Sample records for halls

  1. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yang; Feng, Xiao; Ou, Yunbo

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to amore » quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.« less

  2. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  3. 5. View of Community Hall, first floor interior, entrance hall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Community Hall, first floor interior, entrance hall on east side of building, facing southeast. Ticket booth center foreground, stairway to auditorium right foreground. - Community Hall, Rainier Avenue & View Drive, Port Gamble, Kitsap County, WA

  4. ENCOURAGING ELECTRICITY SAVINGS IN A UNIVERSITY RESIDENTIAL HALL THROUGH A COMBINATION OF FEEDBACK, VISUAL PROMPTS, AND INCENTIVES

    PubMed Central

    Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909

  5. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  6. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  7. Preliminary Study of Arcjet Neutralization of Hall Thruster Clusters (Postprint)

    DTIC Science & Technology

    2007-01-18

    Clustered Hall thrusters have emerged as a favored choice for extending Hall thruster options to very high powers (50 kW - 150 kW). This paper...examines the possible use of an arcjet to neutralize clustered Hall thrusters, as the hybrid arcjet- Hall thruster concept can fill a performance niche...and helium, and then demonstrate the first successful operation of a low power Hall thruster -arcjet neutralizer package. In the surrogate anode studies

  8. Development Status of the Helicon Hall Thruster

    DTIC Science & Technology

    2009-09-15

    Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low

  9. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    NASA Astrophysics Data System (ADS)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  10. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  11. 5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOFTOPS, ISHERWOOD HALL (BUILDING NO. 104), GRIFFIN (BUILDING NO. 110), MELVILLE HALL (BUILDING NO. 116) LOOKING WEST FROM CLOCK TOWER OF MAHAN HALL - U.S. Naval Academy, Annapolis, Anne Arundel County, MD

  12. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    DTIC Science & Technology

    2017-06-30

    17394 4 / 13 HALL EFFECT THRUSTERS Hall Effect Thrusters (HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid...HET): Traditionally Modeled in R-Z Named for Hall Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ...Current in θ Uses Quasi -1D Electron Fluid Solve Ohm’s Law→ No e−-momentum Zθ Unrolled to YZ Electron ExB Drift Unmagnetized Ions Results in Hall Current

  13. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  14. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    PubMed Central

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-01-01

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864

  15. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    PubMed

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  16. Hall effect of copper nitride thin films

    NASA Astrophysics Data System (ADS)

    Yue, G. H.; Liu, J. Z.; Li, M.; Yuan, X. M.; Yan, P. X.; Liu, J. L.

    2005-08-01

    The Hall effect of copper nitride (Cu3N) thin films was investigated in our work. Cu3N films were deposited on glass substrates by radio-frequency (RF) magnetron sputtering at different temperatures using pure copper as the sputtering target. The Hall coefficients of the films are demonstrated to be dependent on the deposition gas flow rate and the measuring temperature. Both the Hall coefficient and resistance of the Cu3N films increase with the nitrogen gas flow rate at room temperature, while the Hall mobility and the carrier density of the films decrease. As the temperature changed from 100 K to 300 K, the Hall coefficient and the resistivity of the films decreased, while the carrier density increased and Hall mobility shows no great change. The energy band gap of the Cu3N films deduced from the curve of the common logarithm of the Hall coefficient against 1/T is 1.17-1.31 eV.

  17. 27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. FIRST FLOOR CENTRAL HALL, EAST WALL, DETAIL OF ENTABLATURE SHOWING EGG AND DART OVOLO AND GUTTAE OF THE THIRD MUTULE FROM THE SOUTHEAST CORNER - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  18. Nondestructive hall coefficient measurements using ACPD techniques

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a strong enough Hall electric field that produces measurable potential differences between points lying on the path followed by the Hall current even when it is not intercepted by either the edge of the specimen or the edge of the magnetic field. The induced Hall voltage increases proportionally to the square root of frequency as the current is squeezed into a shallow electromagnetic skin of decreasing depth. This approach could be exploited to measure the Hall coefficient near the surface at high frequencies without cutting the specimen.

  19. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  20. Hole mobilities and the effective Hall factor in p-type GaAs

    NASA Astrophysics Data System (ADS)

    Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.

    1997-06-01

    We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.

  1. The first vineyard concert hall in North America

    NASA Astrophysics Data System (ADS)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  2. Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.

    The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.

  3. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  4. Nonlinearity in the effect of an inhomogeneous Hall angle

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2007-03-01

    The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.

  5. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  6. Piezo-Hall effect and fundamental piezo-Hall coefficients of single crystal n-type 3C-SiC(100) with low carrier concentration

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Phan, Hoang-Phuong; Hold, Leonie; Dimitrijev, Sima

    2017-04-01

    This article reports the results on the piezo-Hall effect in single crystal n-type 3C-SiC(100) having a low carrier concentration. The effect of the crystallographic orientation on the piezo-Hall effect has been investigated by applying stress to the Hall devices fabricated in different crystallographic directions. Single crystal n-type 3C-SiC(100) and 3C-SiC(111) were grown by low pressure chemical vapor deposition at 1250 °C. Fundamental piezo-Hall coefficients were obtained using the piezo-Hall effect measurements as P11 = (-29 ± 1.3) × 10-11 Pa-1, P12 = (11.06 ± 0.5)× 10-11 Pa-1, and P44 = (-3.4 ± 0.7) × 10-11 Pa-1. It has been observed that the piezo-Hall coefficients of n-type 3C-SiC(100) show a completely different behavior as compared to that of p-type 3C-SiC.

  7. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    DOE PAGES

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; ...

    2015-04-08

    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10 10 cm -2 to 2.7 × 10 11 cm -2 were achieved, yielding a maximal combined Hall mobility (μ Hall ) of 7.7 × 10 5 cm 2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to n Hall > 3.3 × 10 10 cm -2,more » consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less

  8. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in La1-xCaxCoO3 near T C, but the material presents many additional complexities, including a unique low temperature magnetoresistance. At low temperature, the Hall effect may be best explained by spin-polarized carriers scattering off of orbital disorder in spin-ordered clusters.

  9. Valley-chiral quantum Hall state in graphene superlattice structure

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  10. Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach

    NASA Astrophysics Data System (ADS)

    Yin, Gen; Zang, Jiadong; Lake, Roger

    2014-03-01

    Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.

  11. Concert hall acoustics

    NASA Astrophysics Data System (ADS)

    Schroeder, Manfred

    2004-05-01

    I will review some work at Bell Laboratories on artificial reverberation and concert hall acoustics including Philharmonic Hall (Lincoln Center for the Performing Arts, New York). I will also touch on sound diffusion by number-theoretic surfaces and the measurement of reverberation time using the music as played in the hall as a ``test'' signal.

  12. A Behavioral Weight Control Program for Residence Hall Students.

    ERIC Educational Resources Information Center

    Domke, Jane A.; And Others

    1981-01-01

    Compared a weight control treatment specifically tailored to the needs of residence hall students with a standardized behavioral procedure. Although posttreatment results indicated a very slight and nonsignificant advantage for the residence hall condition, this was not true at follow-up. Suggests the residence hall procedure may be overly…

  13. 78 FR 58338 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    .../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Crystal River City Hall, 123 NW U.S. Highway 19, Crystal River.../preliminaryfloodhazarddata preliminaryfloodhazarddata City of Carbon Hill City Hall, 170 NW 2nd Avenue, Carbon Hill, AL 35549. City of Cordova City Hall, 74 Main Street, Cordova, AL 35550. City of Dora City Hall, 1485 Sharon...

  14. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  15. Facility Focus: Residence Halls.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes residence halls seeking to meet needs beyond traditional mass housing for the 18- to 22-year-old students: Whittemore Hall at the Tuck School of Business at Dartmouth College (for older students); Small Group Housing at Washington University (grouping students with common interests); and the renovation of the residence hall at Boston's…

  16. Anti-commutative Gröbner-Shirshov basis of a free Lie algebra

    NASA Astrophysics Data System (ADS)

    Bokut, L. A.; Chen, Yuqun; Li, Yu

    2009-03-01

    One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).

  17. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  18. Reduced Spin Hall Effects from Magnetic Proximity.

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-26

    We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less

  19. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  20. Experimental test of 200 W Hall thruster with titanium wall

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  1. Spontaneous Hall effects in the electron system at the SmTiO3/EuTiO3 interface

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-05-01

    Magnetotransport and magnetism of epitaxial SmTiO3/EuTiO3 heterostructures grown by molecular beam epitaxy are investigated. It is shown that the polar discontinuity at the interface introduces ˜3.9 × 1014 cm-2 carriers into the EuTiO3. The itinerant carriers exhibit two distinct contributions to the spontaneous Hall effect. The anomalous Hall effect appears despite a very small magnetization, indicating a non-collinear spin structure, and the second contribution resembles a topological Hall effect. Qualitative differences exist in the temperature dependence of both Hall effects when compared to uniformly doped EuTiO3. In particular, the topological Hall effect contribution appears at higher temperatures and the anomalous Hall effect shows a sign change with temperature. The results suggest that interfaces can be used to tune topological phenomena in itinerant magnetic systems.

  2. Thermally driven anomalous Hall effect transitions in FeRh

    NASA Astrophysics Data System (ADS)

    Popescu, Adrian; Rodriguez-Lopez, Pablo; Haney, Paul M.; Woods, Lilia M.

    2018-04-01

    Materials exhibiting controllable magnetic phase transitions are currently in demand for many spintronics applications. Here, we investigate from first principles the electronic structure and intrinsic anomalous Hall, spin Hall, and anomalous Nernst response properties of the FeRh metallic alloy which undergoes a thermally driven antiferromagnetic-to-ferromagnetic phase transition. We show that the energy band structures and underlying Berry curvatures have important signatures in the various Hall effects. Specifically, the suppression of the anomalous Hall and Nernst effects in the antiferromagnetic state and a sign change in the spin Hall conductivity across the transition are found. It is suggested that the FeRh can be used as a spin current detector capable of differentiating the spin Hall effect from other anomalous transverse effects. The implications of this material and its thermally driven phases as a spin current detection scheme are also discussed.

  3. 78 FR 26682 - Culturally Significant Objects Imported for Exhibition Determinations: “Hall of Ancient Egypt”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Determinations: ``Hall of Ancient Egypt'' AGENCY: Department of State. ACTION: Notice, correction. SUMMARY: On... determinations made by the Department of State pertaining to the exhibition ``Hall of Ancient Egypt.'' The... additional objects to be included in the exhibition ``Hall of Ancient Egypt,'' imported from abroad for...

  4. Interior and Exterior Laser-Induced Fluorescence and Plasma Measurements within a Hall Thruster (Postprint)

    DTIC Science & Technology

    2002-02-01

    ionized xenon in the plume and interior portions of the acceleration channel of a Hall thruster plasma discharge operating at powers ranging from 250...performed in the interior of the Hall thruster with resonance fluorescence collection. Optical access to the interior of the Hall thruster is

  5. A New Definition in Atlanta: Q&A with Beverly Hall

    ERIC Educational Resources Information Center

    Crow, Tracy

    2010-01-01

    Beverly Hall has been superintendent of Atlanta Public Schools since 1999. Before coming to Atlanta, Hall was state district superintendent of Newark Public Schools, deputy chancellor for instruction of New York City Public Schools, superintendent of Community School District 27 in New York City, and a principal in Brooklyn. Hall chairs Harvard…

  6. 77 FR 21791 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Town Hall, 2 Renshaw Road, Darien, CT 06820. Town of Fairfield John J. Sullivan Independence Hall, 725 Old Post Road, Fairfield, CT 06824. Town of Greenwich Town Hall, 101 Field Point Road, Greenwich, CT... at: http://www.rampp-team.com/md.htm Town of Accident Town Hall, 104 South North Street, Accident, MD...

  7. Destruction of the Fractional Quantum Hall Effect by Disorder

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.

  8. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  9. Effects of Ionospheric Hall Polarization on Magnetospheric Configurations and Dynamics in Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Yoshikawa, A.; Tanaka, T.

    2017-12-01

    We investigate how the M-I coupling and boundary conditions affects the results of global simulations of the magnetosphere. More specifically, we examine the effects of ionospheric Hall polarization on magnetospheric convection and dynamics by using an MHD code developed by Tanaka et al. [2010]. This study is motivated by the recently proposed idea that the ionospheric convection is modified by the ionospheric polarization [Yoshikawa et al., 2013]. We perform simulations for the following pairs of Hall conductance and IMF-By; Hall conductance set by αH = 2, 3.5, 5, and uniform distribution (1.0 [S] everywhere), where RH is the ratio of Hall to Pedersen conductance, and IMF-By of positive, negative, and zero. The results are summarized as follows. (a) Large-scale structure: In the cases of uniform Hall conductance, the magnetosphere is completely symmetric under the zero IMF-By. In the cases of non-uniform Hall conductance, the magnetosphere shows asymmetries globally even under the zero IMF-By. Asymmetries become severe for larger αH. The results indicate that ionospheric Hall polarization is one of the important factors to determine the global structure. (b) Formation of NENL: The location becomes closer to the earth and timing becomes earlier for larger RH. The difference is considered to be related to the combined effects of field lines twisting due to ionospheric Hall polarization and M-I energy/current closures. (c) Near-earth convection: In the cases of non-uniform Hall conductance, an inflection structure is formed around premidnight sector on equatorial plane inside 10 RE. Considering that the region 2 FAC is not sufficiently generated in MHD models, the structure corresponds to a convection reversal often shown in the RCM. Previous studies regard the structure as the Harang Reversal in the magnetosphere. In the cases of uniform Hall conductance, by contrast, such structure is not formed, indicating that the Harang Reversal may not be formed without the effect of ionospheric Hall polarization. The above initial research strongly suggests that the ionospheric Hall polarization plays a significant role in the M-I system.

  10. Chills

    MedlinePlus

    ... Accessed February 20, 2017. Hall JE. Body temperature regulation and fever. In: Hall JE, ed. Guyton and Hall Textbook of Medical Physiology . 13th ed. Philadelphia, PA: Elsevier; 2016:chap 74. ...

