in the cometosheath and field line draping in the magnetic pile-up region around the nucleus. The time interval covered by these flybys is approximately 8 days, which is also the approximate length of an orbit or flyby of Rosetta around comet 67P/Churyumov-Gerasimenko. Thus any significant changes observed around Halley are changes that might occur for Rosetta during one pass of 67P/CG. It is found that the occurrence of mirror mode waves in the cometosheath is strongly influenced by the dynamical pressure of the solar wind and the outgassing rate of the comet. Field line draping happens in the magnetic pile-up region. Changes in nested draping regions (i.e. regions with different Bx-directions) can occur within a few days, possibly in fluenced by changes in the outgassing rate of the comet and thereby the conductivity of the cometary ionosphere.

  16. A two component model for thermal emission from organic grains in Comet Halley

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  17. Electron distributions upstream of the Comet Halley bow shock - Evidence for adiabatic heating

    NASA Technical Reports Server (NTRS)

    Larson, D. E.; Anderson, K. A.; Lin, R. P.; Carlson, C. W.; Reme, H.; Glassmeier, K. H.; Neubauer, F. M.

    1992-01-01

    Three-dimensional plasma electron (22 eV to 30 keV) observations upstream of Comet Halley bow shock, obtained by the RPA-1 COPERNIC (Reme Plasma Analyzer - Complete Positive Ion, Electron and Ram Negative Ion Measurements near Comet Halley) experiment on the Giotto spacecraft are reported. Besides electron distributions typical of the undisturbed solar wind and backstreaming electrons observed when the magnetic field line intersects the cometary bow shock, a new type of distribution, characterized by enhanced low energy (less than 100 eV) flux which peaks at 90-deg pitch angles is found. These are most prominent when the spacecraft is on field lines which pass close to but are not connected to the bow shock. The 90-deg pitch angle electrons appear to have been adiabatically heated by the increase in the magnetic field strength resulting from the compression of the upstream solar wind plasma by the cometary mass loading. A model calculation of this effect which agrees qualitatively with the observed 90-deg flux enhancements is presented.

  18. Modeling the neutral gas and dust coma of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans

    2010-05-01

    The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.

  19. The end states of long-period comets and the origin of Halley-type comets

    NASA Astrophysics Data System (ADS)

    Fernández, Julio A.; Gallardo, Tabaré; Young, Juan D.

    2016-09-01

    We analyse a sample of 73 old long-period comets (LPCs) (orbital periods 200 < P < 1000 yr) with perihelion distances q < 2.5 au, discovered in the period 1850-2014. We cloned the observed comets and also added fictitious LPCs with perihelia in the Jupiter's zone. We consider both a purely dynamical evolution and a physico-dynamical one with different physical lifetimes. We can fit the computed energy distribution of comets with q < 1.3 au to the observed one only within the energy range 0.01 < x < 0.04 au-1 (or periods 125 < P < 1000 yr), where the `energy' is taken as the inverse of the semimajor axis a, namely x ≡ 1/a. The best results are obtained for physical lifetimes of about 200-300 revolutions (for a comet with a standard q = 1 au). We find that neither a purely dynamical evolution, nor a physico-dynamical one can reproduce the long tail of larger binding energies (x ≳ 0.04 au-1) that correspond to most Halley-type comets (HTCs) and Jupiter-family comets. We conclude that most HTCs are not the end states of the evolution of LPCs, but come from a different source, a flattened one that we identify with the Centaurs that are scattered to the inner planetary region from the trans-Neptunian belt. These results also show that the boundary between LPCs and HTCs should be located at an energy x ˜ 0.04 au-1 (P ˜ 125 yr), rather than the conventional classical boundary at P = 200 yr.

  20. Analysis of the tail structures of comet P/Halley 1910 II

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon; Izaguirre, Liberdade

    2012-07-01

    Eight hundred and eighty six images from September 1909 to May 1911 are analysed for the purpose of identifying, measuring and correlating the morphological structures along the plasma tail of P/Halley. These images are from the Atlas of Comet Halley 1910 II (Donn et al., 1986). A systematic visual analysis revealed 304 wavy structures along the main tail and 164 along the secondary tails, 41 solitary waves (solitons), 13 Swan-like tails, 26 disconnection events (DEs), 166 knots (regions of higher density of matter) and six shells. While the wavy structures denote undulations or a train of waves, the solitons refer to the formations usually denominated kinks. In general, it is possible to associate the occurrence of a DE and/or a Swan-Tail with the occurrence of a knot, but the last one may occur independently. It is also possible to say that the solitons occur in association with the wavy structures, but the reverse is not true. The 26 DEs documented in 26 different images allowed the derivation of two onsets of DEs (Table 1), i.e., the time when the comet supposedly crossed a frontier between magnetic sectors of the solar wind (Brandt and Snow, 2000). Both onsets of DEs were determined after the perihelion passage with an average of the corrected velocities Vc equal to (57 ± 15) km/s. The mean value of the corrected wavelength c measured in 70 different wavy structures is equal to (1.7 ± 0.1) x 10^6 km and the mean amplitude A of the wave (measured in the same 70 wavy structures cited above) is equal to (1.4 ± 0.1) x 10^5 km. The mean value of the corrected cometocentric phase velocity Vpc measured in 20 different wavy structures is equal to (168 ± 28) km/s. The average value of the corrected velocities Vkc of the knots measured in 36 different images is equal to (128 ± 12) km/s. There is a tendancy for A and c to increase with increasing cometocentric distance. The results of this work agree with the earlier research from Voelzke and Matsuura (1998), which

  1. High precision low resolution spectrophotometry of Comets Giacobini-Zinner and Halley

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Tegler, Stephen C.

    1986-01-01

    Optical window (300 to 1000 nm) observations were made of Comet Halley during 12 to 14 Mar. 1986 by a scanning spectrometer. The results provide accurate spectrophotometric measurements of the principal molecular bands from the 308 nm OH through the 918 nm CN emissions. The observations can be used to tie space derived ultraviolet and groundbased infrared observations to the optical observations and to one another. Additional observations were made of comet Giacobini-Zinner on 30 September 1985 of the same OH band and the 388 nm band of CN. The Swan band sequence ratios are used to test the best models of C2, with different ratios favoring different models, calling into question the assumptions of these very complete models.

  2. First results from the Giotto magnetometer experiment at comet Halley

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K. H.; Pohl, M.; Raeder, J.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.

    1986-01-01

    The Giotto magnetometer experiment at comet Halley has for the first time provided magnetic field measurements in all the important spatial regions characterizing the front-side interaction between the solar-wind magnetoplasma and a cometary atmosphere. Upstream waves of cometary origin have been observed at distances greater than two million km from the comet, both inbound and outbound. A cometary bow shock has been identified at 1.15 million inbound on the dawn side and a thick quasi-parallel cometary bow shock outbound. A turbulent magnetosheath has been observed further inside. A magnetic pile-up region has been identified inside 135,000 km, inbound, and 263,000 km, outbound, with fields up to 57 and 65 nT, respectively. A cavity region with essentially zero magnetic field has been discovered, with a width of 8500 km along the trajectory around closest approach.

  3. Comparison of the plasma tails of four comets: P/Halley, Okazaki-Levy-Rudenko, Austin, and Levy

    NASA Technical Reports Server (NTRS)

    Farnham, Tony L.; Meech, Karen J.

    1994-01-01

    Photographic and charge coupled device (CCD) plasma tail observations are compared for four comets: P/Halley (22 nights in 1985/1986), Okazaki-Levy-Rudenko 1989 XIX (1989 December 2), Austin 1990 V (nine nights in 1990), and Levy 1990 XX (two nights in 1991). We present a discussion of several image-processing techniques used to enhance the visibility of the plasma tail features in order to measure velocities, accelerations, and position angles. The data are used to assess the validity of various physical mechanisms proposed to explain plasma tail phenomena. Seven disconnection events were observed in the comet P/Halley data, two in the Austin data, and none for the other comets. Analysis of these data suggests that while the crossing of the solar neutral sheet (the sector boundary) is a prominent factor in the production of a disconnection event, it is likely that several mechanisms are at work. A sector boundary crossing has been ruled out as the cause of either the 1986 April 26 P/Halley disconnection or the 1990 May 5/6 Austin disconnection. The motions of the disconnection events, knots, and condensations in the tails were seen to increase from 30-60 km/s near the nucleus (within 10(exp 6) km) to 80-100 km/s at 10(exp 7) km, consistent with either bulk motion or Alfven waves. Distinguishing between the two cases is not possible with these data. It was found that although the tail ray rotation rate slows as the ray approaches the tail axis, it is not a good indicator of the solar wind speed. Historical plasma tail data are also used to look for clues as to why some comets form well-developed plasma tails and others do not.

  4. On the global nature of the solar wind interaction with Comet Halley

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Flammer, K. R.; Reme, H.; Sauvaud, J. A.; D'Uston, C.

    1989-01-01

    Data obtained by two instruments of the RPA-Copernic experiment aboard Giotto during its encounter with Comet Halley are used to determine the positions of several sharp boundaries delineating transitions from one flow state to another. Production rates of the neutrals are obtained, along with ion-neutral drag coefficients. It is suggested that the cometopause observed between the shock and the ionopause coincides with the expected position of a previously proposed collisionopause.

  5. Navigation and guidance of Japanese deepspace probes encountering Halley's comet

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Matsuo, H.; Takano, T.; Kawaguchi, J.

    The techniques used by ISAS in the guidance of the Sakigake and Suisei probes, which encountered Comet Halley in March 1986, are reviewed. Consideration is given to the guidance of the last rocket stage in the direct ascent phase, midcourse maneuvers, tracking systems and communication links, the tracking strategy, trajectory-generation and orbit-determination software, and orbit-determination accuracy. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided, and the ISAS positions of both probes during the first 10 days after launch are shown to be within 100 km in distance and 1 m/sec in velocity of NASA coordinate estimates.

  6. Comet Halley in 1910, as viewed from a Maltese perspective

    NASA Astrophysics Data System (ADS)

    Galea, Adrian

    2009-07-01

    Comet Halley's return in 1910 was keenly anticipated globally by scientists and the lay public alike. Although cometary science had progressed rapidly during the last quarter of the nineteenth century, superstition remained significant in different parts of the world and there were fears that people would die if the prediction that the Earth would pass through the comet's tail were correct. Malta was a small British island colony in the Mediterranean, and the inhabitants there were no exception. Local newspapers reported concerns from their readers and from foreign sources, but they also included reassuring scientific information about comets. Under the patronage of the colonial government a local amateur astronomer named Francis Reynolds reassured the public through lectures that he delivered. Overall the local population appeared to have been calm about the impending return. The first recorded sighting from Malta was on 24 April 1910 and the first naked eye sighting occurred the following day. Accounts were published in the local newspapers and in private correspondence, suggesting a high level of public interest in this object. No photographs of the comet from Malta have been traced, but the aforementioned Mr Reynolds and a well-known Maltese artist, G. Cali, did make a number of paintings. On the night when the Earth was due to pass through the comet's tail many local people congregated around the bastions of the city under an overcast sky in the early hours of the morning, but no untoward events were experienced.

  7. Morphological analysis of the tail structures of comet P/Halley 1910 II

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Izaguirre, L. S.

    2012-05-01

    For the purpose of identifying, measuring and correlating the morphological structures along the plasma tail of P/Halley 886 images from September 1909 to May 1911 are analysed. These images are from the Atlas of Comet Halley 1910 II (Donn et al., 1986). A systematic visual analysis revealed 304 wavy structures along the main tail and 164 along the secondary tails, 41 solitary waves (solitons), 13 Swan-like tails, 26 disconnection events (DEs), 166 knots (regions of higher density of matter) and six shells. While the wavy structures denote undulations or a train of waves, the solitons refer to the formations usually denominated as kinks. In general, it is possible to associate the occurrence of a DE and/or a Swan-Tail with the occurrence of a knot, but the last one may occur independently. It is also possible to say that the solitons occur in association with the wavy structures, but the reverse is not true. The 26 DEs documented in 26 different images allowed the derivation of two onsets of DEs (Table 1), i.e., the time when the comet supposedly crossed a frontier between magnetic sectors of the solar wind (Brandt and Snow, 2000). Both onsets of DEs were determined after the perihelion passage with an average of the corrected velocities Vc equal to (57±15) km s-1. The mean value of the corrected wavelength λc measured in 70 different wavy structures is equal to (1.7±0.1)×106 km and the mean amplitude A of the wave (measured in the same 70 wavy structures cited above) is equal to (1.4±0.1)×105 km. The mean value of the corrected cometocentric phase velocity Vpc measured in 20 different wavy structures is equal to (168±28) km s-1. The average value of the corrected velocities Vkc of the knots measured in 36 different images is equal to (128±12) km s-1. There is a tendency for A and λc to increase with increasing cometocentric distance. The results of this work agree with the earlier research from Voelzke and Matsuura (1998), which analysed comet P/Halley

  8. In situ gas and ion measurements at comet Halley

    NASA Astrophysics Data System (ADS)

    Krankowsky, D.; Lammerzahl, P.; Herrwerth, I.; Woweries, J.; Eberhardt, P.; Dolder, U.; Herrmann, U.; Schulte, W.; Berthelier, J. J.; Illiano, J. M.; Hodges, R. R.; Hoffman, J. H.

    1986-05-01

    The neutral mass spectrometer experiment carried by the Giotto spacecraft was designed to determine the abundances and the chemical, elemental and isotopic composition of the gases and low-energy ions in the coma of comet Halley. Its first results show the predominance of water vapour with an H2O density of 4.7x107molecules cm-3 at 1,000 km. Limits on the abundances of CO2, NH3 and CH4 relative to H2O are given. The water-group ions H3O+, H2O+ and OH+ have been unambiguously identified, along with the ions 12C+, 12CH+, 16O+, Na+, 12C2+, 32S+, 34S+ and 56Fe+.

  9. Ion abundances and implications for photochemistry in Comets Halley (1986 III) and Bradfield (1987 XXIX)

    NASA Astrophysics Data System (ADS)

    Lutz, B. L.; Womack, M.; Wagner, R. M.

    1993-04-01

    The Ohio State University Image Dissector Scanner on the Perkins 1.8-m telescope at the Lowell Observatory was used to record spectra of the plasma tails of Comets P/Halley (1986 III) and P/Bradfield (1987 XXIX, also 1987s). The ionic species CO(+), N2(+), CH(+), and H2O(+) were identified in these spectra, and column densities for them were calculated from measured fluxes. The observed N2(+)/H2O(+) ratios are at least an order of magnitude lower and the observed CH(+)/H2O(+) ratios are a factor of 100 higher than theoretical results. The abundance ratio N2/CO was derived in the plasma tail of Bradfield from N2(+) and CO(+) data, and found to be an order of magnitude higher than a value measured in Halley. The relative ion abundances of CH(+), N2(+), CO(+), and H2O(+) in Halley are consistent with in situ measurements obtained from the Giotto spacecraft.

  10. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  11. The International VEGA "Venus-Halley" (1984-1986) Experiment: Description and Scientific Objectives

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Venus-Halley (Vega) project will provide a unique opportunity to combine a mission over Venus with a transfer flight to Halley's comet. This project is based on three research goals: (1) to study the surface of Venus; (2) to study the air circulation on Venus and its meteorological parameters; and (3) to study Halley's comet. The objective of the study of Halley's comet is to: determine the physical characteristics of its nucleus; define the structure and dynamics of the coma around the nucleus; define the gas composition near the nucleus; investigate the dust particle distribution as a function of mass at various distances from the nucleus; and investigate the solar wind interaction with the atmosphere and ionosphere of the comet.

  12. Velocity-resolved observations of water in Comet Halley

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.; Davis, D. Scott; Mumma, Michael J.; Weaver, Harold A.

    1986-01-01

    High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets.

  13. Electron energetics in the inner coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Gan, L.; Cravens, T. E.

    1990-05-01

    A quasi-two-dimensional model of the spatial and energy distribution of electrons in the inner coma of Comet Halley has been constructed from a spherically symmetric ion density profile based on Giotto measurements, using the two-stream electron transport method and the time-dependent electron energy equation. A sharp jump in the electron temperature was found to be present at a cometocentric distance of about 15,000 km. This thermal boundary separates an inner region where cooling processes are dominant from an outer region where heat transport is more important. Both thermal and suprathermal electron populations exist inside the thermal boundary with comparable kinetic pressures. Outside the thermal boundary, a cloud electron population does not exist, and the electrons are almost isothermal along the magnetic field lines.

  14. A spacecraft attitude and articulation control system design for the Comet Halley intercept mission

    NASA Technical Reports Server (NTRS)

    Key, R. W.

    1981-01-01

    An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.

  15. Systematics of the CHON and other light-element particle populations in Comet Halley

    NASA Technical Reports Server (NTRS)

    Clark, Benton; Mason, Larry W.; Kissel, Jochen

    1986-01-01

    Based on chemical signatures measured by the PIA experiment during the Giotto flyby of comet Halley, particle classifications were designated. In addition to silicate-like grains and particles of mixed (cosmic) composition, there appear to be several light-element rich populations, including the CHON, (H,C), (H,C,O), and (H,C,N) particle types. These compositional classes are further distinguished by differences in mass distributions, a density indicator, and variations in relative abundance within the coma. These particle populations are evidence for chemical heterogeneity in the surface of the cometary nucleus. Particles found mainly in the inner coma may be volatile icy grains. Most of the N of the comet may be found in up to three different populations of grains; one or more of these may be responsible for the observation of cyanojets.

  16. ULF waves at comets Halley and Giacobini-Zinner - Comparison with simulations

    NASA Astrophysics Data System (ADS)

    Le, G.; Russell, C. T.; Gary, S. P.; Smith, E. J.; Riedler, W.; Schwingenschuh, K.

    1989-09-01

    A comparison is made between observations and numerical simulations of magnetic fluctuations near the proton and water group ion cyclotron frequencies as a function of distance from the comets Halley and Giacobini-Zinner. The amplitude of waves due to different cyclotron resonant instabilities is monitored by examining the amplitude of waves near the gyrofrequency of the respective ions, measured in by the ICE spacecraft. The results are compared with a one-dimensional electromagnetic hybrid simulation of two-ion pickup based on the predictions of Gary et al. (1989). The observations are consistent with the prediction that amplitudes are dependent on the properties of the injected beams and the local injection rate.

  17. Behavioral Characteristics and CO+CO2 Production Rates of Halley-type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, J. D.; Bauer, J. M.; Mainzer, A. K.; Kramer, E.; Masiero, J. R.; Nugent, C. R.; Sonnett, S.; Fernández, Y. R.; Ruecker, K.; Krings, P.; Wright, E. L.; WISE, The; NEOWISE Teams

    2018-04-01

    From the entire data set of comets observed by NEOWISE, we have analyzed 11 different Halley-type Comets (HTCs) for dust production rates, CO+CO2 production rates, and nucleus sizes. Incorporating HTCs from previous studies and multiple comet visits, we have a total of 21 stacked visits, 13 of which are active and 8 for which we calculated upper limits of production. We determined the nucleus sizes of 27P, P/2006 HR30, P/2012 NJ, and C/2016 S1. Furthermore, we analyzed the relationships between dust production and heliocentric distance, and gas production and heliocentric distance. We concluded that for this population of HTCs, ranging in heliocentric distance from 1.21 to 2.66 au, there was no significant correlation between dust production and heliocentric distance, nor between gas production and heliocentric distance.

  18. Temporal Evolution of the Morphological Tail Structures of Comet P/Halley 1910 II

    NASA Astrophysics Data System (ADS)

    Izaguirre, L. S.; Voelzke, M. R.

    2004-08-01

    Eight hundred and eighty six images from September 1909 to May 1911 are analysed for the purpose of identifying, measuring and correlating the morphological structures along the plasma tail of P/Halley. These images are from the Atlas of Comet Halley 1910 II (Donn et al., 1986). A systematic visual analysis revealed 304 wavy structures (Yi et al., 1998) along the main tail and 164 along the secondary tails, 41 solitary waves (solitons) (Roberts, 1985), 13 Swan-like tails (Jockers, 1985), 26 disconnection events (DEs) (Voelzke, 2002a), 166 knots (Voelzke et al., 1997) and six shells (Schulz and Schlosser, 1989). While the wavy structures denote undulations or a train of waves, the solitons refer to the formations usually denominated kinks (Tomita et al., 1987). In general, it is possible to associate the occurrence of a DE and/or a Swan-Tail with the occurrence of a knot, but the last one may occur independently. It is also possible to say that the solitons occur in association with the wavy structures, but the reverse is not true. The 26 DEs documented in 26 different images allowed the derivation of two onsets of DEs, i.e., the time when the comet supposedly crossed a frontier between magnetic sectors of the solar wind (Brandt and Snow, 2000). Both onsets of DEs were determined after the perihelion passage with an average of the corrected velocities Vc equal to (57 ± 15) km s-1. The mean value of the corrected wavelength lc measured in 70 different wavy structures is equal to (1.7 ± 0.1) x 10^6 km and the mean amplitude A of the wave (measured in the same 70 wavy structures cited above) is equal to (1.4 ± 0.1) x 10^5 km. The mean value of the corrected cometocentric phase velocity Vpc measured in 20 different wavy structures is equal to (168 ± 28) km s-1. The average value of the corrected velocities Vkc of the knots measured in 36 different images is equal to (128 ± 12) km s-1. There is a tendency for A and lc to increase with increasing cometocentric

  19. Observations of solar wind ion charge exchange in the comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.

  20. Earth-return trajectory options for the 1985-86 Halley opportunity

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1982-01-01

    A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.

  1. Pickup protons and water ions at Comet Halley - Comparisons with Giotto observations

    NASA Astrophysics Data System (ADS)

    Ye, G.; Cravens, T. E.; Gombosi, T. I.

    1993-02-01

    The cometary ion pickup process along the sun-comet line at Comet Halley is investigated using a quasi-linear diffusion model including both pitch angle and energy diffusion, adiabatic compression, and convective motion with the solar wind flow. The model results are compared with energetic ion distributions observed by instruments on board the Giotto spacecraft. The observed power spectrum index of magnetic turbulence (gamma) is 2-2.5. The present simulation shows that when gamma was 2, the calculated proton distributions were much more isotropic than the observed ones. The numerical solutions of the quasi-linear diffusion equations show that the isotropization of the pickup ion distribution, particularly at the pickup velocity, is not complete even close to the bow shock. Given the observed turbulence level, quasi-linear theory yields pickup ion energy distributions that agree with the observed ones quite well and easily produces energetic ions with energies up to hundreds of keV.

  2. Angular and energy distribution of low energy cometary ions measured in the outer coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Berthelier, J. J.; Illiano, J. M.; Hodges, R. R.; Krankowsky, D.; Eberhardt, P.; Laemmerzahl, P.; Hoffman, J. H.; Herrwerth, I.; Woweries, J.; Dolder, U.

    1986-01-01

    During the early phase of the Giotto encounter with comet Halley, at distances from the nucleus greater than 350,000 km, the neutral mass spectrometer was operated in a mode allowing the measurement of low energy ions. Data reveal two important features of the outer coma: the presence of a sharp discontinuity in the plasma flow at 550,000 km from the nucleus which results in a significant decrease of the plasma flow accompanied by an increase in temperature; and the detection of newly born ions identified as O(+) and CO(+), at distances from the comet greater than 800,000 km.

  3. On LAM's and SAM's for Halley's rotation

    NASA Technical Reports Server (NTRS)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  4. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  5. The Infrared Activity of Comet P/Halley 1986 III at Heliocentric Distances from 0.6 to 3.0 AU

    NASA Astrophysics Data System (ADS)

    Homich, A. A.; Gehrz, R. D.; Hanner, M. S.; Tokunaga, A. T.

    2001-05-01

    We present an analysis of the combined infrared data obtained on Comet P/Halley 1986 III acquired by Gehrz and Ney (1992), Hanner et al. (1987), Tokunaga et al. (1986, 1988), Green et al. (1986), Ryan and Campins (1991), Campins and Ryan (1989), and Bregman et al. (1987). This data base, the largest single body of infrared photometric data for any comet, spans a wavelength range from 0.7 to 23 μ m and describes the activity of P/Halley at heliocentric distances from 0.6 to 3.0 AU. The quantitative corrections and calibration procedures required to intercompare the individual data sets are described. Long-term trends in the heliocentric dependance of P/Halley's grain color temperature Tobs, silicate emission optical strength M10, grain albedo A, grain superheat S, apparent luminosity L, and infrared monochromatic fluxes are discussed. The infrared data sets are compared with data sets at other wavelengths for evidence of short-duration bursts associated with the activity of the comet's nucleus. We conclude that short duration outbursts at small heliocentric distances produce small grains whose thermal emission during the outburst dominates the normal background thermal emission from larger grains. These outbursts are not observed at heliocentric distances larger than 2.0 AU pre-perihelion, but cannot be ruled out for the post-perihelion data. We discuss the nuclear activity implied by both the long-term trends and the short period outburst behavior. This research was supported by NASA, the National Science Foundation, the U.S. Air Force, the University of Minnesota Institute of Technology Dean's Office and Graduate School, and the University of Wyoming.

  6. Dust impact effects recorded by the APV-N experiment during Comet Halley encounters

    NASA Astrophysics Data System (ADS)

    Oberc, P.; Orlowski, D.; Klimov, S.

    1986-12-01

    During the Vega 1 and 2 comet Halley encounters plasma wave instrument APV-N entered a region of impulsive noise 220,000 km from nucleus. The noise is attributed to dust grain impacts onto spacecraft body. Regression analysis of impact induced effects recorded during flyby shows that from 100,000 km from closest approach most plasma wave spectra measured by APV-N onboard Vega 1 and 2 are significantly influenced by dust impact effects. Signals associated with large dust impacts are directly recorded on the E2 0.1 to 25 Hz electric field waveform channel.

  7. The trend of production rates with heliocentric distance for comet P/Halley

    NASA Technical Reports Server (NTRS)

    Fink, Uwe

    1994-01-01

    Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r(exp -1.0) with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.

  8. Airborne and groundbased spectrophotometry of comet P/Halley from 5-13 micrometers

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Witteborn, F. C.; Allamandola, L. J.; Campins, H.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Tielens, A. G. G. M.

    1987-01-01

    Spectrophotometry of comet Halley from 5-13 microns was obtained from the Kuiper Airborne Observatory and from the Lick Observatory Nickel Telescope, revealing a strong broad emission band at 10 microns and a weak feature at 6.8 microns. The 10-micron band is identified with silicate materials, and the primary component of the silicate emission is suggested to be due to olivine. The 6.8 micron feature may be due either to carbonates or the C-H deformation mode in organic molecules. The data indicate that small particles are abundant in the coma and that the dust contains at least two physically separate components. Significant spatial and temporal variations are also noted in the spectrum.

  9. International Halley Watch: Discipline specialists for spectroscopy and spectrophotometry

    NASA Technical Reports Server (NTRS)

    Wyckoff, S.; Feston, M. C.; Wehinger, P.

    1986-01-01

    Spectroscopic observations of Comets P/Crommelin, P/Giacobini-Zinner and P/Halley are coordinated, preliminary results are delivered to the astronomical community and the data collected from observers throughout the world are archived. The ASU IHW Center has the additional responsibility of maintaining the IHW Electronic Bulletin Board which reports real-time information on the status of Comet P/Halley. Access to this electronic bulletin board via telephone modem connection is available to any astronomer upon request.

  10. Ultralow-mass solar-array designs for Halley's comet rendezvous mission

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    This paper describes the conceptual design study results of photovoltaic arrays capable of powering a Halley's comet rendezvous mission. This mission would be Shuttle-launched, employ a unique form of propulsion (ion drive) which requires high power levels for operation, and operate at distances between 0.6 and 4.5 AU. These requirements make it necessary to develop arrays with extremely high power-to-mass ratio (200 W/kg). In addition, the dual requirements of providing ion thruster power as well as housekeeping power leads to the development of unique methods for mode switching. Both planar and variable-concentrator-enhanced array concepts using ultrathin (50 micron) high-efficiency (up to 12.5%) silicon solar cells coupled with thin (75 micron) plastic encapsulants are considered. In order to satisfy the Shuttle launch environment it was necessary to provide novel methods of both storing and deploying these arrays.

  11. Airborne 20-65 micron spectrophotometry of Comet Halley

    NASA Technical Reports Server (NTRS)

    Glaccum, William; Moseley, S. H.; Campins, Humberto C.; Loewenstein, R. F.

    1988-01-01

    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed.

  12. Fast Variations In Spectrum of Comet Halley

    NASA Astrophysics Data System (ADS)

    Borysenko, S. A.

    The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution

  13. The kinetics and dynamics of the coma of Halley's comet

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1994-01-01

    This grant to the University of Michigan supported the efforts of Michael R. Combi to serve as a co-investigator in collaboration with a larger effort by the principal investigator, William Smyth of Atmospheric and Environmental Research, Inc. The overall objective of this project was to analyze in a self-consistent manner unique optical O((sup 1)D) and NH2 ultra-high resolution line profile data of excellent quality and other supporting lower-resolution spectral data for the coma of comet P/Halley by using highly developed and physically-based cometary coma models in order to determine and explain in terms of physical processes the actual dynamics and photochemical kinetics that occur in the coma. The justification for this work is that it provides a valuable and underlying physical base from which to interpret significantly different types of coma observations in a self-consistent manner and hence bring into agreement (or avoid) apparent inconsistencies that arise from non-physically based interpretations. The level of effort for the Michigan component amounted to less than three person-months over a planned period of three years. The period had been extended at no extra cost to four years because the Michigan grant and the AER contract did not have coincident time periods. An effort of somewhat larger scope was undertaken by the PI. The importance of the O((sup 1)D) profiles is that they provide a direct trace of the water distribution in comets. The line profile shape is produced by the convolution of the outflow velocity and thermal dispersion of the parent water molecules with the photokinetic ejection of the oxygen atoms upon photodissociation of the parent water molecules. Our understanding of the NH2 and its precursor ammonia are important for comet-to-comet composition variations as they relate to the cosmo-chemistry of the early solar nebula. Modeling of the distribution of NH2 is necessary in order to infer the ammonia production rates from NH2

  14. Bulk properties and velocity distributions of water group ions at Comet Halley - Giotto measurements

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Wilken, B.; Johnstone, A. D.; Jockers, K.; Glassmeier, K.-H.; Huddleston, D. E.

    1990-07-01

    In the region upstream of Comet Halley, pickup heavy ions of cometary origin were directly observed by the implanted ion spectrometer on Giotto. Diffusion of this population in pitch angle and in energy, during the approach to the comet and on the outbound leg is discussed. The two data sets are compared and qualitative ideas on scattering timescales are inferred. In addition the bulk parameters of these distributions have been computed and a comparison of the observed speed in the solar wind frame and the observed density with expectations is presented. Pitch angle scattering occurs more slowly than expected with filled shells appearing at 2,500,000 km, and significant energy diffusion does not occur until the bow shock region. Also the shell distributions downstream of the shock flow at the bispherical bulk speed (related to the Alfven speed) along the magnetic field with respect to the solar wind in accordance with conservation of energy between the pickup ions and the wave turbulence.

  15. Infrared observations of an outburst of small dust grains from the nucleus of Comet P/Halley 1986 III at perihelion

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.

    1995-01-01

    A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.

  16. Comet Halleys Legacy: SUNA, Astronomy from Universidad Central de Venezuela (U.C.V.)

    NASA Astrophysics Data System (ADS)

    Romero, Gabriel; Fernandez, Nelson

    2007-12-01

    The Sociedad Universitaria de Astronomia (SUNA) is a group of astronomy amateurs which works inside the Universidad Central de Venezuela (Venezuelas Central University)s campus. The initiative is originated during the path through the perihelion of Comet Halley in 1986, and since then their goals are promotion of astronomical information to all the university community. Observational works are also carried out, such as: registration and investigation of astronomical events, with the purpose to offer the opportunity to all public, mostly students o the University, to enjoy a spectacle, and at the same time to motivate the students to continue professional studies of astronomy. Being this last goal one of the most gratifying in the society.

  17. The variability of Halley's Comet during the Vega, Planet-A, and Giotto encounters

    NASA Technical Reports Server (NTRS)

    Schleicher, D. G.; Millis, R. L.; Tholen, D.; Lark, N.; Birch, Peter V.; Martin, Ralph; Ahearn, Michael F.

    1986-01-01

    Narrowband photometry of Halley obtained at Cerro Tololo Inter-American Observatory (CTIO), Mauna Kea Observatory (MKO), and Perth Observatory was combined to determine the relative level of activity during the interval spanning the spacecraft encounters. Measurements of the flux from the comet in emission bands of OH, NH, CN, C3, and C2, as well as at 2 continuum points, were obtained at CTIO on each night between 5 March and 17 March 1986. Observations were made on many of these same dates at MKO and Perth using comparable interference filters. The date clearly show variation of a factor of 2.5 in the production of all observed species with a characteristic time scale of a few days.

  18. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  19. Pioneer Venus observations during Comet Halley's inferior conjunction

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.; Scarf, F. L.

    1985-01-01

    On Feb. 4, 1986, Halley passed through inferior conjunction with Venus but was at high latitudes. Not all data for this time period have been received. However, the data that are available suggest that at most only weak effects associated with Halley were seen at Pioneer Venus. The data during this time, however, are useful for correlating with the behavior of the plasma tail.

  20. The ion population between 1300 km and 230000 km in the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Altwegg, K.; Balsiger, H.; Geiss, J.; Goldstein, R.; Ip, W. -H.; Meier, A.; Neugebauer, M.; Rosenbauer, H.; Shelley, E.

    1993-01-01

    During the encounter of the spacecraft Giotto with Comet Halley the two sensors of the ion mass spectrometer (IMS), high energy range spectrometer (HERS) and high intensity spectrometer (HIS), measured the mass and the three-dimensional velocity distributions of cometary ions. HIS looked mainly at the cold, slow part of the distribution close to the nucleus, HERS at the more energetic pick-up ions further out. After a thorough recalibration of the HIS flight spare unit and an extensive data analysis we present here continuous ion density-, composition-, velocity-, and temperature profiles for the water group ion (mass range 16-19 amu/e) along Giotto's inbound trajectory from 230,000 to 1300 km from the comet nucleus. The two sensors are in very good agreement in the region where their measurements overlap thus giving an excellent data base for the discussion of theoretical comet models. The most prominent feature where models and observations disagree is the so called pile up region between 8000 and 15,000 km from the nucleus.

  1. The abundance of ammonia in Comet P/Halley derived from ultraviolet spectrophotometry of NH by ASTRON and IUE

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Fournier, K. B.; Grinin, V. P.; Zvereva, A. M.

    1993-01-01

    From an analysis of the spatial profiles of both the NH and OH UV emissions observed by the ASTRON satellite, the ratio of ammonia-to-water production rates in Comet Halley on April 9, 1986 is derived and found to lie in the range of 0.44-0.94 percent. In order to compare this result with those based on both ground-based and in situ observations made on other dates during the 1985-1986 apparition of the comet, the IUE observational data base for December 1985 and March-April 1986 is used to evaluate the ratio of NH to OH column density in the IUE field of view and thus constrain the long-term behavior of this ratio. The IUE data base indicates that, to within a factor of 2, the ammonia-to-water production rate ratio is the same for a small sample of moderately bright comets observed recently.