  11. Faster Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Johnson, Daniel D.; Walker, Daniel D.

    1993-01-01

    Current-measuring circuit operates on Hall-effect-sensing and magnetic-field-nulling principles similar to those described in article, "Nulling Hall-Effect Current-Measuring Circuit" (LEW-15023), but simpler and responds faster. Designed without feedback loop, and analog pulse-width-modulated output indicates measured current. Circuit measures current at frequency higher than bandwidth of its Hall-effect sensor.

  12. The Other Hall Effect: College Board Physics

    ERIC Educational Resources Information Center

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  13. A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)

    DTIC Science & Technology

    2007-08-24

    Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and

  14. Plume Characteristics of the BHT-HD-600 Hall Thruster (Preprint)

    DTIC Science & Technology

    2006-07-01

    Hall thruster on spacecraft, a number of plume properties have been measured. These include current density using a Faraday probe, ion energy distribution using a retarding potential analyzer, and ion species fractions using an E x B probe. The BHT-HD-600 Hall thruster is a nominally 600 W xenon Hall thruster developed by Busek Co. Inc. for the U.S. Air Force Research Laboratory. Plume characterization of Hall thrusters is required to fully understand the impacts of thruster operation on spacecraft. Much of these plume data are

  15. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al.

  16. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  17. Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Son, Dam

    We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.

  18. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    NASA Astrophysics Data System (ADS)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  19. Hall viscosity and electromagnetic response of electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni

    The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.

  20. 75 FR 58411 - Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...] Medicare Program; Town Hall Meeting on the Physician Compare Web Site, October 27, 2010 AGENCY: Centers for... establish a Physician Compare Web site by January 1, 2011. This notice announces a Town Hall meeting to discuss the Physician Compare Web site. The purpose of this Town Hall meeting is to solicit input from...

  1. A Gift for Reading Hall No. 1

    ERIC Educational Resources Information Center

    MacWilliams, Bryon

    2009-01-01

    In this article, the author describes Reading Hall No. 1 of the Russian State Library. He was placed in the first reading hall in the mid-1990s, when the Russian government still honored Soviet traditions of granting certain privileges to certain foreigners. In the first hall, the rules are different. He can request as many books as he wants. He…

  2. Encouraging Electricity Savings in a University Residential Hall through a Combination of Feedback, Visual Prompts, and Incentives

    ERIC Educational Resources Information Center

    Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…

  3. Realizing the Educational Potential of Residence Halls. Jossey-Bass Higher and Adult Education Series.

    ERIC Educational Resources Information Center

    Schroeder, Charles C.; Mable, Phyllis

    This book addresses the need for integrating students' formal academic experiences with their informal out-of-class life in their residence halls. Organized in three parts, Part 1 focuses on the role of residence halls in educating students. Part 2 describes a variety of initiatives for promoting student learning in college residence halls. Part 3…

  4. Exposure and materiality of the secondary room and its impact on the impulse response of coupled-volume concert halls

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty

    2005-06-01

    How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.

  5. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  6. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.

  7. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  8. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Thomas D. Jones, Ph.D., in the center, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. At left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Jones into the Hall of Fame Class of 2018. At right is Hall of Famer Storey Musgrave, who spoke on Jones behalf during the ceremony. Also inducted was retired astronaut Scott D. Altman. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  9. Magnetic field deformation due to electron drift in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  10. Not your grandfather's concert hall

    NASA Astrophysics Data System (ADS)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  11. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  12. Turbulence Measurements in a Tropical Zoo Hall

    NASA Astrophysics Data System (ADS)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  13. Roles of nonlocal conductivity on spin Hall angle measurement

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Zhang, Shufeng

    2017-10-01

    Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most important material parameters for spintronics physics and device application. A long-standing controversy is that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport coefficients from experimental data.

  14. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  15. Interior detail of dispatch boards in main hall, facing west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of dispatch boards in main hall, facing west - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  16. View of north front and west sides of hall, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north front and west sides of hall, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  17. "Nostalgia for What Cannot Be": An Interpretive and Social Biography of Stuart Hall's Early Years in Jamaica and England, 1932-1959

    ERIC Educational Resources Information Center

    Henry, Annette

    2015-01-01

    Much has been written about Stuart Hall's intellectual and theoretical contributions especially after the mid-1960s. This interpretive and social biography places Stuart Hall's life from 1932 to 1959 in a socio-historical context, beginning with his childhood in Jamaica and his early years in England. I draw on Hall's own biographical reflections…

  18. Military Space Doctrine: the Great Frontier.

    DTIC Science & Technology

    1981-04-03

    Hall 0745 Conference Registration Fairchild Hall H-1 (Continental breakfast served in conference area included in registration fee 0810 Movie : (optional...roundtable sign-ups 1200 Cadet Lunch Formation Review Eagle and Fledglings 1220 Lunch with Cadet Wing Mitchell Hall (cost collected at registration...Continental breakfast at conference area (included in the registration fee) 0755 Movie : (optional) Space - The New Ocean Fairchild Hall H-i 0800 Opening

  19. Perceived Effectiveness of Hall Director Leadership Style on the Satisfaction of Resident Assistants in Mississippi

    ERIC Educational Resources Information Center

    Morris, Rheo Joelyn Avorice

    2009-01-01

    The purpose of this study was to ascertain which leadership style correlates most with RA satisfaction in residence halls at three public universities in Mississippi. When satisfied, RAs will be more efficient in their roles and this will transfer to students residing in the halls. As a result more students in the residence halls will become more…

  20. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Michael Foale with his hall of fame medal. Former NASA Administrator Charlie Bolden, right, a Hall of Fame member, presented Foale for induction. During this year's ceremonies, space shuttle astronaut Ellen Ochoa also was enshrined.

  1. 2017 Astronaut Hall of Fame Induction Ceremony

    NASA Image and Video Library

    2017-05-19

    In the Space Shuttle Atlantis facility at the Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman Dan Brandenstein, left, also a Hall of Fame astronaut, presents inductee Ellen Ochoa with her hall of fame medal. Former Johnson Space Center Director Mike Coats, right, a Hall of Fame member, presented Ochoa for induction. During this year's ceremonies, space shuttle astronaut Michael Foale also was enshrined.

  2. 122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. HISTORIC AMERICAN BUILDINGS SURVEY TEAM MEASURING EXTERIOR OF INDEPENDENCE HALL (LEE NELSON ON CORNER LEANING OVER) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  3. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  4. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  5. 4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MESS HALL, FRONT DETAIL OVER DOOR, LOOKING EAST. - NIKE Missile Base C-84, Mess Hall, North of Launch Area Entrance Drive, east of Officers' Quarters & Administration Building, Barrington, Cook County, IL

  6. 3. MESS HALL, REAR SIDE, LOOKING NORTH. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MESS HALL, REAR SIDE, LOOKING NORTH. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  7. 2. MESS HALL, RIGHT SIDE, LOOKING EAST. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MESS HALL, RIGHT SIDE, LOOKING EAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  8. Detail of main hall porch on east elevation; camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of main hall porch on east elevation; camera facing west. - Mare Island Naval Shipyard, Wilderman Hall, Johnson Lane, north side adjacent to (south of) Hospital Complex, Vallejo, Solano County, CA

  9. Interior detail of platform in main hall, with desk, flag, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of platform in main hall, with desk, flag, and banners, facing south - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  10. KSC-2013-2071

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Kennedy Space Center Director and Hall of Famer Robert Cabana speaks during the U.S. Astronaut Hall of Fame 2013 induction ceremony. Curt Brown, Eileen Collins and Bonnie Dunbar were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  11. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  12. Remote Diagnostic Measurements of Hall Thruster Plumes

    DTIC Science & Technology

    2009-08-14

    This paper describes measurements of Hall thruster plumes that characterize ion energy distributions and charge state fractions using remotely...charge state. Next, energy and charge state measurements are described from testing of a 200 W Hall thruster at AFIT. Measurements showed variation in...position. Finally, ExB probe charge state measurements are presented from a 6-kW laboratory Hall thruster operated at low discharge voltage levels at AFRL

  13. Performance Characteristics of a 5 kW Laboratory Hall Thruster

    DTIC Science & Technology

    1996-07-01

    Characteristics of a 5 kW Laboratory Hall Thruster James M. Haas’, Frank S. Gulczinski III%, and Alec D. Gallimoret Plasmadynamics and Electric Propulsion...the information learned from the study of this thruster applicable to the understanding of its commercial counterparts. INTRODUCTION Hall thrusters are...few in number at this time; and those that do exist are intended primarily Current generation Hall thruster research has for flight qualification

  14. Quantum Hall effect in ac driven graphene: From the half-integer to the integer case

    NASA Astrophysics Data System (ADS)

    Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu

    2018-01-01

    We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.

  15. Spontaneous Hall effect in a chiral p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  16. The shear-Hall instability in newborn neutron stars

    NASA Astrophysics Data System (ADS)

    Kondić, T.; Rüdiger, G.; Hollerbach, R.

    2011-11-01

    Aims: In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a "shear-Hall instability" and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods: We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile Ω(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results: For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if Ω(s) decreases outward, whereas if Ω(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions: Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.

  17. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.

  18. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be; Ramezani Masir, M., E-mail: mrmphys@gmail.com

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  19. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin

    2017-10-01

    Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.

  20. Comment on 'Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source' [J. Appl. Phys. 102, 123305 (2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raitses, Y.; Smirnov, A.; Fisch, N. J.

    It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].

  1. 3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, Photo from 'West Shore' VILLIARD HALL, 1886, DEADY HALL, 1876. - University of Oregon, Deady Hall, University of Oregon Campus, Eugene, Lane County, OR

  2. 77 FR 18837 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall, 5047 Union...

  3. 5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. MESS HALL, RIGHT AND REAR SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  4. 6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PHOTOCOPY, PLAN AND SCHEDULE DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  5. Interior of Mess Hall, showing original columns and quarry tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Mess Hall, showing original columns and quarry tile floor - U.S. Naval Base, Pearl Harbor, Barracks & Mess Hall, Hornet Avenue between Liscome Bay & Enterprise Streets, Pearl City, Honolulu County, HI

  6. 7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, ELEVATION AND SECTION DRAWING OF MESS HALL. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  7. 4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MESS HALL, FRONT AND LEFT SIDES, LOOKING SOUTHWEST. - NIKE Missile Base SL-40, Mess Hall, East central portion of base, southeast of Barracks No. 2, northwest of Administration Building, Hecker, Monroe County, IL

  8. Contextual view of ILWU Hall, facing northwest with commercial port ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing northwest with commercial port buildings visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  9. Contextual view of ILWU Hall, facing southsouthwest, with ocean bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing south-southwest, with ocean bank visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  10. Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinsman, Colin; Li, Gang; Asaba, Tomoya

    2016-06-27

    The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less

  11. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Scott D. Altman, second from left, is inducted into the Astronaut Hall of Fame (AHOF) during a ceremony inside the Space Shuttle Atlantis attraction at NASA's Kennedy Space Center Visitor Complex in Florida. At far left, Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation (ASF), inducts Altman into the Hall of Fame Class of 2018. At right is Hall of Famer John Grunsfeld, who spoke on Altman's behalf during the ceremony. At far right is Thomas D. Jones, Ph.D., who also was inducted into the AHOF Class of 2018. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  12. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  13. Influence of Mn concentration on magnetic topological insulator Mn xBi 2−xTe 3 thin-film Hall-effect sensor

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  14. Magnetometry of micro-magnets with electrostatically defined Hall bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large currentmore » density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.« less

  15. 78 FR 29762 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ..., Palmetto, GA 30268. City of Roswell City Hall, 38 Hill Street, Suite 235, Roswell, GA 30075. City of Sandy Springs City Hall, 7840 Roswell Road, Building 500, Sandy Springs, GA 30350. City of Union City City Hall...

  16. 71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. FIRST FLOOR, ROOM 101, ENTRANCE HALL (SIDE WITH FIRE DETECTOR), ARCHWAY TO STAIR HALL 100, LOOKING UP, DETAIL OF ARCHWAY SOFFIT. - Octagon House, 1799 (1741) New York Avenue, Northwest, Washington, District of Columbia, DC

  17. Contextual view of ILWU Hall, facing east, with the city ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of ILWU Hall, facing east, with the city of Port Hueneme visible in the background - International Longshoremen's & Warehousemen's Union Hall, Naval Civil Engineering Laboratory, Port Hueneme Road, Port Hueneme, Ventura County, CA

  18. DIVA (Data Intensive Architecture)

    DTIC Science & Technology

    2004-06-01

    Itanium-based workstation as a test bench for the larger system concepts. 44 10. Publications [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz ...White, Dr. Pedro Diniz . Mr. Pablo Moissett • Caltech: Dr. Thomas Sterling, Mr. Daniel Savarese • University of Notre Dame: Dr. Peter Kogge, Dr. Jay...IEEE Computer, April 1995, pp. 23-31. [Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz , J. Chame, J. Draper, J. LaCoss, J. Granacki, J. Brockman

  19. Performance of an 8 kW Hall Thruster

    DTIC Science & Technology

    2000-01-12

    For the purpose of either orbit raising and/or repositioning the Hall thruster must be capable of delivering sufficient thrust to minimize transfer...time. This coupled with the increasing on-board electric power capacity of military and commercial satellites, requires a high power Hall thruster that...development of a novel, high power Hall thruster , capable of efficient operation over a broad range of Isp and thrust. We call such a thruster the bi

  20. Faraday Probe Analysis, Part 2: Evaluation of Facility Effects on Ion Migration in a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2010-02-24

    A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.

  1. Performance Potential of Plasma Thrusters: Arcjet and Hall Thruster Modeling

    DTIC Science & Technology

    1993-09-17

    FUNDING NUMBERS Performance Potential of Plasma Thrusters: \\ Arcjet and Hall Thruster Modeling FQ 8671-9300908 S ,,G-AFOSR-91-0256 6. AUTHOR(S) Manuel...models for the internal physics and the performance of hydrogen arcjets and Hall thrusters , respectively. These are thought to represent the state of...work. 93-24268 14. SUBJECT TERMS IS. NUMBER OF PAGES Electric Propulsion, Arcjets, Hall Thrusters 15 16. PRICE COOE 17. SECURITY CLASSIFICATION I18

  2. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Preprint)

    DTIC Science & Technology

    2007-06-05

    From - To) 05-06-2007 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements (Preprint) Taylor S. Matlock∗ Jackson...dimensional estimate of the plume electron temperature using a published xenon collisional radiative model. I. Introduction The Hall thruster is a high

  3. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    DTIC Science & Technology

    2014-03-06

    Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse

  4. Final analysis of proton form factor ratio data at Q 2 = 4.0, 4.8, and 5.6 GeV 2

    DOE PAGES

    Puckett, A. J. R.; Brash, E. J.; Gayou, O.; ...

    2012-04-11

    Recently published measurements of the proton electromagnetic form factor ratio R = μ p G E p/G M p at momentum transfers Q 2 up to 8.5 GeV 2 in Jefferson Lab Hall C deviate from the linear trend of previous measurements in Jefferson Lab Hall A, favoring a slower rate of decrease of R with Q 2. While statistically compatible in the region of overlap with Hall A, the Hall C data hint at a systematic difference between the two experiments. This possibility was investigated in a reanalysis of the Hall A data. We find that the original analysismore » underestimated the background in the selection of elastic events. The application of an additional cut to further suppress the background increases the results for R, improving the consistency between Halls A and C.« less

  5. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    PubMed

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  6. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    NASA Astrophysics Data System (ADS)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  7. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  8. G. Stanley Hall and The Journal of Genetic Psychology: A Note.

    PubMed

    Hogan, John D

    2016-01-01

    The Journal of Genetic Psychology (originally called The Pedagogical Seminary) has a complicated history. Known primarily as a journal of development psychology, it was originally intended to be a journal of higher education. In addition, G. Stanley Hall created it, at least in part, to curry favor with Jonas Clark, the benefactor of Clark University. The journal had a cumbersome start, with irregular issues for most of its first decade. Hall was a hands-on editor, often contributing articles and reviews as well as the texts of many of his speeches. A substantial number of additional articles were written by Clark University faculty and fellows where Hall was president. After Hall.s death, the editor became Carl Murchison who eventually left Clark University with the journal and continued to publish it privately until his death. Through the years, the journal has been the source for many classic articles in developmental psychology.

  9. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  10. 68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  11. Interior view, groundfloor dining hall extending across the rotunda extension ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, ground-floor dining hall extending across the rotunda extension from it's northern exterior wall to its southern exterior wall, from the north. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  12. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  13. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    PubMed

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  14. Coherence length saturation at the low temperature limit in two-dimensional hole gas

    NASA Astrophysics Data System (ADS)

    Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi

    2018-05-01

    The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.

  15. An Inversion Method for Reconstructing Hall Thruster Plume Parameters from the Line Integrated Measurements (Postprint)

    DTIC Science & Technology

    2007-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Inversion Method for Reconstructing Hall Thruster Plume...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 An Inversion Method for Reconstructing Hall Thruster Plume Parameters from Line Integrated Measurements... Hall thruster is a high specific impulse electric thruster that produces a highly ionized plasma inside an annular chamber through the use of high

  16. First Firing of a 100-kW Nested-Channel Hall Thruster

    DTIC Science & Technology

    2013-09-01

    Technical Paper 3. DATES COVERED (From - To) September 2013- December 2013 4. TITLE AND SUBTITLE First Firing of a 100-kW Nested-Channel Hall Thruster 5a...STATEMENT A: Approved for public release; distribution unlimited. 1 First Firing of a 100-kW Nested-channel Hall Thruster IEPC-2013-394...converting electrical power to directed kinetic power I. Introduction ESTING the channels of Hall thrusters has proven to be a viable method to increase

  17. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.

    PubMed

    Islam, S K Firoz

    2018-07-11

    The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.

  18. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    NASA Astrophysics Data System (ADS)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  19. Spin torque efficiency of Ta, W, and Pt in metallic bilayers evaluated by harmonic Hall and spin Hall magnetoresistance measurements

    NASA Astrophysics Data System (ADS)

    Lau, Yong-Chang; Hayashi, Masamitsu

    2017-08-01

    We investigate the efficiency of current-induced torque, i.e., the spin torque efficiency, in in-plane magnetized heavy metal/CoFeB/MgO heterostructures (heavy metals = Pt, W, and Ta) using the harmonic Hall technique and the spin Hall magnetoresistance. We find that the amplitude of the external magnetic field has a strong influence on the spin torque efficiency evaluation by the harmonic Hall measurements. This can be corrected by measuring the corresponding Hall resistance susceptibility. The sign and magnitude of the resulting Slonczewski-like spin torque efficiencies are in agreement with previous reports and the measurements utilizing the spin Hall magnetoresistance, except for the Pt underlayer films. The origin of the discrepancy for the Pt underlayer films is unclear. The field like torque efficiencies, upon subtracting the Oersted field contribution, are quite low or negligible. This is in significant contrast to what has been found for the field like torque in heterostructures with perpendicular magnetization. These results suggest that a more advanced model is required in order to describe accurately spin transport and momentum transfer at metallic interfaces.

  20. The role of the men's hall in the development of the Anglo-Saxon superego.

    PubMed

    Earl, J W

    1983-05-01

    This paper is a historical study of ritual space--a bit of psychoanalytic anthropology applied to a particular case, the evolution of the men's hall among the early Anglo-Saxons. I focus particularly on the ritual functions of poetry in the hall, the same poetry which is our major evidence regarding the hall, especially the epic Beowulf. I define the hall as a cultural institution, and redefine the native poetic tradition in relation to the hall's varied ritual life, with which the poetry is so occupied. Though my argument is focused on the hall, it includes a framework of theoretical concerns. Early Anglo-Saxon culture is of anthropological interest chiefly because of its rapid and dramatic emergence from Germanic tribal prehistory into a leading role in the civilization of Christian Europe. The conquest of Britain by the Anglo-Saxons in the fifth and sixth centuries, and their conversion soon afterward, is a case history of the transformations of a tribal society suddenly introduced to the special forces of civilization and the higher religions that control them. The Anglo-Saxons are fascinating in this regard because of the fortuitous developments that prepared for this transformation and made it so successful.

  1. Star Formation and the Hall Effect

    NASA Astrophysics Data System (ADS)

    Braiding, Catherine

    2011-10-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well-studied. This thesis describes a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, presenting similarity solutions that demonstrate that the Hall effect has a profound influence on the dynamics of collapse. ... Hall diffusion also determines the strength of the magnetic diffusion and centrifugal shocks that bound the pseudo and rotationally-supported discs, and can introduce subshocks that further slow accretion onto the protostar. In cores that are not initially rotating Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field would be worth exploring in future numerical simulations of star formation.

  2. Concert halls with strong and lateral sound increase the emotional impact of orchestra music.

    PubMed

    Pätynen, Jukka; Lokki, Tapio

    2016-03-01

    An audience's auditory experience during a thrilling and emotive live symphony concert is an intertwined combination of the music and the acoustic response of the concert hall. Music in itself is known to elicit emotional pleasure, and at best, listening to music may evoke concrete psychophysiological responses. Certain concert halls have gained a reputation for superior acoustics, but despite the continuous research by a multitude of objective and subjective studies on room acoustics, the fundamental reason for the appreciation of some concert halls remains elusive. This study demonstrates that room acoustic effects contribute to the overall emotional experience of a musical performance. In two listening tests, the subjects listen to identical orchestra performances rendered in the acoustics of several concert halls. The emotional excitation during listening is measured in the first experiment, and in the second test, the subjects assess the experienced subjective impact by paired comparisons. The results showed that the sound of some traditional rectangular halls provides greater psychophysiological responses and subjective impact. These findings provide a quintessential explanation for these halls' success and reveal the overall significance of room acoustics for emotional experience in music performance.

  3. A holographic model for the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  4. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  5. Observation of a superfluid Hall effect

    PubMed Central

    Jiménez-García, Karina; Williams, Ross A.; Beeler, Matthew C.; Perry, Abigail R.; Phillips, William D.; Spielman, Ian B.

    2012-01-01

    Measurement techniques based upon the Hall effect are invaluable tools in condensed-matter physics. When an electric current flows perpendicular to a magnetic field, a Hall voltage develops in the direction transverse to both the current and the field. In semiconductors, this behavior is routinely used to measure the density and charge of the current carriers (electrons in conduction bands or holes in valence bands)—internal properties of the system that are not accessible from measurements of the conventional resistance. For strongly interacting electron systems, whose behavior can be very different from the free electron gas, the Hall effect’s sensitivity to internal properties makes it a powerful tool; indeed, the quantum Hall effects are named after the tool by which they are most distinctly measured instead of the physics from which the phenomena originate. Here we report the first observation of a Hall effect in an ultracold gas of neutral atoms, revealed by measuring a Bose–Einstein condensate’s transport properties perpendicular to a synthetic magnetic field. Our observations in this vortex-free superfluid are in good agreement with hydrodynamic predictions, demonstrating that the system’s global irrotationality influences this superfluid Hall signal. PMID:22699494

  6. 12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BUILDING 324, INTERIOR, ENTRY HALL AND STAIRWAY, FROM SOUTH ENTRY, LOOKING NORTH, WITH HALL LEADING TO GARAGE TO RIGHT OF STAIRWAY. - Oakland Naval Supply Center, Commanding Officers Residences, Between E & F Streets, West of Fourth Street, Oakland, Alameda County, CA

  7. 76 FR 53021 - Public Hearing and Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to conditions of the... Baltimore. Project Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md... Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to...

  8. 24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. BEDROOM #1 INTERIOR SHOWING OPEN DOOR TO HALL WITH HALL LINEN CLOSETS VISIBLE IN BACKGROUND, AND PARTIALLY OPEN DOOR TO CLOSET. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

  9. KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. The Astronaut Hall of Fame is dedicated to telling the stories of America’s astronauts. It features the world’s largest collection of personal astronaut mementos plus historic spacecrafts and training simulators. The Hall of Fame is part of the KSC Visitor Complex.

  10. Comparisons and Evaluation of Hall Thruster Models

    DTIC Science & Technology

    2002-03-20

    COVERED (FROM - TO) 20-04-2001 to 20-04-2002 4. TITLE AND SUBTITLE comparisons and Evaluation of Hall Thruster Models Unclassified 5a. CONTRACT NUMBER...TITLE AND SUBTITLE Comparisons and Evaluation of Hall Thruster Models 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR(S...evaluation of Hall thruster models G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J.-P. Boeuf CPAT, Bâtiment 3R2, Université Paul Sabatier 118 Route

  11. Observations of Hall Reconnection Physics Far Downstream of the X Line.

    PubMed

    Mistry, R; Eastwood, J P; Haggerty, C C; Shay, M A; Phan, T D; Hietala, H; Cassak, P A

    2016-10-28

    Observations made using the Wind spacecraft of Hall magnetic fields in solar wind reconnection exhausts are presented. These observations are consistent with the generation of Hall fields by a narrow ion inertial scale current layer near the separatrix, which is confirmed with an appropriately scaled particle-in-cell simulation that shows excellent agreement with observations. The Hall fields are observed thousands of ion inertial lengths downstream from the reconnection X line, indicating that narrow regions of kinetic dynamics can persist extremely far downstream.

  12. Magnet/Hall-Effect Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.

  13. The Hall effect in star formation

    NASA Astrophysics Data System (ADS)

    Braiding, C. R.; Wardle, M.

    2012-05-01

    Magnetic fields play an important role in star formation by regulating the removal of angular momentum from collapsing molecular cloud cores. Hall diffusion is known to be important to the magnetic field behaviour at many of the intermediate densities and field strengths encountered during the gravitational collapse of molecular cloud cores into protostars, and yet its role in the star formation process is not well studied. We present a semianalytic self-similar model of the collapse of rotating isothermal molecular cloud cores with both Hall and ambipolar diffusion, and similarity solutions that demonstrate the profound influence of the Hall effect on the dynamics of collapse. The solutions show that the size and sign of the Hall parameter can change the size of the protostellar disc by up to an order of magnitude and the protostellar accretion rate by 50 per cent when the ratio of the Hall to ambipolar diffusivities is varied between -0.5 ≤ηH/ηA≤ 0.2. These changes depend upon the orientation of the magnetic field with respect to the axis of rotation and create a preferred handedness to the solutions that could be observed in protostellar cores using next-generation instruments such as ALMA. Hall diffusion also determines the strength and position of the shocks that bound the pseudo and rotationally supported discs, and can introduce subshocks that further slow accretion on to the protostar. In cores that are not initially rotating (not examined here), Hall diffusion can even induce rotation, which could give rise to disc formation and resolve the magnetic braking catastrophe. The Hall effect clearly influences the dynamics of gravitational collapse and its role in controlling the magnetic braking and radial diffusion of the field merits further exploration in numerical simulations of star formation.

  14. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  15. Redistributing Chern numbers and quantum Hall transitions in multi-band lattices

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Zhai, Z. Y.; Jiang, C.

    2018-07-01

    We numerically study the integer quantum Hall effect (IQHE) on m-band lattices. With continuous modulating the next-nearest-neighbor hopping integral t' , it is found that the full band is divided into 2 m - 1 regions. There are m - 1 critical regions with pseudogaps induced by the merging between the two adjacent subbands, where both Chern numbers of the correlating Landau subbands and the corresponding Hall plateau are not well-defined. The other m regions with different well-defined Chern numbers are separated by the above m - 1 critical regions. Due to the redistributing Chern numbers of system induced by the merging of subbands, the Hall conductance exhibits a peculiar phase transition, which is characterized by the direct change of Hall plateau state.

  16. Effect of azimuthal diversion rail on an ATON-type Hall thruster

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Liqiu, Wei; Liang, Han; Yongjie, Ding; Daren, Yu

    2017-03-01

    A newly designed azimuthal diversion rail (ADR) is studied and used to enhance the ionization process in an ATON-type Hall thruster. The diversion rail efficiently reduces the neutral flow axial velocity, and hence, increases the resistance time of atoms in the discharge channel of the Hall thruster. Thrust performances, in terms of thrust, anode efficiency and ion beam divergence, are found to be improved because of the application of the diversion rail, especially at low mass flow rate conditions. Experiment results reveal that the ADR increases the mass utilization under insufficient mass flow rate operating conditions. The design of the ADR broadens the efficient operating range of Hall thrusters and has significant contribution to multi-mode Hall thruster development.