  2. Comparison of picked-up protons and water group ions upstream of Comet Halley's bow shock

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Coates, A. J.; Neubauer, F. M.

    1990-01-01

    The similarities and differences between the picked-up cometary protons and water-group (WG) ions upstream of the bow shock of Comet Halley are examined using measurements obtained by the ion mass spectrometer and plasma analyzer experiments on board Giotto. It was found that the dependencies of the pitch angle and the energy diffusion rates of the cometary protons and WG ions on the ion densities and on the angle alpha between the interplanetary field and the solar wind velocity vector were very different. This finding could not be explained in terms of presently available theories and models.

  3. Behavioral Characteristics and CO+CO2 Production Rates of Halley-Type Comets Observed by NEOWISE

    NASA Astrophysics Data System (ADS)

    Rosser, Joshua David; Bauer, James M.; Mainzer, Amy K.; Kramer, Emily A.; Masiero, Joseph R.; Nugent, Carrie; Sonnett, Sarah M.; Fernandez, Yanga R.; Wright, Edward L.; WISE, NEOWISE

    2017-10-01

    From the NEOWISE dataset of comet images, 11 different Halley-Type Comets (HTCs) were identified and analyzed for dust production rates (Afρ), CO+CO2 production rates (QCO2), and nucleus size. The objects considered ranged in heliocentric distance from 1.21 AU to 2.66 AU and were only considered when showing signs of reasonable activity. When multiple epochs were included and when combined with data from previous WISE and NEOWISE studies, our dataset totaled to 21 observations; 13 of which included active comets, and 7 for which we calculated upper limits of production. Comet P/2010 JC81 was removed from consideration due to clear inactivity. For this study, active comets are defined as those which exhibit excess signal of at least 3σ in the 4.6 μm detection band, while comets for which upper limits were calculated demonstrated excess signal of 1σ in the 4.6 μm detection band. Furthermore, we confirmed the nucleus size of 27P, P/2006 HR30, C/2010 L5, P/2012 NJ, C/2016 S1. We found that given the range in heliocentric distance for this sample of HTCs, Afρ ranged from 0.790 ± 0.036 to 2.64 ± 0.14, and QCO2 ranged from 25.08 ± 0.08 to 26.71 ± 0.12. No significant correlation between dust production and heliocentric distance, nor CO+CO2 production with heliocentric distance was found for this population. This poster will display production rates and other physical properties of these HTCs, as well as place the ensemble of HTC production rate properties into context.

  4. Halley’s comet; a benevolent visitor to Earth

    USGS Publications Warehouse

    Spall, H.

    1986-01-01

    In 1705 Edmund Halley, Professor of Geometry at Oxford University, collected and organized a mass of information on comets observed in 1531, 1607, and 1682, a task for which he had an uncommon genius. He was able to show that the comets had very similar orbits, and correctly drew the conclusion that they were the same object and more importantly that comets could therefore be periodic. He predicted that this comet would again be visible from the Earth in 1759. Since then it has been known as Halley's comet and it has played a significant role in the development of astronomy. 

  5. Comet rendezvous mission study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1971-01-01

    Four periodic comets with perihelia between 1980 and 1986 (Encke, d'Arrest, Kipff, and Halley) are used as candidates for the comet rendezvous mission study. All these comet apparitions are especially favorable for rendezvous missions, because of early earth-based comet recovery, good opportunities to view their activity from earth, and reasonable launch vehicle and trajectory requirements for nominal payloads.

  6. IUE observations of Comet Halley: Evolution of the UV spectrum between September 1985 and July 1986

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Festou, Michael C.; Ahearn, M. F.; Arpigny, C.; Butterworth, P. S.; Cosmovici, C. B.; Danks, A. C.; Gilmozzi, R.; Jackson, W. M.; Mcfadden, L. A.

    1986-01-01

    The ultraviolet spectrum of comet P/Halley was monitored with the IUE between 12 September 1985 and 8 July 1986 (r <2.6 AU pre and post-perihelion) at regular time intervals except for a two-month period around the time of perihelion. A complete characterization of the UV spectrum of the comet was obtained to derive coma abundances and to study the light emission mechanisms of the observed species. The Fine Error Sensor (FES) camera of the IUE was used to photometrically investigate the coma brightness variation on time scales of the order of hours. Spectroscopic observations as well as FES measurements show that the activity of the nucleus is highly variable, particularly at the end of December 1985 and during March and April 1986. The production rates of OH, CS and dust are derived for the entire period of the observations. The total water loss rate for this period is estimated to be 150 million metric tons.

  7. Long-term evolution of 1991 DA: A dynamically evolved extinct Halley-type comet

    NASA Technical Reports Server (NTRS)

    Hahn, Gerhard; Bailey, M. E.

    1992-01-01

    The long-term dynamical evolution of 21 variational orbits for the intermediate-period asteroid 1991 DA was followed for up to +/-10(exp 5) years from the present. 1991 DA is close to the 2:7 resonance with Jupiter; it has avoided close encounters, within 1 AU, with this planet for at least the past 30,000 years, even at the node crossing. The future evolution typically shows no close encounters with Jupiter within at least 50,000 years. This corresponds to the mean time between node crossings with either Jupiter or Saturn. Close encounters with Saturn and Jupiter lead to a chaotic evolution for the whole ensemble, while secular perturbations cause large-amplitude swings in eccentricity and inclination (the latter covering the range 15 deg approximately less than i approximately less than 85 deg) which correlate with deep excursions of the perihelion distance to values much less than 1 AU. These variations are similar to those found in P/Machholz and a variety of other high-inclination orbits, e.g., P/Hartley-IRAS. We emphasize the connection between the orbital evolution of 1991 DA and that of Halley-type comets. If 1991 DA was once a comet, it is not surprising that it is now extinct.

  8. Electron impact ionization in the vicinity of comets

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.

    1987-07-01

    The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.

  9. The 3.4 micron emission in comets

    NASA Technical Reports Server (NTRS)

    Brooke, Tim Y.; Knacke, Roger F.; Owen, T. C.; Tokunaga, Alan T.

    1989-01-01

    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics

  10. Observations of a Greenstein effect in the O I 1302A emission of Comet Halley

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Feldman, P. D.; Woods, T. N.

    1989-03-01

    Far-ultraviolet spectra of Comet Halley (1986 III) were obtained on February 26, 1986, 17 days after perihelion, and on March 13, 1986, 13 hr before the Giotto encounter, using an imaging spectrograph aboard a sounding rocket. A sunward-antisunward asymmetry observed in the brightness distribution of the O I 1302A emission is a result of the differential Swings effect first discussed by Greenstein (1958) for Fraunhofer structure in the solar continuum. The mean velocity of the O atoms in the coma at cometocentric radii greater than 10,000 km was 2.2 + or - 0.8 km/s based on model calculations which incorporate the Greenstein effect. This velocity is consistent with H2O as the principal source of oxygen.

  11. International Halley Watch: Discipline specialists for large scale phenomena

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Niedner, M. B., Jr.

    1986-01-01

    The largest scale structures of comets, their tails, are extremely interesting from a physical point of view, and some of their properties are among the most spectacular displayed by comets. Because the tail(s) is an important component part of a comet, the Large-Scale Phenomena (L-SP) Discipline was created as one of eight different observational methods in which Halley data would be encouraged and collected from all around the world under the aspices of the International Halley Watch (IHW). The L-SP Discipline Specialist (DS) Team resides at NASA/Goddard Space Flight Center under the leadership of John C. Brandt, Malcolm B. Niedner, and their team of image-processing and computer specialists; Jurgan Rahe at NASA Headquarters completes the formal DS science staff. The team has adopted the study of disconnection events (DE) as its principal science target, and it is because of the rapid changes which occur in connection with DE's that such extensive global coverage was deemed necessary to assemble a complete record.

  12. On charge exchange effect in the vicinity of the cometopause of Comet Halley

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1989-08-01

    In order to explore the physical nature of the cometopause observed at Comet Halley by the Vega spacecraft and by the Giotto probe, the chemical compositional changes and variations of the thermal-energy distributions of the water-group ions are examined, adopting a two-dimensional cometary-plasma flowfield model based on three-dimensional MHD simulations of Fedder et al. (1986). The charge-exchange loss of hot cometary ions and the solar-wind protons could be used to explain the observed number-density profiles quantitatively. The resulting exponential depletion of the hot-ion populations with a scale length of about 10,000 km occurs near 60,000-80,000 km along the trajectory of Giotto, as indicated by both theoretical computations and the ion-mass-spectrometer measurements. The formation of the cometopause located at about 140,000 km is therefore not necessarily as closely related to the charge-exchange process.

  13. Long-term evolution of Oort Cloud comets: capture of comets

    NASA Astrophysics Data System (ADS)

    Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.

    2002-07-01

    We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.

  14. Infrared techniques for comet observations

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Tokunaga, Alan T.

    1991-01-01

    The infrared spectral region (1-1000 microns) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2D arrays leading to IR cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

  15. Rosetta - ESA's new comet chaser

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Rosetta orbiter will literally chase comet Wirtanen for two years, sending back valuable data and ensuring Europe retains its lead in comet science. A lander will attach itself to this lump of frozen ice and dust, which is travelling through space at over 130,000 kilometres per hour, and analyse samples. Just as the re-discovery of the Rosetta Stone, 200 years ago, enabled the mysteries of ancient Egyptian hieroglyphics to be unrravelled, so the Rosetta mission will help scientists learn even more about comets, the most primitive objects in the solar system. In 1986, ESA's Giotto spacecraft flew into the tail of Halley's Comet. That was ESA's first interplanetary mission and it was hailed as an outstanding success. The pictures and scientific data that Giotto sent back placed Europe at the forefront of comet science. Notes for Editors : On the day of the press event, the now deactivated Giotto spacecraft will do an Earth flyby 13 years after its encounter with Halley's Comet. The British Museum is celebrating 200-years anniversary of the Rosetta Stone, with an exhibition that includes a model of its modern equivalent, the Rosetta spacecraft.

  16. Comparison of some characteristics of comets 1P/Halley and 67P/Churyumov-Gerasimenko from the Vega and Rosetta mission data

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-05-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov-Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.

  17. 30 years of the Vega mission: Comparison of some properties of the 1P/Halley and 67P/Churyumov-Gerasimenko comets

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-06-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and Vega-2 approached and closely passed by the nucleus of Halley’s comet (1P/Halley). A few days later, on March 14, 1986, the same was done by the European Space Agency’s (ESA) Giotto spacecraft. These missions, together with the Japanese Suisei (JAXA), marked a successful start to spacecraft exploration of cometary nuclei. Subsequent missions to other comets have been aimed at directly studying cometary bodies carrying signs of the formation of the Solar System. The Rosetta spacecraft, inserted into a low orbit around the nucleus of the 67P/Churyumov-Gerasimenko comet, performed its complex measurements from 2014 to September 2016. In this review, some of the data from these missions are compared. The review draws on the proceedings of the Vega 30th anniversary conference held at the Space Research Institute (IKI) of the Russian Academy of Sciences in March 2016 and is not meant to be exhaustive in describing mission results and problems in the physics of comets.

  18. The digital archive of the International Halley Watch

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A., III; Niedner, M. B.; Grayzeck, E.; Aronsson, M.; Newburn, R. L.; Warnock, A., III

    1992-01-01

    The International Halley Watch was established to coordinate, collect, archive, and distribute the scientific data from Comet P/Halley that would be obtained from both the ground and space. This paper describes one of the end products of that effort, namely the IHW Digital Archive. The IHW Digital Archive consists of 26 CD-ROM's containing over 32 gigabytes of data from the 9 IHW disciplines as well as data from the 5 spacecraft missions flown to comet P/Haley and P/Giacobini-Zinner. The total archive contains over 50,000 observations by 1,500 observers from at least 40 countries. The first 24 CD's, which are currently available, contain data from the 9 IHW disciplines. The two remaining CD's will have the spacecraft data and should be available within the next year. A test CD-ROM of these data has been created and is currently under review.

  19. Oxygen production rates for P/Halley over much of the 1985-1986 apparition

    NASA Technical Reports Server (NTRS)

    Spinrad, Hyron; Mccarthy, Patrick J.; Strauss, Michael A.

    1986-01-01

    Long slit CCD spectrophotometry of comet P/Halley in the visible region was used to measure the production rate of atomic oxygen during the 1985/86 apparition. The observations cover a large range of heliocentric distances, since the technique is applicable to apparently bright and faint comets. The cometary gas production rate for P/Halley increases rapidly with decreasing heliocentric distance toward perihelion and is systematicaly larger at a given heliocentric distance for the postperihelion observations. The average production rate for O1D on the day of the Giotto flyby is 4 times 10 to the 28th power atoms/sec giving an extrapolated total water production rate of 6 times 10 to the 29th power mols/sec. A method for comparing the absolute cometary gas production rates for different comets is discussed.

  20. The dust distribution within the inner coma of comet P/Halley 1982i - Encounter by Giotto's impact detectors

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Evans, G. C.; Evans, S. T.; Alexander, W. M.; Burton, W. M.; Firth, J. G.; Bussoletti, E.; Grard, R. J. L.; Hanner, M. S.; Sekanina, Z.

    1987-01-01

    Analyses are presented of Giotto's Dust Impact Detection System experiment measurements of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on March 13 and 14, 1986. Ground-based CCD imagery of the inner coma dust continuum at the time of the encounter are used to derive the area of grains intercepted by Giotto. Data obtained at large masses show clear evidence of a decrease in the mass distribution index at these masses within the coma; it is shown that such a value of the mass index can furnish sufficient mass for consistency with an observed deceleration.

  1. Archive of observations of periodic comet Crommelin made during its 1983-84 apparition

    NASA Technical Reports Server (NTRS)

    Sekanina, Z. (Editor); Aronsson, M.

    1985-01-01

    This is an archive of 680 reduced observations of Periodic Comet Crommelin made during its 1984 apparition. The archive integrates reports by members of the eight networks of the International Halley Watch (IHW) and presents the results of a trial run designed to test the preparedness of the IHW organization for the current apparition of Periodic Comet Halley.

  2. To Catch A Comet...Learning From Halley's.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  3. Shells in the C2 coma of Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Schulz, Rita; A'Hearn, Michael F.

    1995-01-01

    We reanalyzed the CN images of Comet P/Halley, in which jets have been discovered for the first time, in search of shell structures. Shells were actually detected at the outer edges of the frames on those dates for which shells with radii small enough to be covered by the limited field of view of the CCD were predicted. The C2 images of the same data set were subjected to an analogous investigation which led to the discovery of shell structures in C2 as well. The morphology of the CN and the C2 shells is essentially equal on the same observational date. They have the same radii and show almost identical asymmetries which suggests that CN and C2 in the shells originate from the same general source. The comparison of the jets in both species before and after a two-dimensional continuum subtraction supports this supposition. The similar morphology of the jets indicates that both species are produced from the same bulk of precursor material which has been ejected in the form of jets from the same active area. However, similarly located and oriented jets in CN and C2 do not show similar relative intensities in most cases. These differences in the intensity distribution imply that the production rates of CN and C2 follow different laws.

  4. Comparative study of the dust emission of 19P/Borrelly (Deep Space 1) and 1P/Halley

    USGS Publications Warehouse

    Ho, T.-M.; Thomas, N.; Boice, D.C.; Kollein, C.; Soderblom, L.A.

    2003-01-01

    Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios. ?? 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. A ballistic mission to fly by Comet Halley

    NASA Technical Reports Server (NTRS)

    Boain, R. J.; Hastrup, R. C.

    1980-01-01

    The paper describes the available options, ballistic trajectory opportunities, and a preliminary reference trajectory that were selected as a basis for spacecraft design studies and programmatic planning for a Halley ballistic intercept mission in 1986. The paper also presents trajectory, performance, and navigation data which support the preliminary selection.

  6. Physical characteristics of Comet Nucleus C/2001 OG 108 (LONEOS)

    NASA Astrophysics Data System (ADS)

    Abell, Paul A.; Fernández, Yanga R.; Pravec, Petr; French, Linda M.; Farnham, Tony L.; Gaffey, Michael J.; Hardersen, Paul S.; Kušnirák, Peter; Šarounová, Lenka; Sheppard, Scott S.; Narayan, Gautham

    2005-12-01

    A detailed description of the Halley-type Comet C/2001 OG 108 (LONEOS) has been derived from visible, near-infrared, and mid-infrared observations obtained in October and November 2001. These data represent the first high-quality ground-based observations of a bare Halley-type comet nucleus and provide the best characterization of a Halley-type comet other than 1P/Halley itself. Analysis of time series photometry suggests that the nucleus has a rotation period of 57.2±0.5 h with a minimum nuclear axial ratio of 1.3, a phase-darkening slope parameter G of -0.01±0.10, and an estimated H=13.05±0.10. The rotation period of C/2001 OG 108 is one of the longest observed among comet nuclei. The V- R color index for this object is measured to be 0.46±0.02, which is virtually identical to that of other cometary nuclei and other possible extinct comet candidates. Measurements of the comet's thermal emission constrain the projected elliptical nuclear radii to be 9.6±1.0 km and 7.4±1.0 km, which makes C/2001 OG 108 one of the larger cometary nuclei known. The derived geometric albedo in V-band of 0.040±0.010 is typical for comet nuclei. Visible-wavelength spectrophotometry and near-infrared spectroscopy were combined to derive the nucleus's reflectance spectrum over a 0.4 to 2.5 μm wavelength range. These measurements represent one of the few nuclear spectra ever observed and the only known spectrum of a Halley-type comet. The spectrum of this comet nucleus is very nearly linear and shows no discernable absorption features at a 5% detection limit. The lack of any features, especially in the 0.8 to 1.0 μm range such as are seen in the spectra of carbonaceous chondrite meteorites and many low-albedo asteroids, is consistent with the presence of anhydrous rather than hydrous silicates on the surface of this comet. None of the currently recognized meteorites in the terrestrial collections have reflectance spectra that match C/2001 OG 108. The near-infrared spectrum, the

  7. The origin of Halley-type comets: probing the inner Oort cloud

    NASA Astrophysics Data System (ADS)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  8. Evidence for methane and ammonia in the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Allen, M.; Delitsky, M.; Huntress, W.; Yung, Y.; Ip, W.-H.

    1987-01-01

    Methane and ammonia abundances in the coma of Halley are derived from Giotto ion mass spectrometer data using an Eulerian model of chemical and physical processes inside the contact surface to simulate Giotto high-intensity spectrometer ion mass spectral data for mass-to-charge ratios (m/q) from 15 to 19. The ratio m/q = 19/18 as a function of distance from the nucleus is not reproduced by a model for a pure water coma. It is necessary to include the presence of NH3, and uniquely NH3, in coma gases in order to explain the data. A ratio of production rates Q(NH3)/Q(H2O) = 0.01 = 0.02 results in model values approximating the Giotto data. Methane is identified as the most probable source of the distinct peak at m/q = 15. The observations are fit best with Q(CH4)/Q(Q2O) = 0.02. The chemical composition of the comet nucleus implied by these production rate ratios is unlike that of the outer planets. On the other hand, there are also significant differences from observations of gas phase interstellar material.

  9. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  10. Analysis of suprathermal electron properties at the magnetic pile-up boundary of Comet P/Halley

    NASA Technical Reports Server (NTRS)

    Mazelle, C.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Carlson, C. W.

    1989-01-01

    Among the plasma discontinuities detected by the Giotto spacecraft around Comet P/Halley, the magnetic pile-up boundary, located at about 135,000 km from the nucleus, has a sharpness which was not foreseen by theoretical models. At this boundary, which marks the beginning of the region where the field lines draped around the nucleus have been piled up, the magnetic field jumps sharply. Electron measurements provided by the RPA experiment show that a clear plasma discontinuity coincides with this magnetic feature. Significant changes occur here in the suprathermal electron distribution function. A magneto-plasma sheet is clearly defined after the boundary. Inside this sheet, close correlations exist between the parameters describing the magnetic field and the electron population. The polytropic equation of state governing the suprathermal electrons in the sheet has been deduced from RPA measurements. Some implications of this law are discussed.

  11. The IHW island network. [International Halley Watch

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm B., Jr.; Liller, William

    1987-01-01

    Early astronomical photography of comets at perihelion encouraged the establishment of an International Halley Watch (IHW) Team for regularly photographing the Comet. The February 1986 period was particularly troublesome due to the limitations of cometary visibility in the Southern Hemisphere. Schmidt cameras were placed on Tahiti, Easter Island, Faraday Station on the Antarctic Peninsula, Reunion Island and in South Africa. Blue- and red-filter B/W images were obtained every night and color prints were occasionally shot. Each night's images were examined before the next night's photography. Several interesting anecdotes are recounted from shipping, manning and operation of the telescopes.

  12. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  13. The International Halley Watch: A program of coordination, cooperation and advocacy

    NASA Technical Reports Server (NTRS)

    Friedman, L.; Newburn, R. L.

    1981-01-01

    To prevent a repetition of the lack of reporting and dissemination of the data obtained during the 1910 observations of Comet Halley, a mechanism is proposed for coordinating the work of scientists and amateurs, including government, industrials, and academic personnel during the 1985-86 apparition of Comet Halley. Specialists from each discipline, in consultation with other experts in the field, would recommend specific objectives, standards, data format, and priorities for observations in that discipline. Following time for individual publication, scientists would be invited to contribute results to a multivolume compilation containing as complete as possible a record of the apparition. It is suggested that the discipline specialists be selected jointly by the IHW leader an by an international steering group with members from COSPAR, the IAU, etc., perhaps in response to some form of international announcement of opportunity.

  14. The hydrogen coma of Comet P/Halley observed in Lyman-alpha using sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Meier, R. R.; Keller, H. U.; Opal, C. B.; Carruthers, G. R.

    1992-01-01

    Hydrogen Lyman-alpha (121.6 nm) images of Comet P/Halley were obtained using sounding rockets launched from White Sands Missile Range on 24.5 February and 13.5 March 1986. The second rocket was launched 13 hours before the fly-by of the Giotto spacecraft. An electrographic camera on both flights provided Lyman-alpha images covering a 20 field of view with 3 arcmin resolution. The data from both flights have been compared with a time-dependent model of hydrogen kinetics. To match the measured isophote contours, hydrogen sources with velocity components of 8 km/s and 20 km/s (from OH and H2O respectively) as well as a low velocity component (about 2 km/s) are required. This low velocity component is thought to result from thermalization of fast hydrogen atoms within the collision zone, providing an important diagnostic of temperature and density near the nucleus. Hydrogen production rates of 3.8 x 10 exp 30/s and 1.7 x 10 exp 30/s have been obtained for the two observations.

  15. Giotto magnetic field observations at the outbound quasi-parallel bow shock of Comet Halley

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K. H.; Acuna, M. H.; Mariani, F.; Musmann, G.

    1990-01-01

    The investigation of the outbound bow shock of Comet Halley using Giotto magnetometer data leads to the following results: the shock is characterized by strong magnetic turbulence associated with an increasing background magnetic field and a change in direction by 60 deg as one goes inward. In HSE-coordinates, the observed normal turned out to be (0.544, - 0.801, 0.249). The thickness of the quasi-parallel shock was 120,000 km. The shock is shown to be a new type of shock transition called a 'draping shock'. In a draping shock with high beta in the transonic transition region, the transonic region is characterized by strong directional variations of the magnetic field. The magnetic turbulence ahead of the shock is characterized by k-vectors parallel or antiparallel to the average field (and, therefore, also to the normal of the quasi-parallel shock) and almost isotropic magnetic turbulence in the shock transition region. A model of the draping shock is proposed which also includes a hypothetical subshock in which the supersonic-subsonic transition is accomplished.

  16. Mirror-mode structures at Comet 1P/Halley: A comparison between VEGA1 and Giotto Flyby

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Glassmeier, K.-H.; Schmid, D.; Delva, M.; Koenders, C.

    2014-04-01

    The pickup of freshly ionized particles emitted by the cometary nucleus creates a particle distribution in phase-space which is, amongst others, mirror-mode unstable. Many detailed studies have shown the presence of mirror-mode structures in the vicinity of comet 1P/Halley, using data from VEGA1/2 and Giotto. In the current presentation the almost similar flybys of VEGA1 and Giotto are compared with respect to the presence and occurrence rate of mirrormode structures. An automated search on the magnetic field data is performed, using minimum variance analysis, which has proved its usefulness in earlier mirror-mode studies at Earth, Venus and comets. It is found that there is an asymmetry between the two flybys: both missions show many events before closest approach and magnetic pile up region, however, after closest approach and magnetic pile up region the mirror-modes are strongly reduced at Giotto, whereas they increase in number for VEGA1. One source of influence could be the solar wind IMF, which is different: VEGA1 IMF ≈ (0, 0, 15) nT, Vsw ≈ 500 km/s and Giotto IMF ≈ (-3/3, -4, 5) nT (Bx rotating over the passage), Vsw ≈ 370 km/s. In this presentation we will discuss the occurrence rate, sizes and other characteristics of the mirror-mode structures.

  17. Comet Halley returns: A teachers' guide 1985-1986

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.; Bondurant, R. L.

    1985-01-01

    This booklet has been put together as an aid for teachers in elementary and secondary schools. It is divided into two distinct parts. The first part is a brief tutorial which introduces some of the most important concepts about comets, including their historical significance. A list of selected readings is provided at the end of the booklet. The second part of the booklet contains a number of suggested activities, built around the comet. These include both classroom exercises and carefully described field work to observe the comet. Guidance is provided on where to look for the comet, how to observe it, and to photograph it.

  18. Analysis and interpretation of CCD data on P/Halley and physical parameters and activity status of cometary nuclei at large heliocentric distance

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Mueller, Beatrice

    1991-01-01

    The scientific objectives were as follows: (1) to construct a well sampled photometric time series of comet Halley extending to large heliocentric distances both post and pre-perihelion passage and derive a precise ephemeris for the nuclear spin so that the physical and chemical characteristics of individual regions of activity on the nucleus can be determined; and (2) to extend the techniques in the study of Comet Halley to the study of other cometary nuclei and to obtain new observational data.

  19. Analysis of hydrogen Lyman-alpha observations of the coma of Comet P/Halley near the perihelion

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.; Combi, Michael R.

    1995-01-01

    The pioneer Venus Orbiter Ultraviolet Spectrometer measurements of the Lyman-alpha intensity of atomic hydrogen excited by solar resonance scattering in the coma of Comet P/Halley acquired from December 28, 1985, to January 6, 1986, and from January 31, 1986, to March 6, 1986, are simulated with the Monte Carlo Particle Trajectory Model corrected for optical depth effects. Spatially detailed comparisons between data and model show excellent agreement and are used to infer that the highest cometary activity may not be at perihelion, but about 2 1/2 weeks before. An improved set of H2O production rates is presented for the period of time that the spectrometer was observing and is found to be consistent with the rates from other types of measurements. The apparent discrepancy between Stewart (1987) in early March and International Ultraviolet Explorer OH derived rates is resolved. The problem with the conversion of 18-cm OH radio brightness to H2O production rates is also discussed.

  20. Complete positive ion, electron, and ram negative ion measurements near Comet Halley (COPERNIC) plasma experiment for the European Giotto Mission

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1988-01-01

    Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.

  1. Repeatability of the Dust and Gas Morphological Structures in the Coma of Comet

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Samarasinha, N. H.; Ojha, L.; Schleicher, D. G.

    2013-10-01

    Comet 1P/Halley is the most famous comet in history and has been observed for over two millennia, making it one of the most extensively studied comets. The morphology in the coma of comet 1P/Halley originates due to the activity at the nucleus and could be used as a probe of the nuclear rotation and the activity. We will present the results from a study summarizing the evolution of coma morphology of comet 1P/Halley observed from ground between October 1985 and June 1986. The results to be presented include analysis of dust features as well as gas (CN) features in the coma and comparisons will be made between their spatial and temporal evolution. About 80 CN images and 300 continuum images from the Small Bodies Node of the NASA Planetary Data System were analyzed using image enhancement techniques that were not available n the 1980s. This enables us to see coma structure never observed before in comet 1P/Halley. Because of the comet's proximity to Earth, most of our best signal-to-noise images were taken in the March-April interval of 1986. Despite the limited coverage of preceding and following months, there is a sufficient number of images to monitor morphological evolution over many months. The initial synodic periods as a function of time used to phase the images together were extrapolated from the lightcurves of the active coma (Schleicher et al. 1990, AJ, 100, 896-912). We will present the periods of repeatability of individual coma features measured using the position angle at different spatial distances from the nucleus in adjacent cycles. Separate features appear to have slightly different periods of repeatability, perhaps depending on the corresponding source regions on the nucleus and/or projection effects. The periods of repeatability of coma morphologies will be presented as a function of time from the perihelion. These results will ultimately be used in detailed modeling of the coma morphologies of comet 1P/Halley over the 1985-1986 apparition in

  2. Pointing control for the International Comet Mission

    NASA Technical Reports Server (NTRS)

    Leblanc, D. R.; Schumacher, L. L.

    1980-01-01

    The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.

  3. Comets and the origin of the solar system - Reading the Rosetta Stone

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Weissman, Paul R.; Stern, S. A.

    1993-01-01

    It is argued that, from the measured volatile abundances, comets formed at temperatures near or below about 60 K and possibly as low as about 25 K. Grains in Comet Halley were found to be of two types: silicates and organics. Isotopic evidence shows that Comet Halley formed from material with the same compositional mix as the rest of the solar system, and is consistent with comets having been a major contributor to the volatile reservoirs on the terrestrial planets. A variety of processes have been shown to modify and reprocess the outer layers of comets both during their long residence time in the Oort cloud and following their entry back into the planetary system. The most likely formation site for comets is in the Uranus-Neptune zone or just beyond, with dynamical ejection by the growing protoplanets to distant orbits to form the Oort cloud. A substantial flux of interstellar comets was likely created by the same process, and may be detectable if cometary formation is common in planetary systems around other stars.

  4. Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.; Roesler, Fred L.; Scherb, Frank

    1995-01-01

    A set of high-resolution Fabry-Perot measurements of the coma of comet P/Halley was acquired in the (O I) 6300 A and NH2 6298.62 A emission lines. These high-resolution measurements provide the first optical observations capable of studying directly the photochemical kinetics and dynamic outflow of the coma. The observations were analyzed by a Monte Carlo Particle Trajectory Model. The agreement of the model and observed line profiles was excellent and verified the underlying dynamics, exothermic photodissociative chemistry, and collisional thermalization in the coma. The somewhat wider intrinsic line profile width for the O(1D) emission in 1986 January compared to 1986 May, is, for example, produced by the larger outflow speeds and gas temperatures nearer perihelion in January. The January O(1D) profile, which is wider than the January NH2 profile, is indicative of the photochemical kinetics in the dissociation of the parent molecules H2O and OH in the coma. The absolute calibration of the observations in 1986 January allowed the production rates for H2O and the NH2-parent molecules to be determined. The average daily water production rates derived from the O(1D) emission data for January 16 and 17 are presented. These very large water production rates are consistent with the extrapolated (and 7.6 day time variable) water production rates determined from the analysis of lower spectral resolution observations for O(1D) and H-alpha emissions that covered the time period up to January 13. The large production rates on January 16 and 17 establish that the maximum water production rate for comet Halley accurred pre-perihelion in January. Implications drawn from comparison with 18 cm radio emission data in January suggest that the peak water production rate was even larger. The average production rate for NH3 determined from the NH2 emission data for January 17 was (1.48 +/- 0.10) x 10(exp 28) molecules/s, yielding an NH3/H2O production rate ratio of 0.55%.

  5. SEP ENCKE-87 and Halley rendezvous studies and improved S/C model implementation in HILTOP

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.; Mann, F. I.

    1978-01-01

    Studies were conducted to determine the performance requirements for projected state-of-the-art SEP spacecrafts boosted by the Shuttle/IUS to perform a rendezvous with the comet Halley and a rendezvous with the comet Encke during its 1977 apparition. The spacecraft model of the standard HILTOP computer program was assumed. Numerical and graphical results summarizing the studies are presented.

  6. Significant variation from a 1/R-squared potential in the cumulative flux determined from the Giotto Comet Halley Dust Impact Experiment

    NASA Technical Reports Server (NTRS)

    Alexander, W. M.; Goad, S.; Mcdonald, R. A.; Tanner, W. G., Jr.; Pollock, J. J.

    1989-01-01

    The Dust Impact Detection System (DIDSY) aboard the Giotto spacecraft provided the information on the dust flux, mass spectrum, and cumulative mass distribution flux in the coma of Comet Halley. Analysis of discrete pulse height data of cometary particles for the mass range of particles between 4.0 x 10 to the -10th g and 6.0 x 10 to the -6th g registered by the Giotto DIDSY detectors 2, 3, and 4 has been completed, and a cumulative flux has been determined for this size range of particles. Inside the cometopause, anomalous peaks have been identified as deviation from a 1/R-squared curve in both pre- and postencounter measurements.

  7. Comets: Role and importance to exobiology

    NASA Technical Reports Server (NTRS)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  8. VLA observations of the OH emission from Comet Wilson (1986) - The value of high resolution in both spatial and velocity coordinates

    NASA Technical Reports Server (NTRS)

    Palmer, Patrick; De Pater, Imke; Snyder, Lewis E.

    1989-01-01

    In comparison with Comet Halley, the radio OH emission from Comet Wilson behaved very erratically, changing rapidly in position as well as in velocity, while the emission and brightness distribution from Comet Halley displayed apparent stability. A few months later, nearer perihelion, just the opposite behavior was observed at UV wavelengths. Another difference between the two comets is that the OH emission from Comet Halley seemed confined to a region a few times 100.000 km in size, while the emission from Comet Wilson showed up in sporadic blobs, with variable intensities and velocities, at distances as far as 10 to the 6th km from the nucleus. This behavior in Comet Wilson may be associated with the disintegration of the outer frosting associated with new comets and possibly with the fragmentation and ejection of cometesimals from the nucleus. As part of the data analysis, it is demonstrated that lengthening the integration time and lowering the velocity resolution affects the symmetry of the OH images and spectral-line profiles. As a consequence, asymmetric cometary OH line profiles may be more common than previously thought.

  9. Groundbased investigation of comet 67p/churyumov- gerasimenko, target of the spacecraft Mission Rosetta

    NASA Astrophysics Data System (ADS)

    de Almeida, A. A.; Trevisan Sanzovo, D.; Sanzovo, G. C.; Boczko, R.; Miguel Torres, R.

    In this work, we make a comparative study of Comet 67P/Churyumov-Gerasimenko, target of Mission Rosetta, with Comets 1P/Halley and Hyakutake(C/1996 B2). Water and gas) release rates are derived from visual magnitudes (mv), determined mostly by amateur astronomers, and listed in several issues of International Comet Quarterly(ICQ). We make a systematic and uniform analysis of continuum fluxes obtained at visual wavelengths and, using the framework of photometric theory of Newburn & Spinrad (1985, 1989), we estimate dust release rates, qd (in g/s), effective particle sizes, a (in micron), and dust-to-gas mass ratios, for this important sample of comets. We also determine the color excess of the dust particles, CE, relative to the Sun at wavelength ranges 477.0-524.0 nm in the 1996 return of Comet 67P/Churyumov-Gerasimenko, and 365.0-484.5 nm for Comets 1P/Halley and C/1996 B2.