  17. What do you measure when you measure the Hall effect?

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Knickerbocker, C. J.

    1993-02-01

    A formalism for calculating the sensitivity of Hall measurements to local inhomogeneities of the sample material or the magnetic field is developed. This Hall weighting function g(x,y) is calculated for various placements of current and voltage probes on square and circular laminar samples. Unlike the resistivity weighting function, it is nonnegative throughout the entire sample, provided all probes lie at the edge of the sample. Singularities arise in the Hall weighting function near the current and voltage probes except in the case where these probes are located at the corners of a square. Implications of the results for cross, clover, and bridge samples, and the implications of our results for metal-insulator transition and quantum Hall studies are discussed.

  18. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Benavides, Gabriel; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the 200 W Busek BHT-200-I and the continued development of the 600 W BHT-600-I Hall thruster propulsion systems. This paper presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  19. Concert hall acoustics: Repertoire, listening position, and individual taste of the listeners influence the qualitative attributes and preferences.

    PubMed

    Lokki, Tapio; Pätynen, Jukka; Kuusinen, Antti; Tervo, Sakari

    2016-07-01

    Some studies of concert hall acoustics consider the acoustics in a hall as a single entity. Here, it is shown that the acoustics vary between different seats, and the choice of music also influences the perceived acoustics. The presented study compared the acoustics of six unoccupied concert halls with extensive listening tests, applying two different music excerpts on three different seats. Twenty eight assessors rated the halls according to the subjective preference of the assesors and individual attributes with a paired comparison method. Results show that assessors can be classified into two preference groups, which prioritize different perceptual factors. In addition, the individual attributes elicited by assessors were clustered into three latent classes.

  20. Residence Hall Seating That Works.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Describes the seating chosen for residence halls at the Massachusetts Institute of Technology and the University of New England. The seating required depends on ergonomics, aesthetics, durability, cost, and code requirements. In addition, residence halls must have a range of seating types to accommodate various uses. (SLD)

  1. Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements

    DTIC Science & Technology

    2011-08-01

    With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of

  2. Fundamental Studies of the Electrode Regions in Arcjet Thrusters

    DTIC Science & Technology

    1998-03-01

    Hall thruster . This contributed to a comprehensive study of the near exit region of our Hall discharge device. To compliment the LIF diagnostics on our Hall thrusters, we have made extensive measurements of the transient and time average plasma properties using conventional electrostatic

  3. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida, two space explorers, Scott D. Altman, second from left, and Thomas D. Jones, Ph.D., far right, are inducted into the U.S. Astronaut Hall of Fame Class of 2018. At far left is Hall of Famer Curt Brown, board chairman, Astronaut Scholarship Foundation, who inducted Altman and Jones into the AHOF. Second from right is Hall of Famer John Grunsfeld, who spoke on behalf of Altman during the ceremony. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  4. Air temperature gradient in large industrial hall

    NASA Astrophysics Data System (ADS)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  5. Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Cheng, Bin; Aldosary, Mohammed; Wang, Zhiyong; Jiang, Zilong; Watanabe, K.; Taniguchi, T.; Bockrath, Marc; Shi, Jing

    2018-02-01

    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches ¼ of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems.

  6. Remnant Geometric Hall Response in a Quantum Quench.

    PubMed

    Wilson, Justin H; Song, Justin C W; Refael, Gil

    2016-12-02

    Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

  7. View looks northeast (44°) across concrete foundation for Second Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looks northeast (44°) across concrete foundation for Second Street Mess Hall. See HAER photo CA-170-Q-3 for view of Mess Hall building - Edwards Air Force Base, North Base, Second Street Mess Hall T-10, Second Street, Boron, Kern County, CA

  8. 78 FR 20341 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... sciences established to review conflicting scientific and technical data and provide recommendations for... of Bolton Town Hall, 663 Main Street, Bolton, MA 01740. Town of Boxborough Town Hall, 29 Middle Road... South School Street, Mayville, WI 53050. City of Watertown City Hall, 106 Jones Street, Watertown, WI...

  9. Contextual view of the Hall of Transportation from Yerba Buena ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of the Hall of Transportation from Yerba Buena Island, showing Palace of Fine and Decorative Arts (Building 3) at far right, camera facing northwest - Golden Gate International Exposition, Hall of Transportation, 440 California Avenue, Treasure Island, San Francisco, San Francisco County, CA

  10. Plasma Properties in the Plume of a Hall Thruster Cluster

    DTIC Science & Technology

    2003-06-04

    The Hall thruster cluster is an attractive propulsion approach for spacecraft requiring very high-power electric propulsion systems. This article...probes in the plume of a low-power, four-engine Hall thruster cluster. Simple analytical formulas are introduced that allow these quantities to be

  11. 20th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2009-01-01

    Even in difficult economic times, colleges and universities continue to invest in residence hall construction projects as a way to attract new students and keep existing ones on campus. According to data from "American School & University"'s 20th annual Residence Hall Construction Report, the median new project completed in 2008 was…

  12. Adaptive Reuse: Reusing Buildings for Future Generations while Maintaining Connections to the Past.

    ERIC Educational Resources Information Center

    Rossi, John M.

    2003-01-01

    Describes adaptive reuse of college buildings, which involves reconfiguring existing buildings for entirely new functions, including its benefits. Examples include Bartlett Hall at the University of Chicago, Annenberg Hall and Locker Chambers at Harvard University, Goodrich Hall at Williams College, and Sarratt Student Center at Vanderbilt…

  13. A Network Design Architecture for Distribution of Generic Scene Graphs

    DTIC Science & Technology

    1999-09-01

    with UML. Addison Wesley. Deitel, H. and Deitel, P. 1994. C++ How to Program . Prentice Hall. Deitel, H. and Deitel, P. 1998. JAVA How ... to . Program . Prentice.Hall. Eckel, B. 1998. Thinking in JAVA. Prentice Hall. 141 Edwards, J. 1997. 3-Tier Client/Server At Work. John

  14. Implementing Proactive Network Management Solutions in the Residence Halls

    ERIC Educational Resources Information Center

    Bedi, Param

    2005-01-01

    This paper discusses how to implement networking solutions in residence halls at Arcadia University in Philadelphia. Sections of the paper include: (1) About Arcadia University; (2) Residence Halls Network; (3) How Campus Manager Helped Arcadia University; (4) What Is Campus Manager; (5) How Campus Manager Works; (6) Campus Manager Remediation…

  15. Chapin Hall Center for Children.

    ERIC Educational Resources Information Center

    Chicago Univ., IL. Chapin Hall Center for Children.

    This document consists of two separate publications: (1) "The Power of Knowing", a brief 12-page description of the Chapin Hall Center for Children, and (2) "Projects and Publications", a 67-page list of the center's projects and publications as of Autumn 1997. "The Power of Knowing" describes the Chapin Hall Center…

  16. Study of Energy Loss Mechanisms in the BPT-4000 Hall Thruster

    DTIC Science & Technology

    2003-06-30

    Aerojet has developed a high performance multi-mode flightweight Hall thruster for orbit raising and stationkeeping on geo-synchronous satellites. In...order to further understand and improve upon the performance of this state of the art Hall thruster and other next generation thrusters being planned

  17. Very-Near-Field Plume Model of a Hall Thruster

    DTIC Science & Technology

    2003-07-20

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014988 TITLE: Very-Near-Field Plume Model of a Hall Thruster DISTRIBUTION...numbers comprise the compilation report: ADP014936 thru ADP015049 UNCLASSIFIED am 46 Very-Near-Field Plume Model of a Hall Thruster F. Taccogna’, S. LongoŖ

  18. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2008-12-31

    Two dimensional ax symmetric simulations of xenon plasma plume flow fields from a D55 Anode layer Hall thruster is performed. A hybrid particle-fluid...method is used for the Simulations. The magnetic field surrounding the Hall thruster exit is included in the Calculation. The plasma properties

  19. High Life: 17th Annual Residence Hall Construction Report

    ERIC Educational Resources Information Center

    Agron, Joe

    2006-01-01

    Residence hall construction continues to be a priority for colleges and universities. With enrollments on the upswing, higher-education institutions are spending more and building larger facilities to entice students to live on campus. This article presents the findings of "American School & University's" 17th annual Residence Hall Construction…

  20. Hall devices improve electric motor efficiency

    NASA Technical Reports Server (NTRS)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  1. Acoustic Requirements for a Multi-Purpose Hall.

    ERIC Educational Resources Information Center

    Schulte, W. Allen

    2002-01-01

    This case study examines the proposed design of a new lecture/recital hall in Centennial Hall at Lynchburg College that will be used for lectures, public events, a film studies course, and musical recitals. It explores the audio-visual challenges presented by the differing acoustical requirements for the building. (EV)

  2. Coping Behaviors of Residence Hall Directors

    ERIC Educational Resources Information Center

    Wilkes, Ben

    2017-01-01

    This mixed-methods study examined tertiary-level residence-hall directors' reported coping behaviors for three systems of stress: environmental, personal, and work. It surveyed a convenience sample of 128 respondents using the Brief COPE scale (Carver, 1997). Reported length of service, genders, and hall populations were matched with 28 types of…

  3. International Symposium on Gas Kinetics (8th) Held in Nottingham, England on 15-20 July 1984. Abstracts

    DTIC Science & Technology

    1984-07-20

    Hall 16.00 -17.30 Tea, Hugh Stewart Hall 19.00 Buffet/Reception, Hugh Stewart Hall 19.00- 24.00 Cash bar in Hugh Stewart Hall Accesion For STATEMENT ...transfer involving highly vibrationally excited molecules J. R. Barker (SRI), T. C. Brown and K. D. King (Adelaide) 10.45-11.15 Coffee SESSION IV...D. King (Adelaide) and R. G. Gilbert (Sydney) 15.15-15.35 J4 Quantitative intermolecular energy transfer efficiencies from thermal studies C. D. Eley

  4. KSC-2012-2719

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke speaks during the U.S. Astronaut Hall of Fame induction ceremony. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  5. KSC-2012-2726

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Kevin Chilton into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  6. KSC-2012-2731

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Charlie Precourt into the U.S. Astronaut Hall of Fame Class of 2012 during the induction ceremony. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  7. Jefferson Lab Experimental Hall C

    NASA Astrophysics Data System (ADS)

    Carlini, Roger D.

    1996-10-01

    Jefferson Lab's Hall C went into initial operation in November 1995. The hall has a short orbit spectrometer (SOS) for short-lived particles such as pions and kaons and a high-momentum spectrometer (HMS) usually used for electrons. The SOS can also be used for protons. The HMS can range to 7 GeV/c. Both the SOS and HMS have typical resolutions of (10-3). Experiments for this hall range from measuring the neutron electric form factor, to color transparency, to creating strange nuclei. This paper will present the optical capabilities of the spectrometers, the parameters of the detection systems, and the overall beam line characteristics of the hall as determined from the results from the recent physics experiments along with the upcoming experimental schedule. Additional information is available at URL http://www.cebaf.gov/hallc.html.

  8. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less

  9. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  10. Batch-fabricated high-performance graphene Hall elements

    PubMed Central

    Xu, Huilong; Zhang, Zhiyong; Shi, Runbo; Liu, Honggang; Wang, Zhenxing; Wang, Sheng; Peng, Lian-Mao

    2013-01-01

    Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. PMID:23383375

  11. Semiclassical theory of Hall viscosity

    NASA Astrophysics Data System (ADS)

    Biswas, Rudro

    2014-03-01

    Hall viscosity is an intriguing stress response in quantum Hall systems and is predicted to be observable via the conductivity in an inhomogeneous electric field. This has been studied extensively using a range of techniques, such as adiabatic transport, effective field theories, and Kubo formulae. All of these are, however, agnostic as to the distinction between strongly correlated quantum Hall states and non-interacting ones, where the effect arises due to the fundamental non-commuting nature of velocities and orbit positions in a magnetic field. In this talk I shall develop the semiclassical theory of quantized cyclotron orbits drifting in an applied inhomogeneous electric field and use it to provide a clear physical picture of how single particle properties in a magnetic field contribute to the Hall viscosity-dependence of the conductivity.

  12. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    NASA Astrophysics Data System (ADS)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  13. Magnetic Reconnection and Modification of the Hall Physics Due to Cold Ions at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Andre, M.; Li, W.; Toldeo-Redondo, S.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.; Burch, J.; Lindqvist, P.-A.; Marklund, G.; hide

    2016-01-01

    Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohms law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the v x B drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.

  14. The rotation of discs around neutron stars: dependence on the Hall diffusion

    NASA Astrophysics Data System (ADS)

    Faghei, Kazem; Salehi, Fatemeh

    2018-01-01

    In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.

  15. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  16. Proterozoic Diabase Dyke Swarms of Northern Ontario: Paleomagnetic Indicators of Broad-Scale Crustal Deformation of the Archean Superior Province

    NASA Astrophysics Data System (ADS)

    Halls, H. C.

    2004-05-01

    Several Proterozoic dyke swarms, all with precise U-Pb ages, (Matachewan, Senneterre, Biscotasing, Marathon and Fort Frances) occur over an area of the southern Superior Province covering more than 300,000 square kilometres. Cutting across this region is the Kapuskasing Zone, a 500 km-long fault zone along which dextral transpression at about 1.9 to 2.0 Ga has produced crustal uplift locally in excess of 20 km and lateral fault displacements of up to 70 km (Percival and West, 1994). The 2446-2473 Ma Matachewan swarm has been a subject for study throughout the last 40 years of Canadian paleomagnetism. However only in the last 20 years has the true size of the swarm been realised (Ernst and Halls, 1984; Halls et al., 1994), and the discovery made that regional variations in the direction of primary magnetization in the dykes are intimately related to the Kapuskasing Zone (KZ). The swarm is now known to span a single reversal of the Earth's magnetic field. The younger N polarity epoch, although barely recorded in the dying stages of the intrusive episode, is well preserved in dykes within uplifted crust inside the KZ. Here fine-grained magnetite, exsolved from dyke feldspars due to slow cooling of the swarm at depth, acquired a remanence of probable thermo-chemical origin prior to or during crustal uplift (Halls and Palmer, 1990; Halls et al., 1994; Halls and Zhang, 2003). The inference is that dykes intruded during the older R polarity epoch carry a near surface primary R magnetization but have been remagnetized to N at depth. Paleomagnetic data from that part of the swarm outside the KZ are therefore dominated by the older R polarity magnetization. They show that the western half of the shield has rotated counter-clockwise about 10 to 20 degrees relative to the eastern half across the KZ (Bates and Halls, 1991; Halls and Stott, 2003). This rotation is also seen in paleomagnetic data from the 2170 Ma Biscotasing swarm, which is now known to occur on both sides of the KZ (Halls and Davis, 2004). Lateral variations in clouding intensity and hydrous alteration levels in dyke feldspars reveal that the shield has been gently tilted towards the south, and that superimposed on this tilting is a series of fault-bounded, mostly uplifted, crustal blocks that constitute the KZ. In summary, results from more than 400 paleomagnetic sites in Ontario dykes show that the Superior province, despite being generally regarded as the epitome of a stable craton, has been regionally deformed, perhaps in several stages centred around 2.0 ± 0.2 Ga. If rotation across the KZ accompanied rifting beneath Hudson Bay, it may explain the overall butterfly - shaped outline of the Superior Province. References: Bates, M. and Halls, H. 1991, CJES 28: 1780; Ernst, R. and Halls, H. 1984, CJES 21:1499; Halls, H. and Palmer, H. 1990, CJES 27: 87; Halls, H., Palmer, H.,Bates, M. and Phinney, W. 1994, CJES 31:1182; Halls, H. and Zhang, B. 2003, Tectonophysics 362:123; Halls, H. and Stott, G. 2003, OGS Open File Rept. No. 6120, 7p; Halls, H. and Davis, D. CJES 41,(in press); Percival, J. and West, G. 1994, CJES 31:1256.

  17. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  18. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  19. Use of the 'Hall technique' for management of carious primary molars among Scottish general dental practitioners.

    PubMed

    Dean, A A; Bark, J E; Sherriff, A; Macpherson, L M D; Cairns, A

    2011-06-01

    To assess the current awareness, usage and opinion of the Hall technique as a restorative option for primary molars in Scottish general dental practice; and to identify preferences for methods of further training, if desired, for those not currently using the technique. A postal questionnaire was sent to a random sample of Scottish general dental practitioners (GDPs) (n= 1207). Half of all GDPs within each health board were mailed. All analyses have been carried out in Minitab (version 15). The study is primarily descriptive and uses frequency distributions and cross-tabulations. Percentages are reported with p5% confidence intervals. Characteristics of the whole sample were reported. However when reporting the use of the Hall technique, only those GDP's reporting to treat children, at least sometimes are considered. Following two mail-shots, the overall response rate was 59% (715/1207). Eighty-six percent (616/715) of respondents were aware of the Hall technique as a method of restoring primary molars and 48 % (n=318) were currently using the Hall technique. Of those GDPs who never used the Hall technique (51% of total respondents; n=340), 46% (n=157) indicated they were either 'very interested' or 'interested' in adopting the Hall technique into their clinical practice. The preferred source for further training was via a section 63 continuing professional development (CPD) course, incorporating a practical element. Of those GDPs in Scotland who responded to the questionnaire, an unexpectedly high number were already using the Hall technique in their practice, and among those not currently using it, there is a demand for training.

  20. Prentice Hall Literature© (1989-2005). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Prentice Hall Literature©" (1989-2005) is an English language arts curriculum designed for students in grades 6-12 that focuses on building reading, writing, listening, viewing, speaking, and language skills. Multiple editions of this curriculum were released between 1989 and 2005, including "Prentice Hall Literature©" (1989)…

  1. Residence Hall Discipline as a Function of Personality Type.

    ERIC Educational Resources Information Center

    Williams, W. C.; Nelson, Susan Innmon

    1986-01-01

    Administered personality measures to residence hall personnel (N=48) to test assertive, nonassertive, or hostile responses to describe residence hall disciplinary situations. Found that not all personnel were well suited to college student disciplining and that the personality tests could be used to identify individuals who may be best suited for…

  2. 77 FR 24976 - Environmental Impact Statement for the Proposed Wheatgrass Ridge Wind Project, Fort Hall Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Proposed Wheatgrass Ridge Wind Project, Fort Hall Indian Reservation, Idaho AGENCY: Bureau of Indian... proposed Wheatgrass Ridge Wind Project on the Fort Hall Indian Reservation, Idaho. FOR FURTHER INFORMATION... INFORMATION: The BIA is canceling work on this EIS because the proponent of the Wheatgrass Ridge Wind Project...

  3. "Are You as Hard as 50 Cent?" Negotiating Race and Masculinity in the Residence Halls

    ERIC Educational Resources Information Center

    Jaggers, Dametraus; Iverson, Susan V.

    2012-01-01

    In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…

  4. "Are You as Hard as 50 Cent? Negotiating Race and Masculinity in the Residence Halls

    ERIC Educational Resources Information Center

    Jaggers, Dametraus; Iverson, Susan V.

    2012-01-01

    In a qualitative study of Black undergraduate men at a predominantly White university in the Midwest, participants shared their experiences in residence halls, including roommate conflicts, interracial tensions, and disagreements with residence hall staff. This article focuses on Black male undergraduates' negotiation of racialized conceptions of…

  5. Mary E. Hall: Dawn of the Professional School Librarian

    ERIC Educational Resources Information Center

    Alto, Teresa

    2012-01-01

    A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…

  6. An End-to-End Model of a Hall Thruster

    DTIC Science & Technology

    2000-09-01

    and deposition of sputtered material, simulation of the operator of a Hall Thruster in a vacuum tank and the extension to the near-plume of a...sophisticated Hall thruster transient hybrid PlC model which had been previously used only to describe the internal flow. The first two items have been

  7. Making and Moving Publics: Stuart Hall's Projects, Maximal Selves and Education

    ERIC Educational Resources Information Center

    Roman, Leslie G.

    2015-01-01

    An extraordinary educator and public intellectual, Stuart Hall's career as a scholar, activist, teacher and mentor has touched almost every field in the social sciences and humanities. Paradoxically, education rarely claims him as an educator. Stuart Hall's refusal to see publics as given, fixed or settled matters with clear or final demarcations…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, John D.; Anderson, David E.; Bechtol, D.

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  9. G. Stanley Hall, Child Study, and the Teaching of Geography

    ERIC Educational Resources Information Center

    Koelsch, William A.

    2002-01-01

    G. Stanley Hall (1844-1924), founding president of Clark University, was a leader in the child study movement and a significant figure in psychology and education in the late nineteenth and early twentieth centuries. Hall had pronounced opinions on many educational subjects, including the teaching of geography. His criticisms and program for the…

  10. Understanding and Interrupting Hegemonic Projects in Education: Learning from Stuart Hall

    ERIC Educational Resources Information Center

    Apple, Michael W.

    2015-01-01

    Stuart Hall had a significant impact on critical analyses of rightist mobilizations in education. This is very visible in my own work, for example, in such volumes as "Official Knowledge" (2014) and "Educating the 'Right' Way" (2006). After describing an important series of lectures that Stuart Hall gave at the Havens Center…

  11. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  12. G. Stanley Hall, Child Study, and the American Public.

    PubMed

    Young, Jacy L

    2016-01-01

    In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.

  13. Spin-hall-active platinum thin films grown via atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Schlitz, Richard; Amusan, Akinwumi Abimbola; Lammel, Michaela; Schlicht, Stefanie; Tynell, Tommi; Bachmann, Julien; Woltersdorf, Georg; Nielsch, Kornelius; Goennenwein, Sebastian T. B.; Thomas, Andy

    2018-06-01

    We study the magnetoresistance of yttrium iron garnet/Pt heterostructures in which the Pt layer was grown via atomic layer deposition (ALD). Magnetotransport experiments in three orthogonal rotation planes reveal the hallmark features of spin Hall magnetoresistance. To estimate the spin transport parameters, we compare the magnitude of the magnetoresistance in samples with different Pt thicknesses. We check the spin Hall angle and the spin diffusion length of the ALD Pt layers against the values reported for high-quality sputter-deposited Pt films. The spin diffusion length of 1.5 nm agrees well with that of platinum thin films reported in the literature, whereas the spin Hall magnetoresistance Δ ρ / ρ = 2.2 × 10 - 5 is approximately a factor of 20 smaller compared to that of our sputter-deposited films. Our results demonstrate that ALD allows fabricating spin-Hall-active Pt films of suitable quality for use in spin transport structures. This work provides the basis to establish conformal ALD coatings for arbitrary surface geometries with spin-Hall-active metals and could lead to 3D spintronic devices in the future.

  14. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials.

    PubMed

    Sodemann, Inti; Fu, Liang

    2015-11-20

    It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

  15. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  16. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  17. Tunable-φ Josephson junction with a quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro

    2017-12-01

    We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.

  18. Quantum Hall effect in graphene with interface-induced spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.

    2018-02-01

    We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.

  19. Fort Yukon, Alaska DOE Implementation Grant Gwich'in Solar and Energy Efficiency in the Arctic Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadzow, Janet; Messier, Dave

    Gwichyaa Zhee Gwich’in Tribal Government (GZGTG) applied for funding in 2014 under the U.S. Department of Energy Office of Indian Energy Deployment of Clean Energy on Tribal Lands funding opportunity. They were awarded 50% of the project costs for the construction of an 18kW, grid-tied solar PV array on the fort Yukon Tribal Hall, the construction of a 3kW solar PV array on the tribally owned greenhouse, the replacement of inefficient florescent lighting fixtures in the tribal hall to higher efficiency LED lights and the addition of blow in cellulose insulation to the attic of the tribal hall to assistmore » with heat retention. Total DOE Funding for the project was $124,735. Total GZGTG funding for the project was $133,321 for a total project cost of $258,056. The Project was completed with 100% local labor on the tribal hall solar PV installation, the LED lighting retrofit and the insulation on the tribal hall. Based on the results at the tribal hall/office, the tribe also used their own tribal funding to retrofit the lighting in the community hall from florescent to LED lights. The resulting project was completed by the end of Sept 2016 and results have shown a decrease in fuel used at the tribal hall/office of 35% and a decrease in electric costs at the tribal hall of 68%. The total energy costs before the project were approximately $28,000 a year and the energy equivalent of 385 MMBTU/yr. After the project the total energy costs decreased to $11,200/yr. and an energy equivalent of only 242 MMBTU. This represents an overall decrease in energy use of 38%. All in all the tribe and the community regard this project as a huge success!« less

  20. Evidence for phonon skew scattering in the spin Hall effect of platinum

    NASA Astrophysics Data System (ADS)

    Karnad, G. V.; Gorini, C.; Lee, K.; Schulz, T.; Lo Conte, R.; Wells, A. W. J.; Han, D.-S.; Shahbazi, K.; Kim, J.-S.; Moore, T. A.; Swagten, H. J. M.; Eckern, U.; Raimondi, R.; Kläui, M.

    2018-03-01

    We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of Pt |Co | AlOx . An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.

  1. Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral

    NASA Astrophysics Data System (ADS)

    Grave, J.; Krage, L.; Lusis, R.; Vitina, I.

    2011-12-01

    The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.

  2. KSC-2012-2721

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke inducts shuttle astronaut Franklin Chang Diaz into the U.S. Astronaut Hall of Fame Class of 2012. At the podium to the left, is CNN correspondent and Master of Ceremonies John Zarrella. Also inducted into the Hall of Fame were shuttle astronauts Kevin Chilton and Charlie Precourt. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-2720

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke spoke during the U.S. Astronaut Hall of Fame induction ceremony and recognized former shuttle launch director Bob Sieck. Space shuttle astronauts Franklin Chang Diaz, Kevin Chilton and Charlie Precourt were inducted into the Hall of Fame Class of 2012. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-2722

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz at right shares a humorous moment with Astronaut Scholarship Foundation Chairman and Hall of Fame astronaut Charlie Duke during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  5. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2006-01-01

    Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating

  6. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  7. Exploring 4D quantum Hall physics with a 2D topological charge pump

    NASA Astrophysics Data System (ADS)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  8. Exploring 4D quantum Hall physics with a 2D topological charge pump.

    PubMed

    Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel

    2018-01-03

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  9. The spin-Hall effect and spin-orbit torques in epitaxial Co2FeAl/platinum bilayers

    NASA Astrophysics Data System (ADS)

    Peterson, T. A.; Liu, C.; McFadden, T.; Palmstrøm, C. J.; Crowell, P. A.

    We have performed magnetoresistance measurements on epitaxially grown Co2FeAl/platinum (CFA/Pt) ultrathin ferromagnet/heavy metal bilayers to study the spin-Hall effect in Pt and the accompanying spin-orbit torque (SOT) exerted on the magnetic CFA layer. Specifically, we measure the spin-Hall magnetoresistance in the Pt layer by changing the orientation of the CFA magnetization with respect to the spin current orientation created in the Pt, and we determine the SOT efficiency using a second-harmonic detection technique. Because the latter of the two measurements is proportional to the spin-Hall ratio θSHE while the former is proportional to θSHE2, we are able to extract the bare Pt spin-Hall ratio with no assumptions about the CFA/Pt interface spin mixing conductance. Furthermore, by varying the Pt thickness we show that the results are consistent with resistivity-independent spin-Hall conductivity. Finally, the two measurements in combination allow us to infer a spin-mixing conductance at the CFA/Pt interface of 2 +/- 1 ×1015Ω-1m-2 . The combination of spin-Hall magnetoresistance and SOT measurements allows for a determination of the spin-mixing conductance using only low-frequency transport techniques. This work was supported by STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  10. 78 FR 59011 - Information on Surplus Land at a Military Installation Designated for Disposal: Ernest Veuve Hall...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Installation Designated for Disposal: Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana AGENCY... of surplus property at the Ernest Veuve Hall USARC/AMSA 75, T-25, Fort Missoula, Montana. This notice..., T-25, Fort Missoula. Authority: This action is authorized by the Defense Base Closure and...