  10. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  11. Investigation of the phenomenon of the big comet of 1858

    NASA Technical Reports Server (NTRS)

    Pape, C. F.

    1977-01-01

    Various aspects of the large comet of 1858 including the luminosity of the core and the shape, intensity and position of the tail with respect to the sun and stars are described and then compared with the large comet of 1744 described by Heinsius and Halley's comet of 1835. The purpose of these observations is to try to gain a clearer understanding of the nature of the polar force from the sun acting on the comet. This force is said to differ from the usual force of gravity.

  12. IUE observations of periodic comets Tempel-2, Kopff, and Tempel-1

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.; Festou, Michel C.

    1992-01-01

    We summarize the results of observations made between 10 Jun. - 18 Dec. 1988 with the International Ultraviolet Explorer (IUS) of comet P/Tempel-2 during its 1988 appearance. The derived water production rate and relative gas/dust ratio are compared with those of P/Halley, observed with IUE in 1985-86, and other potential Comet Rendezvous/Asteroid Flyby (CRAF) target comets, P/Kopff and P/Tempel-1, both observed with IUE in 1983.

  13. Large aperture [O I] photometry of comets Hyakutake, Halley, and Austin: implications for the photochemistry of OH

    NASA Astrophysics Data System (ADS)

    Morgenthaler, J. P.; Harris, W. M.; Scherb, F.; Combi, M. R.

    2004-11-01

    The 6300 Å component of the oxygen (1D) doublet is a bright, easily observed line in cometary comae that results primarily from the photodissociation of water and its daughter, OH. If the cometary emission can be separated from foreground airglow, either by foreground subtraction or spectral resolution comparable to the geocentric velocity of the comet, [O I] photometry should, in principle make an excellent proxy for Q(H2O). With cometary geocentric velocities frequently less than 60 km/s, spectral separation requires instruments with resolving powers of >10000, which for conventional grating spectrographs, implies a slit width of order one arcsecond. Maximum slit length, limited by practical considerations is therefore of order a few arcminutes. For a typical geocentric distance of 1 AU, [O I] emission in this FOV is dominated by water photodissociation, so with only knowledge of water photochemistry and an estimate of the aperture correction from the distribution along the slit, water production rates can be derived (e.g. Fink et al. 1990). Interferometric techniques, such as Fabry-Perot, Michelson, and Spatial Heterodyne Spectroscopy (SHS) achieve very high spectral resolution over FOVs of arcminutes to degrees. Using the 1 degree FOV Wisconsin H-alpha Mapper (WHAM), we recorded images and spectra of comet Hale-Bopp that encompassed the entire [O I] coma. In this case, the emission was dominated by OH photodissociation. Using conventional OH photochemistry, our derived Q(H2O) values were a factor of 3-4 higher than the accepted values, suggesting a revision to the OH photochemistry is needed (Morgenthaler et al. 2001). In this work, we will revisit our large aperture [O I] measurements of comets 1P/Halley, C/1989X1 Austin, and C/1996 B2 Hyakutake and show that revision of the OH photochemistry is necessary to bring these results into agreement with accepted Q(H2O) values. This work is funded by the NASA Planetary Atmospheres program.

  14. OORT-Cloud and Kuiper-Belt Comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1998-01-01

    This paper follows the broadly accepted theory that Oort-Cloud Comets originated in the Solar Nebula in the general region where the major planets, Jupiter and Saturn, were formed while the Kuiper-Belt Comets originated farther out where the temperatures were lower. The Oort-Cloud Comets are identified orbitally by long periods and random inclinations and, including the Halley-type comets, comets with a Tisserand Criterion less than 2.0. Kuiper-Belt comets are identified by short periods, usually much less than 200 years, and small inclinations to the ecliptic. Here two criteria for comet activity are found to separate the two classes of comets. These quantities NG1 and NG2, were intended to measure theoretical nongravitaional effects on comet orbits. They are only, mildly successful in correlations with observed cases of measured non-gravitational forces. But, in fact, their variations with perihelion distance separate the two classes of comets. The results are consistent with the theory that the activity or intrinsic brightness of Oort-Cloud Comets fall off faster with increasing perihelion distance that does the intrinsic brightness of short-period Kuiper-Belt Comets.

  15. Origin of organic matter in the protosolar nebula and in comets

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.; Shalabiea, O. M.; Mendoza-Gomez, C. X.; Schutte, W.; Gerakines, P. A.

    1994-01-01

    Comet organics are traced to their origin in interstellar space. Possible sources of comet organics from solar nebula chemistry are briefly discussed. The infrared spectra of interstellar dust are compared with spectra of solar (space) irradiated laboratory organic residues and with meteorites. The spectra compare very favorably. The atomic composition of first generation laboratory organic residues compares favorably with that of comet Halley organics if divided into approrpriate 'volatile' (less refreactory) and 'refractory' (more refractory) complex organics.

  16. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1985-01-01

    Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.

  17. Modelling the neutral gas environment of comets with special application to P/Halley

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.

    1982-01-01

    A technique has been developed which allows relatively accurate modelling of cometary gas production from nothing more than a visible light curve. Application to P/Halley suggests that the production rate of parent molecules will be about 2.6 x 10 to the 29th/second on March 10, 1986, for example. The uncertainties and intrinsic limitations in this approach are outlined. The theory is then extended to predictions of abundance of other gaseous species, and a photometric model of these gases is provided.Combined with the dust model of Divine (1981), preliminary predictions of the luminance of P/Halley, as seen in any direction from inside the coma or outside, can be provided for in the 3000-7000 A wavelength range.

  18. Comets: Dirty snowballs or icy dirtballs

    NASA Astrophysics Data System (ADS)

    Keller, H. U.

    1989-12-01

    The observations of comet Halley show that the non-volatile (dust) component of the cometary nucleus has become more dominant if compared to the perception based on the icy conglomerate nucleus. The in-situ observations on the Giotto spacecraft revealed an excess of large dust particles that dominate the mass distribution. Even larger particles were derived from the attitude changes of the spacecraft bridging the gap to the cloud of particles observed by radar techniques. A dust to gas ratio larger than one was derived for comet Halley. The importance of dust for the structure of the nucleus is corroborated by the amount of particles and their lifetime in meteor streams. Fireballs show that large (meter size) objects separate from the nucleus and are stable enough to survive hundreds of orbital periods. From the various lines of evidence it is concluded that the structure of cometary nuclei is determined by the non-volatile component rather than by ice or snow. Laboratory models based on icy agglomerations do not seem realistic as nucleus analogs.

  19. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  20. In-situ observations of a bi-modal ion distribution in the outer coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Feldman, W. C.; Wilken, B.; Jockers, K.; Stuedemann, W.

    1987-01-01

    Observations obtained by the Johnstone Plasma Analyzer on the Giotto fly-by of comet Halley showed a fairly sudden decrease in the count rate of energetic (about 30 KeV) water-group ions inside about 500,000 km from the nucleus. This decrease was accompanied by the appearance of a new water-group ion population at slightly lower energies (less than 10 KeV). Close inspection reveals that this lower-energy peak was also present somewhat earlier in the postshock flow but only became prominent near the sudden transition just described. It is shown that the observed bimodal ion distribution is well explained in terms of the velocity history of the accreting solar wind flow in the outer coma. The decline in count rate of the energetic pick-up distribution is due to a relatively sudden slowing of the bulk flow there and not to a loss of particles. Hence, charge-exchange cooling of the flow is probably not important at these distances from the nucleus. The observations suggest that pitch-angle scattering is fairly efficient at least after the bow shock, but that energy diffusion is probably not very efficient.

  1. Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Balsiger, H.; Geiss, J.; Goldstein, B. E.; Kettmann, G.

    1990-01-01

    The ion composition measurements in the ionosphere of Comet Halley by the ion mass spectrometer (IMS) experiment on the Giotto spacecraft are used to estimate the relative abundance of HCN. From a comparison of the normalized number density of ions with mass-to-charge (M/q) ratio of 28 AMU/e with steady-state photochemical models, it can be determined that the production rate of HCN directly from the central nucleus is Q(HCN) is less than about 0.0002 Q(H2O) at the time of Giotto encounter. The related photochemical- model calculations also indicate that Q(NH3)/Q(H2O) at the time of Giotto encounter. The related photo-chemical model calculations also indicate that Q(HN3)/Q(H2O) equals about 0.005, in agreement with recent determination from ground-based observations. The estimated value of Q(HCN) is lower than the relative abundance of Q(HCN)/Q(H2O) of about 0.001, as derived from radio observations of the 88.6 GHz emission of the J = 1 - 0 transition of HCN. The difference may be the result of time variations of the coma composition and dynamics, as well as other model-dependent effects.

  2. The dust coma of Comet Austin (1989c1)

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Tegler, Stephen C.; Telesco, C. M.; Benson, C.

    1991-01-01

    Thermal-infrared (10 and 20 micron) images of Comet Austin were obtained on UT 30.6 Apr., 1.8, 2.8, and 3.6 May 1990. The NASA-Marshall Space Flight Center 20 pixel bolometer array at the NASA 3 meter Infrared Telescope Facility in Hawaii was used. The 10.8 micron (FWHM = 5.3 microns) maps were obtained with maximum dimensions of 113 arcsec (57,500 km) in RA and 45 arcsec (23,000 km) in declination, with a pixel size of 4.2 x 4.2 arcsec. A smaller, 45 x 18 arcsec, map was obtained in the 19.2 micron (FWHM = 5.2 microns) bandpass. At the time of these observations Comet Austin's heliocentric and geocentric distances were 0.7 and 0.5 AU respectively. The peak flux density (within the brightest pixel) was 23 + or - 2 Janskys for the first three dates and only marginally lower the last day; i.e., within the observational uncertainties no evidence was found for day-to-day variability like that observed in Comet Halley. A dynamical analysis of the morphology of the extended dust emission is used to constrain the size distribution and production rate of the dust particles. The results of this analysis are compared with similar studies carried out on comets P/Giacobini-Zinner, P/Brorsen-Metcalf, P/Halley, P/Tempel 2, and Wilson (1987).

  3. 8- to 13-micron spectroscopy of Comet Levy 1990 XX

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Russell, Ray W.; Hackwell, John A.; Hanner, Martha S.; Hammel, Heidi B.

    1992-01-01

    The results are reported of IR spectroscopy of Comet Levy 1990 XX over a three-day period when the comet was about 1.54 AU from the sun roughly 70 days before perihelion. Comet Levy 1990 XX was bright, and for at least part of its inbound journey toward perihelion, active. At a distance of 1.54 AU from the sun it showed strong structured silicate emission with peaks or shoulders at 9.8 and 11.2 microns. These features resemble those of Comets P/Halley and Bradfield 1987 XXIX. The comet was variable in brightness. Specifically, the contrast of the silicate features changed by a factor of two relative to the continuum level and showed some evidence for a shape change as well.

  4. Thermal instability in the inner coma of a comet

    NASA Technical Reports Server (NTRS)

    Milikh, G. M.; Sharma, A. S.

    1995-01-01

    The spacecraft and ground based observations of comet Halley inner coma showed a localized ion density depletion region whose origin is not well understood. Although it has been linked to a thermal instability associated with negative ions, the photodetachment lifetime of negative ions (approximately 1 sec) is too short compared to the electron attachment time scale (approximately 100 sec) for this process to have a significant effect. A mechanism for the ion density depletion based on the thermal instability of the cometary plasma due to the excitation of rotational and vibrational levels of water molecules is proposed. The electron energy losses due to these processes peak near 4000 K (0.36 eV) and at temperatures higher than this value a localized cooling leads to further cooling (thermal instability) due to the increased radiation loss. The resulting increase in recombination leads to an ion density depletion and the estimates for this depletion at comet Halley agree with the observations.

  5. Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.

    1995-01-01

    We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.

  6. DRBE comet trails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBEmore » data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.« less

  7. Physical mechanism of comet outbursts - An experimental result

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    Attention is given to an experimental investigation of the physical mechanism of comet outbursts which is consistent with the general picture of mantle presence on comets and clarifies the relation of mantles to eruptive activity. The experiment and closeup observation of Comet P/Halley suggest a result different from most mathematical models in that the release of gas pressure does not occur only from uniform gas flow out of the entire surface. In some active comets near perihelion within a few AU of the sun, gas production rates and disturbance of the surface may be so high that the outflow is nearly continuous, with the regolith being entirely stripped away, as in many of the models. The present model provides a cyclic eruption and recharge mechanism which is lacking in most other models.

  8. Monte Carlo simulation of nonadiabatic expansion in cometary atmospheres - Halley

    NASA Astrophysics Data System (ADS)

    Hodges, R. R.

    1990-02-01

    Monte Carlo methods developed for the characterization of velocity-dependent collision processes and ballistic transports in planetary exospheres form the basis of the present computer simulation of icy comet atmospheres, which iteratively undertakes the simultaneous determination of velocity distribution for five neutral species (water, together with suprathermal OH, H2, O, and H) in a flow regime varying from the hydrodynamic to the ballistic. Experimental data from the neutral mass spectrometer carried by Giotto for its March, 1986 encounter with Halley are compared with a model atmosphere.

  9. Airborne spectrophotometry of P/Halley from 16 to 30 microns

    NASA Technical Reports Server (NTRS)

    Herter, T.; Gull, G. E.; Campins, H.

    1986-01-01

    Comet Halley was observed in the 16 to 30 micron region using the Cornell University 7-channel spectrometer (resolution = 0.02) on board the Kuiper Airborne Observatory on 1985 Dec. 14.2. A 30-arcsec aperture (FWHM) was used. Measurements centered on the nuclear condensation micron indicate that if present, the 20 micron silicate feature is very weak, and that a relatively narrow strong feature centered at 28.4 microns possibly exists. However, this feature may be an artifact of incomplete correction for telluric water vapor absorption.

  10. The status of the international Halley watch

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.; Rahe, Juergen

    1987-01-01

    More than 1000 professional astronomers worldwide actually observed Halley's comet from the ground. Preliminary logs from the observers indicate that 20-40 Gbytes of data were acquired in eight professional disciplines and as much as 5 Gbytes in the amateur network. The latter will be used to fill in gaps in the Archive and to provide a visual light curve. In addition roughly 400 Mbytes of data were taken on Comet Giacobini-Zinner. Data will be accepted for archiving until early 1989. The permanent archive will consist of a set of CD-ROMs and a set of books, publication of both to be completed by mid-1990. Data from the space missions will be included but only on the CDs. From every indication, the ground based effort and the space missions complimented each other beautifully, both directly in the solution of spacecraft navigation problems and indirectly in the solution of scientific problems. The major remaining concern is that scientists submit their data to the Archive before the 1989 deadline.

  11. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  12. Eventos de Desconexao na Cauda de Plasma do Cometa P/Halley

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Fahr, H. J.

    2001-08-01

    Observacoes cometárias e de vento solar sao comparadas com o propósito de determinar-se as condicoes do vento solar associadas aos eventos de desconexao (DEs) observados em caudas de plasma cometárias. Os dados cometários sao provenientes do The International Halley Watch Atlas of Large-Scale Phenomena. A análise visual sistemática das imagens do atlas revelou, entre outras estruturas morfológicas, 47 DEs ao longo da cauda de plasma do P/Halley. Estes 47 DEs registrados em 47 imagens distintas permitiram a descoberta de 19 origens de DEs, ou seja, o tempo em que as desconexoes iniciaram foi calculado. Os dados do vento solar sao provenientes de medidas feitas in situ pela sonda espacial IMP-8, as quais foram usadas para elaborar a variacao da velocidade do vento solar, densidade e pressao dinâmica durante o intervalo analisado. O presente trabalho compara as atuais teorias conflitantes, baseadas nos mecanismos de formacao, com o intuito de explicar o fenômeno cíclico dos DEs, ou seja, os efeitos de producao iônica, os efeitos de pressao e os efeitos de reconexao magnética sao analisados. Para cada uma das 19 origens de DEs comparou-se a densidade com a respectiva velocidade do vento solar com o intuito de determinar-se uma possível correlacao entre estas origens e os efeitos de pressao dinâmica. Quando da ocorrência de 6 origens de DEs o IMP-8 nao realizou medidas, nos outros 13 casos 10 origens (77%) mostraram uma anticorrelacao entre velocidade e densidade e apenas 3 (23%) revelaram uma tendência similar entre velocidade e densidade. Portanto, a análise inicial demonstra uma fraca correlacao entre as origens dos DEs e os efeitos de pressao.

  13. Modeling of Pickup Ion Distributions in the Halley Cometo-Sheath: Empirical Rates of Ionization, Diffusion, Loss and Creation of Fast Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Huddleston, D.; Neugebauer, M.; Goldstein, B.

    1994-01-01

    The shape of the velocity distribution of water-group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates on ionization, energy diffusion, and loss in the mid-cometosheath.

  14. ISO's analysis of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  15. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  16. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  17. Astrometric observations of comets and asteroids and subsequent orbital investigations

    NASA Technical Reports Server (NTRS)

    Mccrosky, R. E.; Marsden, B. G.

    1986-01-01

    During the past year some 500 observations were made on 66 nights and published on the MPCs (Minor Planet Circulars/Minor Planets and Comets). In addition, a handful of measurements of earlier plates were completed and published. 121 of the observations published referred to comets. Of special importance were observations of comets (P/Giacobini-Zinner and P/Halley) in connection with the NASA ICE and ESA Giotto missions, but a special effort was made to get good coverage of almost all of the observable comets. Observations were also made of (2060) Chiron and of the earth-approaching objects (1627) Ivar, (1866) Sisyphys, (1943) Anteros, (3362) 1984 QA, 1985 JA, PA, TB and WA, and 1986 DA and EB. 46 minor planets were given permanent numbers entirely as a result of the observations.

  18. The 8-13 micron spectra of comets and the composition of silicate grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

    1994-01-01

    We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

  19. What can meteorites tell us about comets?

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1986-01-01

    Cometary silicates, carbon, and volatiles are reviewed using data from the Halley probes, interplanetary dust particles, and cometary spectra. The origins of anhydrous Fe(2+)-bearing silicates; whether hydrated silicates, if present, were made by gaseous or liquid H2O3; sources of organic compounds: ion-molecule reactions, photochemistry, grain catalysis; sources of CO2 and of organic polymers; and interstellar molecules and grains in comets are discussed.

  20. Modeling of meteoroid streams: The velocity of ejection of meteoroids from comets (a review)

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2013-05-01

    An analytical review of the models of ejection of meteoroids from cometary nuclei is presented. Different formulas for the ejection velocity of meteoroids and the corresponding parameters are discussed and compared with the use of comet Halley and the Geminids meteoroid stream as examples. The ejection velocities obtained from observations of the dust trails of comets are discussed, and the values for comets 2P/Encke, 4P/Faye, 17P/Holmes, 22P/Kopff, and 67P/Churyumov-Gerasimenko are compared to the velocities yielded by Whipple's model. The uncertainty intervals of the results are estimated.

  1. The long-term dynamical behavior of short-period comets

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.

    1993-01-01

    The orbits of the known short-period comets under the influence of the Sun and all the planets except Mercury and Pluto are numerically integrated. The calculation was undertaken in order to determine the dynamical lifetimes for these objects as well as explaining the current orbital element distribution. It is found that a comet can move between Jupiter-family and Halley-family comets several times in its dynamical lifetime. The median lifetime of the known short-period comets from the time they are first injected into a short-period comet orbit to ultimate ejection is approximately 50,000 years. The very flat inclination distribution of Jupiter-family comets is observed to become more distended as it ages. The only possible explanation for the observed flat distribution is that the comets become extinct before their inclination distribution can change significantly. It is shown that the anomalous concentration of the argument of perihelion of Jupiter-family comets near 0 and 180 deg is a direct result of their aphelion distance being close to 5.2AU and the comet being recently perturbed onto a Jupiter-family orbit. Also the concentration of their aphelion near Jupiter's orbit is a result of the conservation of the Tisserand invariant during the capture process.

  2. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life

    NASA Astrophysics Data System (ADS)

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  3. Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life.

    PubMed

    Bosiek, Katharina; Hausmann, Michael; Hildenbrand, Georg

    2016-04-01

    In recent years, studies have shown that there are many similarities between comets and asteroids. In some cases, it cannot even be determined to which of these groups an object belongs. This is especially true for objects found beyond the main asteroid belt. Because of the lack of comet fragments, more progress has been made concerning the chemical composition of asteroids. In particular, the SMASSII classification establishes a link between the reflecting spectra and chemical composition of asteroids and meteorites. To find clues for the chemical structure of comets, the parameters of all known asteroids of the SMASSII classification were compared to those of comet groups like the Encke-type comets, the Jupiter-family comets, and the Halley-type comets, as well as comet-like objects like the damocloids and the centaurs. Fifty-six SMASSII objects similar to comets were found and are categorized as comet-like asteroids in this work. Aside from the chemistry, it is assumed that the available energy on these celestial bodies plays an important role concerning habitability. For the determination of the available energy, the effective temperature was calculated. Additionally, the size of these objects was considered in order to evaluate the possibility of a liquid water core, which provides an environment that is more likely to support processes necessary to create the building blocks of life. Further study of such objects could be notable for the period of the Late Heavy Bombardment and could therefore provide important implications for our understanding of the inner workings of the prebiotic evolution within the Solar System since the beginning.

  4. From C/Mrkos to P/Halley: 30 years of cometary spectroscopy

    NASA Technical Reports Server (NTRS)

    Arpigny, C.; Dossin, F.; Woszczyk, A.; Donn, B.; Rahe, J.; Wyckoff, Susan

    1991-01-01

    An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2.

  5. Comet rendezvous mission design using Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  6. Composition/Structure/Dynamics of comet and planetary satellite atmospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R. (Principal Investigator)

    1995-01-01

    This research program addresses two cases of tenuous planetary atmospheres: comets and Io. The comet atmospheric research seeks to analyze a set of spatial profiles of CN in comet Halley taken in a 7.4-day period in April 1986; to apply a new dust coma model to various observations; and to analyze observations of the inner hydrogen coma, which can be optically thick to the resonance scattering of Lyman-alpha radiation, with the newly developed approach that combines a spherical radiative transfer model with our Monte Carlo H coma model. The Io research seeks to understand the atmospheric escape from Io with a hybrid-kinetic model for neutral gases and plasma given methods and algorithms developed for the study of neutral gas cometary atmospheres and the earth's polar wind and plasmasphere. Progress is reported on cometary Hydrogen Lyman-alpha studies; time-series analysis of cometary spatial profiles; model analysis of the dust comae of comets; and a global kinetic atmospheric model of Io.

  7. The Blue Comet: A Railroad's Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2009-01-01

    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  8. Comparison of water production rates from UV spectroscopy and visual magnitudes for some recent comets

    NASA Technical Reports Server (NTRS)

    Roettger, E. E.; Feldman, P. D.; A'Hearn, M. F.; Festou, M. C.

    1990-01-01

    IUE data on the UV and visible coma emissions of the comets Bradfield, P/Tempel 2, Wilson, and P/Halley, are presently compared with the visual lightcurves from magnitudes reported in the IAU circulars to consider the temporal evolution of these comets. While the water-production rates obtainable from visual magnitudes on the basis of Newburn's (1984) method are consistent with OH-derived rates to first order, they are sometimes either displaced or unable to exhibit the same pre/postperihelion asymmetry. The best agreement is obtained for the relatively dust-free Comet P/Tempel 2. IUE Fine Error Sensor lightcurves are generally in agreement with curves based on total visual magnitude.

  9. Halley's Legacy: The Selfless Genius Who Founded Geophysics, Led the Science Community to Solve the Problem of Finding Longitude at Sea, and Whose Work in Areas from Geomagnetism to Planetology Still Has Meaning For Today's Scientists

    NASA Astrophysics Data System (ADS)

    Wakefield, J.

    2005-12-01

    2005 marks the 300th anniversary of Edmond Halley's publication of his infamous synopsis predicting the accurate return of the comet that would come to bear his name. On this occasion, it is time to remember him not only as the founder of geophysics but for his contributions to the world of science beyond his comet work. Halley's comet-transformed by the first triumph of the Newtonian revolution from a dire supernatural omen to a predictable element of the universe's clockwork-remains a recurring symbol of the scientific age of the Enlightenment. His comet is hurtling through space at some 20,000 miles per hour and won't be back until 2061. But it can remind us of past epochs and everlastingly of Halley's contributions to geophysics and the world of science writ large. For a start, Halley completed a series of little known sea voyages in his effort to solve one of his life-long quests: the problem of determining longitude at sea. On the basis of his earlier theories on magnetism, his approach entailed mapping the magnetic deviation across the test-bed of the Atlantic Ocean. In this paper, his findings from the voyages, which technically comprised the first science mission funded by a government and stand as the forerunner of all big science projects, will be reconsidered and put into the context of today's notions about terrestrial magnetism, including the geodynamo. To this day, scientists remain perplexed about exactly how core's dynamo regenerates its energy. When Halley was sailing his vessel, the Paramore, across the North Atlantic and making the first charts of geomagnetism, little did he ever imagine magnetism would underpin today's stunning advances in information technology and electromagnetic engineering. Magnetism also offers ways to study phase transitions, random disorder, and physics in low dimensions, which looks at particle interactions at ever higher energies in order to essentially study matter at smaller and smaller size scales. The presentation

  10. Ali, Cunich: Halley's Churches: Halley and the London Queen Anne Churches

    NASA Astrophysics Data System (ADS)

    Ali, Jason R.; Cunich, Peter

    2005-04-01

    Edmond Halley's enormous contribution to science has received much attention. New research adds an intriguing chapter to his story and concerns his hitherto unexplored association with the baroque architectural visionary Nicholas Hawksmoor, and some important Temple-inspired churches that were built in London in the early 1700s. We argue that Christchurch Spitalfields and St Anne's Limehouse, which were both started in the summer of 1714, were aligned exactly eastwards using ``corrected'' magnetic-compass bearings and that Halley influenced or aided Hawksmoor. By this time the men had probably known each other for 30 years and had recently worked together on the Clarendon Building in Oxford. Despite there being more than 1500 years of Chinese and about 500 years of Western compass technology at the time, these probably represent the first constructions planned using a modern-day ``scientific'' technique. The research also throws light on Halley's contended religious position.

  11. To catch a comet: Technical overview of CAN DO G-324

    NASA Technical Reports Server (NTRS)

    Obrien, T. J. (Editor)

    1986-01-01

    The primary objective of the C. E. Williams Middle School Get Away Special CAN DO is the photographing of Comet Halley. The project will involve middle school students, grades 6 through 8, in the study and interpretation of astronomical photographs and techniques. G-324 is contained in a 5 cubic foot GAS Canister with an opening door and pyrex window for photography. It will be pressurized with one atmosphere of dry nitrogen. Three 35mm still cameras with 250 exposure film backs and different focal length lenses will be fired by a combination of automatic timer and an active comet detector. A lightweight 35mm movie camera will shoot single exposures at about 1/2 minute intervals to give an overlapping skymap of the mission. The fifth camera is a solid state television camera specially constructed for detection of the comet by microprocessor.

  12. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  13. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    NASA Astrophysics Data System (ADS)

    Disanti, Michael A.; Mumma, Michael J.

    2008-07-01

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2 5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  14. Carbonate in Comets: A Comparison of Comets 1P/Halley, 9P/Temple 1, and 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Leroux, H.; Tomeoka, K.; Tomioka, N.; Ohnishi, I.; Mikouchi, T.; Wirick, S.; Keller, L. P.; Jacobsen, C.; Sanford, S. A.

    2008-01-01

    Comets are generally believed to have formed in a cold region, trapping in the cometary ices the original low-temperature condensate grains of our Solar System. These grains would have been preserved in cold-storage, at a temperature below the freezing point of CO2, for the last 4.5+ billion years. Carbonates are common in hydrous meteorites and hydrous interplanetary dust particles (IDPs), where they are believed to have formed by parent-body aqueous processing. Since simple models of cometary evolution involve no aqueous processing, carbonates were generally presumed not to occur in comets. However, Toppani et al. [1] have performed experiments that indicate carbonate can be formed by non-equilibrium condensation in circumstellar environments where water is present as a vapor, not as a liquid. This suggests carbonate might have condensed in cold regions of the Solar Nebula, and might be present in comets.

  15. Evolution of large-scale plasma structures in comets: Kinematics and physics

    NASA Technical Reports Server (NTRS)

    Brandt, John C.

    1993-01-01

    Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.

  16. A search for the millimetre lines of HCN in Comets Wilson 1987 VII and Machholz 1988 XV

    NASA Astrophysics Data System (ADS)

    Crouvisier, J.; Despois, D.; Bockelee-Morvan, D.; Gerard, E.; Paubert, G.; Johansson, L. E. B.; Ekelund, L.; Winnberg, A.; Ge, W.; Irvine, W. M.; Kinzel, W. M.; Schloerb, F. P.

    1990-08-01

    The J(1-0) lines of HCN at 89 GHz were searched for in Comet Wilson 1987 VII, with the FCRAO, the SEST and the IRAM radio telescopes between February and June 1987. There was no firm detection, but significant upper limits were obtained, which put severe constraints on the HCN production rate in that comet. A direct comparison with the observations of P/Halley suggests that the HCN abundance relative to water might be smaller in Comet Wilson by at least a factor of two. The J(1-0) and J(3-2) lines of HCN at 89 and 266 GHz were searched for in Comet Machholz 1988 XV when it was close to perihelion at 0.17 AU from the sun. There was no detection. At that moment, the comet was probably no longer active.

  17. Extended atmospheres of comets and outer planet-satellite systems

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, Max L.

    1992-01-01

    For the hydrogen coma of comet P/Halley, both a Lyman-alpha image and extensive Lyman-alpha scan data obtained by the Pioneer Venus Orbiter Ultraviolet spectrometer as well as H-alpha ground-based spectral observations obtained by the University of Wisconsin Space Physics Group were successfully interpreted and analyzed with our Monte Carlo particle trajectory model. The excellent fit of the model and the Halley data and the water production rate determined near perihelion (9 Feb. 1986) from 13 Dec. 1985 to 13 Jan. 1986 and from 1 Feb. to 7 Mar. 1986 are discussed. Studies for the circumplanetary distribution of atomic hydrogen in the Saturn and Neptune systems were undertaken for escape of H atoms from Titan and Triton, respectively. The discovery of a new mechanism which can dramatically change the normal cylindrically symmetric distribution of hydrogen about the planet is discussed. The implications for the Titan-Saturn and Triton-Neptune are summarized.

  18. Chemical Heterogeneity and Mineralogy of Halley's Dust

    NASA Astrophysics Data System (ADS)

    Schulze, H.; Kissel, J.

    1992-07-01

    It is commonly assumed that comets are pristine bodies which still contain relatively unaltered material from the beginning of our solar system. Therefore, in March 1986 the chemical composition of Halley's dust particles was investigated by time- of-flight mass spectrometers on board the Vega 1 & 2 and Giotto spacecraft using the high relative velocity of 70-80 km/s between spacecraft and Halley for the generation of ions by dust impact ionization (see e.g. Kissel, 1986; Jessberger et al., 1988). This paper investigates the overall chemical variation among the dust particles with special emphasis on rock-forming elements to derive a mineralogical model of the dust and to give constraints to the evolution of cometary and preplanetary matter. The interpretation is based on 123 selected spectra obtained by the mass spectrometer PUMA 1 on Vega 1. Selection criteria, interpretation of raw data and examined instrumental effects are described in more detail elsewhere (Schulze and Kissel, 1992). The bulk composition of Halley's dust is characterized for the rock-forming elements by cosmic abundances within the experimental uncertainty of factor two (see also Jessberger et al., 1988). A small systematic deviation of the abundances can be used for a revision of the ion yields. The volatile elements carbon and nitrogen, however, are significantly enriched to CI-chondrites. A histogram of the Mg/(Mg+Fe)-ratios shows typical peaks at about 0 and 1 which indicate separated phases for Mg and Fe and an anhydrous nature of the dust (e.g. Brownlee et al., 1987; Bradley, 1988). However, also a broad peak occurs at 0.5. Mg-rich spectra are characterized by an excellent Mg-Si correlation with a narrow range of Mg/Si ratios at about 1. Also oxygen is correlated with Mg and Si. Fe-rich spectra partly show a good Fe-S correlation. However, several spectra are rich only in Fe or S. A cluster analysis of the spectra regarding Na, Mg, Al, Si, S, Ca, and Fe revealed seven groups. These

  19. Urania in the Marketplace: The Blue Comet (A Railroad’s Astronomical Heritage)

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2017-01-01

    Between 1929 February 21 and 1941 September 27 the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. Each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D’Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here.Although more than seventy years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos.This work was supported by a faculty development grant from Valdosta State University.

  20. Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+

    NASA Technical Reports Server (NTRS)

    Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.

    1986-01-01

    Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).

  1. Dust release rates and dust-to-gas mass ratios of eight comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; De Almeida, A. A.; Huebner, W. F.

    1992-01-01

    Mass release rates of dust and mass ratios of dust-to-gas release rates of Comets Thiele (1985m), Wilson (1986l), P/Borrelly (1987p), Liller (1988a), Bradfield (1987s), Hartley-Good (1985l), P/Giacobini-Zinner (1984e), and P/Halley (1982i) are estimated from the analysis of continuum flux measurements at optical wavelengths. An attempt is made to estimate the size of each comet nucleus on the basis of water-ice sublimation (vaporization), assuming that the nucleus is spherical and only a fraction of its surface area is active. Where possible, the dust mass release rates are compared with those obtained by other investigators in the optical and IR wavelength regions. Good agreement with results based on IR observations is found.

  2. Evolution of large-sclae plasma structures in comets: Kinematics and physics

    NASA Technical Reports Server (NTRS)

    Brandt, John C.

    1988-01-01

    Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.

  3. Ion Composition of Comet 19P/Borrelly as Measured by the PEPE Ion Mass Spectrometer on DS1

    NASA Astrophysics Data System (ADS)

    Nordholt, J. E.; Reisenfeld, D. B.; Wiens, R. C.; Gary, P.

    2002-12-01

    Cometary compositions are of great interest because they hold important clues to the formation of the outer solar system, and to the sources of volatiles in the solar system, including the terrestrial planets. In order to understand the primordial compositions of cometary nuclei, it is important to also understand their evolution, as many of the comets most accessible to spacecraft are highly evolved. It is also important to understand the ion and neutral chemistry that occurs in the coma surrounding the nucleus if the coma ion composition is to be used to determine the original composition of the nucleus. Deep Space One (DS1) was only the second spacecraft, after Giotto, to use an ion mass-resolving instrument to explore cometary coma compositions in-situ, which it did during the flyby of Comet Borrelly on September 22, 2001. Borrelly is significantly more evolved than Halley. In addition, the encounter occurred at a significantly greater distance from the sun (1.36 AU vs 0.9 AU for Giotto at Halley). The Plasma Experiment for Planetary Exploration (PEPE) on board DS1 was capable of resolving electron and ion energy, angle of incidence, and ion mass composition. The PEPE ion data from the seven minutes surrounding closest approach (2171 km) have been extensively analyzed. The instrument response was modeled using SIMION and TRIM codes for all of the major species through 20 AMU plus CO (at its operating voltage PEPE was very insensitive to heavier molecules). Chi-squared minimization analysis is being carried out to determine the best fit and the uncertainties. Preliminary results for the predominant heavy ions are OH+ at (72 +/- 9)% of the total water-group ion density, H2O+ at (25 +/- 7)%, CH3+ at (5 +/- 3)%, and O+ at (4 +/- 5)%. Uncertainties are quoted at the 90% confidence level. Comparison with reported Halley compositions from Giotto shows that Borrelly clearly has a lower H3O+ abundance (< 9%), consistent with a more evolved comet. The presence of

  4. Electric field measurements from Halley, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  5. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  6. The mass disruption of Jupiter Family comets

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  7. The Gas Production Rate and Coma Structure of Comet C/1995 O1 (Hale-Bopp)

    NASA Astrophysics Data System (ADS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Roesler, Frederick L.; Scherb, Frank; Anderson, Christopher M.; Doane, Nathaniel E.; Oliversen, Ronald J.