  11. A Residential Paradox?: Residence Hall Attributes and College Student Outcomes

    ERIC Educational Resources Information Center

    Bronkema, Ryan; Bowman, Nicholas A.

    2017-01-01

    The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…

  12. Jere Brophy: The Texas Years

    ERIC Educational Resources Information Center

    Hall, Gene E.

    2015-01-01

    Based on his career-long experiences with Jere Brophy, Gene Hall uses this article to not only point out Brophy's pioneering contributions to research on teaching and learning, but also offers a few personal reflections about what it was like to work with Jere. In addition, Hall shares a story about how Brophy's works had a direct impact on Hall's…

  13. Improving the Acoustic Environment in Open Hall Schools. Educational Building Digest 1.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    In the countries of the Asian region there is a long tradition of teaching and learning in large undivided halls. Articulation tests were carried out in schools in India, Sri Lanka, Malaysia, and Singapore to explore the acoustic environment of hall-type schools in which teaching groups were separated by storage or chalkboard partitions. This…

  14. A Comparative Study of the Efficacy of Intervention Strategies on Student Electricity Use in Campus Residence Halls

    ERIC Educational Resources Information Center

    Wisecup, Allison K.; Grady, Dennis; Roth, Richard A.; Stephens, Julio

    2017-01-01

    Purpose: The purpose of this study was to determine whether, and how, electricity consumption by students in university residence halls were impacted through three intervention strategies. Design/methodology/approach: The current investigation uses a quasi-experimental design by exposing freshman students in four matched residence halls and the…

  15. 30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF DRILL HALL FROM SECOND FLOOR EAST BALCONY FACING WEST. SHOWS ALTERNATE BAY X BRACING OF ROOF TRUSSES. ALSO SHOWS TRUSSES, WINDOWS IN THE MONITOR, STAIRWAY AT THE SOUTHWEST CORNER OF THE DRILL HALL AND THE THREE LEVELS OF BENCHES ON THE BALCONY. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  16. 75 FR 44142 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing its determination that the Fort Hall PM-10... Standard for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10...

  17. Video-Out Projection and Lecture Hall Set-Up. Microcomputing Working Paper Series.

    ERIC Educational Resources Information Center

    Gibson, Chris

    This paper details the considerations involved in determining suitable video projection systems for displaying the Apple Macintosh's screen to large groups of people, both in classrooms with approximately 25 people, and in lecture halls with approximately 250. To project the Mac screen to groups in lecture halls, the Electrohome EDP-57 video…

  18. Spacecraft Interactions Studies with a 1 Kw Class Closed-Drift Hall Thruster

    DTIC Science & Technology

    1998-01-31

    Closed Drift Hall thruster plume with spacecraft surfaces and systems. Two basic interaction modes were investigated: (1) the influence of the plume...Spectrometer (MBMS) capable of discerning both the mass and energy of Hall thruster plume species, and the ion acoustic wave probe to measure the drift velocity of the plume plasma.

  19. Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber

    DTIC Science & Technology

    2002-10-18

    try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison

  20. Training Top 10 Hall of Fame

    ERIC Educational Resources Information Center

    Training, 2012

    2012-01-01

    Microsoft Corporation and SCC Soft Computer are the newest inductees into the Training Top 10 Hall of Fame, joining the ranks of the 11 companies named to the hall since its inception in 2008 (Wyeth Pharmaceuticals subsequently was acquired by Pfizer Inc. in 2009). These 11 companies held Top 10 spots in the Training Top 50, Top 100, and now Top…

  1. Review Symposium; Dancing on the Ceiling: A Study of Women Managers in Education, by Valerie Hall. London: Paul Chapman, 1996.

    ERIC Educational Resources Information Center

    Hall, Valerie; Gronn, Peter; Jenkin, Mazda; Power, Sally; Reynolds, Cecilia

    1999-01-01

    Hall and four colleagues review "Dancing on the Ceiling: A Study of Women Managers in Education" (Paul Chapman, 1996). Reviewers agree that Hall's profiles of six British elementary and secondary women headteachers should improve readers' understanding of female managers' development and their preference for "soft,"…

  2. The Role of Social Influence on How Residence Hall Inhabitants Respond to Fire Alarms

    ERIC Educational Resources Information Center

    Leytem, Michael; Stark, Emily

    2016-01-01

    College resident halls pose a threat for a catastrophic event in the case of fire, but little research has examined potential influences on students' responses to fire alarms, particularly the role of social influence in affecting their behaviors. In the current study, residence hall inhabitants reported their knowledge about fire safety, their…

  3. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.

    PubMed

    Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C; Watson, John G; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng

    2009-10-01

    Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.

  4. Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe1 -yCoyGe films

    NASA Astrophysics Data System (ADS)

    Spencer, Charles S.; Gayles, Jacob; Porter, Nicholas A.; Sugimoto, Satoshi; Aslam, Zabeada; Kinane, Christian J.; Charlton, Timothy R.; Freimuth, Frank; Chadov, Stanislav; Langridge, Sean; Sinova, Jairo; Felser, Claudia; Blügel, Stefan; Mokrousov, Yuriy; Marrows, Christopher H.

    2018-06-01

    Epitaxial films of the B20-structure compound Fe1 -yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ˜0.45 . This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content y . The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ˜0.5 . Our first-principles calculations show a peak in the topological Hall constant at this value of y , related to the strong spin polarization predicted for intermediate values of y . Our calculations predict half-metallicity for y =0.6 , consistent with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other unusual transport properties for intermediate value of y . While it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y ˜0.5 are much larger than expected when the very small emergent fields associated with the divergence in the DMI are taken into account.

  5. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  6. Direct observation of the skyrmion Hall effect

    DOE PAGES

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; ...

    2016-09-19

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  7. Plasmon Geometric Phase and Plasmon Hall Shift

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  8. Spin-Hall effect in the scattering of structured light from plasmonic nanowire.

    PubMed

    Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

  9. Spin-Hall effect in the scattering of structured light from plasmonic nanowire

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.

  10. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Moritz, Jr., Joel A. (Inventor); Williams, John D. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  11. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Kelvin Manning, associate director of NASA's Kennedy Space Center in Florida, welcomes guests to the 2018 U.S. Astronaut Hall of Fame (AHOF) Induction inside the Space Shuttle Atlantis attraction at the Kennedy Space Center Visitor Complex (KSCVC). Two veteran space explorers were inducted into the Hall of Fame Class of 2018. They are Scott D. Altman and Thomas D. Jones, Ph.D. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  12. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  13. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  14. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    NASA Astrophysics Data System (ADS)

    Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja

    2018-01-01

    The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  15. Measuring the Hall weighting function for square and cloverleaf geometries

    NASA Astrophysics Data System (ADS)

    Scherschligt, Julia K.; Koon, Daniel W.

    2000-02-01

    We have directly measured the Hall weighting function—the sensitivity of a four-wire Hall measurement to the position of macroscopic inhomogeneities in Hall angle—for both a square shaped and a cloverleaf specimen. Comparison with the measured resistivity weighting function for a square geometry [D. W. Koon and W. K. Chan, Rev. Sci. Instrum. 69, 12 (1998)] proves that the two measurements sample the same specimen differently. For Hall measurements on both a square and a cloverleaf, the function is nonnegative with its maximum in the center and its minimum of zero at the edges of the square. Converting a square into a cloverleaf is shown to dramatically focus the measurement process onto a much smaller portion of the specimen. While our results agree qualitatively with theory, details are washed out, owing to the finite size of the magnetic probe used.

  16. Direct observation of the skyrmion Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang

    The well-known Hall effect describes the transverse deflection of charged particles (electrons/holes) as a result of the Lorentz force. Similarly, it is intriguing to examine if quasi-particles without an electric charge, but with a topological charge, show related transverse motion. Magnetic skyrmions with a well-defined spin texture with a unit topological charge serve as good candidates to test this hypothesis. In spite of the recent progress made on investigating magnetic skyrmions, direct observation of the skyrmion Hall effect has remained elusive. Here, by using a current-induced spin Hall spin torque, we experimentally demonstrate the skyrmion Hall effect, and the resultantmore » skyrmion accumulation, by driving skyrmions from the creep-motion regime (where their dynamics are influenced by pinning defects) into the steady-flow-motion regime. Lastly, the experimental observation of transverse transport of skyrmions due to topological charge may potentially create many exciting opportunities, such as topological selection.« less

  17. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    NASA Astrophysics Data System (ADS)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  18. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  19. G. Stanley Hall and an American Social Darwinist Pedagogy: His Progressive Educational Ideas on Gender and Race

    ERIC Educational Resources Information Center

    Goodchild, Lester F.

    2012-01-01

    This article explores the influence of evolutionary ideas, especially Social Darwinism, on G. Stanley Hall's (1844-1924) educational ideas and major writings on gender and race. Hall formed these progressive ideas as he developed an American Social Darwinist pedagogy, embedded in his efforts to create the discipline of psychology, the science of…

  20. A Gathering of Symbols. Texas History in the Hall of State.

    ERIC Educational Resources Information Center

    Younger, Jessamine, Ed.

    Designed for history teachers of students in grades 4-7 and for museum educators, this teacher's manual interprets art and objects in the Hall of State (Dallas) within the context of the Texas history curriculum. Although the guide focuses specifically on Texas history and the Hall of State, it can be used as a model for museum and school…

  1. Attitudes of Residence Hall Students toward Student-Athletes: Implications for Advising, Training and Programming. Research Report #19-89.

    ERIC Educational Resources Information Center

    Engstrom, Cathy McHugh; Sedlacek, William E.

    The study was conducted to assess residence hall student attitudes toward student-athletes at a predominantly white, eastern public institution. A total of 180 students living in traditional residence halls, suites, and apartments were sent the Situational Attitude Scale--Student-Athlete of whom 115 returned usable responses. Results showed that…

  2. Fermilab Tours

    Science.gov Websites

    is limited. Check the calendar for dates and registration. Visitors meet in the Wilson Hall atrium and making your way to the 1st floor of Wilson Hall in time for the tour. Fermilab is a busy lab so Fermilab's exhibit and viewing areas on the 15th floor of Wilson Hall are open Monday-Friday from 8 a.m. to 4

  3. The Development of a Tutor Programme in a University Hall of Residence--A Case Study.

    ERIC Educational Resources Information Center

    Beasley, V. J.

    The tutor system within a university hall of residence at Flinders University of South Australia and a method of inquiry used to study the system are examined. Interviews with residence hall tutors revealed four concerns: the need for guidelines, the nature of academic tutoring, pastoral care and its implications, and communication channels within…

  4. Sharpless Outlines His Plans for NCI During Spring Town Hall | Poster

    Cancer.gov

    At the National Cancer Institute (NCI) Spring Town Hall, new director Norman E. “Ned” Sharpless, M.D., summarized his goals for NCI’s role in cancer research. The event, which was held at NCI Shady Grove and livestreamed to eight other major NCI locations, was Sharpless’ first town hall since his six-month “listening and learning tour” concluded.

  5. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  6. Science 101: How Do Acoustics Dictate the Design of a Concert Hall?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2015-01-01

    This column provides background science information for elementary teachers. When the author was young he used to think that the ideal design for a concert hall would contain walls that were composed of sound-absorbing material, like foam or egg cartons or such. He noticed, though, that this was not the case. Most concert halls contain curtains…

  7. A study of cylindrical Hall thruster for low power space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Raitses; N.J. Fisch; K.M. Ertmer

    2000-07-27

    A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.

  8. Useful Pedagogical Applications of the Classical Hall Effect

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2007-01-01

    One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…

  9. Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows.

    PubMed

    Gómez, Daniel O; Bejarano, Cecilia; Mininni, Pablo D

    2014-05-01

    We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the Hall-magnetohydrodynamic equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magnetoshear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability.

  10. The quantum Hall effects: Philosophical approach

    NASA Astrophysics Data System (ADS)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  11. Optimum Design Rules for CMOS Hall Sensors

    PubMed Central

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-01-01

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes. PMID:28375191

  12. Optimum Design Rules for CMOS Hall Sensors.

    PubMed

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-04-04

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes.

  13. Determination of intrinsic spin Hall angle in Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  14. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  15. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  16. Robust emergence of a topological Hall effect in MnGa/heavy metal bilayers

    NASA Astrophysics Data System (ADS)

    Meng, K. K.; Zhao, X. P.; Liu, P. F.; Liu, Q.; Wu, Y.; Li, Z. P.; Chen, J. K.; Miao, J.; Xu, X. G.; Zhao, J. H.; Jiang, Y.

    2018-02-01

    We have investigated the topological Hall effect (THE) in MnGa/Pt and MnGa/Ta bilayers induced by the inter- facial Dzyaloshinskii-Moriya interaction (DMI). By varying the growth parameters, we can modulate the domain wall energy, and the largest THE signals are found when the domain wall energy is the smallest. The large topological portion of the Hall signal from the total Hall signal has been extracted in the whole temperature range from 5 to 300 K. These results open up the exploration of the DMI induced magnetic behavior based on the bulk perpendicular magnetic anisotropy materials for fundamental physics and magnetic storage technologies.

  17. Between Peirce (1878) and James (1898): G. Stanley Hall, the origins of pragmatism, and the history of psychology.

    PubMed

    Leary, David E

    2009-01-01

    This article focuses on the 20-year gap between Charles S. Peirce's classic proposal of pragmatism in 1877-1878 and William James's equally classic call for pragmatism in 1898. It fills the gap by reviewing relevant developments in the work of Peirce and James and by introducing G. Stanley Hall, for the first time, as a figure in the history of pragmatism. In treating Hall and pragmatism, the article reveals a previously unnoted relation between the early history of pragmatism and the early history of the "new psychology" that Hall helped to pioneer. (c) 2009 Wiley Periodicals, Inc.

  18. Performance of a Low-Power Cylindrical Hall Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Raitses, Yevgeny; Smirnov, Artem; Fisch, Nathaniel J.