    2002-06-01

    The University of Wisconsin-Madison and NASA-Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale-Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale-Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale-Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850

  8. Sublimation rates of carbon monoxide and carbon dioxide from comet nuclei at large distances from the Sun

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    1991-01-01

    One of the more attractive among the plausible scenarios for the major emission event recently observed on Comet Halley at a heliocentric distance of 14.3 AU is activation of a source of ejecta driven by an icy substance much more volatile than water. As prerequisite for the forthcoming detailed analysis of the imaging observations of this event, a simple model is proposed that yields the sublimation rate versus time at any location on the surface of a rotating cometary nucleus for two candidate ices: carbon monoxide and carbon dioxide. The model's variable parameters are the comet's heliocentric distance r and the Sun's instantaneous zenith angle z.

  9. Observations of Comet Levy (1990c) with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Dixon, W. V.; Durrance, S. T.; Henry, R. C.; Ferguson, H. C.; Kimble, R. A.; Gull, Theodore R.

    1991-01-01

    Observations of Comet Levy (1990c) were made with the Hopkins Ultraviolet Telescope during the Astro-1 Space Shuttle mission on December 10, 1990. The spectrum, covering the wavelength range 415-1850 A at a spectral resolution of 3 A, shows the presence of carbon monoxide and atomic hydrogen, carbon, and sulfur in the coma. Aside from H I Lyman-beta, no cometary features are detected below 1200 A, although cometary O I and O II would be masked by the same emissions present in the day airglow spectrum. The 9.4 x 116 arcsecond aperture corresponds to 12,000 x 148,000 km at the comet. The derived production rate of CO relative to water is 0.11 + or - 0.02, compared with 0.04 + or - 0.01 derived from IUE observations (made in September 1990) which sample a much smaller region of the coma. This suggests the presence of an extended source of CO, as was found in comet Halley. Upper limits on Ne and Ar abundance are within one order of magnitude of solar abundances.

  10. Vibrational and rotational excitation of CO in comets. Part 1: Non-equilibrium calculations. Part 2: Results of the calculation for standard bright comet, comet Iras-Araki-Alcock and comet Halley

    NASA Technical Reports Server (NTRS)

    Chin, G.; Weaver, H. A.

    1984-01-01

    The vibrational and rotational excitation of the CO molecule in cometary comae were investigated using a model which includes IR vibrational pumping by the solar flux, vibrational and rotational radiative decay, and collisional coupling among rotational states. Steady state was not assumed in solving the rate equations. The evolution of a shell of CO gas was monitored as it expanded from the nucleus into the outer coma. Collisional effects were treated using a kinetic temperature profile derived from theoretical work on the coma energy balance. The kinetic temperature was assumed to be extremely cold in the inner coma; this has significant consequences for the CO excitation. If optical depth effects are ignored, only low J transitions will be significantly excited in comets observed at high spatial resolution. Ground-based observations of CO co-vibrational and rotational transitions will be extremely difficult due to lack of sensitivity and/or terrestrial absorption. However, CO should be detectable from a large comet with favorable observing geometry if the CO is a parent molecule present at the 10% level (or greater) relative to H2O. Observations using cooled, spaceborne instruments should be capable of detecting CO emission from even moderately bright comets.

  11. Vibrational and rotational excitation of CO in comets. Part 1: Non-equilibrium calculations. Part 2: Results of the calculation for standard bright comet, comet Iras-Araki-Alcock and comet Halley

    NASA Astrophysics Data System (ADS)

    Chin, G.; Weaver, H. A.

    1984-05-01

    The vibrational and rotational excitation of the CO molecule in cometary comae were investigated using a model which includes IR vibrational pumping by the solar flux, vibrational and rotational radiative decay, and collisional coupling among rotational states. Steady state was not assumed in solving the rate equations. The evolution of a shell of CO gas was monitored as it expanded from the nucleus into the outer coma. Collisional effects were treated using a kinetic temperature profile derived from theoretical work on the coma energy balance. The kinetic temperature was assumed to be extremely cold in the inner coma; this has significant consequences for the CO excitation. If optical depth effects are ignored, only low J transitions will be significantly excited in comets observed at high spatial resolution. Ground-based observations of CO co-vibrational and rotational transitions will be extremely difficult due to lack of sensitivity and/or terrestrial absorption. However, CO should be detectable from a large comet with favorable observing geometry if the CO is a parent molecule present at the 10% level (or greater) relative to H2O. Observations using cooled, spaceborne instruments should be capable of detecting CO emission from even moderately bright comets.

  12. A study of unmanned mission opportunities to comets and asteroids

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.; Bjorkman, W.

    1974-01-01

    Several unmanned multiple-target mission opportunities to comets and asteroids were studied. The targets investigated include Grigg-Skjellerup, Giacobini-Zinner, Tuttle-Giacobini-Kresak, Borrelly, Halley, Schaumasse, Geographos, Eros, Icarus, and Toro, and the trajectories consist of purely ballistic flight, except that powered swingbys and deep space burns are employed when necessary. Optimum solar electric rendezvous trajectories to the comets Giacobini-Zinner/85, Borrelly/87, and Temple (2)/83 and /88 employing the 8.67 kw Sert III spacecraft modified for interplanetary flight were also investigated. The problem of optimizing electric propulsion heliocentric trajectories, including the effects of geocentric launch asymptote declination on launch vehicle performance capability, was formulated, and a solution developed using variational calculus techniques. Improvements were made to the HILTOP trajectory optimization computer program. An error analysis of high-thrust maneuvers involving spin-stabilized spacecraft was developed and applied to a synchronous meteorological satellite mission.

  13. Analysis of IUE Observations of Hydrogen in Comets

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.; Feldman, Paul D.

    1998-01-01

    The 15-years worth of hydrogen Lyman-alpha observations of cometary comae obtained with the International Ultraviolet Explorer (IUE) satellite had gone generally unanalyzed because of two main modeling complications. First, the inner comae of many bright (gas productive) comets are often optically thick to solar Lyman-alpha radiation. Second, even in the case of a small comet (low gas production) the large IUE aperture is quite small as compared with the immense size of the hydrogen coma, so an accurate model which properly accounts for the spatial distribution of the coma is required to invert the infrared brightnesses to column densities and finally to H atom production rates. Our Monte Carlo particle trajectory model (MCPTM), which for the first time provides the realistic full phase space distribution of H atoms throughout the coma has been used as the basis for the analysis of IUE observations of the inner coma. The MCPTM includes the effects of the vectorial ejection of the H atoms upon dissociation of their parent species (H2O and OH) and of their partial collisional thermalization. Both of these effects are crucial to characterize the velocity distribution of the H atoms. This combination of the MCPTM and spherical radiative transfer code had already been shown to be successful in understanding the moderately optically thick coma of comet P/Giacobini-Zinner and the coma of comet Halley that varied from being slightly to very optically thick. Both of these comets were observed during solar minimum conditions. Solar activity affects both the photochemistry of water and the solar Lyman-alpha radiation flux. The overall plan of this program here was to concentrate on comets observed by IUE at other time during the solar cycle, most importantly during the two solar maxima of 1980 and 1990. Described herein are the work performed and the results obtained.

  14. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life

  15. The Gas Production Rate and Coma Structure of Comet C/1995 01 (Hale-Bopp)

    NASA Technical Reports Server (NTRS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Roesler, Frederick L.; Scherb, Frank; Anderson, Christopher M.; Doane, Nathaniel E.; Oliversen, Ronald J.

    2002-01-01

    The University of Wisconsin-Madison and NASA-Goddard conducted a comprehensive multi-wavelength observing campaign of coma emissions from comet Hale-Bopp, including OH 3080 A, [O I] 6300 A, H2O(+) 6158 A, H Balmer-alpha 6563 A, NH2 6330 A, [C I] 9850 A CN 3879 A, C2 5141 A, C3 4062 A, C I 1657 A, and the UV and optical continua. In this work, we concentrate on the results of the H2O daughter studies. Our wide-field OH 3080 A measured flux agrees with other, similar observations and the expected value calculated from published water production rates using standard H2O and OH photochemistry. However, the total [O I] 6300 A flux determined spectroscopically over a similar field-of-view was a factor of 3 - 4 higher than expected. Narrow-band [O I] images show this excess came from beyond the H2O scale length, suggesting either a previously unknown source of [O I] or an error in the standard OH + upsilon to O((sup I)D) + H branching ratio. The Hale-Bopp OH and [O I] distributions, both of which were imaged to cometocentric distances greater than 1 x 10(exp 6) km, were more spatially extended than those of comet Halley (after correcting for brightness differences), suggesting a higher bulk outflow velocity. Evidence of the driving mechanism for this outflow is found in the H(alpha) line profile, which was narrower than in comet Halley (though likely because of opacity effects, not as narrow as predicted by Monte-Carlo models). This is consistent with greater collisional coupling between the suprathermal H photodissociation products and Hale-Bopp's dense coma. Presumably because of mass loading of the solar wind by ions and ions by the neutrals, the measured acceleration of H2O(+) down the ion tail was much smaller than in comet Halley. Tailward extensions in the azimuthal distributions of OH 3080 A, [O I], and [C I], as well as a Doppler asymmetry in the [O I] line profile, suggest ion-neutral coupling. While the tailward extension in the OH can be explained by increased

  16. The International Cometary Explorer (ICE) mission to comet Giacobini-Zinner (G/Z)

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Farquhar, R. W.; Maran, S. P.; Niedner, M. B.; Von Rosenvinge, T.

    1985-01-01

    The primary objectives of the International Cometary Explorer (ICE) mission is to provide in situ data on the interaction between solar wind and the atmosphere of the P/Giacobini-Zinner comet (G/Z), making measurements of particles, fields, and waves while passing through the cometary tail of G/Z on September 11, 1985. Following the G/Z tail intercept, the ICE measurements will complement the later upstream measurements obtained by the Comet Halley probe. The major ICE payload includes a vector helium magnetometer, the plasma-wave experiment, the radio-wave experiment, the plasma-electron experiment, and the plasma ion experiment. Other experiments are intended to measure energetic protons, X-rays, low energy to high energy cosmic rays, cosmic ray electrons, and gamma-ray bursts. The ICE measurements of G/Z will be supplemented with ground-based measurements. Schematic diagrams are included.

  17. CS band intensity and column densities and production rates of 15 comets

    NASA Astrophysics Data System (ADS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-09-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  18. CS band intensity and column densities and production rates of 15 comets

    NASA Technical Reports Server (NTRS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-01-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  19. Prediction of meteor shower of comet 161P/2004 V2

    NASA Astrophysics Data System (ADS)

    Tomko, D.; Neslušan, L.

    2014-07-01

    We deal with theoretical meteoroid stream of Halley-type comet 161P/2004 V2. For two perihelion passages in the far past, we model the stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of artificial particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of artificial particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about -23 grad) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ~ 53 km/s.

  20. Disruption of giant comets in the solar system and around other stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, J. J.

    1988-01-01

    In a standard cometary mass distribution (dN/dM) alpha M(-a), a = 1.5 to 2.0) most of the mass resides in the largest comets. The maximum mass M sub max for which this distribution holds uncertain but there are theoretical and observational indications that M sub max is at least approx. 10(23)g. Chiron, although formally classified as an asteroid, is most likely a giant comet in this mass range. Its present orbit is unstable and it is expected to evolve into a more typical short period comet orbit on a timescale of approx. 10(6) to 10(7)yr. The breakup of a chiron-like comet of mass approx. 10(23)g could in principle produce approx. 10(5) Halley-size comets, or a distribution with an even larger number. If a giant comet was in a typical short period comet orbit, such a breakup could result in a relatively brief comet shower (duration approx. less than 10(6)yr) with some associated terrestrial impacts. However, the most significant climatic effects may not in general be due to the impacts themselves but to the greatly enhanced zodiacal dust cloud in the inner Solar System. (Although this is probably not the case for the unique K-T impact). Researchers used a least Chi square program with error analysis to confirm that the 2 to 5 micrometer excess spectrum of Giclas 29 to 38 can be adequately fitted with either a disk of small inefficient (or efficient) grains or a single temperature black body. Further monitoring of this star may allow discrimination between these two models.

  1. P/2006 HR30 (Siding Spring): A Low-activity Comet in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Hicks, Michael D.; Bauer, James M.

    2007-01-01

    The low cometary activity of P/2006 HR30 (Siding Spring) allowed a unique opportunity to study the nucleus of a periodic comet while near perihelion. P/2006 HR30 was originally targeted as a potential extinct comet, and we measured spectral reflectance and dust production using long-slit CCD spectroscopy and wide-field imaging obtained at the Palomar Mountain 200 inch telescope on 2006 August 3 and 4. The dust production Afp = 19.7 +/- 0.4 cm and mass-loss rate Q(dust) 4.1 +/- 0.1 kg/sec of the comet were approximately 2 orders of magnitude dust less than 1P/Halley at similar heliocentric distance. The VRI colors derived from the spectral reflectance were compared to Kuiper Belt objects, Centaurs, and other cometary nuclei. We found that the spectrum of P/2006 HR30 was consistent with other comets. However, the outer solar system bodies have a color distribution statistically distinct from cometary nuclei. It is our conjecture that cometary activity, most likely the reaccretion of ejected cometary dust, tends to moderate and mute the visible colors of the surface of cometary nuclei.

  2. HUT observations of carbon monoxide in the coma of Comet Levy (1990c)

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Dixon, W. V.; Durrance, S. T.; Henry, R. C.; Kriss, G. A.; Kruk, J.; Moos, H. W.

    1991-01-01

    Observations of comet Levy (1990c) were made with the Hopkins Ultraviolet Telescope during the Astro-1 Space Shuttle mission on 10 Dec. 1990. The spectrum, covering the wavelength range 415 to 1850 A at a spectral emission of 3 A (in first order), shows the presence of carbon monoxide and atomic hydrogen, carbon, and sulfur in the coma. Aside from H I Lyman-beta, no cometary features are detected below 1200 A, although cometary O I and O II would be masked by the same emissions present in the day airglow spectrum. The 9.4 x 116 arcsec aperture corresponds to 12,000 x 148,000 km at the comet. The derived production rate of CO relative to water, 0.13 + or - 0.02, compared with the same ratio derived from IUE observations (made in Sep. 1990) which sample a much smaller region of the coma, 0.04 + or - 0.01, suggests the presence of an extended source of CO, as was found in comet Halley. Upper limits on Ne and Ar abundance are within an order of magnitude or solar abundances.

  3. Densities and abundances of hot cometary ions in the coma of P/Halley

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Goldstein, R.; Goldstein, B. E.; Fuselier, S. A.; Balsiger, H.; Ip, W.-H.

    1991-01-01

    On its flight by P/Halley, the Giotto spacecraft carried a High Energy Range Spectrometer (HERS) for measuring the properties of cometary ions picked up by the solar wind in the nearly collisionless regions of the coma. Preliminary estimates of the ion densities observed by HERS were reevaluated and extended; density profiles along the Giotto trajectory are presented for 13 values of ion mass/charge. Comparison with the physical-chemical model of the interaction of sunlight and the solar wind with the comet by other researchers reveals that, with the exception of protons and H2(+), all ion densities were at least an order of magnitude higher than predicted. The high ion densities cannot be explained on the basis of compression of the plasma, but require additional or stronger ionization mechanisms. Ratios of the densities of different ion species reveal an overabundance of carbonaceous material and an underabundance of H2(+) compared to the predictions of the Schmidt. While the densities of solar wind ions (H(+) and He(++)) changed sharply across a magnetic discontinuity located 1.35(10)(exp 5) km from the comet, this feature, which has been called both the 'cometopause' and the 'magnetic pileup boundary' was barely distinguishable in the density profiles of hot cometary ions. This result is consistent with the interpretation that the magnetic pileup boundary detected by Giotto was caused by a discontinuity in the solar wind and is not an intrinsic feature of the interaction of the solar wind with an active comet.

  4. Focus on the future

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.

    1988-01-01

    An assessment is made of what was learned from Halley and recommendations are made for future directions for infrared studies of comets and supporting lab investigations. The following issues are addressed: (1) What steps can be taken to achieve consistent interpretation of Halley infrared data; (2) How successful has the Halley Watch been for infrared studies; (3) What supporting lab research is needed; (4) What are the key infrared observations needed for future comets; and (5) How do current and future NASA programs relate to comet studies.

  5. Tabulation of comet observations.

    NASA Astrophysics Data System (ADS)

    1985-04-01

    Concerning comets: 1961 VIII Seki, 1962 III Seki-Lines, 1963 I Ikeya, 1963 III Alcock, 1964 VIII Ikeya, 1965 VIII Ikeya-Seki, 1966 V Kilston, 1967 II Rudnicki, 1968 I Ikeya-Seki, 1968 VI Honda, 1969 IX Tago-Sato-Kosaka, 1970 II Bennett, 1971 V Toba, 1973 XII Kohoutek, 1974 II P/Schwassmann-Wachmann 1, 1974 III Bradfield, 1975 IX Kobayashi-Berger-Milon, 1975 X Suzuki-Saigusa-Mori, 1975 XII Mori-Sato-Fujikawa, 1976 VI West, 1976 XI P/d'Arrest, 1979 X Bradfield, 1980 XI P/Encke, 1980 XIII P/Tuttle, 1980 XV Bradfield, 1981 II Panther, 1982i P/Halley, 1983 XIII P/Kopff, 1983n P/Crommelin, 1983v P/Hartley-IRAS, 1983w P/Clark, 1984c P/Neujmin, 1984f Shoemaker, 1984g P/Wolf-Harrington, 1984h P/Faye, 1984i Austin, 1984j P/Takamizawa, 1984k P/Arend-Rigaux, 1984m P/Schaumasse, 1984p Tsuchinshan 1, 1984q P/Shoemaker 1, 1984s Shoemaker, 1984t Levy-Rudenko.

  6. Optical polarimetry of Comet NEAT C/2001 Q4

    NASA Astrophysics Data System (ADS)

    Ganesh, S.; Joshi, U. C.; Baliyan, K. S.

    2009-06-01

    Comet NEAT C/2001 Q4 was observed for linear polarization using the optical polarimeter mounted at the 1.2 m telescope at Mt. Abu Observatory, during the months of May and June 2004. Observations were conducted through the International Halley Watch narrow band (continuum) and BVR broad band filters. During the observing run the phase angle ranged from 85.6° in May to 55° in June. As expected, polarization increases with wavelength in this phase angle range. Polarization colour in the narrow bands changes at different epochs, perhaps related to cometary activity or molecular emission contamination. The polarization was also measured in the cometary coma at different locations along a line, in the direction of the tail. As expected, we notice minor decrease in the polarization as photocenter (nucleus) is traversed while brightness decreases sharply away from it. Based on these polarization observations we infer that the Comet NEAT C/2001 Q4 has high polarization and a typical grain composition—mixture of silicates and organics.

  7. Thermal behaviour of pure and dusty ices on comets and icy satellites

    NASA Astrophysics Data System (ADS)

    Komle, N. I.; Dettleff, G.; Dankert, C.

    1990-01-01

    The paper is concerned with the thermal behavior both of 'pure' ice and of ices containing 'particles' in response to solar radiation. It is found that pure ices usually exhibit temperature maxima below the surface due to their partial transparency to the solar radiation. Enclosed dust particles may act as radiation traps leading to different temperature profiles and heating time-scales. The dust content estimated for the ice at the active regions of comet P/Halley causes the ice to react to changes of the radiation environment much faster than it would be the case in the absence of dust particles.

  8. Ultraviolet spectroscopy of meteoric debris of comets

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Kubinec, W. R.; Nuth, J. A.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid and Orionid/Halley and the Perseid/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  9. Spirit Examines Light-Toned 'Halley' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Stretching along 'Low Ridge' in front of the winter haven for NASA's Mars Exploration Rover Spirit are several continuous rock layers that make up the ridge. Some of these layers form fins that stick out from the other rocks in a way that suggests that they are resistant to erosion. Spirit is currently straddling one of these fin-like layers and can reach a small bit of light-toned material that might be a broken bit of it. Informally named 'Halley,' this rock was broken by Spirit's wheels when the rover drove over it.

    The first analyses of Halley showed it to be unusual in composition, containing a lot of the minor element zinc relative to the soil around it and having much of its iron tied up in the mineral hematite. When scientists again placed the scientific instruments on Spirit's robotic arm on a particularly bright-looking part of Halley, they found that the chemical composition of the bright spots was suggestive of a calcium sulfate mineral. Bright soils that Spirit has examined earlier in the mission contain iron sulfate.

    This discovery raises new questions for the science team: Why is the sulfate mineralogy here different? Did Halley and the fin material form by water percolating through the layered rocks of Low Ridge? When did the chemical alteration of this rock occur? Spirit will continue to work on Halley and other light-toned materials along Low Ridge in the coming months to try to answer these questions.

    Spirit took this red-green-blue composite image with the panoramic camera on the rover's 820th sol, or Martian day, of exploring Mars (April 24, 2006). The image is presented in false color to emphasize differences among materials in the rocks and soil. It combines frames taken through the camera's 750-nanometer, 530-nanometer, and 430-nanometer filters. The middle of the imaged area has dark basaltic sand. Spirit's wheel track is at the left edge of the frame. Just to the right of the wheel track in the lower left are two types

  10. Streaming Clumps Ejection Model and the Heterogeneous Inner Coma of Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Economou, T. E.; Green, S. F.; Sandford, S. A.; Zolensky, M. E.

    2004-01-01

    The conventional concept of cometary comae is that they are dominated by fine particulates released individually by sublimation of surface volatiles and subsequent entrainment in the near-surface gas. It has long been recognized that such particulates could be relatively large, with early estimates that objects perhaps up to one meter in size may be levitated from the surface of the typical cometary nucleus. However, the general uniformity and small average particulate size of observed comae and the relatively smooth, monotonic increases and decreases in particle density during the Giotto flythrough of comet Halley s coma in 1986 reinforced the view that the bulk of the particles are released at the surface, are fine-sized and inert. Jets have been interpreted as geometrically constrained release of these particulates. With major heterogeneities observed during the recent flythrough of the inner coma of comet Wild 2, these views deserve reconsideration.

  11. Ancient Chinese Observations and Modern Cometary Models

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    1995-12-01

    Ancient astronomical observations by Chinese, Japanese, and Korean observers represent the only data source for discerning the long-term behavior of comets. The primary source material is derived from Chinese astrologers who kept a vigilant celestial watch in an effort to issue up-to-date astrological forecasts for the reigning emperors. Surprisingly accurate records were kept on cometary apparitions with careful notes being made of an object's position, motion, size, color, and tail length. For comets Halley, Swift-Tuttle, and Tempel-Tuttle, Chinese observations have been used to model their motions over two millennia and to infer their photometric histories. One general result is that active comets must achieve an apparent magnitude of 3.5 or brighter before they become obvious naked-eye objects. For both comets Halley and Swift-Tuttle, their absolute magnitudes and hence their outgassing rates, have remained relatively constant for two millennia. Comet Halley's rocket-like outgassing has consistently delayed the comet's return to perihelion by 4 days so that the comet's spin axis must have remained stable for at least two millennia. Although its outgassing is at nearly the same rate as Halley's, comet Swift-Tuttle's motion has been unaffected by outgassing forces; this comet is likely to be ten times more massive than Halley and hence far more difficult for rocket-like forces to push it around. Although the earliest definite observations of comet Tempel-Tuttle were in 1366, the associated Leonid meteor showers have been identified as early as A.D. 902. The circumstance for each historical meteor shower and storm have been used to guide predictions for the upcoming 1998-1999 Leonid meteor displays.

  12. Periodicity Signatures of Lightcurves of Active Comets in Non-Principal-Axis Rotational States

    NASA Astrophysics Data System (ADS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Barrera, Jose G.

    2016-10-01

    There are two comets (1P/Halley, 103P/Hartley 2) that are unambiguously in non-principal-axis (NPA) rotational states in addition to a few more comets that are candidates for NPA rotation. Considering this fact, and the ambiguities associated with how to accurately interpret the periodicity signatures seen in lightcurves of active comets, we have started an investigation to identify and characterize the periodicity signatures present in simulated lightcurves of active comets. We carried out aperture photometry of simulated cometary comae to generate model lightcurves and analyzed them with Fourier techniques to identify their periodicity signatures. These signatures were then compared with the input component periods of the respective NPA rotational states facilitating the identification of how these periodicity signatures are related to different component periods of the NPA rotation. Ultimately, we also expect this study to shed light on why only a small fraction of periodic comets is in NPA rotational states, whereas theory indicates a large fraction of them should be in NPA states (e.g., Jewitt 1999, EMP, 79, 35). We explore the parameter space with respect to different rotational states, different orientations for the total rotational angular momentum vector, and different locations on the nucleus for the source region(s). As for special cases, we also investigate potential NPA rotational states representative of comet 103P/Hartley2, the cometary target of the EPOXI mission. The initial results from our investigation will be presented at the meeting. The NASA DDAP Program supports this work through grant NNX15AL66G.

  13. The impact of comet Shoemaker-Levy 9 on the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Herbert, Floyd

    1994-01-01

    By the time of the impact of comet P/Shoemaker-Levy 9 with Jupiter, the freshly-broken surfaces of the accompanying rubble will have been outgassing for about two years, and will have produced an expanding and co-moving cloud of gas hundreds of R(sub J) across. Much of this gas, escaping from the cometary fragments at low (equal to or less than 1 km/s) speed, will arrive in the Jovian magnetopshere contemporaneously with the comet and drift through the magnetosphere. This gas, as it is photoionized, will be picked up primarily in the outer magnetosphere and the resulting high-energy ions should intensify magnetospheric processes, such as Io plasma torus and auroral emissions, that are thought to be powered by outer magnetospheric mass loading. If the composition of the comet is similar to that of P/Halley, the power available from mass loading should be comparable to that driving the aurora (10(exp 14) W) and at least an order of magnitude larger than that exciting the plasma torus for several weeks or months. Measurement of these emissions during and after the cometary encounter may constrain the mechanisms for energization of magnetospheric charged particle populations and magnetospheric transport processes.

  14. Comets, Asteroids, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  15. Formation of jets in Comet 19P/Borrelly by subsurface geysers

    USGS Publications Warehouse

    Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.

    2004-01-01

    Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.

  16. Millimetre observations of comets P/Brorsen-Metcalf (1989o) and Austin (1989c1) with the IRAM 30-m radio telescope

    NASA Technical Reports Server (NTRS)

    Colom, P.; Despois, D.; Bockelee-Morvan, D.; Crovisier, J.; Paubert, G.

    1990-01-01

    Millimeter observations with the IRAM 30 m telescope were conducted in comet P/Brorsen-Metcalf (1989o) on September 1989 and Austin (1989c1) on April and May 1990. The HCN J(1-0) and J(3-2) lines were detected in both comets. The HCN production rate relative to water in P/Brorsen-Metcalf is comparable to that previously measured in comet P/Halley, while that inferred in comet Austin might be smaller by a factor of two. The H2CO(3 sub 12 - 2 sub 11) transition, marginally observed in comet P/Brorsen-Metcalf, was firmly detected in May 1990 in comet Austin. Observations performed at offset positions suggest that the source of H2CO might be distributed. The H2CO abundance is on the order of 0.5 percent that of water for both comets, assuming a scalelength of 10(exp 4) km at 1 AU from the Sun for the distributed source. During the May observing period of comet Austin, two new species were detected for the first time in a comet: hydrogen sulfide (H2S) through its 1(sub 10) - 1(sub 01) ortho line at 169 GHz, and methanol (CH3OH) through J(3-2) delta K = 0 transitions at 145 GHz. Preliminary estimates of their abundances are 1.5 x 10(exp -3) for H2S and 8 x 10(exp -3) for CH3OH.

  17. Tabulation of comet observations.

    NASA Astrophysics Data System (ADS)

    Concerning comets: 1962 VIII Humason, 1971 V Toba, 1975 XI Bradfield, 1979 X Bradfield, 1980 X P/Stephan-Oterma, 1980 XI P/Encke, 1980 XIII P/Tuttle, 1981 II Panther, 1982 VI Austin, 1982 VIII P/Churyumov-Gerasimenko, 1983 V Sugano-Saigusa-Fujikawa, 1983 VII IRAS-Araki-Alcock, 1983 XIII P/Kopff, 1984 III P/Hartley-IRAS, 1985 XIII P/Giacobini-Zinner, 1985 XVII Hartley-Good, 1985 XIX Thiele, 1986 III P/Halley, 1986h P/Schwassmann-Wachmann 2, 1986j P/Comas Solá, 1986k P/Kohoutek, 1986l Wilson, 1986m P/Grigg-Skjellerup, 1986n Sorrells, 1987h P/Howell, 1987l P/Reinmuth 2, 1987m P/Brooks 2, 1987n P/Harrington, 1987p P/Borrelly, 1987r P/Reinmuth 1, 1987s Bradfield, 1987u Rudenko, 1987y Levy, 1987z P/Shoemaker-Holt, 1987b1 McNaught, 1987d1 Ichimura, 1987f1 Furuyama, 1988a Liller, 1988b Shoemaker, 1988c Maury-Phinney, 1988e Levy, P/Schwassmann-Wachmann 1.

  18. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    Inhomogeneity of cometary nuclei has been established through the observed disruptions of comets [1] and through the determination of dust particle composition during the encounter of the Vega and Giotto satellites with comet Halley [2,3,4]. The raisin bread model of cometary nuclei [5,6] assumes the presence of solid (rock) and dust particle material set in the volatile rich, ice- cemented material. Rock material may contribute to the formation of dust particles. Gombosi and Houpis [5] argued that only the composition of dust particles derived from the icy, volatile component of the comet were analyzed and implied thus that the third cometary component present (raisins/rocks) has not been examined. The compositions of the cometary (Halley) dust and the interplanetary dust particles (IDPs) are "chondritic" (Blanford et al., 1988). It is difficult, therefore to estimate the proportion of cometary to asteroid-derived dust in near Earth space, e.g., among the IDPs [7] unless other criteria are available. Bolide multistation photographic tracking allows the determination of the orbital preencounter parameters of solid bodies (0.01-100,000 kg in mass) with the Earth, and allows us to classify them according to their ablation coefficient (tau), penetration depth into the atmosphere (PE), theoretical densities (sigma), and terminal velocities (V(sub)E). Four groups are recognized (Table 1). Three of the type I bolides were recovered as ordinary chondrites (Pribram, Lost City, and Innisfree). Ceplecha [8] has shown that 38% of bolides (fireballs) come from cometary orbits (11% from highly eccentric orbits typical of new comets), but most of the bolides (62%) originate at asteroidal orbits. Seven of the 14 known meteoric showers could be attributed to known comets: N,S Taurids to 1970 P/Encke, Lyrids to 1861 I Thatcher-Beaker, Perseids to 1862 III Swift-Tuttle- Simons, Orionids to 1835 III P/Halley, Draconids to 1946 V P/Giacobini-Zinner, Leonids to 1966 I Tempel

  19. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  20. ``A Penny Plain and Twopence Coloured,''- How the Penny Theater format was used to animate and present Mary Chapin Carpenter's book, ``Halley Came to Jackson'' to preschoolers and their families as a STEM outreach program

    NASA Astrophysics Data System (ADS)

    Jablonski, Elizabeth Jan; Jablonski, Daniel; Jablonski, Matthew; Jablonski, Peter; Green, Maureen; Green, Charles; Wyble, Megan; Ardillo, Margaret

    2014-03-01

    The goal of this project is to develop a program for young children (3 to 8 years old) that provides basic information about concepts related to space, comets, time, and timelessness in a stimulating, memorable manner. The vehicle for achieving this goal is an adaptation of the children's picture book Halley Came to Jackson to a modern update of the historical Penny Theater format. The resulting ``show'' is rich in the concepts listed above, and has been presented in a variety of venues and with a variety of supplementary activities to several hundred preschoolers and their families. Based on a combination of prior research on how young children learn and careful observation and follow-up to performances of ``Halley,'' numerous findings have been developed. The Penny Theater concept and the findings of this project are discussed herein. Recipient, APS 2012 Outreach mini-grant.

  1. Halley and the eternity of the world revisited

    PubMed Central

    Levitin, Dmitri

    2013-01-01

    Since the publication in Notes and Records of the Royal Society of an article by Simon Schaffer in 1977, it has been a historiographical commonplace that there was an ‘underlying unity’ to the religio-philosophical opinions of Edmond Halley, specifically on issues concerning the age of the world. This article (i) argues that the evidence adduced for this claim—specifically the account of a lecture given by Halley to the Royal Society in 1693—has been misinterpreted, and (ii) brings forward some new evidence concerning the mysterious events surrounding Halley's unsuccessful attempt to secure the Savilian Professorship in Astronomy in 1691 and the nature of his religious heterodoxy, both as it was developed by himself and as it was perceived by contemporaries. It thus functions as a full revisionist account of one of the key players in the destabilization of the relationship between natural philosophy and Genesis in the first decades of the Royal Society.

  2. Three-dimensional structure of the heliosphere as inferred from observations with a Japanese Halley spacecraft

    NASA Technical Reports Server (NTRS)

    Saito, T.; Yumoto, K.; Hirao, K.; Aoyama, I.; Smith, E. J.

    1986-01-01

    A sinusoidal neutral line with a pair of giant regions appeared on the sun about one year before the launch of 'Sakigake', the first of two Japanese Comet Halley spacecraft. The Sakigake magnetometer data during the early part of the mission (February-March 1985) are well interpreted by an eastward shift of the tilting neutral sheet. The shift is further explained by an effect of a new giant region appearing at about 10 deg heliolatitude and about 50 deg Carrington longitude in August 1984. The toward polarity ratio of IMF observed by Sakigake changed from about 22 percent in February to about 62 percent in early June and then increased rapidly up to 98 percent. This ratio is interpreted as a decrease of the tilt angle of the sheet down to only about 4 deg. It is the first spacecraft observation of 'the disappearing sector structure' with such small tilt angle.

  3. Studies of radiative transfer in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1986-01-01

    The research emphasis during the period of this report has been on radio observations of comets, related to the International Halley Watch. Observations of the 18 cm lambda-doublet of OH have been carried out monthly. Both of the 1667 and 1665 MHz lines have been repeatedly detected for Comets Halley, Giacobini-Zinner, Thiele, and Hartley-Good. The first astronomical detection of the weak satellite line at 1720 MHz was made for P/Halley. These data promise to supply the highest signal-to-noise-ratio data over an extended period ever obtained for cometary radio observations. Analysis will provide gas production rates as a function of heliocentric distance and allow for detailed comparisons with the OH excitation model involving ultraviolet pumping. In the case of Halley, the lines appear quite symmetric, usually being centered within 0.1 km/s with respect to the nominal nuclear velocity. Line widths have been typically within 10% of 2 km/s. There is thus little evidence for asymmetric emission in the data obtained to date. It seems likely that non-steady-state models of the coma will be required to interpret the data. Evidence for significant departures from the LTE hyperfine ratios was found for Comet Giacobini-Zinner. Smaller, but nonetheless significant, deviations have been found for Comet Halley.

  4. Comets, impacts, and atmospheres

    NASA Astrophysics Data System (ADS)

    Owen, Tobias; Bar-Nun, Akiva

    Studies of element abundances and values of D/H in the atmospheres of the giant planets and Titan have emphasized the important role of icy planetesimals in the formation of these bodies. In these atmospheres, C/H and D/H increase as the relative masses of the 'cores' of the planets increase. N/H appears to deviate from this trend in an interesting way. In the inner solar system, the traditional approach of using carbonaceous chondrites as the source of planetary volatiles is in serious trouble because of the depletion of xenon and the unusual pattern of xenon isotopes found in the atmospheres of Earth and Mars, and because of the solar-type abundance ratios of argon, krypton and xenon and the large amounts of neon and argon on Venus. Recent studies of elemental abundances in comets, especially P/Halley, coupled with laboratory studies of the trapping of gas in ice formed at low temperatures by A. Bar-Nun et al. provide a consistent interpretation of all of these results. This interpretation emphasizes the fundamental importance of icy planetesimals (comets) and the randomness of early impacts in the formation of planetary systems. Cometary delivery by itself will not explain the noble gas abundances on the inner planets. There is good evidence for at least one additional source, which presumably consists of the rocky material making up the bulk of the planets. The existence of this rocky reservoir is manifested in the nucleogenic isotopes and in the neon which is found in all these atmospheres and is also present in the Earth's mantle. This neon may well be a relic of the planets' earliest, accretional atmospheres.

  5. Current status of the international Halley Watch infrared net archive

    NASA Technical Reports Server (NTRS)

    Mcguinness, Brian B.

    1988-01-01

    The primary purposes of the Halley Watch have been to promote Halley observations, coordinate and standardize the observing where useful, and to archive the results in a database readily accessible to cometary scientists. The intention of IHW is to store the observations themselves, along with any information necessary to allow users to understand and use the data, but to exclude interpretations of these data. Each of the archives produced by the IHW will appear in two versions: a printed archive and a digital archive on CD-ROMs. The archive is expected to have a very long lifetime. The IHW has already produced an archive for P/Crommelin. This consists of one printed volume and two 1600 bpi tapes. The Halley archive will contain at least twenty gigabytes of information.

  6. Massive Remnant of Evolved Cometary Dust Trail Detected in the Orbit of Halley-Type Comet 55P/Tempel-Tuttle

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Betlem, H.

    2000-01-01

    There is a subpopulation of Leonid meteoroid stream particles that appear to form a region of enhanced numbers density along the path of the stream. This structure has been detected in the vicinity of the parent comet, and its variation from one apparition to the next has been traced. A significant amount of known comet 55P/Tempel-Tuttle debris is in this component, called a "filament," which has dimensions exceeding by an order of magnitude that expected for a cometary dust trail. As filament particles are of a size comparable to those found in trails, the emission ages of the particles comprising the filament must be intermediate between the age of the current trail particles (which have not been observed) and the age of the background particles comprising the annual showers. The most likely explanation for this structure is planetary perturbations acting differently on the comet and large particles while at different mean anomalies relative to each other.

  7. The Perihelion Emission of Comet C/2010 L5 (WISE)

    NASA Astrophysics Data System (ADS)

    Kramer, E. A.; Bauer, J. M.; Fernandez, Y. R.; Stevenson, R.; Mainzer, A. K.; Grav, T.; Masiero, J.; Nugent, C.; Sonnett, S.

    2017-03-01

    The only Halley-type comet discovered by the Wide-Field Infrared Survey Explorer (WISE), C/2010 L5 (WISE), was imaged three times by WISE, and it showed a significant dust tail during the second and third visits (2010 June and July, respectively). We present here an analysis of the data collected by WISE, putting estimates on the comet’s size, dust production rate, gas production (CO+CO2) rate, and active fraction. We also present a detailed description of a novel tail-fitting technique that allows the commonly used syndyne-synchrone models to be used analytically, thereby giving more robust results. We find that C/2010 L5's dust tail was likely formed by strong emission, likely in the form of an outburst, occurring when the comet was within a few days of perihelion. Analyses of the June and July data independently agree on this result. The two separate epochs of dust tail analysis independently suggest a strong emission event close to perihelion. The average size of the dust particles in the dust tail increased between the epochs, suggesting that the dust was primarily released in a short period of time, and the smaller dust particles were quickly swept away by solar radiation pressure, leaving the larger particles behind. The difference in CO2 and dust production rates measured in 2010 June and July is not consistent with “normal” steady-state gas production from a comet at these heliocentric distances, suggesting that much of the detected CO2 and dust was produced in an episodic event. Together, these conclusions suggest that C/2010 L5 experienced a significant outburst event when the comet was close to perihelion.

  8. The Perihelion Emission of Comet C/2010 L5 ( WISE )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, E. A.; Bauer, J. M.; Stevenson, R.

    The only Halley-type comet discovered by the Wide-Field Infrared Survey Explorer ( WISE ), C/2010 L5 ( WISE ), was imaged three times by WISE , and it showed a significant dust tail during the second and third visits (2010 June and July, respectively). We present here an analysis of the data collected by WISE , putting estimates on the comet’s size, dust production rate, gas production (CO+CO{sub 2}) rate, and active fraction. We also present a detailed description of a novel tail-fitting technique that allows the commonly used syndyne–synchrone models to be used analytically, thereby giving more robust results.more » We find that C/2010 L5's dust tail was likely formed by strong emission, likely in the form of an outburst, occurring when the comet was within a few days of perihelion. Analyses of the June and July data independently agree on this result. The two separate epochs of dust tail analysis independently suggest a strong emission event close to perihelion. The average size of the dust particles in the dust tail increased between the epochs, suggesting that the dust was primarily released in a short period of time, and the smaller dust particles were quickly swept away by solar radiation pressure, leaving the larger particles behind. The difference in CO{sub 2} and dust production rates measured in 2010 June and July is not consistent with “normal” steady-state gas production from a comet at these heliocentric distances, suggesting that much of the detected CO{sub 2} and dust was produced in an episodic event. Together, these conclusions suggest that C/2010 L5 experienced a significant outburst event when the comet was close to perihelion.« less

  9. Understanding Phosphorous Chemistry in Comets in Light of Rosetta Results

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury A.

    2016-10-01

    Introduction: Phosphorous is a key element in all known forms of life. P-bearing compounds have been observed in the ISM and other regions of space. They are ubiquitous in meteorites, have been detected in the dust component in comets 1P/Halley and 81P/Wild 2, and in the gas phase (atomic P) of 67P/Churyumov-Gerasimenko by the Rosetta Mission. We present results from the first quantitative study of P-bearing molecules in comets to aid in future searches for this important element in comets, shedding light on issues of comet formation and prebiotic to biotic evolution of life. Results and Discussion: Our gas dynamics model of cometary comae with chemical kinetics has been adapted to study this problem. We used phosphine (PH3) as a native molecule with a cosmic abundance mixing ratio. Over 100 photo and gas-phase reactions and 30 P-bearing species were added to the chemical network. The chemistry of PH3 in the inner coma shows the major destruction channels are photo-dissociation and protonation with water-group ions, leading to the recycling of PH3 in this region and the eventual production of atomic P. Conclusion: The model identifies the relevant phosphine chemistry in cometary coma. Protonation reactions of PH3 with water-group ions are important due to its high proton affinity. Abundances are found to be on the order of 10-4 relative to water, about the same as isotopic species. The scale length of PH3 in the coma is about 13,000-16,000 km. We also comment on other Rosetta findings (e.g., O2 and H-). Collaborations with observers using modern telescopic facilities (e.g., Keck 2 and Subaru) are underway to search for phosphorus in comets. Acknowledgments: This work was supported by FAPESP under Grant No. 2015/03176-8 and the National Science Foundation Planetary Astronomy Program Grant No. 0908529.

  10. Stardust Encounters Comet 81P/Wild 2

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Anderson, J. D.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T.; Economou, T.; Green, S. F.; Hanner, M. S.; hide

    2004-01-01

    Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.

  11. The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)

    NASA Technical Reports Server (NTRS)

    Moorhead, A.; Wiegert, P.; Blaauw, R.; McCarty, C.; Kingery, A.; Cooke, W.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We

  12. COMETS!

    NASA Astrophysics Data System (ADS)

    Eicher, David J.; Levy, David H.

    2013-11-01

    Foreword David H. Levy; Preface; Acknowledgments; 1. Strange lights in the sky; 2. Great comets of the past; 3. What are comets?; 4. Comets of the modern era; 5. Comets in human culture; 6. Where comets live; 7. The expanding science of comets; 8. Observing comets; 9. Imaging comets; Glossary; Bibliography; Index.

  13. Comet nuclear magnitudes and a new size distribution using archived NEAT data.

    NASA Astrophysics Data System (ADS)

    Bambery, R. J.; Hicks, M. D.; Pravdo, S. H.; Helin, E. F.; Lawrence, K. J.

    2002-09-01

    A reliable estimate of the size distribution of cometary nuclei provides important constraints on the formation and dynamical/physical evolution of these bodies as well as their relative proportions in the near-Earth population. The basic data of nuclear sizes has been difficult to obtain, due to the shroud of dust that envelopes the nucleus across a wide range of heliocentric distances. Only two comets, P/Halley and P/Borrelly, have had direct imaging of their nuclei from spacecraft encounters, though high spatial-resolution imaging by the Hubble Space Telescope has also yielded very reliable diameters [1]. Other observers have recently used ground-based photometry to obtain cumulative size-frequency distributions which are not in agreement [2,3]. One possible source of error is the need to include data from a wide range of telescopes and reduction techniques. We shall obtain a new estimate of the size-frequency distribution using a self-consistent data-set. The Near-Earth Asteroid Tracking (NEAT) Program at the Jet Propulsion laboratory remotely operates two 1.2-meter telescopes at widely geographically separated locations on a near-nightly basis. All NEAT data is archived and publically available through the SKYMORPH website (http:/skyview.gsfc.nasa.gov/skymorph/skymorph.html) Though optimized to discover near-Earth asteroids, we have obtained over 300 CCD images of approximately 40 short and long-period comets over the last 15 months. Though we model coma contamination for all images, we shall concentrate on the fraction of comets at heliocentric distances greater than 3 AU. Our data will be used to derive an independent comet size-frequency distribution .

  14. Recent researches into solid bodies and magnetic fields in the solar system; Proceedings of the Topical Meeting and Symposium, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Vette, J. I. (Editor); Runcorn, S. K. (Editor); Gruen, E. (Editor); Mcdonnell, J. A. M.

    1982-01-01

    Topics discussed include the magnetic history of the early solar system, impact processes in solid bodies (e.g., meteoroids and asteroids), and topics related to cometary missions. The section devoted to cometary missions lays particular stress on missions to Comet Halley; attention is given to such aspects of these missions as the investigation of hypervelocity impact on the Giotto Halley mission dust shield, the detection of energetic cometary and solar particles by the EPONA instrument on the Giotto mission, the dust hazard near Comet Halley in regard to the Vega project, and cometary ephemerides for spacecraft flyby missions.

  15. Structure and dynamics of the umagnetized plasma around comet 67P/CG

    NASA Astrophysics Data System (ADS)

    Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.

    2016-12-01

    At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent

  16. Abundant Cool Magnesium-Rich Pyroxene Crystals in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    1999-01-01

    Modeling of the observed dust emission from Comet Hale-Bopp over a large range of heliocentric distances (2.8 AU - 0.93 AU -1.7 AU) led to the discovery of Mg-rich pyroxene crystals in the coma These pyroxene crystals are apparent in the 10 micron spectrum only when the comet is close to perihelion (r(sub h) = 1.2 AU) because they are cooler than the other silicate minerals. The pyroxene crystals are cooler than the other species because of their high Mg-content. They do not absorb as efficiently as the other silicate minerals. Given the same high Mg content of Mg/(Mg + Fe) = 0.9, radiative equilibrium computations show that pyroxene crystals are expected to be 150 K cooler than olivine crystals. The pyroxene crystals are also about 10x more abundant than the other silicate mineral species. Their high Mg content and relatively large abundance are in agreement with the preponderance of pyroxene interplanetary dust particles (IDPs) and the recent reanalysis of the PUMA-I flyby of Comet Halley. Before Hale-Bopp, only olivine crystals were detected spectroscopically in comets, probably because the pyroxene crystals are less optically active, hence significantly cooler and harder to detect in contrast to the warmer silicate species. Determining the relative abundances of silicate minerals depends on their Mg contents. If the pyroxene crystals in Comet Hale-Bopp are solar nebula condensates, then they probably had to form during the early FU Orionis epoch when the inner disk was hot enough and be transported out to the region of formation of icy planetesimals without being reheated. Reheating events appear to reincorporate Fe back into the crystals or form Fe-rich rims, which are not consistent with the high-Mg-content crystals. The condensation of Mg-rich pyroxene crystals is expected from solar nebula thermal equilibrium computations. However, their subsequent transport to the outer solar nebula unaltered has yet to be theoretically demonstrated. The discovery of Mg

  17. Small-scale dust structures in Halley's coma. II. Disintegration of large dust bodies

    NASA Astrophysics Data System (ADS)

    Oberc, P.

    2004-10-01

    Small-scale dust structures, SDSs, altogether ˜35 events with extent ˜30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ˜0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ˜300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ˜0.4 W m -1 K -1 or so, while the latent heat of gluing organics was roughly 80 kJ mol -1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the

  18. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  19. Cometary exploration in the shuttle era

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1978-01-01

    A comprehensive program plan for cometary exploration in the 1980-2000 time frame is proposed. Plans for ground-based observations, a Spacelab cometary observatory, and the Space Telescope are included in the observational program. The cometary mission sequence begins with a dual-spacecraft flyby of Halley's comet. The nominal mission strategy calls for a simultaneous launch of two spacecraft towards an intercept with Halley in March 1986. After the Halley encounter, the spacecraft are retargeted: one to intercept comet Borrelly in January 1988 and the other to intercept comet Tempel-2 in September 1988. The additional cometary intercepts are accomplished by utilizing a novel Earth-swingby technique. The next mission in the cometary program plan, a rendezvous with Encke's comet, is scheduled for launch in early 1990. It is planned to rendezvous with Encke in September 1992 at a heliocentric distance of 4 AU. Following this near-aphelion rendezvous, the spacecraft will remain with with Encke through the next two perihelion passages in February 1994 and May 1997. The rendezvous mission will be terminated about seven months after the second perihelion passage.

  20. High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin

    2016-10-06

    The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

  1. Rosetta - a comet ride to solve planetary mysteries

    NASA Astrophysics Data System (ADS)

    2003-01-01

    kilometres of Halley). It sent back wonderful pictures and data that showed that comets contain complex organic molecules. These kinds of compounds are rich in carbon, hydrogen, oxygen, and nitrogen. Intriguingly, these are the elements which make up nucleic acids and amino acids, which are essential ingredients for life as we know it. Giotto continued its successful journey and flew by Comet Grigg-Skjellerup in 1992 within about 200 km distance. Now scientists will be eagerly waiting to be able to answer some of the new intriguing questions that arose from analysing the exciting results from Giotto. Other past missions that have flown by a comet were: NASA’s ICE mission in 1985, the two Russian VEGA spacecraft and the two Japanese spacecraft Suisei and Sakigake that were part of the armada that visited comet Halley in 1986; NASA’s Deep Space 1 flew-by comet Borelly in 2001 and NASA’s Stardust will fly-by comet Wild 2 in early 2004 and will return samples of the comet’s coma in 2006. Unfortunately NASA’s Contour launched in Summer 2002 failed when it was inserted onto its interplanetary trajectory. In 2004 we will see the launch of Deep Impact, a spacecraft that will shoot a massive block of copper into a comet nucleus.

  2. Once a myth, now an object of study - How the perception of comets has changed over the centuries

    NASA Astrophysics Data System (ADS)

    2004-02-01

    symbol of the prophet’s empowerment. Or again Luke 21:11: “And great earthquakes shall be in divers places, and famines, and pestilences; and fearful sights and great signs shall there be from heaven.” In 1066, Halley’s Comet appeared to many as a harbinger of the Norman conquest of Britain, so vividly portrayed in the Bayeux tapestry, with its scenes from the Battle of Hastings. The decisive step towards overturning the view that comets are atmospheric phenomena was taken in 1577 by Danish astronomer, Tycho Brahe. For two and a half months he observed from his observatory in Uranienburg the progress of a comet across the heavens. Relying on the phenomenon of the daily parallax - an apparent “shuddering” motion of heavenly bodies in fact attributable to the observer’s position on the revolving Earth - he was able to establish that the comet had to be located beyond the lunar orbit. Halley discovers an elliptical orbit The scientific description of comets took another major step forward in 1705 thanks to the work of the British astronomer and physicist, Edmond Halley, a friend and patron of Isaac Newton. Investigating recorded comet measurements, he observed that the orbits of a number of bright comets were very similar: his own calculation of the orbit of a comet observed in 1682 coincided with the data recorded by Johannes Kepler in 1607 and by Apianus in 1531. He concluded that various comet observations were attributable to one and the same comet. Halley was proved right when in December 1758, the comet whose return he had predicted, thenceforth named after him, did indeed make a repeat appearance. This confirmed his theory that apparently parabolic comet orbits were in fact “simply” sections of one enormous elliptical orbit. Since then observations recorded in China in 240 BC have been identified as relating to a sighting of Halley’s comet, the oldest known document dealing with this phenomenon. What was described in the Bible as a sign from God

  3. CRAF Mission: An opportunity for exobiology

    NASA Technical Reports Server (NTRS)

    Neugebauer, Marcia; Weissman, Paul

    1992-01-01

    The Halley missions of 1986 gave us a first, quick glimpse of a comet nucleus and the first in situ measurements of cometary gas and dust. Many of our basic ideas about cometary nuclei were confirmed while a number of startling new discoveries were also made. However, in many respects the very fast Halley flybys raised more questions than they answered. We learned, for example, that comets contain a large amount of organic material but we were unable to determine precisely which organic molecules were present. We learned, too, that the nucleus of a comet is a dark, irregularly shaped body, but we could determine very little about the physical state and structure of the ices and grains within the comet nucleus.

  4. Comets, meteors, and eclipses: Art and science in early Renaissance Italy

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    2002-11-01

    We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more believable, convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (circa 1301-1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards. Halley's Comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and "astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328-30; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20) contain dazzling meteor showers that reveal the artist's observed astronomical phenomena, such as the "radiant" effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and only accepted in the nineteenth century. Lorenzetti also painted sporadic, independent

  5. PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuram, Susarla; Galand, Marina; Bhardwaj, Anil, E-mail: raghuramsusarla@gmail.com

    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO{sub 2}) and atomic oxygen emissions (to trace H{sub 2}O and/or CO{sub 2}, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameronmore » band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO{sub 2} volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO{sub 2} and/or CO volume mixing ratios with respect to H{sub 2}O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.« less

  6. Tabulation of comet observations.

    NASA Astrophysics Data System (ADS)

    1993-07-01

    Concerning comets: 1955 III Mrkos, 1955 IV Bakharev-Macfarlane-Krienke, 1955 V Honda, 1956 III Mrkos, 1956 IV P/Olbers, 1957 V Mrkos, 1961 II Candy, 1961 V Wilson-Hubbard, 1962 III Seki-Lines, 1962 V P/Tuttle-Giacobini-Kresák, 1963 I Ikeya, 1963 III Alcock, 1964 VI Tomita-Gerber-Honda, 1964 IX Everhart, 1965 VIII Ikeya-Seki, 1966 II Barbon, 1966 V Kilston, 1967 III Wild, 1967 IV Seki, 1967 V P/Tuttle, 1967 X P/Tempel 2, 1970 I Daido-Fujikawa, 1975 IX Kobayashi-Berger-Milon, 1979 X Bradfield, 1986 III P/Halley, 1989 X P/Brorsen-Metcalf, 1989 XIX Okazaki-Levy-Rudenko, 1990 III Cernis-Kiuchi-Nakamura, 1990 V Austin, 1990 XIV P/Honda-Mrkos-Pajdušáková, 1990 XVII Tsuchiya-Kiuchi, 1990 XX Levy, 1990 XXI P/Encke, 1990 XXVIII P/Wild 2, 1991 XI P/Levy, 1991 XV P/Hartley 2, 1991a1 Shoemaker-Levy, 1992h Spacewatch, 1992l P/Giclas, 1992n P/Schuster, 1992ο P/Daniel, 1992s P/Ciffréo, 1992t P/Swift-Tuttle, 1992u P/Väisälä 1, 1992x P/Schaumasse, 1992y Shoemaker, 1992a1 Ohshita, 1993a Mueller, 1993e P/Shoemaker-Levy 9, P/Smirnova-Chernykh, P/Schwassmann-Wachmann 1.

  7. Comet Odyssey: Comet Surface Sample Return

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.

    2010-10-01

    Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.

  8. Deuterated Water in Comet C/1996 B2 (Hyakutake) and its Implications for the Origin of Comets

    NASA Technical Reports Server (NTRS)

    Bockelee-Morvan, D.; Gautier, D.; Lis, D. C.; Young, K.; Keene, J.; Phillips, T. G.; Owen, T.; Crovisier, J.; Goldsmith, P. F.; Bergin, E. A.; hide

    1998-01-01

    The close approach to the Earth of comet C/1996 B2 (Hyakutake) in March 1996 allowed searches for minor volatile species outgassing from the nucleus. We report the detection of deuterated water (HDO) through its 1(sub 01)-0(sub 00) rotational transition at 464.925 GHz using the Caltech Submillimeter Observatory. We also present negative results of a sensitive research for the J(5-4) line of deuterated hydrogen cyanide (DCN) at 362.046 GHz. Simultaneous observations of two rotational lines of methanol together with HDO in the same spectrum allow us to determine the average gas temperature within the telescope beam to be 69 +/- 10 K. We are thus able to constrain the excitation conditions in the inner coma and determine reliably the HDO production rate as (1.20 +/- 0.28) x 10(exp 26)/s on March 23-24, 1996. Available IR, UV and radio measurements lead to a water production rate of (2.1 +/- 0.5) x 10(exp 29)/s at the time of our HDO observations. The resulting D/H ratio in cometary water is thus (29 +/- 10) x 10(exp -5) in good agreement with the values of (30.8(sub - 5.3, sup +3.8) (Balsiger et al. 1995) and (31.6 +/- 3.4) x 10(exp -5) (Eberhardt et al. 1995) determined in comet P/Halley from in situ ion mass spectra. The inferred 3 a upper limit for the D/H ratio in HCN is 1%. Deuterium abundance is a key parameter for studying the origin and the early evolution of the Solar System and of its individual bodies. Our HDO measurement confirms that, in cometary water, deuterium is enriched by a factor of at least 10 relative to the protosolar ratio, namely the D/H ratio in H2 in the primitive Solar Nebula which formed from the collapse of the protosolar cloud. This indicates that cometary water has preserved a major part of the high D/H ratio acquired in this protosolar cloud through ion-molecule isotopic exchanges or grain-surface reactions and was not re-equilibrated with H2 in the Solar Nebula. Scenarios of formation of comets consistent with these results are

  9. Nonlinear stability of Halley comethosheath with transverse plasma motion

    NASA Technical Reports Server (NTRS)

    Srivastava, Krishna M.; Tsurutani, Bruce T.

    1994-01-01

    Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.

  10. Halley's Comet and Beyond.

    ERIC Educational Resources Information Center

    Sneider, Cary; DeVore, Edna

    1986-01-01

    Reviews software packages under these headings: (1) simulations of experiments; (2) space flight simulators; (3) planetariums; (4) space adventure games; and (5) drill and practice packages (designed for testing purposes or for helping students learn basic astronomy vocabulary). (JN)

  11. The nature of cometary dust as determined from infrared observations

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. Krishna; Sandford, Scott A.; Allamandola, Louis J.; Witteborn, Fred C.; Bregman, Jesse D.

    1989-01-01

    The infrared measurements of comets, the compositional information available from interplanetary dust particles (IDPs), and the recent results of flybys to Comet Halley can help in restricting the nature and composition of cometary dust models (c.f., Proceedings of the 20th ESLAB Symposium on Exploration of Halley's Comet, 1986). Researchers tried to incorporate some of these results into a coherent model to account for the observed cometary infrared emission. The presence of 10 and 3.4 micron features in Comet Halley (c.f. Bregman et al. 1987; Wickramasinghe and Allen 1986) indicated the presence of at least two components in the grain material, namely silicates and some form of amorphous carbon. These two components could reside in separate grains or may be parts of composite particles. Both these cases have been considered (see Krishna Swamy el a. 1988a, 1988b). In the absence of refractive index data for cometary analogs, the authors used the optical constants of olivine-rich lunar material 12009.48 (Perry et al. 1972) for the infrared region and that of alpha:C-H film for amorphous carbon (angus et al. 1986). For the visible region, a value of m = 1.38-0.39i was used for the silicates, and values published by Arakawa et al. (1985) were used for the amorphous carbon. These materials should give a representative behavior of the expected results. The model results were compared to observational data. The strength of the 3.4 micron and 10 micron features relative to the adjacent continuum, as well as the slope of the continuum between 2500 and 1250 cm(exp -1) (4 to 8 microns), were used as criteria for comparison. Model calculations with alpha approx. equals -3.5, and also the size distribution function inferred for Comet Halley, with a mass fraction (X) of silicate to amorphous carbon grains of about 40 to 1 can fit the data. A good match is obtained for the infrared spectra of Comets Halley and West from a 40 to 1 mixture of silicate and amorphous carbon grains

  12. The heliocentric evolution of cometary infrared spectra - Results from an organic grain model

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher F.; Sagan, Carl; Mumma, Michael J.

    1989-01-01

    An emission feature peaking near 3.4 microns that is typical of C-H stretching in hydrocarbons and which fits a simple, two-component thermal emission model for dust in the cometary coma, has been noted in observations of Comets Halley and Wilson. A noteworthy consequence of this modeling is that, at about 1 AU, emission features at wavelengths longer than 3.4 microns come to be 'diluted' by continuum emission. A quantitative development of the model shows it to agree with observational data for Comet Halley for certain, plausible values of the optical constants; the observed heliocentric evolution of the 3.4-micron feature thereby furnishes information on the composition of the comet's organic grains.

  13. Comets. [IUE

    NASA Technical Reports Server (NTRS)

    Ahearn, Michael F.

    1988-01-01

    The IUE was used to study comets including the first dynamically new comet to approach closer than 3 AU. Differences between old and new comets are studied. Results relevant to the nature of cometary nuclei are discussed. Identification of species in the spectra; relative abundances; variability of comets; and comet mass are considered.

  14. The forest and the trees. [comments on comet nuclei, cometary origin, and correlations among cometary data

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1991-01-01

    Comments on the nature of cometary nuclei, some problems regarding cometary origin, and some correlations among cometary data are presented. Comparisons with an earlier report on cometary nuclei are noted, and most of the earlier advances in concept are substantiated. The mean density of the Halley nucleus may have been underestimated, while the nature of the rotation remains uncertain. The dust/gas ratio apparently needs to be increased by as much as two times, perhaps to unity or higher. CHON grains appear to be important sources of gas. Evidence is presented to support the thesis that aging among long-period comets increases statistically as the periods decrease. Data on the orientation of cometary axes with respect to the Galaxy and the properties of clusters defined by these axes are presented.

  15. Isotopic analysis of cometary organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  16. Hydrogen cyanide polymers, comets and the origin of life.

    PubMed

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types

  17. A continued program of planetary study at the University of Texas McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Smith, H. J.; Barker, E. S.; Cochran, W. D.; Trafton, L. M.

    1986-01-01

    The beginning of eclipses of the Pluto-Charon system was detected. The onset of coma formation of P/Halley at 5.4 au was detected and evidence of sublimation at 4.8 au when CN emission was detected. Extensive spatial maps of the gas in the comae of comets Halley and Giacobini-Zinner were obtained in fall 1985. Halley was time variable, and Giacobini-Zinner was depleted in C2 and C3 relative to CN. Comet Kopff was shown to have a pre-perihelion brightness maximum of its gas, consistent with mantle development if the comet is a high obliquity object. New Haser model scale lengths for CN, C3, and C2 were determined using results from the Faint Comet Survey. Spectra of 12 asteroids in unusual orbits showed no evidence of any comet-like emission features. In particular, 3200 Phaethon (1983 TB) has no gas or dust coma, in spite of the similarity of its orbit with the Geminid meteor stream. Data were analyzed on Saturn's H2 and CH4 bands for the recent southern summer using a Tomasko-Doose type of haze distribution. This haze model fits the data moderately well, giving a CH4 mixing ratio of (4.2 + or 0.4)x003. Simple functions were found to approximate the collision-induced rotation-translation thermal opacity of H2.

  18. The study of comets, part 1. [conference on photometry and spectrum analysis of Kohoutek comet and comet tails

    NASA Technical Reports Server (NTRS)

    Donn, B. (Editor); Mumma, M. J. (Editor); Jackson, W. M. (Editor); Ahearn, M. (Editor); Harrington, R. (Editor)

    1976-01-01

    Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek.

  19. Early star catalogues of the southern sky. De Houtman, Kepler (second and third classes), and Halley

    NASA Astrophysics Data System (ADS)

    Verbunt, F.; van Gent, R. H.

    2011-06-01

    De Houtman in 1603, Kepler in 1627 and Halley in 1679 published the earliest modern catalogues of the southern sky. We provide machine-readable versions of these catalogues, make some comparisons between them, and briefly discuss their accuracy on the basis of comparison with data from the modern Hipparcos Catalogue. We also compare our results for De Houtman with those by Knobel in 1917 finding good overall agreement. About half of the ~ 200 new stars (with respect to Ptolemaios) added by De Houtman are in twelve new constellations, half in old constellations like Centaurus, Lupus and Argo. The right ascensions and declinations given by De Houtman have error distributions with widths of about 40', the longitudes and latitudes given by Kepler have error distributions with widths of about 45'. Halley improves on this by more than an order of magnitude to widths of about 3', and all entries in his catalogue can be identified. The measurement errors of Halley are due to a systematic deviation of his sextant (increasing with angle to 2' at 60°) and random errors of 0.7 arcmin. The position errors in the catalogue of Halley are dominated by the position errors in the reference stars, which he took from Brahe. The full Tables Houtman, Classis, Aliter and Halley (see Tables 6, 7, 8) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A93

  20. Comets

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.

    2003-12-01

    Comets are surviving members of a formerly vast distribution of solid bodies that formed in the cold regions of the solar nebula. Cometary bodies escaped incorporation into planets and ejection from the solar system and they have been stored in two distant reservoirs, the Oort cloud and the Kuiper Belt, for most of the age of the solar system. Observed comets appear to have formed between 5 AU and 55 AU. From a cosmochemical viewpoint, comets are particularly interesting bodies because they are preserved samples of the solar nebula's cold ice-bearing regions that occupied 99% of the areal extent of the solar nebula disk. All comets formed beyond the "snow line" of the nebula, where the conditions were cold enough for water ice to condense, but they formed from environments that significantly differed in temperature. Some formed in the comparatively "warm" regions near Jupiter where the nebular temperature may have been greater than 120 K and others clearly formed beyond Neptune where temperatures may have been less than 30 K (Bell et al., 1997). Although comets are the best-preserved materials from the early solar system, they should be a mix of nebular and presolar materials that accreted over a vast range of distances from the Sun in environments that differed in temperature, pressure, and accretional conditions such as impact speed.Comets, by conventional definition, are unstable near the Sun; they contain highly volatile ices that vigorously sublime within 2-3 AU of the Sun. When heated, they release gas and solids due to "cometary activity," a series of processes usually detected from afar by the presence of a coma of gas and dust surrounding the cometary nucleus and or elongated tails composed of dust and gas. Active comets clearly have not been severely modified by the moderate to extreme heating that has affected all other solar system materials, including planets, moons, and even the asteroids that produced the most primitive meteorites. Comets have been

  1. OpenComet: An automated tool for comet assay image analysis

    PubMed Central

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time. PMID:24624335

  2. OpenComet: an automated tool for comet assay image analysis.

    PubMed

    Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  3. Comets, Meteors, and Eclipses: Art and Science in Early Renaissance Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    1999-09-01

    We discuss several topics relating artists and their works with actual astronomical events in early Renaissance Italy to reveal the revolutionary advances made in both astronomy and naturalistic painting. Padua, where Galileo would eventually hold a chair at the University, was already by the fourteenth century (trecento) a renowned center for mathematics and nascent astronomy (which was separating from astrology). It is no wonder that when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (c. 1303) that in the scene of the Adoration of the Magi Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem. Moreover, he painted an historical apparition he recently had observed with a great understanding of its scientific structure: Halley's Comet of 1301 (since Olson's first publication of this idea in Scientific American we have expanded the argument in several articles and talks). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and ``astronomer" who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we tackle the question how Giotto's pupil, Taddeo Gaddi, who is documented as having been partially blinded by lengthy unprotected observation of the partial phase of an annular solar eclipse, reflects his observations in his frescoes in Santa Croce, Florence (1328-30). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316-20), contain dazzling meteor showers that hold important symbolic meanings in the cyle's argument but more importantly reveal that the artist observed astronomical phenomena, such as the ``radiant" effect, which was first recorded by Alexander von Humboldt

  4. 3D CSEM data inversion using Newton and Halley class methods

    NASA Astrophysics Data System (ADS)

    Amaya, M.; Hansen, K. R.; Morten, J. P.

    2016-05-01

    For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those

  5. Photometric and spectrophotometric activity of P/Halley during 1984-85

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Opal, C. B.

    1986-01-01

    Imaging and spectroscopic observations of P/Halley were performed during 1984 and 1985 using a CCD camera and an Image Dissector Scanner Spectrograph, and the results are reported. P/Halley activity appears to begin around 6.23 AU and varies as r exp -5.3 for heliocentric distances between 5.8 and 4.2 AU. The observed radial brightness distribution falls off much faster than the inverse of the projected distance from the nucleus, indicating that the particles are disappearing or evaporating within about 20,000 km of the nucleus. Weak CN emission was detected in spectra obtained during February 1985, corresponding to a column density of 3 x 10 to the 8th molecules/sq cm. The spectroscopic results indicate that the excess of the observed emission over that from the bare nucleus is dominated by scattered solar continuum from grains, rather than by molecular coma emissions.

  6. The Giotto electron plasma experiment

    NASA Technical Reports Server (NTRS)

    Reme, H.; Cotin, F.; Cros, A.; Medale, J. L.; Sauvaud, J. A.