    2007-01-01

    Recent mission studies have shown that a Hall thruster which operates at relatively constant thrust efficiency (45-55%) over a broad power range (300W - 3kW) is enabling for deep space science missions when compared with slate-of-the-art ion thrusters. While conventional (annular) Hall thrusters can operate at high thrust efficiency at kW power levels, it is difficult to construct one that operates over a broad power envelope down to 0 (100 W) while maintaining relatively high efficiency. In this note we report the measured performance (I(sub sp), thrust and efficiency) of a cylindrical Hall thruster operating at 0 (100 W) input power.

  19. Revealing topological Dirac fermions at the surface of strained HgTe thin films via quantum Hall transport spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Crauste, O.; Haas, B.; Jouneau, P.-H.; Bäuerle, C.; Lévy, L. P.; Orignac, E.; Carpentier, D.; Ballet, P.; Meunier, T.

    2017-12-01

    We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.

  20. Suitable reverberation times for halls for rock and pop music.

    PubMed

    Adelman-Larsen, Niels Werner; Thompson, Eric R; Gade, Anders C

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall. The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m(3). The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands.

  1. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  2. Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect

    NASA Astrophysics Data System (ADS)

    Wang, Te-Chun; Gou, Yih-Shun

    1997-08-01

    A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.

  3. Electron Transport and Ion Acceleration in a Low-power Cylindrical Hall Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explainmore » the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The plasma density peak observed at the axis of the 2.6 cm cylindrical Hall thruster is likely to be due to the convergent flux of ions, which are born in the annular part of the channel and accelerated towards the thruster axis.« less

  4. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  5. Coupling intensity between discharge and magnetic circuit in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai

    2017-03-01

    Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  6. Dr. Hall and the work cure.

    PubMed

    Reed, Kathlyn L

    2005-01-01

    Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.

  7. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  8. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  9. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  10. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi 2Te 3 topological insulator thin films

    DOE PAGES

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi 2Te 3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi 2Te 3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor.more » The AHE of 65 nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi 2Te 3 with the previously studied Mn-doped Bi 2Te 3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  11. Perception of music dynamics in concert hall acoustics.

    PubMed

    Pätynen, Jukka; Lokki, Tapio

    2016-11-01

    Dynamics is one of the principal means of expressivity in Western classical music. Still, preceding research on room acoustics has mostly neglected the contribution of music dynamics to the acoustic perception. This study investigates how the different concert hall acoustics influence the perception of varying music dynamics. An anechoic orchestra signal, containing a step in music dynamics, was rendered in the measured acoustics of six concert halls at three seats in each. Spatial sound was reproduced through a loudspeaker array. By paired comparison, naive subjects selected the stimuli that they considered to change more during the music. Furthermore, the subjects described their foremost perceptual criteria for each selection. The most distinct perceptual factors differentiating the rendering of music dynamics between halls include the dynamic range, and varying width of sound and reverberance. The results confirm the hypothesis that the concert halls render the performed music dynamics differently, and with various perceptual aspects. The analysis against objective room acoustic parameters suggests that the perceived dynamic contrasts are pronounced by acoustics that provide stronger sound and more binaural incoherence by a lateral sound field. Concert halls that enhance the dynamics have been found earlier to elicit high subjective preference.

  12. A fully implicit Hall MHD algorithm based on the ion Ohm's law

    NASA Astrophysics Data System (ADS)

    Chacón, Luis

    2010-11-01

    Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.

  13. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  14. Positive changes in perceptions and selections of healthful foods by college students after a short-term point-of-selection intervention at a dining hall.

    PubMed

    Peterson, Sharon; Duncan, Diana Poovey; Null, Dawn Bloyd; Roth, Sara Long; Gill, Lynn

    2010-01-01

    Determine the effects of a short-term, multi-faceted, point-of-selection intervention on college students' perceptions and selection of 10 targeted healthful foods in a university dining hall and changes in their self-reported overall eating behaviors. 104 college students, (age 18-23) completed pre-I and post-I surveys. Pre-survey collected at dining hall in April 2007, followed by 3-week intervention then post-survey collected via email. Healthy choice indicators, large signs, table tents, flyers and colorful photographs with "benefit-based messages" promoted targeted foods. Response rate to both surveys was 38%. Significantly more participants reported that healthful choices were clearly identified in the dining hall after the intervention. Over 20% of participants reported becoming more aware of healthful food choices in the dining hall after the intervention. Significant increases in self-reported intake were reported for cottage cheese and low-fat salad dressing, with a trend toward increased consumption of fresh fruit. Seven of the 14 assessed eating behaviors had significant changes in the desired direction. Increased awareness of healthful foods was the top reason for self-reported changes in overall eating behaviors. Short-term, multi-faceted, point-of-selection marketing of healthful foods in university dining halls may be beneficial for improving college students' perceptions and selections of targeted healthful foods in the dining hall and may improve overall eating behaviors of college students.

  15. Hall-effect Thruster Channel Surface Properties Investigation (PREPRINT)

    DTIC Science & Technology

    2011-03-03

    Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hall-effect Thruster Channel Surface Properties Investigation 5b...13. SUPPLEMENTARY NOTES For publication in the AIAA Journal of Propulsion and Power. 14. ABSTRACT Surface properties of Hall-effect thruster...incorporated into thruster simulations, and these models must account for evolution of channel surface properties due to thruster operation. Results from

  16. The Baseball Hall of Fame Is Not the Kiss of Death

    ERIC Educational Resources Information Center

    Smith, Gary

    2011-01-01

    E. Abel and M. Kruger (2005) reported that the median life expectancy of Major League Baseball players after election to the Baseball Hall of Fame is 5 years shorter than that of players of the same age who are not elected to the Hall of Fame. This conclusion is surprising because there is no compelling explanation for such a dramatic reduction in…

  17. Establishment of a Hall Thruster Cluster

    DTIC Science & Technology

    2004-02-01

    DURIP funds were used to develop a Hall thruster cluster test facility centered around the University of Michigan Large Vacuum Test Facility and a 2x2 cluster of BUSEK 600 W BHT-600 Hall thrusters. This capability will facilitate our three-year program to address the issue of high-power CDT operation and to provide insight on how chamber effects influence CDT engine/cluster characteristics.

  18. The Effects of Insulator Wall Material on Hall Thruster Discharges: A Numerical Study

    DTIC Science & Technology

    2001-01-03

    An investigation was undertaken to determine how the choice of insulator wall material inside a Hall thruster discharge channel might affect thruster operation. In order to study this, an evolved hybrid particle-in-cell (PIC) numerical Hall thruster model, HPHall, was used. HPHall solves a set of quasi-one-dimensional fluid equations for electrons and tracks heavy particles using a PIC method.

  19. A Comprehensive Investigation of Facility Effects on the Testing of High-Power Monolithic and Clustered Hall Thruster Systems

    DTIC Science & Technology

    2004-09-02

    path for developing high-power EP systems is somewhat certain given NASA’s recent success with its 70+ kW NASA-457M Hall thruster , it is clear that...current density distribution, and summarize findings from cold- and hot-flow pressure map data of our vacuum chamber for a number of Hall thruster mass flow rates.

  20. Just a Book in a Library? The Sybil Campbell Library Collection Fostering International Friendship amongst Graduate Women

    ERIC Educational Resources Information Center

    Spencer, Stephanie

    2013-01-01

    In 1927 the British Federation of University Women (BFUW) established Crosby Hall in London as a hall of residence for women graduates from overseas. The Federation aimed to foster international understanding and peace at a time of social and political turmoil. Accessions to the library at the Hall were on a somewhat ad hoc basis and provide an…

  1. The Hall Effect in Hydrided Rare Earth Films

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Azofeifa, D. E.; Clark, N.

    We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.

  2. Stuart Hall on Racism and the Importance of Diasporic Thinking

    ERIC Educational Resources Information Center

    Rizvi, Fazal

    2015-01-01

    In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…

  3. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE PAGES

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; ...

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  4. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  5. Production of Charmonium at Threshold in Hall A and C at Jefferson Lab

    DOE PAGES

    Hafidi, K.; Joosten, S.; Meziani, Z. -E.; ...

    2017-05-27

    Here, we describe in this paper two approved experiments in Hall A and Hall C at Jefferson Lab that will investigate the pure gluonic component of the strong interaction of Quantum ChromoDynamics by measuring the elastic J/ψ electro and photo-production cross section in the threshold region as well as explore the nature of the recently discovered LHCb charmed pentaquarks.

  6. Mixed-state Hall effect of high-T(c) superconductors

    NASA Astrophysics Data System (ADS)

    Kang, Byeongwon

    In this dissertation, we presented the study on the mixed-state Hall effect of high-Tc superconductors (HTSs). In order to understand the mechanisms of the puzzling phenomena in the mixed-state Hall effect of HTSs, the Hall sign anomaly and scaling behavior, Hall measurements are conducted in several HTS thin films. We investigate the mechanism of the sign reversal of the Hall resistivity in Tl-2201 films when the electronic band structure is varied through the underdoped, optimally doped, and overdoped regions. It is found that the Hall sign reversals are an intrinsic property of HTSs and determined by electronic band structure. Although pinning is not found to be the mechanism behind sign reversals, pinning can suppress the appearance of the Hall sign reversal. Therefore, it is concluded that two (or more) sign reversals are a generic behavior of HTSs. From a systematic study of the vortex phase diagram, we discover several new features of the vortex liquid. In the presence of pinning, the vortex-liquid phase can be divided into two regions, a glassy liquid (GL) where vortices remain correlated as manifested in non-Ohmic resistivity, and a regular liquid (RL) where resistivity becomes Ohmic as vortices become uncorrelated. The field dependence of the Hall angle is found to be linear in the RL and nonlinear in the GL. Generally the decoupling line (Hk- T), which is defined as a boundary between the GL and the RL, is lower than the depinning line (Hd-T). As pinning increases the Hk-T may approach the Hd-T, thus vortices are decoupled and depinned nearly simultaneously. For a weak pinning system, on the other hand, the Hk-T and the Hd-T are well separated so that single vortices remain pinned in the region Hk ≤ H ≥ Hd. The behavior of s xy is also investigated in the GL and the RL. In the GL s xy is observed to strongly depend on pinning due to the inter-vortex correlation whereas in the RL s xy is independent of pinning since the pinning effect is scaled out.

  7. Fractional quantum Hall effect at Landau level filling ν = 4/11

    DOE PAGES

    Pan, W.; Baldwin, K. W.; West, K. W.; ...

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance R xx and a quantized Hall resistance R xy, within 1% of the expected value of h/(4/11)e 2, were observed. The temperature dependence of the R xx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν =more » 3/8 and 5/13.« less

  8. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    PubMed

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  9. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    NASA Astrophysics Data System (ADS)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  10. Localization in a quantum spin Hall system.

    PubMed

    Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto

    2007-02-16

    The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.

  11. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  12. Hall viscosity of a chiral two-orbital superconductor at finite temperatures

    NASA Astrophysics Data System (ADS)

    Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali

    2018-06-01

    The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.

  13. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  14. Hall effect on a Merging Formation Process of a Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku

    2015-11-01

    Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.

  15. Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.

    PubMed

    Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian

    2017-02-08

    Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.

  16. Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2017-01-01

    Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .

  17. Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.

    2006-01-01

    The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.

  18. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  19. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  20. Astronaut Hall of Fame

    NASA Image and Video Library

    2018-04-21

    Former astronauts and space explorers Scott D. Altman, at left, and Thomas D. Jones, Ph.D., are inducted into the U.S. Astronaut Hall of Fame Class of 2018 during a ceremony inside the Space Shuttle Atlantis attraction at NASA’s Kennedy Space Center Visitor Complex in Florida. They unveiled their plaques, which will be placed in the Hall of Fame at the visitor complex. At far right is Master of Ceremonies, John Zarella, former CNN space correspondent. Inductees into the Hall of Fame are selected by a committee of Hall of Fame astronauts, former NASA officials, flight directors, historians and journalists. The process is administered by the Astronaut Scholarship Foundation. To be eligible, an astronaut must have made his or her first flight at least 17 years before the induction. Candidates must be a U.S. citizen and a NASA-trained commander, pilot or mission specialist who has orbited the earth at least once. Including Altman and Jones, 97 astronauts have been inducted into the AHOF.

  1. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  2. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  3. The necessity of HVAC system for the registered architectural cultural heritage building

    NASA Astrophysics Data System (ADS)

    Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian

    2018-02-01

    This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.

  4. Energy-related environmental and economic performance analysis of two different types of electrically heated student residence halls

    NASA Astrophysics Data System (ADS)

    Amber, Khuram Pervez; Aslam, Muhammad Waqar

    2018-03-01

    Student residence halls occupy 26% of the total area of a typical university campus in the UK and are directly responsible for 24% of university's annual CO2 emissions. Based on five years measured data, this paper aims to investigate the energy-related environmental and economic performance of electrically heated residence halls in which space heating is provided by two different types of electric heaters, that is, panel heater (PHT) and storage heater (SHT). Secondly, using statistical and machine learning methods, the paper attempts to investigate the relationship between daily electricity consumption and five factors (ambient temperature, solar radiation, relative humidity, wind speed and type of day). Data analysis revealed that electricity consumption of both halls is mainly driven by ambient temperature only, whereas SHT residence has 39% higher annual electricity bill and emits 70% higher CO2 emissions on a per square metre basis compared to the PHT residence hall.

  5. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices.

    PubMed

    Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin

    2017-04-13

    Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.

  6. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  7. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  8. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  9. Numerical investigation of gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Repellin, Cécile; Cook, Ashley M.; Neupert, Titus; Regnault, Nicolas

    2018-03-01

    Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal symmetric) bilayer fractional quantum Hall system of Laughlin ν = 1/3 states. We show that the edge ground states are permuted by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle wider questions of edge phases and phase transitions in fractional quantum Hall systems.

  10. Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing

    Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.

  11. Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model

    NASA Astrophysics Data System (ADS)

    Kozarski, Filip; Hügel, Dario; Pollet, Lode

    2018-04-01

    We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.

  12. The Actively Caring for People Movement at Virginia Tech and Beyond: Cultivating Compassion and Relationships in Residence Halls

    ERIC Educational Resources Information Center

    McCarty, Shane M.; Mullins, Taris G.; Geller, E. Scott; Shushok, Frank, Jr.