    1987-01-01

    The RPA-Copernic experiment aboard Giotto is described. The experiment is designed to measure the three-dimensional distributions of electrons between 10 eV and 30 keV (by the RPA-1 EESA spectrometer) and the composition and distribution, close to the comet, of thermal positive ions in the mass range 10-213 amu (by the RPA-2 PICCA electrostatic mass analyzer). Three microprocessors interface RPA-1 EESA with RPA-2 PICCA and with the spacecraft and perform extensive onboard data processing. The experiment was operated successfully aboard the spacecraft in September 1985 during the encounter of Giotto with the comet Halley. The results provided by the EESA-1 indicate that the solar wind interaction with the comet Halley forms a well-defined bow shock with features quite different from the features of the comet Giacobini-Zinner bow shock; the data also showed a presence of accelerated keV electrons at the cometary bow shock, upstream and in the transition region.

  7. HUBBLE SEES MINI-COMET FRAGMENTS FROM COMET LINEAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [lower right] In one stunning Hubble picture the fate of the mysteriously vanished solid nucleus of Comet LINEAR has been settled. The Hubble picture shows that the comet nucleus has been reduced to a shower of glowing 'mini-comets' resembling the fiery fragments from an exploding aerial firework. This is the first time astronomers have ever gotten a close-up look at what may be the smallest building blocks of cometary nuclei, the icy solid pieces called 'cometesimals', which are thought to be less than 100 feet across. The farthest fragment to the left, which is now very faint, may be the remains of the parent nucleus that fragmented into the cluster of smaller pieces to the right. The comet broke apart around July 26, when it made its closest approach to the Sun. The picture was taken with Hubble's Wide Field Planetary Camera 2 on August 5, 2000, when the comet was at a distance of 64 million miles (102 million kilometers) from Earth. Credit: NASA, Harold Weaver (the Johns Hopkins University), and the HST Comet LINEAR Investigation Team [upper left] A ground-based telescopic view (2.2-meter telescope) of Comet LINEAR taken on August 5, at nearly the same time as the Hubble observations. The comet appears as a diffuse elongated cloud of debris without any visible nucleus. Based on these images, some astronomers had concluded that the ices in the nucleus had completely vaporized, leaving behind a loose swarm of dust. Hubble's resolution was needed to pinpoint the remaining nuclei (inset box shows HST field of view as shown in lower right). Credit: University of Hawaii

  8. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  9. Thermal infrared and optical photometry of Asteroidal Comet C/2002 CE10

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Tomohiko; Miyasaka, Seidai; Dermawan, Budi; Mueller, Thomas; Takato, Naruhisa; Watanabe, Junichi; Boehnhardt, Hermann

    2018-04-01

    C/2002 CE10 is an object in a retrograde elliptical orbit with Tisserand parameter - 0.853 indicating a likely origin in the Oort Cloud. It appears to be a rather inactive comet since no coma and only a very weak tail was detected during the past perihelion passage. We present multi-color optical photometry, lightcurve and thermal mid-IR observations of the asteroidal comet. With the photometric analysis in BVRI, the surface color is found to be redder than asteroids, corresponding to cometary nuclei and TNOs/Centaurs. The time-resolved differential photometry supports a rotation period of 8.19 ± 0.05 h. The effective diameter and the geometric albedo are 17.9 ± 0.9 km and 0.03 ± 0.01, respectively, indicating a very dark reflectance of the surface. The dark and redder surface color of C/2002 CE10 may be attribute to devolatilized material by surface aging suffered from the irradiation by cosmic rays or from impact by dust particles in the Oort Cloud. Alternatively, C/2002 CE10 was formed of very dark refractory material originally like a rocky planetesimal. In both cases, this object lacks ices (on the surface at least). The dynamical and known physical characteristics of C/2002 CE10 are best compatible with those of the Damocloids population in the Solar System, that appear to be exhaust cometary nucleus in Halley-type orbits. The study of physical properties of rocky Oort cloud objects may give us a key for the formation of the Oort cloud and the solar system.

  10. The fragmentation of dust in the innermost comae of comets: Possible evidence from ground-based images

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1994-01-01

    Dust particles when released from the nucleus of a comet are entrained in the expanding gas flow created by the vaporization of ices (mainly water ice). Traditional approaches to dusty-gas dynamics in the inner comae of comets consider there to be an initial distribution of dust particle sizes which do not fragment or evaporate. The standard Finson-Probstein model (and subsequent variations) yields a one-to-one-to-one correspondence between the size of a dust particle, its terminal velocity owing to gas drag, and its radiation pressure acceleration which creates the notable cometary dust tail. The comparison of a newly developed dust coma model shows that the typical elongated shapes of isophotes in the dust comae of comets on the scale of greater than 10(exp 4) km from the nucleus requires that the one-to-one-to-one relationship between particle size, terminal velocity and radiation pressure acceleration cannot in general be correct. There must be a broad range of particles including those having a small velocity but large radiation pressure acceleration in order to explain the elongated shape. A straightforward way to create such a distribution is if particle fragmentation, or some combination of fragmentation with vaporization, routinely occurs within and/or just outside of the dusty-gas dynamic acceleration region (i.e., up to several hundred km). In this way initially large particles, which are accelerated to fairly slow velocities by gas-drag, fragment to form small particles which still move slowly but are subject to a relatively large radiation pressure acceleration. Fragmentation has already been suggested as one possible interpretation for the flattened gradient in the spatial profiles of dust extracted from Giotto images of Comet Halley. Grain vaporization has been suggested as a possible spatially extended source of coma gases. The general elongated isophote shapes seen in ground-based images for many years represents another possible signature of

  11. A Million Comet Pieces

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] A Million Comet Pieces (poster version)

    This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet's fragments and their tails, while the dusty comet trail is the line bridging the fragments.

    Comet 73P /Schwassman-Wachmann 3 began to splinter apart in 1995 during one of its voyages around the sweltering sun. Since then, the comet has continued to disintegrate into dozens of fragments, at least 36 of which can be seen here. Astronomers believe the icy comet cracked due the thermal stress from the sun.

    The Spitzer image provides the best look yet at the trail of debris left in the comet's wake after its 1995 breakup. The observatory's infrared eyes were able to see the dusty comet bits and pieces, which are warmed by sunlight and glow at infrared wavelengths. This comet debris ranges in size from pebbles to large boulders. When Earth passes near this rocky trail every year, the comet rubble burns up in our atmosphere, lighting up the sky in meteor showers. In 2022, Earth is expected to cross close to the comet's trail, producing a noticeable meteor shower.

    Astronomers are studying the Spitzer image for clues to the comet's composition and how it fell apart. Like NASA's Deep Impact experiment, in which a probe smashed into comet Tempel 1, the cracked Comet 73P/Schwassman-Wachmann 3 provides a perfect laboratory for studying the pristine interior of a comet.

    This image was taken from May 4 to May 6 by Spitzer's multi-band imaging photometer, using its 24-micron wavelength channel.

  12. The Implications of the Excited Rotation of Comet 252P/2000 G1 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnocchia, Davide; Mutchler, Max J.; Ren, Yanqiong; Lu, Xiaoping; Tholen, David J.; Lister, Tim; Micheli, Marco

    2018-01-01

    Jupiter Family comet (JFC) 252P/LINEAR had a close encounter to Earth on 2016 March 21. We imaged the comet with the Hubble Space Telescope Wide Field Camera 3 UVIS channel through the V- and r’-band filters spanning ~8 hours on 2016 April 4. The pixel scale of 2.7 km/pixel allowed us to study the structure of the cometary coma at scales of a few kilometers to a few hundred kilometers from the nucleus, a characteristic that is unique to our data. The dust coma of 252P showed a strong, well defined, narrow and nearly linear feature in the sunward direction, and its projected position angle moved about the nucleus for ~60 deg in 8 hours, consistent with an apparent periodicity of ~7.24 hours. On the other hand, the lightcurve measured in both V- and r’-band images from a 13 km radius aperture, after corrected for color term, showed a variability of >0.14 mag that is consistent with an apparent periodicity of ~5.4 hours or its multiples. We suggest that the two different periodicities derived from coma morphology and the lightcurve is a strong indication that the nucleus of 252P is in a non-principal axis (NPA) rotation, joining two other confirmed NPA rotators (1P/Halley and 103P/Hartley 2) and comets that are potentially in NPA rotational states (e.g., 2P/Encke). However, this apparition has been unusual for 252P. In the past three perihelion passages since discovery, the comet was very weakly active compared to other JFCs. Meteor evidence also exists that it probably has been very weakly active for a few hundred years. But in our data, we saw a very active comet in this 2016 apparition with an active fraction of 40% to >100%, representing an increase of 100x with respect to its recent past. Based on our observations, 252P has a small nucleus with a radius of ~0.3 km, which suggests that its rotational state could be relatively easily changed by torques caused by outgassing. Since the very weak outgassing in the past is not likely to change the rotational state

  13. The Giotto radio-science experiment

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Bird, M. K.; Buschert, H.; Esposito, P. B.; Porsche, H.; Volland, H.

    1986-01-01

    The scientific objectives of the Giotto Radio Science Experiment (GRE) are to determine the columnar electron content of Comet Halley/s ionosphere and the cometary mass fluence from atmospheric drag by using the radio signals from Giotto during the Halley encounter. The radio science data (S and X-band Doppler and range measurements) will be collected at NASA/s deep-space 64 m tracking antenna at Tidbinbilla near Canberra, in Australia. In order to separate the effects of the terrestrial ionosphere and the interplanetary plasma, S-band Doppler measurements will also be taken at Tidbinbilla along the line-of-sight of Japan/s cometary probe Sakigake during the Giotto-Halley Encounter. The measurements of cometary electron content and mass fluence will be inverted to derive the spatial distribution of the electron and mass (dust and gas) density within Halley/s coma. The GRE is the only experiment on Giotto capable of measuring the low-energy (10 eV) electron bulk population of Halley/s ionosphere and the total cometary mass flow impacting upon the spacecraft.

  14. Thermal modeling of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Kieffer, H. H.

    1981-09-01

    A model of the sublimation of volatile ices from a cometary nucleus is presented which includes the effects of (1) diurnal heating and cooling, (2) rotation period and pole orientation, (3) the thermal properties of the ice and subsurface layers, and (4) the contributions from coma opacity, scattering and thermal emission where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. In applying the model to the case of the 1986 apparition of Halley's comet, it is found that the generation of a cometary dust coma increases the total energy reaching the Halley nucleus due to the greater geometrical cross-section of the coma as compared with the bare nucleus. The calculated coma opacity of Halley is about 0.2 at 1 AU from the sun and 1.2 at perihelion. Possible consequences of the results obtained for the generation of nongravitational forces, volatile production rates for comets and cometary lifetimes against sublimation are discussed.

  15. Comet Hyakutake to Approach the Earth in Late March 1996

    NASA Astrophysics Data System (ADS)

    1996-03-01

    which isolate the light from different components of the coma, e.g. the light emitted by the OH-, C2- and CN-molecules in gaseous form and also the reflected sunlight from the dust grains. They show that the gas production rates are almost as high as those measured at famous Comet Halley when it was at about the same distance from the Sun during its approach in late 1985. The dust production of Comet Hyakutake also seems to be quite impressive. The first spectra of the new comet were obtained at La Silla with the Boller and Chivens spectrograph at the ESO 1.52-metre telescope on February 8; they show comparatively strong emission of CN, C2 and C3 molecules, cf. ESO Press Photo 12/96. This is not unusual for a comet at the corresponding heliocentric distance. In conclusion, the recent observations show Comet Hyakutake to be an `active' comet. The evaporation of the ices on the surface of its nucleus, due to the heating of the Sun, is well underway and much dust is being ejected during this process. It is quite likely that this comet will put on a fine display, starting in mid-March and lasting until soon after the perihelion passage in early May. Nevertheless, there have been some cases [1] in recent times when the activity level of new comets did not develop as expected, so some caution is necessary. The encounter on March 25 By a straightforward extrapolation of the current brightness, it would appear that Comet Hyakutake will reach magnitude 1 on March 25, 1996, at the time of the closest approach to the Earth. This is almost as bright as the brightest stars in the sky. However, it is important to consider that this is the `integrated' brightness of the entire comet head which may fill an area of several degrees in diameter in the sky. Thus the comet will appear as a moderately bright, very diffuse object that is best visible in binoculars. There will be a central point of enhanced brightness, corresponding to the innermost part of the coma around the nucleus. The

  16. The contribution of electron collisions to rotational excitations of cometary water

    NASA Technical Reports Server (NTRS)

    Xie, Xingfa; Mumma, Michael J.

    1992-01-01

    The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.

  17. The origin of comets

    NASA Astrophysics Data System (ADS)

    Bailey, M. E.; Clube, S. V. M.; Napier, W. M.

    Theories of the nature and origin of comets are discussed in a historical review covering the period from ancient times to the present. Consideration is given to the ancient controversy as to the atmospheric or celestial nature of comets, Renaissance theories of comet orbits, superstitions regarding the effects of comets, Kant's (1755) theory of solar-system origin, the nineteenth-century discovery of the relationship between comets and meteor showers, and the continuing solar-system/interstellar debate. Oort's (1950) model of a comet swarm surrounding the solar system is examined in detail; arguments advanced to explain the formation of comets within this model are summarized; and the question of cometary catastrophism is addressed.

  18. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  19. The pre- and post-accretion irradiation history of cometary ices

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1989-01-01

    Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.

  20. 100 and counting : SOHO's score as the world's top comet finder

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Center for Astrophysics in Cambridge, Massachusetts. "Ephorus reported that the comet split in two. This fits with my calculation that two comets on similar orbits revisited the Sun around AD 1100. They split again and again, producing the sungrazer family, all still coming from the same direction." The sungrazing comets slant in from the south, at 35 degrees to the plane where the Earth and the other planets orbit. As SOHO moves around the Sun, in step with the Earth, it sees the comets approaching the Sun from the east (left) in February and from the west (right) in August. In June and November the sungrazers seem to head straight up towards the Sun. "The rate at which we've discovered comets with LASCO is beyond anything we ever expected," said Douglas Biesecker, the SOHO scientist personally responsible for the greatest number of discoveries, 45. "We've increased the number of known sungrazing comets by a factor of four. This implies that there could be as many as 20,000 fragments." Their ancestor must have been enormous by cometary standards. Although SOHO's sungrazers are all too small to survive, other members of the family are still large enough to reappear, depleted but intact, after their close encounters with the Sun. Among them were the Great September Comet (1882) and Comet Ikeya-Seki (1965). The history of splitting gives clues to the strength of comets, which will be of practical importance if ever a comet seems likely to hit the Earth. And the fragments seen as SOHO comets reveal the internal composition of comets, freshly exposed, in contrast to the much-altered surfaces of objects like Halley's Comet that have visited the Sun many times. LASCO reveals how much visible dust each comet releases. Gas produced by evaporating ice is detected by another instrument on SOHO, the Ultraviolet Coronagraph Spectrometer or UVCS, and enables scientists to measure the speed of the solar wind as it emerges from the Sun. A comet spotted by its gas cloud The count of

  1. Suicide Comet HD Video

    NASA Image and Video Library

    2010-03-16

    Captured March 12, 2010 The SOHO spacecraft captured a very bright, sungrazing comet as it rocketed towards the Sun (Mar. 12, 2010) and was vaporized. This comet is arguably the brightest comet that SOHO has observed since Comet McNaught in early 2007. The comet is believed to belong to the Kreutz family of comets that broke up from a much larger comet many hundreds of years ago. They are known to orbit close to the Sun. A coronal mass ejection (CME) burst away from the Sun during the bright comet’s approach. Interestingly, a much smaller comet that preceded this one can be seen about half a day earlier on just about the identical route. And another pair of small comets followed the same track into the Sun after the bright one. Such a string of comets has never been witnessed before by SOHO. SOHO's C3 coronagraph instrument blocks out the Sun with an occulting disk; the white circle represents the size of the Sun. The planet Mercury can also be seen moving from left to right just beneath the Sun. To learn more and to download the video and still images go here: sohowww.nascom.nasa.gov/pickoftheweek/old/15mar2010/ Credit: NASA/GSFC/SOHO

  2. Eventos de Desconexão no Cometa P/Halley sob a Ótica do Modelo de Reconexão Magnética

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Matsuura, O. T.

    1998-08-01

    531 imagens contidas no The International Halley Watch Atlas of Large-Scale Phenomena (Brandt et al., 1992) cobrindo o período de setembro de 1985 a julho de 1986 foram analisadas visando identificar, caracterizar as propriedades e correlacionar estruturas morfológicas da cauda de plasma do cometa P/Halley. A análise revelou 47 eventos de desconexão (DEs) (Niedner & Brandt, 1979; Jockers, 1985; Celnik et al., 1988; Delva et al., 1991). A análise completa de todas as imagens encontra-se publicada em Voelzke & Matsuura, 1998. A distribuição dos DEs na distância heliocêntrica apresenta um caráter bimodal possivelmente associado com a distribuição espacial das fronteiras de setor magnético do meio interplanetário. Os 47 DEs fotografados em 47 imagens distintas permitiram determinar 19 origens de DEs, ou seja, o instante em que supostamente o cometa cruzou a fronteira entre setores magnéticos do vento solar. Tais dados cometários foram comparados com dados do vento solar provenientes de medidas realizadas in situ pelas sondas IMP-8, ICE e PVO, que mediram a variação da velocidade do vento solar, da densidade e da pressão dinâmica durante o intervalo analisado. Os dados destas sondas espaciais em conjunto com os da sonda Vega 1 foram usados para determinar o tempo das passagens do lençol de corrente. Com base nos dados das sondas foram calculadas as coordenadas heliográficas retroativas do lençol de corrente na "superfície fonte" dos mapas sinóticos do campo magnético de Hoeksema, 1989. O cálculo retroativo é feito através de um modelo simples de expressão do vento solar com velocidade uniforme, sendo considerada a co-rotação da magnetosfera com o Sol. Este trabalho apresenta os resultados desta comparação e a análise cinemática da origem dos DEs, determinada sob a hipótese que o plasma desconectado de um dado DE afasta-se com velocidade constante do núcleo cometário (Voelzke & Matsuura, 1998) e compara esta análise com outras que

  3. VEGA Space Mission

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  4. ESA Unveils Its New Comet Chaser.

    NASA Astrophysics Data System (ADS)

    1999-07-01

    hieroglyphics, so Rosetta will help scientists to unravel the mysteries of comets. Hieroglyphics were the building blocks of the Egyptian language. Comets are the most primitive objects in the Solar System, the building blocks from which the planets formed. Virtually unchanged after 4.6 billion years in the deep freeze of the outer Solar System, they still contain ices and dust from the original solar nebula. They also contain complex organic compounds which some scientists believe may have been the first building blocks for life on Earth. 200 years ago, the discovery of a slab of volcanic basalt near the Egyptian town of Rashid (Rosetta) led to a revolution in our understanding of the past. By comparing the inscriptions on the 'Rosetta Stone', historians were able to decipher Egyptian hieroglyphics for the first time. Just as the Rosetta Stone provided the key to an ancient civilisation, so the European Space Agency's Rosetta spacecraft will allow scientists to unlock the mysteries of the oldest building blocks of our Solar System - the comets. The legacy of Giotto. For centuries, comets have inspired awe and wonder. Many ancient civilisations saw them as portents of death and disaster, omens of great social and political upheavals. Shrouded in thin, luminous veils with tails streaming behind them, these 'long-haired stars' were given the name 'comets' by the ancient Greeks (the Greek word kome meant 'hair'). When ESA's Giotto spacecraft arrived at Halley's Comet in 1986, no one knew what a comet nucleus was really like. The problem was that it is impossible to see the solid heart of a comet from the Earth. As soon as the nucleus moves close enough to us for detailed observation, it is obscured from view by a shroud of gas and dust. The most popular theory about the nature of comets was put forward by American astronomer Fred Whipple, who believed they were like dirty snowballs - large chunks of water ice and dust mixed with ammonia, methane and carbon dioxide. As they

  5. Bright Comet ISON

    NASA Image and Video Library

    2013-11-22

    Comet ISON shines brightly in this image taken on the morning of 19 Nov. 2013. This is a 10-second exposure taken with the Marshall Space Flight Center 20" telescope in New Mexico. The camera there is black and white, but the smaller field of view allows for a better "zoom in" on the comet's coma, which is essentially the head of the comet. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation

  6. 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Hearn, M. F. A.; Birch, P. V.

    1992-01-01

    In 1976 we began a program of narrowband photometry of comets that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which have been observed on multiple apparitions. In this paper we present the observed range of compositions (molecular production rate ratios) and dustiness (gas production compared with AF-rho) for a well sampled group of comets. Based on these results we present preliminary analysis of taxonomic groupings as well as the abundance ratios we associate with a 'typical' comet.

  7. The OD/OH Isotope Ratio in Comets 8P/Tuttle and C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Rousselot, Philippe; Jehin, Emmanuel; Hutsemekers, Damien; Manfroid, Jean; Decock, Alice; Bockelee-Morvan, Dominique

    2016-10-01

    The determination of isotopic ratios in solar system objects is an important source of information about their origin, especially for comets. Among these ratios the D/H is of particular importance because of its sensitivity to fractionation processes and physical environment, and the abundance of hydrogen in the solar system. The main molecule used to derive this ratio in comets is water. So far, apart water, only HCN has permitted to derive D/H ratio and not only upper limits.Most of the existing determinations of D/H in water molecules have been obtained by spectroscopic observations of water lines in the sub-mm or near infrared range [1,2]. So far only one measurement has been based on OD/OH emission lines radicals in the near-UV [3] and another one on the Lyman-alpha D emission [4]. In situ measurements have also been obtained in comets 1P/Halley and 67P/Churyumov-Gerasimenko using mass spectrometer [5,6,7,8].In this work we have used the OH and OD ultraviolet bands at 310 nm observed with the ESO 8-m Very Large Telescope feeding the Ultraviolet-Visual Echelle Spectrograph (UVES) for measuring the D/H ratio in comets 8P/Tuttle and C/2012 F6 (Lemmon). The OH and OD being the photodissociation products of H2O and HDO such observations allow to derive D/H ratio for water molecules. This work constitutes an independant determination of the D/H ratios already published for these comets and based on observations performed in the sub-mm and near infrared range of H2O and HDO lines. We present our modeling, data analysis and numerical values obtained for this ratio.[1] D. Bockelée-Morvan et al., 2015, SSR 197, 47-83 [2] N. Biver et al., 2016, A&A 589, id A78, 11p [3] D. Hutsemékers et al., 2008, A&A 490, L31 [4] H.A. Weaver et al., 2008, LPI Contributions 1405, 8216 [5] H. Balsiger, K. Altwegg, J. Geiss, 1995, JGR 100, 5827 [6] P. Eberhardt et al., 1995, A&A 302, 301 [7] R.H. Brown et al., 2012, PSS 60, 166 [8] K. Alwegg et al., 2015, Science 347, article id. 1261952

  8. Development and characteristics of Mechanical Porous Ambient Comet Simulants as comet surface analogs

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol

    2017-11-01

    Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.

  9. High-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H.; Dello Russo, N.; Jehin, E.; Manfroid, J.; Smette, A.; Hutsemékers, D.; Stüwe, J.; Weiler, M.; Arpigny, C.; Biver, N.; Cochran, A.; Crovisier, J.; Magain, P.; Sana, H.; Schulz, R.; Vervack, R. J.; Weaver, H.; Zucconi, J.-M.

    2010-01-01

    We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H2O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C2H2, and C2H6 are depleted whereas CH4 and CH3OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C2H2 to C2H6 by hydrogen addition reactions on cold grains by employing the C2H6/(C2H6+C2H2) ratio. The C2H6/(C2H6+C2H2) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C2 and CN based on our observations and conclude that the abundances of C2H2 and C2H6 are insufficient to explain the C2 abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C

  10. Comet ISON Enhanced

    NASA Image and Video Library

    2013-11-22

    Taken on 19 Nov. 2013, this image shows a composite "stacked" image of comet ISON. These five stacked images of 10 seconds each were taken with the 20" Marshall Space Flight Center telescope in New Mexico. This technique allows the comet's sweeping tail to emerge with more detail. Credit: NASA/MSFC/MEO/Cameron McCarty -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could

  11. Comets: Data, problems, and objectives

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.

  12. Comets in Australian Aboriginal Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  13. The D/H ratio in water from Halley

    NASA Technical Reports Server (NTRS)

    Eberhardt, P.; Dolder, U.; Schulte, W.; Krankowsky, D.; Laemmerzahl, P.; Hoffman, J. H.; Hodges, R. R.; Berthelier, J. J.; Illiano, J. M.

    1986-01-01

    The neutral gas mass spectrometer on Giotto made neutral and ion composition measurements with a high mass resolution. Evaluation of the ion data within the contact surface gives a D/H ratio in water from Halley between 0.00006 and 0.00048. While this ratio is definitely not compatible with the D/H in molecular hydrogen of the protosolar nebula or the Jovian and Saturnian atmospheres, it is in the range observed for hydrogen in solar system objects which acquired their hydrogen as part of volatile molecules, e.g., as ices.

  14. Comet Dead Ahead

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 26, 2005, when the spacecraft was 7,118,499.4 kilometers (4,423,435 miles) away from the comet. Eight images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  15. Ancient Chinese Observations and Modern Cometary Models

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1995-01-01

    Ancient astronomical observations, primarily by Chinese, represent the only data source for discerning the long-term behavior of comets. These sky watchers produced astrological forecasts for their emperors. The comets Halley, Swift-Tuttle, and Tempel-Tuttle have been observed for 2000 years. Records of the Leonid meteor showers, starting from A.D.902, are used to guide predictions for the 1998-1999 reoccurrence.

  16. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  17. Realm of the comets

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.

  18. Realm of the comets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weissman, P.R.

    1987-03-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sendingmore » large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars.« less

  19. AV Corner.

    ERIC Educational Resources Information Center

    Berry, Donna A., Ed.

    1990-01-01

    Reviewed are two 35MM slide sets "Halley's Comet Revealed" and "Supernova 1987A"; and a videotape entitled "Experiments; Physics Level 1. Magnetic Fields." Features, availability, strengths and weaknesses are discussed. (CW)

  20. Comet flyby sample return

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Albee, A.

    1985-01-01

    The results of a joint JPL/CSFC feasability study of a low-cost comet sample return flyby mission are presented. It is shown that the mission could be undertaken using current earth orbiter spacecraft technology in conjunction with pathfinder or beacon spacrcraft. Detailed scenarios of missions to the comets Honda-Mrkos-Pajdusakova (HMP), comet Kopff, and comet Giacobini-Zinner (GZ) are given, and some crossectional diagrams of the spacecraft designs are provided.

  1. The demise of Comet 85P/Boethin, the first EPOXI mission target

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Kleyna, J.; Hainaut, O. R.; Lowry, S. C.; Fuse, T.; A'Hearn, M. F.; Chesley, S.; Yeomans, D. K.; Fernández, Y.; Lisse, C.; Reach, W.; Bauer, J. M.; Mainzer, A. K.; Pittichová, J.; Christensen, E.; Osip, D.; Brink, T.; Mateo, M.; Motta, V.; Challis, P.; Holman, M.; Ferrín, I.

    2013-02-01

    Comet 85P/Boethin was selected as the original comet target for the Deep Impact extended mission, EPOXI. Because this comet had been only observed at two apparitions in 1975 and 1986 and consequently had a large ephemeris error, an early intense recovery effort similar to that of 1P/Halley was undertaken beginning in 2005 using the ESO Very Large Telescopes (VLTs) in a distant comet program. These were challenging observations because of the low galactic latitude, and an error ellipse (the line of variations) that was larger than the CCD FOV, and the comet was not seen. Dedicated recovery observing time was awarded on the Subaru telescope in April and May 2006, and June 2007, in addition to time on the VLT and Canada-France-Hawaii telescopes during July-August 2007 with wide field mosaics and mosaicing techniques. The limiting V magnitudes from these observing runs ranged between 25.7 and 27.3 and again the comet was not seen in the individual nights. A new image processing technique was developed to stack images over extended runs and runs after distorting them to account for dilations and rotations in the line of variations using modifications of the world coordinate system. A candidate at V ˜ 27.3 was found in the CFHT data along the LOV, 2.5' west of the nominal ephemeris position. The EPOXI mission was unwilling to re-target the spacecraft without a confirmation. Additional time was secured using the Spitzer Space Telescope, the Gemini South 8-m telescope, the Clay and Baade (Magellan 6.5 m), CTIO 4 m, and SOAR 4 m telescopes during 2007 September and October A composite image made by stacking the new data showed no plausible candidate nucleus to a limiting magnitude of V = 28.5, corresponding to a nucleus radius between 0.1 and 0.2 km (assuming an albedo of 0.04). The comet was declared lost, presumably having disintegrated. Searches in the WISE data set revealed no debris trail, but no constraints on the possible time of disruption can be made. NASA

  2. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both

  3. Comets

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Feldman, P. D.

    Observations of comets obtained with the IUE satellite since its launch in 1978 are reviewed. The status of UV observation of comets prior to IUE is discussed, and particular attention is given to low-resolution UV spectroscopy of cometary comae, the detection of new species in the UV emission, high-dispersion spectroscopy, spatial mapping of the emissions, abundance determinations, and short-term variability. Diagrams, graphs, sample spectra, and tables of numerical data are provided.

  4. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Michael A'Hearn, Principal Investigator, EPOXI Comet Encounter Mission, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  5. Comets and the Stardust Mission

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  6. Comets and the Stardust Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-16

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  7. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Huebner, W. F.

    1976-01-01

    The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.

  8. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    NASA Technical Reports Server (NTRS)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  9. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  10. Disappearance and disintegration of comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  11. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  12. CO2 Orbital Trends in Comets

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  13. A mesoscale vortex over Halley Station, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.; Lachlan-Cope, T.A.; Warren, D.E.

    1993-05-01

    A detailed analysis of the evolution and structure of a mesoscale vortex and associated cloud comma that developed at the eastern edge of the Weddell Sea, Antarctica, during the early part of January 1986 is presented. The system remained quasi-stationary for over three days close to the British research station Halley (75[degrees]36'S, 26'42[degrees]W) and gave severe weather with gale-force winds and prolonged snow. The formation and development of the system were investigated using conventional surface and upper-air meteorological observations taken at Halley, analyses from the U.K. Meteorological Office 15-level model, and satellite imagery and sounder data from the TIROS-N-NOAA seriesmore » of polar orbiting satellites. The thermal structure of the vortex was examined using atmospheric profiles derived from radiance measurements from the TIROS Operational Vertical Sounder. Details of the wind field were examined using cloud motion vectors derived from a sequence of Advanced Very High Resolution Radiometer images. The vortex developed inland of the Brunt Ice Shelf in a strong baroclinic zone separating warm air, which had been advected polewards down the eastern Weddell Sea, and cold air descending from the Antarctic Plateau. The system intensified when cold, continental air associated with an upper-level short-wave trough was advected into the vortex. A frontal cloud band developed when slantwise ascent of warm air took place at the leading edge of the cold-air outbreak. Most of the precipitation associated with the low occurred on this cloud band. The small sea surface-atmospheric temperature differences gave only limited heat fluxes and there was no indication of deep convection associated with the system. The vortex was driven by baroclinic forcing and had some features in common with the baroclinic type of polar lows that occur in the Northern Hemisphere. 25 refs., 14 figs.« less

  14. David Levy's Guide to Observing and Discovering Comets

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    2003-05-01

    Preface; Part I. Why Observe Comets?: 1. Of history, superstition, magic, and science; 2. Comet science progresses; Part II. Discovering Comets: 3. Comet searching begins; 4. Tails and trails; 5. Comet searching in the twentieth century; 6. How I search for comets; 7. Searching for comets photographically; 8. Searching for comets with CCDs; 9. Comet hunting by reading; 10. Hunting for sungrazers over the Internet; 11. What to do when you think you've found a comet; Part III. A New Way of Looking at Comets: 12. When comets hit planets; 13. The future of visual comet hunting; Part IV. How to Observe Comets: 14. An introduction to comet hunting; 15. Visual observing of comets; 16. Estimating the magnitude of a comet; 17. Taking a picture of a comet; 18. Measuring where a comet is in the sky; Part V. Closing Notes: 19. My passion for comets.

  15. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  16. Pathfinder operations

    NASA Technical Reports Server (NTRS)

    Wilcher, J.; Stelzried, C.; Finley, S.

    1986-01-01

    In 1981, the Inter-Agency Consultative Group (composed of European, Soviet, Japanese and American space agency representatives) conceived the idea of using the two Soviet Vega spacecraft as pathfinders for Giotto since they would arrive at Halley's Comet approximately one week before Giotto. The Vega trajectory data and the Halley camera angle data were combined to improve the comet orbit accuracy. This was used to improve the Giotto fly-by targeting. The DSN performed delta DOR (VLBI) and one-way Doppler measurements of the Vega spacecraft for orbit determination. Although the early part-up phase had many problems, the results during the critical November 30, 1985 to March 4, 1986 operational phase had an overall 95 percent success rate, with 59 successes out of 62 two-station passes.

  17. Anatomy of a Busted Comet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version (Figure 1)

    NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet.

    Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions.

    Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1.

    The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped.

    The horizontal line seen in the contrast-enhanced picture is a trail of debris

  18. Characterizing water/rock interaction in simulated comet nuclei via calorimetry: Tool for in-situ science, laboratory analysis, and sample preservation

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Gooding, James L.

    1991-01-01

    Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.

  19. The intermediate comets and nongravitational effects

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1986-01-01

    The motions of the intermediate-period comets Pons-Brooks, Olbers, Brorsen-Metcalf, and Westphal are investigated over their observed intervals. The three apparitions of comets Pons-Brooks and Olbers were successfully linked, using the now standard nongravitational-force model. The two apparitions of Comet Brorsen-Metcalf were successfully linked without the need for nongravitational effects. For the 1852 and 1913 apparitions of Comet Westphal, complete success was not achieved in modeling the comet's motion either with or without nongravitational effects. However, by including these effects, the comet's astrometric observations could be represented significantly better than if they were assumed inoperative. Comet Westphal's dynamic and photometric behavior suggests its complete disintegration before reaching perihelion in 1913. If the very large radial nongravitational parameter determined for Comet Westphal is due to the comet's disintegration into dust, then the resultant dust-particle size is of the order of 0.8 mm.

  20. Look--It's a Comet!

    ERIC Educational Resources Information Center

    Berglund, Kay

    1997-01-01

    Describes a classroom lesson on comets that uses modeling and guided imagery to spark students' curiosity. Comet models are built using chunks of rock salt, polystyrene balls, and tinsel. Abstract ideas are made more concrete with a guided imagery story called Comet Ride! Includes an introduction to the use of parallax to measure the distance of…

  1. Detection of solid C(triple bond)N bearing materials on solar system bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Hartmann, W. K.; Tholen, David J.; Allamandola, L. J.; Brown, R. H.; Matthews, C. N.; Bell, J. F.

    1991-01-01

    We found observational evidence for the presence of C(triple bond)N-bearing solid materials on four classes of Solar System bodies: comets, asteroids, the rings of Uranus, and Saturn's satellite Iapetus. Gaseous CN was known in comet spectra, and the IR spectra of Comet P/Halley show emission of the CN fundamental at 4.5 microns interpreted as solids containing CN- group in the grains of the inner coma. The presented data offer the first evidence for chemically related material on the other objects.

  2. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    PubMed

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  3. Comets in UV

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  4. Special Report: Chemistry of Comets.

    ERIC Educational Resources Information Center

    A'Hearn, Michael F.

    1984-01-01

    Discusses the chemistry of comets. How comets provide clues to the birth of the solar system, photolytic reactions on comets involving water, chemical modeling, nuclear chemistry, and research findings are among the areas considered. (JN)

  5. Fluffy comets

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.

    The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).

  6. Modeling of pickup ion distributions in the Halley cometosheath: Empirical limits on rates of ionization, diffusion, loss and creation of fast neutral atoms

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Neugebauer, M.; Goldstein, B. E.

    1994-01-01

    The shape of the velocity distribution of water group ions observed by the Giotto ion mass spectrometer on its approach to comet Halley is modeled to derive empirical values for the rates of ionization, energy diffusion, and loss in the midcometosheath. The model includes the effect of rapid pitch angle scattering into a bispherical shell distribution as well as the effect of the magnetization of the plasma on the charge exchange loss rate. It is found that the average rate of ionization of cometary neutrals in this region of the cometosheath appears to be of the order of a factor 3 faster than the `standard' rates approx. 1 x 10(exp -6)/s that are generally assumed to model the observations in most regions of the comet environment. For the region of the coma studied in the present work (approx. 1 - 2 x 10(exp 5) km from the nucleus), the inferred energy diffusion coefficient is D(sub 0) approx. equals 0.0002 to 0.0005 sq km/cu s, which is generally lower than values used in other models. The empirically obtained loss rate appears to be about an order of magnitude greater than can be explained by charge exchange with the `standard' cross section of approx. 2 x 10(exp -15)sq cm. However such cross sections are not well known and for water group ion/water group neutral interactions, rates as high as 8 x 10(exp -15) sq cm have previously been suggested in the literature. Assuming the entire loss rate is due to charge exchange yields a rate of creation of fast neutral atoms of the order of approx. 10(exp -4)/s or higher, depending on the level of velocity diffusion. The fast neutrals may, in turn, be partly responsible for the higher-than-expected ionization rate.

  7. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  8. A volatility index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    The variations in total brightness of a comet when it is most active, near perihelion, are presently used as the bases of a volatility index (VI) for short-period (SP) and long-period (LP) comets. Volatility does not correlate with period among the LP comets, and thereby shows no 'aging' effect; similarly, the VI measurements are the same for SP and for LP comets and exhibit no correlation with (1) absolute magnitude near perihelion, (2) orbital inclination, or (3) activity index measuring the intrinsic brightness change from great solar distances to the maximum near perihelion. Active comets are shown to be basically alike irrespective of their orbits or 'ages'.

  9. Discovering the Nature of Comets.

    ERIC Educational Resources Information Center

    Whipple, Fred L.

    1986-01-01

    "The Mystery of Comets" by Dr. Fred Whipple provides an introduction to the modern picture of comets and his personal reminiscences of how his model of comets came to be. An adaptation of several sections of the book is presented. (JN)

  10. Expected Increase of Activity of Eta Aquariids Meteor Shower

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.; Chepurova, V. M.

    2018-04-01

    Analysis of the results of modeling disintegration of Comet 1P/Halley after its flare in 1991 has allowed us to predict an increase of the activity of the associated Eta Aquariids meteor shower in April-May 2018.

  11. On a celestial occurrence recorded in the hagiography of St. Vladimir

    NASA Astrophysics Data System (ADS)

    Banjević, Boris

    2002-04-01

    There were recorded a number of celestial occurrences in Serbian early history. Amongst them are a few appearances of comets. One except from Bible bearing on life of king David, relating to a phenomenon that might be interpreted as a comet, is in some way similar to the quotation from the hagiography of St. Vladimir. There is possibility that Halley's comet was observed at some time. This affects the chronology of the reign of St. Vladimir by about 11 years. This author thinks that it was in the summer 989 AD.

  12. The International Cometary Explorer (ICE)wallsheet teacher's guide

    NASA Technical Reports Server (NTRS)

    Maran, S. P. (Editor)

    1985-01-01

    On September 11, 1985, the veteran NASA spacecraft ISEE-3 which has been renamed the International Cometary Explorer (ICE) will make the first visit of a spacecraft to a comet. A teachers' guide to the NASA wallsheet on the ICE and its mission is presented. This circumstance of course results from the current interest in the return of Halley's Comet. This teacher's guide will be helpful in understanding scientists strong interest in sending the ICE spacecraft to investigate the tail of a much less famous object Comet Giacobin-Zinner.

  13. Comet 67P Seen by Kepler

    NASA Image and Video Library

    2016-10-07

    The European Space Agency's Rosetta mission concluded its study of comet 67P/Churyumov-Gerasimenko on Sept. 30, 2016. NASA's planet-hunting Kepler spacecraft observed the comet during the final month of the Rosetta mission, while the comet was not visible from Earth. This animation is composed of images from Kepler of the comet. From Sept. 7 through Sept. 20, the Kepler spacecraft, operating in its K2 mission, fixed its gaze on comet 67P. From the distant vantage point of Kepler, the comet's nucleus and tail could be observed. The long-range view from Kepler complements the closeup view of the Rosetta spacecraft, providing context for the high-resolution investigation Rosetta performed as it descended closer and closer to the comet. During the two-week period of study, Kepler took a picture of the comet every 30 minutes. The animation shows a period of 29.5 hours of observation from Sept. 17 thru Sept. 18. The comet is seen passing through Kepler's field of view from top right to bottom left, as outlined by the diagonal strip. The white dots represent stars and other regions in space studied during K2's tenth observing campaign. As a comet travels through space it sheds a tail of gas and dust. The more material that is shed, the more surface area there is to reflect sunlight. A comet's activity level can be obtained by measuring the reflected sunlight. Analyzing the Kepler data, scientists will be able to determine the amount of mass lost each day as comet 67P travels through the solar system. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21072

  14. Extended performance solar electric propulsion thrust system study. Volume 4: Thruster technology evaluation

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.; Weisman, Y. C.; Frisman, M.; Benson, G. C.; Mcgrath, R. J.; Martinelli, R. M.; Linsenbardt, T. L.; Beattie, J. R.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentrator solar array concept and is designed to interface with the Space Shuttle.

  15. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  16. Internationally supported data acquisition for solar system exploration in the 1990's

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Lyman, P. T.; Layland, J. W.; Renzetti, N. A.

    1983-01-01

    Procedures that could be followed for cooperative agreements between countries with large ground station antennas to help provide mission telemetry support for increasing solar system exploration are outlined. It is noted that mission cost reductions, and thereby greater chances that missions will be approved, are offered by the opportunity to make planetary probes multinational efforts. The Canberra station is a suitable site for the Japanese Planet A Halley's comet intercept probe. The French have requested U.S. cooperation in developing VLBI stations in the L-band to receive signals from the Venus balloons and landers being sent as part of a joint French-Soviet mission to Venus and Halley's comet. The construction of the stations would extend the capabilities already present with NASA's deep space network, particularly for tracking the Voyager visits to Uranus and Neptune.

  17. William Herschel and Comets

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff

    2018-01-01

    I examine the observational and theoretical researches of William Herschel on 21 comets that he observed over the period 1781 to 1812. Herschel's focus, unlike most contemporaries, was on their physical structure, not their orbits. He forged a strong connection between comets and his nebulae with a scheme of cometary "maturation" (1812) involved a comet traveling from star to star after its central "planetary body'; was born from gravitational collapse of a nebula. During close passages of a star, the comet brightened and lost mass from its atmosphere; at other times, when between stars, it encountered nebulae and was rejuvenated by picking up more mass. Laplace soon adopted these ideas to improve his nebula hypothesis for solar system formation.

  18. Singing comet changes its song

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  19. Tabulation of comet observations.

    NASA Astrophysics Data System (ADS)

    1993-01-01

    Concerning comets: 1973 XII Kohoutek, 1975 IX Kobayashi-Berger-Milon, 1976 VI West, 1976 XI P/d'Arrest, 1977 XIV Kohler, 1979 X Bradfield, 1980 X P/Stephan-Oterma, 1980 XV Bradfield, 1981 II Panther, 1982 VI Austin, 1983 V Sugano-Saigusa-Fujikawa, 1983 VII IRAS-Araki-Alcock, 1983 XIII P/Kopff, 1984 XIII Austin, 1984 XXIII Levy-Rudenko, 1985 XIII P/Giacobini-Zinner, 1985 XVII Hartley-Good, 1985 XIX Thiele, 1986 I P/Boethin, 1986 III P/Halley, 1986 XVIII Terasako, 1987 II Sorrells, 1987 III Nishikawa-Takamizawa-Tago, 1987 X P/Grigg-Skjellerup, 1987 XXIII Rudenko, 1987 XXIX Bradfield, 1987 XXXII McNaught, 1987 XXXIII P/Borrelly, 1988 IV Furuyama, 1988 V Liller, 1988 XIV P/Tempel 2, 1988 XV Machholz, 1988 XX Yanaka, 1988 XXIV Yanaka, 1989 X P/Brorsen-Metcalf, 1989 XV P/Schwassmann-Wachmann 1, 1989 XIX Okazaki-Levy-Rudenko, 1989 XXI Helin-Roman-Alu, 1989 XXII Aarseth-Brewington, 1990 III Černis-Kiuchi-Nakamura, 1990 VI Skorichenko-George, 1990 VIII P/Schwassmann-Wachmann 3, 1990 IX P/Peters-Hartley, 1990 X P/Wild 4, 1990 XIV P/Honda Mrkos-Pajdušáková, 1990 XVII Tsuchiya-Kiuchi, 1990 XXI P/Encke, 1990 XXVI Arai, 1991 XI P/Levy, 1991 XV P/Hartley 2, 1991 XVI P/Wirtanen, 1991 XVII P/Arend-Rigaux, 1991 XXI P/Faye, 1991 XXIII P/Shoemaker 1, 1991 XXIV Shoemaker-Levy, 1991l Helin-Lawrence, 1991ο P/Chernykh, 1991r Helin-Alu, 1991a1 Shoemaker-Levy, 1991g1 Zanotta-Brewington, 1991h1 Mueller, 1912d Tanaka-Machholz, 1992f P/Shoemaker-Levy 8, 1992k Machholz, 1992l P/Giclas, 1992p P/Brewington, 1992q Helin-Lawrence, 1992s P/Ciffréo, 1992t P/Swift-Tuttle, 1992u P/Väisälä, 1992x P/Schaumasse, 1992y Shoemaker, 1992a1 Ohshita, 1993a Mueller, P/Smirnova-Chernykh.

  20. IUE observations of faint comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Feldman, P. D.; Festou, M. C.; Ahearn, M. F.; Keller, H. U.

    1981-01-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  1. IUE observations of faint comets

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Feldman, P. D.; Festou, M.; A'Hearn, M. F.; Keller, H. U.

    1981-09-01

    Ultraviolet spectra of seven comets taken with the same instrument are given. The comets P/Encke (1980), P/Tuttle (1980 h), P/Stephan-Oterma (1980 g), and Meier (1980 q) were observed in November and December 1980 with the IUE satellite, and comets P/Borrelly (1980 i) and Panther (1980 u) were observed with the IUE on March 6, 1981. The spectra of these comets are compared with one another, as well as with comet Bradfield (1978 X), which was extensively studied earlier in 1980 with the IUE. To simplify the interpretation of the data and to minimize the dependence upon a specific model, the spectra are compared at approximately the same value of heliocentric distance whenever possible. Effects arising from heliocentric velocity, geocentric distance, and optical depth are also discussed. All of the cometary spectra are found to be remarkably similar, suggesting that these comets may have a common composition and origin.

  2. Term Projects on Interstellar Comets

    ERIC Educational Resources Information Center

    Mack, John E.

    1975-01-01

    Presents two calculations of the probability of detection of an interstellar comet, under the hypothesis that such comets would escape from comet clouds similar to that believed to surround the sun. Proposes three problems, each of which would be a reasonable term project for a motivated undergraduate. (Author/MLH)

  3. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    NASA Astrophysics Data System (ADS)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  4. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  5. The Fruits of Kepler's Struggle.

    ERIC Educational Resources Information Center

    Belonuchkin, B. E.

    1992-01-01

    Presents six learning activities dealing with planetary motion, the launching of satellites, and Halley's comet, all of which utilize the three laws of Johannes Kepler. These three laws are discussed in detail, and answers to the activities are provided. (KR)

  6. Dust Trails of SP/Tuttle and the Unusual Outbursts of the Ursid Shower

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Lyytinen, E.; deLignie, M. C.; Johannink, C.; Jobse, K.; Schievink, R.; Langbroek, M.; Koop, M.; Gural, P.; Wilson, M.; hide

    2001-01-01

    Halley-type comets tend to have a series of dust trails that remain spatially correlated for extended periods of time, each dating from a specific return of the comet. Encounters with 1 - 9 revolution old individual dust trails of 55P/Tempel-Tuttle have led to well recognized Leonid shower maxim, the peak time of which was well predicted by recent models. Now. we used the same model to calculate the position of dust trails of comet Shuttle, a Halley-type comet in an (approximately) 13.6 year orbit passing just outside of Earth's orbit. We discovered that the meteoroids tend to be trapped in the 14:12 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes six centuries to change the orbit enough to intersect Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by six years. thus explaining the unusual aphelion occurrences of Ursid outbursts. The resonances also prevent dispersion, so that the dust trail encounters (specifically, from dust trails of AD 1378 - 1405) occur only in one year in each orbit. We predicted enhanced activity on December 22, 2000, at around 7:29 and 8:35 UT (universal time) from dust trails dating to the 1405 and 1392 return, respectively. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06:07 UT, December 22, at Zenith Hourly Rate (approx.) 90 per hour. The Ursid rates were above half peak intensity during 4.2 hours. This is only the second Halley type comet for which a meteor outburst can be dated to a specific return of the parent comet, and traces their presence back form 9 to at least 45 revolutions of the comet. New orbital elements of Ursid meteoroids are presented. We find that most orbits do scatter around the anticipated positions, confirming the link

  7. Rosetta following a living comet

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Porta, Roberto; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2016-09-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. The critical landing operations have been conducted with remarkable accuracy and will constitute one of the most important achievements in the history of spaceflight. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Throughout this period, the comet environment kept changing with increasing gas and dust emissions. A first phase of bound orbits was followed by a sequence of complex flyby segments which allowed the scientific instruments to perform in depth investigation of the comet environment and nucleus. The unpredictable nature of the comet activity forced the mission control team to implement unplanned changes to the flight plan prepared for this mission phase and to plan the whole mission in a more dynamic way than originally conceived. This paper describes the details of the landing operations and of the main comet escort phase. It also includes the mission status as achieved after perihelion and the findings about the evolution of the comet and its environment from a mission operations point of view. The lessons learned from this unique and complex operations phase and the plans for the next mission phases, which include a mission extension into 2016, are also described.

  8. A new activity index for comets

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1992-01-01

    An activity index, AI, is derived from observational data to measure the increase of activity in magnitudes for comets when brightest near perihelion as compared to their inactive reflective brightness at great solar distances. Because the observational data are still instrumentally limited in the latter case and because many comets carry particulate clouds about them at great solar distances, the application of the activity index is still limited. A tentative application is made for the comets observed by Max Beyer over a period of nearly 40 years, providing a uniform magnitude system for the near-perihelion observations. In all, 32 determinations are made for long-period (L-P) comets and 15 for short-period (S-P). Although the correlations are scarcely definitive, the data suggest that the faintest comets are just as active as the brightest and that the S-P comets are almost as active as those with periods (P) exceeding 10(exp 4) years or those with orbital inclinations of i less than 120 deg. Comets in the range 10(exp 2) less than P less than 10(exp 4) yr. or with i greater than 120 deg appear to be somewhat more active than the others. There is no evidence to suggest aging among the L-P comets or to suggest other than a common nature for comets generally.

  9. Secular light curves of comets, II: 133P/Elst Pizarro, an asteroidal belt comet

    NASA Astrophysics Data System (ADS)

    Ferrín, Ignacio

    2006-12-01

    We present the secular light curve (SLC) of 133P/Elst-Pizarro, and show ample and sufficient evidence to conclude that it is evolving into a dormant phase. The SLC provides a great deal of information to characterize the object, the most important being that it exhibits outburst-like activity without a corresponding detectable coma. 133P will return to perihelion in July of 2007 when some of our findings may be corroborated. The most significant findings of this investigation are: (1) We have compiled from 127 literature references, extensive databases of visual colors (37 comets), rotational periods and peak-to-valley amplitudes (64 comets). 2-Dimensional plots are created from these databases, which show that comets do not lie on a linear trend but in well defined areas of these phase spaces. When 133P is plotted in the above diagrams, its location is entirely compatible with those of comets. (2) A positive correlation is found between cometary rotational periods and diameters. One possible interpretation suggest the existence of rotational evolution predicted by several theoretical models. (3) A plot of the historical evolution of cometary nuclei density estimates shows no trend with time, suggesting that perhaps a consensus is being reached. We also find a mean bulk density for comets of <ρ>=0.52±0.06 g/cm. This value includes the recently determined spacecraft density of Comet 9P/Tempel 1, derived by the Deep Impact team. (4) We have derived values for over 18 physical parameters, listed in the SLC plots, Figs. 6-9. (5) The secular light curve of 133P/Elst-Pizarro exhibits a single outburst starting at +42±4 d (after perihelion), peaking at LAG=+155±10 d, duration 191±11 d, and amplitude 2.3±0.2 mag. These properties are compatible with those of other low activity comets. (6) To explain the large time delay in maximum brightness, LAG, two hypothesis are advanced: (a) the existence of a deep ice layer that the thermal wave has to reach before sublimation

  10. Flyby Comet Imaged By Radar

    NASA Image and Video Library

    2016-03-24

    Radar data of comet P/2016 BA14 taken over three days (March 21-23, 2016), when the comet was between 2.5 million miles and 2.2 million miles (4.1 million kilometers and 3.6 million kilometers) from Earth. Radar images from the flyby indicated that the comet is about 3,000 feet (1 kilometer) in diameter.

  11. Stability of the cometary ionopause

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.; Axford, W. I.; Ip, W.-H.; Flammer, K. R.

    MHD stability of the cometary ionopause is discussed in the context of the Giotto mission to comet Halley. A mechanism associated with the plasma compressibility is suggested here as being responsible for the apparent stability of the Halley ionopause: when the phase velocity of surface waves at the ionopause approaches the fast magnetoacoustic speed the unstable surface waves are transformed into stable body waves in the whole fluid resulting in an effective damping of the instability. The effects of both mass loading (due to photoionization) and dissociative recombination are also studied.

  12. Origin of Short-Perihelion Comets

    NASA Technical Reports Server (NTRS)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  13. Flight of the Comet

    NASA Image and Video Library

    2010-11-05

    Image taken by NASA EPOXI mission spacecraft during its flyby of comet Hartley 2 on Nov. 4, 2010. The spacecraft came within about 700 kilometers 435 miles of the comet nucleus at the time of closest approach.

  14. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  15. Comet ISON Passes Through Virgo

    NASA Image and Video Library

    2013-11-22

    Date: 8 Nov 2013 - Comet ISON shines in this five-minute exposure taken at NASA's Marshall Space Flight Center on Nov. 8, 2013.. The image was captured using a color CCD camera attached to a 14" telescope located at Marshall. At the time of this picture, comet ISON was 97 million miles from Earth, moving ever closer toward the sun. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way for such a sun-grazing comet can be dangerous. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure

  16. Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Briggs, R.; Ertem, G.; Ferris, J. P.; Greenberg, J. M.; Mccain, P. J.; Mendoza-Gomez, C. X.; Schutte, W.

    1992-01-01

    Photolysis of mixtures of CO:NH3:H2O at 12 K results in the formation of an organic residue which is not volatile in high vacuum at room temperature. Analysis of this fraction by GC-MS resulted in the detection of C2-C3 hydroxy acids and hydroxy amides, glycerol, urea, glycine, hexamethylene tetramine, formamidine and ethanolamine. Use of isotopically labeled gases made it possible to establish that the observed products were not contaminants. The reaction pathways for the formation of these products were determined from the position of the isotopic labels in the mass spectral fragments. The significance of these findings to the composition of comets and the origins of life is discussed.

  17. On the Determination of the Orbits of Comets

    NASA Astrophysics Data System (ADS)

    Englefield, Henry

    2013-06-01

    Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.

  18. Comet 67P's Pitted Surface

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    High-resolution imagery of comet 67P ChuryumovGerasimenko has revealed that its surface is covered in active pits some measuring hundreds of meters both wide and deep! But what processes caused these pits to form?Pitted LandscapeESAs Rosetta mission arrived at comet 67P in August 2014. As the comet continued its journey around the Sun, Rosetta extensively documented 67Ps surface through high-resolution images taken with the on-board instrument NavCam. These images have revealed that active, circular depressions are a common feature on the comets surface.In an attempt to determine how these pits formed, an international team of scientists led by Olivier Mousis (Laboratory of Astrophysics of Marseille) has run a series of simulations of a region of the comet the Seth region that contains a 200-meter-deep pit. These simulations include the effects of various phase transitions, heat transfer through the matrix of ices and dust, and gas diffusion throughout the porous material.Escaping VolatilesAdditional examples of pitted areas on 67Ps northern-hemisphere surface include the Ash region and the Maat region (both imaged September 2014 by NavCam) [Mousis et al. 2015]Previous studies have already eliminated two potential formation mechanisms for the pits: impacts (the sizes of the pits werent right) and erosion due to sunlight (the pits dont have the right shape). Mousis and collaborators assume that the pits are instead caused by the depletion of volatile materials chemical compounds with low boiling points either via explosive outbursts at the comets surface, or via sinkholes opening from below the surface. But what process causes the volatiles to deplete when the comet heats?The authors simulations demonstrate that volatiles trapped beneath the comets surface either in icy structures called clathrates or within amorphous ice can be suddenly released as the comet warms up. The team shows that the release of volatiles from these two structures can create 200-meter

  19. Spectroscopic observations of comets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Development of a spectrograph using a microchannel plate intensifier for observing faint comets is described. The spectrograph is capable of obtaining useful spectra of objects as faint as M(2) = 18. The increased guiding efficiency achieved by the optical coupling of the ISIT vidicon of the 154 cm telescope has resulted in a better signal to noise ratio. The ability to take a direct image of the comet aids in the interpretation of the spatial profile of the emissions. Spectra of comets Schwassmann-Wachmann 1, Bradfield, Encke, Tuttle, and Stephen-Oterma are discussed.

  20. Comets and nongravitational forces. IV.

    NASA Technical Reports Server (NTRS)

    Marsden, B. G.; Sekanina, Z.

    1971-01-01

    Orbital elements and nongravitational parameters are derived from observations at every apparition of the periodic comets Honda-Mrkos-Pajdusakova, Faye, Tempel 2, Biela, Brorsen, and Tempel-Swift. For all except the first comet, the observations go back a century and more, although the last three comets have failed to reappear for some considerable time. The circumstances of the splitting of P/Biela are studied, and it is shown that the motion of the primary component was scarcely affected; it is also demonstrated that, if the primary still exists, it may pass only 0.05 AU from the earth in November 1971. An up-to-date list of mass-loss rates from comets is presented. It is found that, while most of the reliable determinations indicate that the cometary nongravitational effects decrease with time, there are a few cases where the effects increase slightly. The former situation is discussed in terms of a nuclear core-mantle model, implying that these comets will eventually evolve into inert, asteroidal objects, while the nuclei of the other comets are interpreted as coreless, eventually to disappear completely (or almost completely).

  1. Multiwavelength Observations of Recent Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Gicquel, Adeline; Cordiner, Martin; Kuan, Yi-Jehng; Chuang, Yo-Ling; Villanueva, Geronimo; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; hide

    2013-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth. Comets are comprised of molecular ices, that may be pristine inter-stellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition.

  2. On Course for a Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows comet Tempel 1 as seen through the clear filter of the medium resolution imager camera on Deep Impact. It was taken on June 27, 2005, when the spacecraft was 6,229,030.3 kilometers (3,870,719 miles) away from the comet. Three images were combined to create this picture, and a logarithmic stretch was applied to enhance the coma of the comet.

  3. Collision of large dust particles with Suisei spacecraft

    NASA Astrophysics Data System (ADS)

    Uesugi, K.

    1986-12-01

    The spacecraft Suisei encountered Halley's comet at 13:05:49 UT on March 8, 1986. The closest approach distance to the comet was 151,000 km and during the time of closest approach, Suisei was hit twice by dust particles which were believed to come from the comet nucleus. Although Suisei has no dust counter or detector, the mass of these particles can be estimated by the analysis of attitude change of the spin-stabilized spacecraft perturbed by the collisions. The result shows that the minimum weight of the first particle should be several milligram and second one was several ten micrograms.

  4. Comet Borrelly Varied Landscape

    NASA Image and Video Library

    2001-11-03

    Sunlight illuminates the bowling-pin shaped nucleus from directly below comet Borrelly as seen by NASA Deep Space 1. At this distance, many features become vivid on the surface of the nucleus, including a jagged line between day and night on the comet.

  5. The comet rendezvous asteroid flyby mission to Comet Kopff - Getting there is half the fun

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Kiedron, Krystyna

    1990-01-01

    The goal of the Comet Rendezvous Asteroid Flyby mission (CRAF) is to fly 'outward to the beginning', to examine closely what are thought to be remnants of the origins of the solar system. In particular, the CRAF spacecraft will use a two-year delta-V-earth-gravity-assist (delta-V-EGA) trajectory to reach a rendezvous point near the aphelion of the Comet Kopff, flying by the asteroid 449 Hamburga on the way. This paper discusses the trajectory used to get to the comet. Topics covered include the launch period, possible additional asteroid flybys, the earth flyby, the Hamburga flyby, and the rendezvous with Comet Kopff.

  6. Comet prospects for 2004

    NASA Astrophysics Data System (ADS)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  7. Book Review: The Origins of Comets

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    1992-01-01

    In The Origins of Comets, Bailey, Clube, and Napier propose that the answer to whether the ancient heavens were more interesting is a resounding "yes." The sky, in fact, has changed and is still changing. The authors trace the study of comets back to ancient Babylonian times with a focus on theories of the origins of these enigmatic visitors. The book is really of three distinct parts: the first six chapters provide an excellent and delightfully readable historical account of comet studies up to this century. The next few chapters give a rather detailed treatment of current models for comet origins. The last section treats the authors' own theories about the relationship between giant comets and extinctions on Earth.

  8. Meteoroid Streams from Sunskirter Comet Breakup

    NASA Astrophysics Data System (ADS)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  9. Evidence of Eta Aquariid outbursts recorded in the classic Maya hieroglyphic script using orbital integrations

    NASA Astrophysics Data System (ADS)

    Kinsman, J. H.; Asher, D. J.

    2017-09-01

    No firm evidence has existed that the ancient Maya civilization recorded specific occurrences of meteor showers or outbursts in the corpus of Maya hieroglyphic inscriptions. In fact, there has been no evidence of any pre-Hispanic civilization in the Western Hemisphere recording any observations of any meteor showers on any specific dates. The authors numerically integrated meteoroid-sized particles released by Comet Halley as early as 1404 BC to identify years within the Maya Classic Period, AD 250-909, when Eta Aquariid outbursts might have occurred. Outbursts determined by computer model were then compared to specific events in the Maya record to see if any correlation existed between the date of the event and the date of the outburst. The model was validated by successfully explaining several outbursts around the same epoch in the Chinese record. Some outbursts observed by the Maya were due to recent revolutions of Comet Halley, within a few centuries, and some to resonant behavior in older Halley trails, of the order of a thousand years. Examples were found of several different Jovian mean motion resonances as well as the 1:3 Saturnian resonance that have controlled the dynamical evolution of meteoroids in apparently observed outbursts.

  10. Determination of orbits of comets: P/Kearns-Kwee, P/Gunn, including nongravitational effects in the comets' motion

    NASA Technical Reports Server (NTRS)

    Todorovic-Juchniewicz, Bozenna; Sitarski, Grzegorz

    1992-01-01

    To improve the orbits, all the positional observations of the comets were collected. The observations were selected and weighted according to objective mathematical criteria and the mean residuals a priori were calculated for both comets. We took into account nongravitational effects in the comets' motion using Marsden's method applied in two ways: either determining the three constant parameters, A(sub 1), A(sub 2), A(sub 3) or the four parameters A, eta, I, phi connected with the rotating nucleus of the comet. To link successfully all the observations, we had to assume for both comets that A(t) = A(sub O)exp(-B x t) where B was an additional nongravitational parameter.

  11. Comet Tempel 2: Orbit, ephemerides and error analysis

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1978-01-01

    The dynamical behavior of comet Tempel 2 is investigated and the comet is found to be very well behaved and easily predictable. The nongravitational forces affecting the motion of this comet are the smallest of any comet that is affected by nongravitational forces. The sign and time history of these nongravitational forces imply (1) a direct rotation of the comet's nucleus and (2) the comet's ability to outgas has not changed substantially over its entire observational history. The well behaved dynamical motion of the comet, the well observed past apparitions, the small nongravitational forces and the excellent 1988 ground based observing conditions all contribute to relatively small position and velocity errors in 1988 -- the year of a proposed rendezvous space mission to this comet. To assist in planned ground based and earth orbital observations of this comet, ephemerides are given for the 1978-79, 1983-84 and 1988 apparitions.

  12. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  13. The 15 years of comet photometry: A comparative analysis of 80 comets

    NASA Technical Reports Server (NTRS)

    Osip, David J.; Schleicher, David G.; Millis, Robert L.; Ahearn, Michael F.; Birch, Peter V.

    1991-01-01

    In 1976, a program of narrowband photometry of comets was initiated that has encompassed well over 400 nights of observations. To date, the program has provided detailed information on 80 comets, 11 of which were observed during multiple apparitions. The filters (initially isolating CN, C2, and continuum and later including C3, OH, and NH) as well as the detectors used for the observations were changed over time, and the parameters adopted in the reduction and modeling of the data have likewise evolved. Accordingly, we have re-reduced the entire database and have derived production rates using current values for scalelengths and fluorescence efficiencies. Having completed this task, the results for different comets can now be meaningfully compared. The general characteristics that are discussed include ranges in composition (molecular production rate ratios) and dustiness (gas production compared with Af(rho)). Additionally an analysis of trends on how the production rates vary with heliocentric distance and on pre- and post-perihelion asymmetries in the production rates of individual comets. Possible taxonomic groupings are also described.

  14. An Introduction to Comets and Their Origin.

    ERIC Educational Resources Information Center

    Chapman, Robert D.; Brandt, John C.

    1985-01-01

    Presents excerpts from "The Comet Book," a nontechnical primer on comets. Various topics discusses in these excerpts include such basic information about comets as their components, paths, and origins. (DH)

  15. Kohoutek - A great comet coming.

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Hobbs, R. W.

    1973-01-01

    Passing inside the earth's orbit in late November, the comet Kohoutek will travel through the inner solar system during a unique period in the history of the space program, when Skylab and Mariner Venus-Mercury are in operation and the new C-141 Airborne Infrared Observatory is ready for flight. It is planned to investigate comprehensively the nature and evolution of the coma and tails of the comet. The detailed goals of the investigation include the identification of the parent molecules of the gases observed in comets, the determination of the processes that break down the parent molecules, the study of the physical nature of transient events in the comet, and the measurement of the solar-wind velocity in the inner solar system.

  16. Current ideas on the nature of comets

    NASA Technical Reports Server (NTRS)

    Rahe, J.

    1984-01-01

    The chemical composition, emission and line spectra, and structure of comet nuclei, cometary atmospheres, and comet tails are discussed. The role of ultraviolet and infrared astronomy in defining comets is examined.

  17. Swarm of Comets Artist Concept

    NASA Image and Video Library

    2015-11-24

    This illustration shows a star behind a shattered comet. Observations of the star KIC 8462852 by NASA's Kepler and Spitzer space telescopes suggest that its unusual light signals are likely from dusty comet fragments, which blocked the light of the star as they passed in front of it in 2011 and 2013. The comets are thought to be traveling around the star in a very long, eccentric orbit. http://photojournal.jpl.nasa.gov/catalog/PIA20053

  18. High-sodium comet

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In mid-April, astronomers in the Canary Islands discovered that Comet Hale-Bopp has a tail composed of sodium atoms, in addition to the commonly known ion and dust tails. Although sodium atoms have been seen at the centers of other comets, this is the first observation of a comet tail consisting of sodium.The discovery by Gabriele Cremonese of the Padova Astronomical Observatory in Italy and Don Pollaco of the Isaac Newton Group of telescopes at the Canary Islands, came from images of Hale-Bopp taken with a special wide-field camera fitted with a filter that isolates emission from sodium atoms. The sodium atoms are distributed over an enormous region in and around Hale-Bopp. It is not clear exactly how the sodium tail, which is 600,000 km wide and 50 million km long, was formed.

  19. Episodic Aging and End States of Comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Zdenek

    2008-01-01

    It is known that comets are aging very rapidly on cosmic scales, because they rapidly shed mass. The processes involved are (i) normal activity - sublimation of ices and expulsion of dust from discrete emission sources on and/or below the surface of a comet's nucleus, and (ii) nuclear fragmentation. Both modes are episodic in nature, the latter includes major steps in the comet's life cycle. The role and history of dynamical techniques used are described and results on mass losses due to sublimation and dust expulsion are reviewed. Studies of split comets, Holmes-like exploding comets, and cataclysmically fragmenting comets show that masses of 10 to 100 million tons are involved in the fragmentation process. This and other information is used to investigate the nature of comets' episodic aging. Based on recent advances in understanding the surface morphology of cometary nuclei by close-up imaging, a possible mechanism for large-scale fragmentation events is proposed and shown to be consistent with evidence available from observations. Strongly flattened pancake-like shapes appear to be required for comet fragments by conceptual constraints. Possible end states are briefly examined.

  20. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  1. Methods for computing comet core temperatures

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Squyres, S. W.; Reynolds, R. T.

    1986-06-01

    The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.

  2. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  3. Asteroids and Comets Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Contents include various different animations in the area of Asteroids and Comets. Titles of the short animated clips are: STARDUST Mission; Asteroid Castallia Impact Simulation; Castallia, Toutatis and the Earth; Simulation Asteroid Encounter with Earth; Nanorover Technology Task; Near Earth Asteroid Tracking; Champollian Anchor Tests; Early Views of Comets; Exploration of Small Bodies; Ulysses Resource Material from ESA; Ulysses Cometary Plasma Tail Animation; and various discussions on the Hale-Bopp Comet. Animation of the following are seen: the Stardust aerogel collector grid collecting cometary dust particles, comet and interstellar dust analyzer, Wiper-shield and dust flux monitor, a navigation camera, and the return of the sample to Earth; a comparison of the rotation of the Earth to the Castallia and Tautatis Asteroids; an animated land on Tautatis and the view of the motion of the sky from its surface; an Asteroid collision with the Earth; the USAF Station in Hawaii; close-up views of asteroids; automatic drilling of the Moon; exploding Cosmic Particles; and the dropping off of the plasma tail of a comet as it travels near the sun.

  4. Computers in Astronomy: Astronomy on an Apple Macintosh.

    ERIC Educational Resources Information Center

    Mosley, John E.

    1987-01-01

    Presents a review of computer programs written for the Apple Macintosh computer that teach astronomy. Reviews general programs, along with some which deal more specifically with sky travel, star charting, the solar system, Halley's Comet, and stargazing. Includes the name and address of each producer. (TW)

  5. The role of organic polymers in the structure of cometary dust

    NASA Technical Reports Server (NTRS)

    Vanysek, Vladimir; Boehnhardt, Hermann; Fechtig, H.

    1992-01-01

    Several phenomena observed in P/Halley and other comets indicate additional fragmentation of dust particles or dust aggregates in cometary atmospheres. The disintegration of dust aggregates may be explained by sublimation of polymerized formaldehyde - POM - which play a role as binding material between submicron individual particles.

  6. Science Literacy for All Students.

    ERIC Educational Resources Information Center

    Brown, Peggy, Ed.

    1982-01-01

    Selected college programs designed to increase students' science literacy are described, and perspectives on science education are addressed in an article by E. James Rutherford, "Sputnik, Halley's Comet, and Science Education." The article suggests that leadership and consensus are needed at the national level to improve science…

  7. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. Anita Cochran, Assistant Director, McDonald Observatory at the University of Texas-Austin, speaks during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  8. Oort spike comets with large perihelion distances

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2017-12-01

    The complete sample of large-perihelion nearly-parabolic comets discovered during the period 1901-2010 is studied, starting with their orbit determination. Next, an orbital evolution that includes three perihelion passages (previous-observed-next) is investigated in which a full model of Galactic perturbations and perturbations from passing stars is incorporated. We show that the distribution of planetary perturbations suffered by actual large-perihelion comets during their passage through the Solar system has a deep, unexpected minimum around zero, which indicates a lack of 'almost unperturbed' comets. Using a series of simulations we show that this deep well is moderately resistant to some diffusion of the orbital elements of the analysed comets. It seems reasonable to assert that the observed stream of these large-perihelion comets experienced a series of specific planetary configurations when passing through the planetary zone. An analysis of the past dynamics of these comets clearly shows that dynamically new comets can appear only when their original semimajor axes are greater than 20 000 au. On the other hand, dynamically old comets are completely absent for semimajor axes longer than 40 000 au. We demonstrate that the observed 1/aori-distribution exhibits a local minimum separating dynamically new from dynamically old comets. Long-term dynamical studies reveal a wide variety of orbital behaviour. Several interesting examples of the action of passing stars are also described, in particular the impact of Gliese 710, which will pass close to the Sun in the future. However, none of the obtained stellar perturbations is sufficient to change the dynamical status of the analysed comets.

  9. Comet ISON Approaching the Sun [still

    NASA Image and Video Library

    2013-11-27

    This movie from NASA’s STEREO spacecraft's Heliospheric Imager shows Comet ISON, Mercury, Comet Encke and Earth over a five-day period from Nov. 20 to Nov. 25, 2013. The sun sits right of the field of view of this camera. Comet ISON, which will round the sun on Nov. 28, is what's known as a sungrazing comet, due to its close approach. Foreshortening or the angle at which these images were obtained make Earth appear as if it is closer to the sun than Mercury. If you look closely you will also see a dimmer and smaller comet Encke near comet ISON. A comet’s journey through the solar system is perilous and violent. A giant ejection of solar material from the sun could rip its tail off. Before it reaches Mars -- at some 230 million miles away from the sun -- the radiation of the sun begins to boil its water, the first step toward breaking apart. And, if it survives all this, the intense radiation and pressure as it flies near the surface of the sun could destroy it altogether. Even if the comet does not survive, tracking its journey will help scientists understand what the comet is made of, how it reacts to its environment, and what this explains about the origins of the solar system. Closer to the sun, watching how the comet and its tail interact with the vast solar atmosphere can teach scientists more about the sun itself. Image Credit: NASA/STEREO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. On observing comets for nuclear rotation

    NASA Astrophysics Data System (ADS)

    Whipple, F. L.

    1981-10-01

    The prevalent non-gravitational motions among comets demonstrate that the sublimination does not reach a maximum at the instant of maximum insolation on the nucleus. The occurrence of halos or "parabolic" envelopes in the comae of some comets and of jets, rays, fans, streamers and similar phenomena very near the nucleus in the brightest comets demonstrates that the sublimation process is not uniform over the nuclei. In other words, the nuclei of many comets contain relatively small active regions which provide much or most of the sublimation when these areas are turned toward the Sun. The period of rotation can be determind by measurement of the diameters of the halos or of the latus recta of the "parabolic" envelopes, if the expansion velocities are averaged from observations as a function of solar distance. Experience from analyses of some 80 well observed comets shows that the nuclei are "spotted" for more than a third of all comets, regardless of the "age" as measured by the original inverse semimajor axis including correction for planetary perturbations.

  11. The spectral properties of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    1988-01-01

    The observed spectral and mineralogical properties of interplanetary dust particles (IDP) allows the conclusion that: (1) the majority of IDP infrared spectra are dominated by olivine, pyroxene, or layer lattice silicate minerals, (2) to the first order the emission spectra of comets Halley and Kohoutek can be matched by mixtures of these IDP infrared types, implying that comets contain mixtures of these different crystalline silicates and may vary from comet to comet and perhaps even within a single comet, (3) do not expect to observe a single 20 micron feature in cometary spectra, (4) carbonaceous materials dominate the visible spectra properties of the IDPs even though the mass in these particles consists primarily of silicates, and (5) the particle characteristics summarized need to be properly accounted for in future cometary emission models.

  12. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations

    NASA Technical Reports Server (NTRS)

    Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  13. The effect of electron collisions on rotational populations of cometary water

    NASA Technical Reports Server (NTRS)

    Xie, Xingfa; Mumma, Michael J.

    1992-01-01

    The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley during the Giotto spacecraft encounter. In the case of the 0(00)-1(11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral molecules, and the rotational temperature retrieved from high-resolution IR spectra of water in Comet Halley may reflect electron temperatures rather than neutral gas temperatures in the intermediate coma.

  14. Extended performance solar electric propulsion thrust system study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined. Results are presented.

  15. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  16. EPOXI at Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    A'Hearn, Michael F.; Belton, Michael J. S.; Delamere, W. Alan; Feaga, Lori M.; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P.; McFadden, Jessica M.; Meech, Karen J.; Melosh, H. Jay; hide

    2011-01-01

    Understanding how comets work, i,e., what drives their activity, is crucial to using comets to study the early solar system. EPOXI flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus. taking both images and spectra. Unlike large, relatively inactive nuclei, this nncleus is outgassing primarily due to CO2, which drags chnnks of ice out of the nnclens. It also shows significant differences in the relative abundance of volatiles from various parts of the nucleus.

  17. Comet ISON Streaks Toward the Sun

    NASA Image and Video Library

    2013-11-22

    Date: 19 Nov 2013 Comet ISON shows off its tail in this three-minute exposure taken on 19 Nov. 2013 at 6:10 a.m. EST, using a 14-inch telescope located at the Marshall Space Flight Center. The comet is just nine days away from its close encounter with the sun; hopefully it will survive to put on a nice show during the first week of December. The star images are trailed because the telescope is tracking on the comet, which is now exhibiting obvious motion with respect to the background stars over a period of minutes. At the time of this image, Comet ISON was some 44 million miles from the sun -- and 80 million miles from Earth -- moving at a speed of 136,700 miles per hour. Credit: NASA/MSFC/Aaron Kingery -------- More details on Comet ISON: Comet ISON began its trip from the Oort cloud region of our solar system and is now travelling toward the sun. The comet will reach its closest approach to the sun on Thanksgiving Day -- 28 Nov 2013 -- skimming just 730,000 miles above the sun's surface. If it comes around the sun without breaking up, the comet will be visible in the Northern Hemisphere with the naked eye, and from what we see now, ISON is predicted to be a particularly bright and beautiful comet. Catalogued as C/2012 S1, Comet ISON was first spotted 585 million miles away in September 2012. This is ISON's very first trip around the sun, which means it is still made of pristine matter from the earliest days of the solar system’s formation, its top layers never having been lost by a trip near the sun. Comet ISON is, like all comets, a dirty snowball made up of dust and frozen gases like water, ammonia, methane and carbon dioxide -- some of the fundamental building blocks that scientists believe led to the formation of the planets 4.5 billion years ago. NASA has been using a vast fleet of spacecraft, instruments, and space- and Earth-based telescope, in order to learn more about this time capsule from when the solar system first formed. The journey along the way

  18. The comet moment as a measure of DNA damage in the comet assay.

    PubMed

    Kent, C R; Eady, J J; Ross, G M; Steel, G G

    1995-06-01

    The development of rapid assays of radiation-induced DNA damage requires the definition of reliable parameters for the evaluation of dose-response relationships to compare with cellular endpoints. We have used the single-cell gel electrophoresis (SCGE) or 'comet' assay to measure DNA damage in individual cells after irradiation. Both the alkaline and neutral protocols were used. In both cases, DNA was stained with ethidium bromide and viewed using a fluorescence microscope at 516-560 nm. Images of comets were stored as 512 x 512 pixel images using OPTIMAS, an image analysis software package. Using this software we tested various parameters for measuring DNA damage. We have developed a method of analysis that rigorously conforms to the mathematical definition of the moment of inertia of a plane figure. This parameter does not require the identification of separate head and tail regions, but rather calculates a moment of the whole comet image. We have termed this parameter 'comet moment'. This method is simple to calculate and can be performed using most image analysis software packages that support macro facilities. In experiments on CHO-K1 cells, tail length was found to increase linearly with dose, but plateaued at higher doses. Comet moment also increased linearly with dose, but over a larger dose range than tail length and had no tendency to plateau.

  19. Dirty snowball - now is too primitive for a scientific description of comets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Success of the "Deep Space 1" scientists which acquired excellent pictures of comet Borrelli, brings comets into the family of small celestial bodies with common regularities of shaping. Often attracted accidental impact process never can explain constantly repeated shapes of small bodies. Understanding their shaping is important in view of coming missions to small bodies. "Orbits make structures". This fundamental notion is unfolded into 4 theorems of planetary tectonics [1]: 1. Celestial bodies are dichotomic; 2. -" - are sectoral; 3. -"- are granular; 4. Angular momenta of different level blocks tend to be equal. All these general rules of shaping and structurization are a consequence of interferences of warping any body standing planetary waves due to inertia forces acting in any moving in non-circular orbit body. Dichotomy is the most global tectonic feature due to the fundamental waves (wave 1). It is typical to all planetary spheres. In Earth it is in the core, mantle, crust, atmosphere. At Venus it is very pronounced in the crust and in atmosphere: lying Y-feature and inverse C-feature in the cloud layer. Coherent martian lithosphere- atmosphere dichotomies are well known. In small bodies the dichotomy is specifically pronounced as ubiquitous convexo -concave shape. Most detailed studied at Eros this shape was also observed at comet Halley and recently at Borrelli. Borrelli's convex extended half is strongly jagged (not easy to find a place for landing!), the contracted concave half spits out tremendous tail. Surface areas around the tail outlets are whitish and lighter than surroundings. It seems that the gas-dust material squeezed out of interiors not only disappears in space but leaves traces on the concave surface. The concave hemisphere has shorter radius than the convex one and tends to compensate loosing angular momentum by denser material extracted from interiors (Theorem 4 [1];compare with the basaltic Pacific hemisphere opposed by the granitic

  20. NASA Hubble Sees Comet ISON Intact

    NASA Image and Video Library

    2013-10-09

    This image from NASA Hubble Space Telescope of the sunward plunging comet ISON suggests that the comet is intact despite some predictions that the fragile icy nucleus might disintegrate as the sun warms it. In this NASA Hubble Space Telescope image taken on October 9, 2013 the comet's solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments. Moreover, the coma or head surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What's more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars' orbit and 177 million miles from Earth when photographed. Comet ISON is predicted to make its closest approach to Earth on 26 December, at a distance of 39.9 million miles. http://photojournal.jpl.nasa.gov/catalog/PIA18153

  1. Comets in Indian Scriptures

    NASA Astrophysics Data System (ADS)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  2. Tabulation of comet observations.

    NASA Astrophysics Data System (ADS)

    1991-07-01

    Concerning comets: 1957 III Arend-Roland, 1957 V Mrkos, 1958 III Burnham, 1959 III Bester-Hoffmeister, 1959 VI Alcock, 1959 VIII P/Giacobini-Zinner, 1960 I P/Wild 1, 1960 II Burnham, 1960 III P/Schaumasse, 1960 VIII P/Finlay, 1961 V Wilson-Hubbard, 1961 VIII Seki, 1962 III Seki-Lines, 1962 VIII Humason, 1963 I Ikeya, 1963 III Alcock, 1963 V Pereyra, 1964 VI Tomita-Gerber-Honda, 1964 VIII Ikeya, 1964 IX Everhart, 1979 X Bradfield, 1980 X P/Stephan-Oterma, 1980 XII Meier, 1980 XIII P/Tuttle, 1981 II Panther, 1982 I Bowell, 1982 IV P/Grigg-Skjellerup, 1982 VII P/d'Arrest, 1986 III P/Halley, 1987 IV Shoemaker, 1987 XII P/Hartley 3, 1987 XIX P/Schwassmann-Wachmann 2, 1987 XXIX Bradfield, 1987 XXX Levy, 1987 XXXII McNaught, 1987 XXXIII P/Borrelly, 1987 XXXVI P/Parker-Hartley, 1987 XXXVII P/Helin- Roman-Alu 1, 1988 III Shoemaker-Holt, 1988 V Liller, 1988 VIII P/Ge-Wang, 1988 XI P/Shoemaker-Holt 2, 1988 XIV P/Tempel 2, 1988 XV Machholz, 1988 XX Yanaka, 1988 XXI Shoemaker, 1988 XXIV Yanaka, 1989 III Shoemaker, 1989 V Shoemaker-Holt-Rodriquez, 1989 VIII P/Pons-Winnecke, 1989 X P/Brorsen-Metcalf, 1989 XI P/Gunn, 1989 XIII P/Lovas 1, 1989 XVIII McKenzie-Russell, 1989 XIX Okazaki-Levy-Rudenko, 1989 XX P/Clark, 1989 XXI Helin-Ronan-Alu, 1989 XXII Aarseth-Brewington, 1989h P/Van Biesbroeck, 1989t P/Wild 2, 1989u P/Kearns-Kwee, 1989c1 Austin, 1989e1 Skorichenko-George, 1990a P/Wild 4, 1990b Černis-Kiuchi-Nakamura, 1990c Levy, 1990e P/Wolf-Harrington, 1990f P/Honda-Mrkos-Pajdušáková, 1990g McNaught-Hughes, 1990i Tsuchiya-Kiuchi, 1990n P/Taylor, 1990ο P/Shoemaker-Levy 1, 1991a P/Metcalf-Brewington, 1991b Arai, 1991c P/Swift-Gehrels, 1991d Shoemaker-Levy, 1991e P/Shoemaker-Levy 3, 1991h P/Takamizawa, 1991j P/Hartley 1, 1991k P/Mrkos, 1991l Helin-Lawrence, 1991n P/Faye, 1991q P/Levy, 1991t P/Hartley 2, P/Encke, P/Schwassmann-Wachmann 1.

  3. Are Comets 42P/Neujmin 3 and 53P/Van Biesbroeck Parts of one Comet?

    NASA Astrophysics Data System (ADS)

    Pittichova, J.; Meech, K. J.; Valsecchi, G. B.; Pittich, E. M.

    2003-05-01

    We want to present preliminary results of the observations of the physical parameters of comets 42P/Neujmin 3 and 53P/Van Biesbroeck: brightness, nucleus activity, rotation period, light-curve and color changes from our first three optical observing runs (March, and May 2003) at Mauna Kea, using UH 2.2m telescope and Tek2048 CCD camera. Comets 42P/Neujmin 3 and 53P/Van Biesbroeck have very well determined orbits, and their orbital histories are very interesting. Their current orbits are not very similar to each other; however, numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical. Given the extremely low probability of a chance coincidence of the six orbital elements at a given time, the natural conclusion is that the two objects are fragments of a single comet that split sometime in the late 1849 or early 1850. Among the known cases of split periodic comets, this one is peculiar for a number of reasons: 1. the splitting was probably not due to tidal stresses, since the 1850 encounter with Jupiter took place well outside the Roche lobe; 2. it is the only case discovered through a dynamical study; 3. in the only other case of splitting of a Jupiter family comet, that of 3D/Biela, the fragments did not survive for more than a couple of revolutions, whereas in the present case both fragments have passed perihelion more than ten times since the splitting. If these two comets are fragments of a single parent body, then they should show a certain degree of physical and chemical similarity, which we would like to obtain from spectroscopic observation in 2004, when both comets are close to their perihelion. Acknowledgments: Support for this work was provided by NASA Grant No. NAG5-12236 and Scientific Grant Agency VEGA of the Slovak Academy of Sciences, grant No. 2/1005/21.

  4. Report of the Comet Science Working Group

    NASA Technical Reports Server (NTRS)

    1979-01-01

    General scientific questions and measurement objectives that can be addressed on a first comet mission relate to: (1) the chemical nature and the physical structure of comet nuclei as well as the changes that occur as functions of time and orbital position; (2) the chemical and physical nature of the atmospheres and ionospheres of comets, the processes which occur in them, and the development of these atmospheres and ionospheres as functions of time and orbital position; and (3) the nature of comet tails, the processes by which they are formed, and the interaction of comets with the solar wind. Capabilities of the various instruments required are discussed.

  5. Changing Speed of Comets

    ERIC Educational Resources Information Center

    Follows, Mike

    2003-01-01

    It is shown that highly elliptical orbits, such as those of comets, can be explained well in terms of energy rather than forces. The principle of conservation of energy allows a comet's velocity to be calculated at aphelion and perihelion. An example asks students to calculate whether they can run fast enough to escape from a small asteroid.…

  6. Piece of a Comet

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows a comet particle collected by the Stardust spacecraft. The particle is made up of the silicate mineral forsterite, also known as peridot in its gem form. It is surrounded by a thin rim of melted aerogel, the substance used to collect the comet dust samples. The particle is about 2 micrometers across.

  7. Production, Outflow Velocity, and Radial Distribution of H2O and OH in the Coma of Comet C/1995 O1 [Hale-Bopp] from Wide Field Imaging of OH

    NASA Technical Reports Server (NTRS)

    Harris, Walter M.; Scherb, Frank; Mierkiewicz, Edwin; Oliverson, Ronald; Morgenthaler, Jeffrey

    2003-01-01

    Observations of OH are a useful proxy of the water production rate (Q(sub H2O)) and outflow velocity (V(sub out)) in comets. From wide field images taken on 03/28/1997 and 04/08/1997 that capture the entire scale length of the OH coma of comet C/1995 O1 (Hale-Bopp), we obtain Q(sub H2O) from the model-independent method of aperture summation. With an adaptive ring summation algorithm, we extract the radial brightness distribution of OH 0-0 band emission out to cometocentric distances of up to 10(exp 6) km, both as azimuthal averages and in quadrants covering different position angles relative to the comet-Sun line. These profiles are fit using both fixed and variable velocity 2-component spherical expansion models to estimate V(sub OH) with increasing distance from the nucleus. The OH coma of Hale-Bopp was more spatially extended than previous comets, and this extension is best matched by a variable acceleration of H2O and OH that acted across the entire coma, but was strongest within 1-2 x 10(exp 4) km from the nucleus. Our models indicate that V(sub OH) at the edge of our detectable field of view (10(exp 6) km) was approx. 2-3 times greater in Hale-Bopp than for a 1P/Halley-class comet at 1 AU, which is consistent with the results of more sophisticated gas-kinetic models, extrapolation from previous observations of OH in comets with Q(sub H2O) greater than 10(exp 29)/s , and direct radio measurements of the outer coma Hale-Bopp OH velocity. The most probable source of this acceleration is thermalization of the excess energy of dissociation of H2O and OH over an extended collisional coma. When the coma is broken down by quadrants in position angle, we find an azimuthal asymmetry in the radial distribution that is characterized by an increase in the spatial extent of OH in the region between the orbit-trailing and anti-sunward directions. Model fits specific to this area and comparison with radio OH measurements suggest greater acceleration here, with V(sub OH

  8. A binary main-belt comet.

    PubMed

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-20

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  9. Spacecraft Images Comet Target Jets

    NASA Image and Video Library

    2010-11-04

    NASA Deep Impact spacecraft High- and Medium-Resolution Imagers HRI and MRI captured multiple jets emanating from comet Hartley 2 turning on and off while the spacecraft is 8 million kilometers 5 million miles away from the comet.

  10. Comet ISON May Have Survived

    NASA Image and Video Library

    2013-11-30

    This movie shows Comet ISON orbiting around the sun – represented by the white circle -- on Nov. 28, 2013. ISON looks smaller as it streams away, but scientists believe its nucleus may still be intact. The video covers Nov. 27, 2013, 3:30 p.m. EST to Nov. 29, 2013, 8:30 a.m. EST. Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact. Credit: ESA/NASA/SOHO/Jhelioviewer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  12. Comet Siding Spring Seen Next to Mars

    NASA Image and Video Library

    2017-12-08

    This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 p.m. EDT October 19, 2014. The comet passed by Mars at approximately 87,000 miles (about one-third of the distance between Earth and the Moon). At that time, the comet and Mars were approximately 149 million miles from Earth. The comet image shown here is a composite of Hubble exposures taken between Oct. 18, 8:06 a.m. EDT to Oct. 19, 11:17 p.m. EDT. Hubble took a separate photograph of Mars at 10:37 p.m. EDT on Oct. 18. The Mars and comet images have been added together to create a single picture to illustrate the angular separation, or distance, between the comet and Mars at closest approach. The separation is approximately 1.5 arc minutes, or one-twentieth of the angular diameter of the full Moon. The background starfield in this composite image is synthesized from ground-based telescope data provided by the Palomar Digital Sky Survey, which has been reprocessed to approximate Hubble’s resolution. The solid icy comet nucleus is too small to be resolved in the Hubble picture. The comet’s bright coma, a diffuse cloud of dust enshrouding the nucleus, and a dusty tail, are clearly visible. This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet. The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations. The images were taken with Hubble’s Wide Field Camera 3. Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

  13. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  14. Atlas of Secular Light Curves of Comets

    NASA Astrophysics Data System (ADS)

    Ferrin, Ignacio

    2007-12-01

    We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE < 3 comet years), while 107P, 162P and 169P are methuselah comets (P-AGE > 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).

  15. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  16. ScienceCast 96: Sunset Comet

    NASA Image and Video Library

    2013-03-14

    Comet Pan-STARRS has survived its encounter with the sun and is now emerging from twilight in the sunset skies of the northern hemisphere. A NASA spacecraft monitoring the comet has beamed back pictures of a wild and ragged tail.

  17. CO in Distantly Active Comets

    NASA Astrophysics Data System (ADS)

    Womack, M.; Sarid, G.; Wierzchos, K.

    2017-03-01

    The activity of most comets near the Sun is dominated by the sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ˜3 au. Three bodies dominate the observational record and modeling efforts for distantly active comets: the long-period comet C/1995 O1 (Hale-Bopp), and the short-period comets (with Centaur orbits) 29P/Schwassmann-Wachmann 1 and 2060 Chiron. We summarize what is known about these three objects with an emphasis on their gaseous comae. We calculate their CN/CO and CO2/CO production rate ratios from the literature and discuss implications, such as HCN and CO2 outgassing are not significant contributors to their comae. Using our own data we derive CO production rates, Q(CO), for all three objects to examine whether there is a correlation between gas production and different orbital histories and/or size. The CO measurements of Hale-Bopp (4-11 AU) and 29P are consistent with a nominal production rate of Q(CO) = 3.5 × 1029 r-2 superimposed with sporadic outbursts. The similarity of Hale-Bopp CO production rates for pre- and post-perihelion suggests that thermal inertia was not very important and therefore most of the activity is at or near the surface of the comet. We further examine the applicability of existing models in explaining the systematic behavior of our small sample. We find that orbital history does not appear to play a significant role in explaining 29P’s CO production rates. 29P outproduces Hale-Bopp at the same heliocentric distance, even though it has been subjected to much more solar heating. Previous modeling work on such objects predicts that 29P should have been devolatilized over a fresher comet like Hale-Bopp. This may point to 29P having a different orbital history than current models predict, with its current orbit acquired more recently. On the other hand, Chiron’s CO measurements are consistent with it being significantly depleted over its

  18. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29

  19. Comet formation

    NASA Astrophysics Data System (ADS)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  20. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  1. A Post-Stardust Mission View of Jupiter Family Comets

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2011-01-01

    Before the Stardust Mission, many persons (including the mission team) believed that comet nuclei would be geologically boring objects. Most believed that comet nucleus mineralogy would be close or identical to the chondritic interplanetary dust particles (IDPs), or perhaps contain mainly amorphous nebular condensates or that comets might even be composed mainly of preserved presolar material [1]. Amazingly, the results for Comet Wild 2 (a Jupiter class comet) were entirely different. Whether this particular comet will ultimately be shown to be typical or atypical will not be known for a rather long time, so we describe our new view of comets from the rather limited perspective of this single mission.

  2. Comet Wild 2 - Stardust Approach Image

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken during the close approach phase of Stardust's Jan 2, 2004 flyby of comet Wild 2. It is a distant side view of the roughly spherical comet nucleus. One hemisphere is in sunlight and the other is in shadow analogous to a view of the quarter moon. Several large depressed regions can be seen. Comet Wild 2 is about five kilometers (3.1 miles) in diameter.

  3. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  4. Migration of comets to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, Sergei I.; Mather, John C.

    2007-05-01

    The orbital evolution of 30,000 objects with initial orbits close to those of Jupiter-family comets (JFCs) and also of 15,000 dust particles was integrated [1-3]. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU, or even got inner-Earth (Q<0.983 AU), Aten, or typical asteroidal orbits, and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Most of former trans-Neptunian objects that have typical near-Earth object (NEO) orbits moved in such orbits for Myrs, so during most of this time they were extinct comets. From a dynamical point of view, the fraction of extinct comets among NEOs can exceed several tens of percent, but, probably, many extinct comets disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes were large. The probability of the collision of Comet 10P with the Earth during a dynamical lifetime of the comet was P[E]≈1.4•10-4, but 80% of this mean probability was due only to one object among 2600 considered objects with orbits close to that of Comet 10P. For runs for Comet 2P, P[E]≈(1-5)•10-4. For most other considered JFCs, 10-6 < P[E] < 10-5. For Comets 22P and 39P, P[E]≈ (1-2)•10-6; and for Comets 9P, 28P and 44P, P[E]≈(2-5)•10-6. For all considered JFCs, P[E]>4•10-6. The Bulirsh-Stoer method of integration and a symplectic method gave similar results. In our runs the probability of a collision of one object with the Earth could be greater than the sum of probabilities for thousands of other objects. The ratios of probabilities of collisions of JFCs with Venus and Mars to the mass of a planet usually were not smaller than that for Earth. For dust particles started from comets and asteroids, P[E ]was maximum for diameters d~100 μm. These maximum values of P [E] were usually (exclusive for 2P) greater at least by an order of

  5. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop.

    PubMed

    Koppen, Gudrun; Azqueta, Amaya; Pourrut, Bertrand; Brunborg, Gunnar; Collins, Andrew R; Langie, Sabine A S

    2017-05-01

    The International Comet Assay Workshops are a series of scientific conferences dealing with practical and theoretical aspects of the Comet Assay (single-cell gel electrophoresis)-a simple method for detecting DNA strand breaks. The first paper describing such an assay was published over 30 years ago in 1984 by Swedish researchers O. Ostling and K. J. Johanson. Appropriately, the theme for the 2015 meeting was looking to the future: 'The Next 3 Decades of the Comet Assay'. The programme included 25 oral and 43 poster presentations depicting the latest advances in technical developments as well as applications of the comet assay in genotoxicity testing (in vitro and in vivo) and biomonitoring of both humans and the environment. Open discussion sessions based on questions from the participants allowed exchange of practical details on current comet assay protocols. This report summarises technical issues of high importance which were discussed during the sessions. We provide information on ways to improve the assay performance, by testing for cytotoxicity, by using reference samples to reduce or allow for inter-experimental variation, and by standardising quantification of the damage, including replicates and scoring enough comets to ensure statistical validity. After 30 years of experimentation with the comet assay, we are in a position to control the important experimental parameters and make the comet assay a truly reliable method with a wealth of possible applications. © The Author 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. 1986: A Big Year in Space.

    ERIC Educational Resources Information Center

    Haggerty, James J.

    1985-01-01

    Several major space programs in development for a decade or more will come to fruition in 1986. This illustrated summary amplifies several of these projects including: California space shuttle operations; fly-by Uranus; look at Comet Halley; space observatory; and others. Projects are significant in scientific potential and capability advancement.…

  7. Drills vs. Games--Any Differences? A Pilot Study.

    ERIC Educational Resources Information Center

    McMullen, David W.

    This study investigated the effect of informational, drill, and game format computer-assisted instruction (CAI) on the achievement, retention, and attitude toward instruction of sixth-grade science students (N=37). An informational CAI lesson on Halley's Comet was administered to three randomly selected groups of sixth-grade students. A CAI drill…

  8. Determination of the observation conditions of celestial bodies with the aid of the DISPO system

    NASA Technical Reports Server (NTRS)

    Kazakov, R. K.; Krivov, A. V.

    1984-01-01

    The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86.

  9. COMET KOHAUTEK - ART CONCEPTS

    NASA Image and Video Library

    1973-11-27

    S73-37273 (24 Dec. 1973) --- An artist's concept illustrating the trajectory of the newly-discovered Comet Kohoutek in relation to the sun and to Earth and the plane of Earth's orbit. The picture show's the position of Kohoutek on Christmas Eve, 1973. The Skylab space station in Earth orbit will provide a favorable location from which to observe the passing of the comet. Photo credit: NASA

  10. Effect of solar radiation on a swarm of meteoric particles

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1980-01-01

    The theory of the Poynting-Robertson effect is used to study the motion of meteors relative to a parent comet describing an undisturbed elliptical orbit. It is shown that any emitted particle proceeds to move retrogressively away from the comet to a certain maximum angular distance (as seen from the sun) depending on its sigma-s value, and then undergoes relative motion in the opposite forward direction. The time taken to reach this greatest elongation behind the comet is the same for all particles, and after twice this time the particles will have returned to zero angular displacement relative to the comet. For comet Encke the time for the elongation to return to zero is about 6600 y; for Halley it is about 200,000 y; for Temple-Tuttle (1965 IV) it is just over 100,000 y.

  11. Evidence for geologic processes on comets

    NASA Astrophysics Data System (ADS)

    Sunshine, Jessica M.; Thomas, Nicolas; El-Maarry, Mohamed Ramy; Farnham, Tony L.

    2016-11-01

    Spacecraft missions have resolved the nuclei of six periodic comets and revealed a set of geologically intriguing and active small bodies. The shapes of these cometary nuclei are dominantly bilobate reflecting their formation from smaller cometesimals. Cometary surfaces include a diverse set of morphologies formed from a variety of mechanisms. Sublimation of ices, driven by the variable insolation over the time since each nucleus was perturbed into the inner Solar System, is a major process on comets and is likely responsible for quasi-circular depressions and ubiquitous layering. Sublimation from near-vertical walls is also seen to lead to undercutting and mass wasting. Fracturing has only been resolved on one comet but likely exists on all comets. There is also evidence for mass redistribution, where material lifted off the nucleus by subliming gases is deposited onto other surfaces. It is surprising that such sedimentary processes are significant in the microgravity environment of comets. There are many enigmatic features on cometary surfaces including tall spires, kilometer-scale flows, and various forms of depressions and pits. Furthermore, even after accounting for the differences in resolution and coverage, significant diversity in landforms among cometary surfaces clearly exists. Yet why certain landforms occur on some comets and not on others remains poorly understood. The exploration and understanding of geologic processes on comets is only beginning. These fascinating bodies will continue to provide a unique laboratory for examining common geologic processes under the uncommon conditions of very high porosity, very low strength, small particle sizes, and near-zero gravity.

  12. First Comet Encounter

    NASA Image and Video Library

    2010-09-09

    Members of the audience look on as Dr. James L. Green, Director of Planetary Science at NASA, right, speaks with Dr. Robert Farquar, an executive for space exploration at KinetX Inc., during a symposium commemorating a quarter-century of comet discoveries, Friday, Sept. 10, 2010, in the Knight studio at the Newseum in Washington. The International Sun-Earth Explorer-3 (ISEE-3) spacecraft flew past the comet Giacobini-Zinner on Sept. 11, 1985 which established a foundation of discoveries that continue today. Photo Credit: (NASA/Paul E. Alers)

  13. Where Do Comets Come From?

    ERIC Educational Resources Information Center

    Van Flandern, Tom

    1982-01-01

    Proposes a new origin for comets in the solar system, namely, that comets originated in the breakup of a body orbiting the sun in or near the present location of the asteroid belt in the relatively recent past. Predictions related to the theory are discussed. (Author/JN)

  14. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Deming, D.; Espenak, F.; Kostiuk, T.

    1986-01-01

    The CO2 laser heterodyne spectrometer was used at the 3-m IRTF on Mauna Kea to make measurements of Mars during the 1984 opposition. Analysis of the observations of the mesospheric non-thermal emission demonstrated the existence of a warming of the Mars polar mesosphere, similar to the seasonal effects which are well known to occur at the Earth's mesopause. A search for CO2 and NH3 on Comet Halley was done with the new Kitt Peak system as well as with the IRTF heterodyne system. A Lamb-dip absorption cell was designed and constructed. Its use will allow extreme frequency stabilization of the laser local oscillator, which will greatly facilitate measurements of winds and dynamical phenomena. The Lamb-dip cell was used at Kitt Peak to study zonal and meridional winds in the atmosphere of Venus. Water vapor was detected in Comet Halley using Fourier transform spectrometer. The 2.65 micrometer upsilon sub 3 band was seen in emission, confirming non-thermal-equilibrium excitation models for comets. A study was made of the variability of Jovian ethane emission. The average volume mixing ratio of ethane in the Jovian stratosphere was found to be 3x10 to the -6 power, with the greatest variability seen in the auroral regions.

  15. NEOWISE View of Comet Christensen

    NASA Image and Video Library

    2015-11-23

    An infrared view from NASA's NEOWISE mission of the Oort cloud comet C/2006 W3 (Christensen). The spacecraft observed this comet on April 20th, 2010 as it traveled through the constellation Sagittarius. Comet Christensen was nearly 370 million miles (600 million kilometers) from Earth at the time. The image is half of a degree of the sky on each side. Infrared light with wavelengths of 3.4, 12 and 22 micron channels are mapped to blue, green, and red, respectively. The signal at these wavelengths is dominated primarily by the comet's dust thermal emission, giving it a golden hue. The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids. http://photojournal.jpl.nasa.gov/catalog/PIA20118

  16. The volatile composition of comets

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.

    1988-01-01

    Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.

  17. Temporary satellite capture of comets by Jupiter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2012-05-01

    This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in

  18. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.

  19. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  20. Where are the mini Kreutz-family comets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r {sub H}) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r {sub H} guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst),more » or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r{sub H}{sup −4} while the others follow r{sub H}{sup −7}. In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r {sub H} = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r {sub H}. Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought.« less