    2013-01-01

    A professor and a group of student leaders initiated the Actively Caring for People (AC4P) Movement to establish a more civil, compassionate, and inclusive culture by inspiring intentional acts of kindness. This article explores the AC4P Movement in a first-year residence hall at Virginia Tech and a second-year residence hall at University of…

  13. Magnon Spin Nernst Effect in Antiferromagnets.

    PubMed

    Zyuzin, Vladimir A; Kovalev, Alexey A

    2016-11-18

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  14. Low-Cost, High-Performance Hall Thruster Support System

    NASA Technical Reports Server (NTRS)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  15. AGU Position Statements Addressed at Fall Meeting Town Hall

    NASA Astrophysics Data System (ADS)

    Hankin, Erik

    2013-01-01

    The AGU Outreach Committee and Public Affairs staff held a town hall at the 2012 Fall Meeting to discuss AGU position statements. The town hall, "AGU Position Statements: Announcing New Submission and Review Methods," held on Monday, 3 December, provided background on AGU position statements, recent changes to the review and writing processes, updates on statements under revision, and ways for members to utilize and impact position statements.

  16. Confronting Campus Bullies: How Bullying Shows up in the Halls of Academe, and What We Can Do about It

    ERIC Educational Resources Information Center

    Myers, Virginia

    2012-01-01

    Everyone knows the playground bully: that big, cartoonish oaf towering over a scrawny school mate before he delivers a gut punch and knocks the lunch money from his victim's pockets. What ever happened to this menace? According to some, he's moved down the hall--the hall of academe. Once thought to be bastions of collegiality and high-mindedness,…

  17. Nulling Hall-Effect Current-Measuring Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  18. A Policy Analysis of Missouri Community College Residence Hall Discipline Policies with an Analysis of Changes in the State Fair Community College Residence Hall Policy

    ERIC Educational Resources Information Center

    Gilgour, Joseph G.

    2012-01-01

    Community colleges in the United States have long been known as institutions of equal opportunity and affordable education. One facet of student life appearing at more and more community colleges is the addition of residence halls. Still, the number of community colleges with on-campus living is relatively small, and for the campuses with…

  19. Magnon Spin Nernst Effect in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zyuzin, Vladimir A.; Kovalev, Alexey A.

    2016-11-01

    We predict that a temperature gradient can induce a magnon-mediated spin Hall response in an antiferromagnet with nontrivial magnon Berry curvature. We develop a linear response theory which gives a general condition for a Hall current to be well defined, even when the thermal Hall response is forbidden by symmetry. We apply our theory to a honeycomb lattice antiferromagnet and discuss a role of magnon edge states in a finite geometry.

  20. 2. EXTERIOR OF RUSIN HALL, THE ONLY STRUCTURE TO PREDATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR OF RUSIN HALL, THE ONLY STRUCTURE TO PRE-DATED THE WORLD WAR II EXPANSION THAT LED TO THE DEMOLITION OF THE FIRST WARD OF HOMESTEAD, AN AREA KNOWN AS BELOW THE TRACKS. THE BUILDING WAS ORIGINALLY BUILT AS A FRATERNAL HALL FOR RUTHENIAN IMMIGRANTS BY THE RUSSKY-NARODNY-DOM, INC. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA

  1. Hall effect sensors embedded within two-pole toothless stator assembly

    NASA Technical Reports Server (NTRS)

    Denk, Joseph (Inventor); Grant, Richard J. (Inventor)

    1994-01-01

    A two-pole toothless PM machine employs Hall effect sensors to indicate the position of the machine's rotor relative to power windings in the machine's stator. The Hall effect sensors are located in the main magnetic air gap underneath the power windings. The main magnetic air gap is defined by an outer magnetic surface of the rotor and an inner surface of the stator's flux collector ring.

  2. View looking southeast to causeway running from the Senior House ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking southeast to causeway running from the Senior House Annex to Ament Hall (ballroom) including two octagon-shaped pavilions located between Ament Hall and the Music Hall and including the causeway extension leading to the Swiss Chalet; note Japanese Pagoda in the background. View likely taken from the Dog Bridge. - National Park Seminary, Chateau Causeways, Between Linden Lane & Beach Drive, Silver Spring, Montgomery County, MD

  3. Pilot study: Exposure and materiality of the secondary room and its impact in the impulse response of coupled-volume concert halls

    NASA Astrophysics Data System (ADS)

    Ermann, Michael; Johnson, Marty E.

    2002-05-01

    What does one room sound like when it is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact aural impressions in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study, a coupled-volume shoebox concert hall was conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound-absorption levels were established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) Architectural composition, as defined by the aperture size exposing the chamber and (2) Materiality, as defined by the sound absorbance in the coupled volume. Preliminary calculations indicate that the double-sloped sound decay condition only appears when the total aperture area is less than 1.5% of the total shoebox surface area and the average absorption coefficient of the coupled volume is less than 0.07.

  4. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  5. Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yuanjun; Yao, Yingxue; Chen, Lei; Huang, Haoliang; Zhang, Benjian; Lin, Hui; Luo, Zhenlin; Gao, Chen; Lu, Y. L.; Li, Xiaoguang; Xiao, Gang; Feng, Ce; Zhao, Y. G.

    2018-01-01

    Electric-field control of the anomalous Hall effect (AHE) was investigated in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 (FePt/PMN-PT) multiferroic heterostructures at room temperature. It was observed that a very large Hall resistivity change of up to 23.9% was produced using electric fields under a magnetic field bias of 100 Oe. A pulsed electric field sequence was used to generate nonvolatile strain to manipulate the Hall resistivity. Two corresponding nonvolatile states with distinct Hall resistivities were achieved after the electric fields were removed, thus enabling the encoding of binary information for memory applications. These results demonstrate that the Hall resistivity can be reversibly switched in a nonvolatile manner using programmable electric fields. Two remanent magnetic states that were created by electric-field-induced piezo-strain from the PMN-PT were attributed to the nonvolatile and reversible properties of the AHE. This work suggests that a low-energy-consumption-based approach can be used to create nonvolatile resistance states for spintronic devices based on electric-field control of the AHE.

  6. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  7. Tutorial: Physics and modeling of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Boeuf, Jean-Pierre

    2017-01-01

    Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.

  8. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  9. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-06-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  10. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  11. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    NASA Astrophysics Data System (ADS)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  12. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  13. Hall coefficient measurement for residual stress assessment in precipitation hardened IN718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2017-02-01

    We investigated the feasibility of residual stress assessment based on Hall coefficient measurements in precipitation hardened IN718 nickel-base superalloy. As a first step, we studied the influence of microstructural variations on the galvanomagnetic properties of IN718 nickel-base superalloy. We found that the Hall coefficient of IN718 increases from ≈ 8.0×10-11 m3/C in its fully annealed state of 15 HRC Rockwell hardness to ≈ 9.4×10-11 m3/C in its fully hardened state of 45 HRC. We also studied the influence of cold work, i.e., plastic deformation, at room temperature and found that cold work had negligible effect on the Hall coefficient of fully annealed IN718, but significantly reduced it in hardened states of the material. For example, measurements conducted on fully hardened IN718 specimens showed that the Hall coefficient decreased more or less linearly with cold work from its peak value of ≈ 9.4×10-11 m3/C in its intact state to ≈ 9.0×10-11 m3/C in its most deformed state of 22% plastic strain. We also studied the influence of applied stress and found that elastic strain significantly increases the Hall coefficient of IN718 regardless of the state of hardening. The relative sensitivity of the Hall coefficient to elastic strain was measured as a unitless gauge factor K that is defined as the ratio of the relative change of the Hall coefficient ΔRH/RH divided by the axial strain ɛ = σ/E, where σ is the applied uniaxial stress and E is the Young's modulus of the material. We determined that the galvanomagnetic gauge factor of IN718 is κ ≈ 2.6 - 2.9 depending on the hardness level. Besides the fairly high value of the gauge factor, it is important that it is positive, which means that compressive stress in surface-treated components decreases the Hall coefficient in a similar way as plastic deformation does, therefore the unfortunate cancellation that occurs in fully hardened IN718 in the case of electric conductivity measurements will not happen in this case. Additionally, the temperature dependence of the Hall coefficient was measured at three different hardness levels and the influence of thermal exposure was studied in fully hardened IN718 up to 700 °C.

  14. Topological states of matter in two-dimensional fermionic systems

    NASA Astrophysics Data System (ADS)

    Beugeling, W.

    2012-09-01

    Topological states of matter in two-dimensional systems are characterised by the different properties of the edges and the bulk of the system: The edges conduct electrical current while the bulk is insulating. The first well-known example is the quantum Hall effect, which is induced by a perpendicular magnetic field that generates chiral edge channels along which the current propagates. Each channel contributes one quantum to the Hall conductivity. Due to the chirality, i.e., all currents propagate in the same direction, backscattering due to impurities is absent, and the Hall conductivity carried by the edge states is therefore protected from perturbations. Another example is the quantum spin Hall effect, induced by intrinsic spin-orbit coupling in absence of a magnetic field. There the edge states are helical, i.e., spin up and down currents propagate oppositely. In this case, the spin Hall conductivity is quantized, and it is protected by time-reversal symmetry from backscattering due to impurities. In Chapter 2 of the thesis, I discuss the combined effect of the magnetic field and intrinsic spin-orbit coupling. In addition, I discuss the influence of the Rashba spin-orbit coupling and of the Zeeman effect. In particular, I show that in absence of magnetic impurities, a weaker form of the quantum spin Hall state persists in the presence of a magnetic field. In addition, I show that the intrinsic spin-orbit coupling and the Zeeman effect act similarly in the low-flux limit. I furthermore analyse the phase transitions induced by intrinsic spin-orbit coupling at a fixed magnetic field, thereby explaining the change of the Hall and spin Hall conductivities at the transition. I also study the subtle interplay between the effects of the different terms in the Hamiltonian. In Chapter 3, I investigate an effective model for HgTe quantum wells doped with Mn ions. Without doping, HgTe quantum wells may exhibit the quantum spin Hall effect, depending on the thickness of the well. The doping with Mn ions modifies the behaviour of the system in two ways: First, the quantum spin Hall gap is reduced in size, and secondly, the system becomes paramagnetic. The latter effect causes a bending of the Landau levels, which is responsible for reentrant behaviour of the (spin) Hall conductivity. I investigate the different types of reentrant behaviour, and I estimate the experimental resolvability of this effect. In Chapter 4, I present a framework to describe the fractional quantum Hall effect in systems with multiple internal degrees of freedom, e.g., spin or pseudospin. This framework describes the so-called flux attachment in terms of a Chern-Simons theory in Hamiltonian form, proposed earlier for systems without internal degrees of freedom. Here, I show a generalization of these results, by replacing the number of attached flux quanta by a matrix. In particular, the plasma analogy proposed by Laughlin still applies, and Kohn’s theorem remains valid. I also show that the results remain valid when the flux-attachment matrix is singular.

  15. Anomalous Hall Resistance in Bilayer Electron Systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-04-01

    Interlayer phase coherence has revealed various novel features in bilayer quantum Hall (QH) systems. It is shown to make the QH resistance vanish instead of developing a Hall plateau in a bilayer counterflow geometry. It also induces another anomalous QH resistance discovered in a drag experiment. These theoretical results explain recent experimental data due to Kellogg et al. [PRL 93 (2004) 036801;PRL 88 (2002) 126804] and Tutuc et al.[PRL 93 (2004) 036802].

  16. A Study of Seton Hall University and the Attributes of Organizational Adaptation Employed in Fashioning Its Catholic Identity and Mission in the Post-Vatican II Era (1966-2006)

    ERIC Educational Resources Information Center

    Mazza, Nicholas F.

    2009-01-01

    This thesis is the first fully developed and published study of Seton Hall University. It specifically examines the organizational structures of Seton Hall University over a forty year period in light of the tumultuous changes in the Catholic Church and Catholic academia post-Vatican II. Of particular importance is change that influenced the…

  17. Residence Halls Perceptions Study: A Report of the Perceptions of Students Regarding the Residence Halls at the University of South Carolina. Research Notes No. 33-76.

    ERIC Educational Resources Information Center

    Wertz, Richard D.; And Others

    In an effort to elicit student attitudes concerning residence hall living on campus a questionnaire was designed and administered to a random sample of 1,100 resident students at the University of South Carolina. The survey instrument consisted of a set of sixteen statements that required an "is" and a "should be" response. The…

  18. Hall Propulsion Technology Development, NASA Glenn Research Center: 50 kW Thruster Technology EXPRESS Ground/Space Correlation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Elliott, Fred

    2000-01-01

    It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.

  19. Chiral pair of Fermi arcs, anomaly cancellation, and spin or valley Hall effects in Weyl metals with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Jang, Iksu; Kim, Ki-Seok

    2018-04-01

    Anomaly cancellation has been shown to occur in broken time-reversal symmetry Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of broken inversion symmetry Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancellation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in broken inversion symmetry Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either "quantized" spin Hall or valley Hall effects, which corresponds to the "quantized" version of the charge Hall effect in broken time-reversal symmetry Weyl metals.

  20. Spin Hall magnetoresistance in CoFe 2O 4/Pt films

    DOE PAGES

    Wu, Hao; Qintong, Zhang; Caihua, Wan; ...

    2015-05-13

    Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe 2O 4/Pt samples. Cross section transmission electron microscope results prove that the CoFe 2O 4 film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect-induced anomalous Hall voltage was also observed in this sample. Lastly, these results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe 2O 4 as a new typemore » of magnetic insulator.« less

  1. Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Sarwar, Tuba; Dinh, Toan; Foisal, A. R. M.; Phan, Hoang-Phuong; Viet Dao, Dzung

    2017-04-01

    A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors.

  2. Tool for Movable Ceiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Bendix Corp., with the help of NASA's Kennedy Space Center, developed a tool to equalize tensions in the 150 cables of the ceiling. This inexpensive tool used in concert halls was developed first for elevator and crane cables used to lift heavy space vehicles. University of Akron's performing arts hall has been developed to shrink and expand to accommodate audiences as large as 3,000 and as small as 900. Once the hall has been sound tuned, various positions of this ingenious ceiling and related acoustic curtains may be called into play immediately by pushing buttons on a control console programmed previously. With the touch of a finger before an event, a technician may condition the hall for chamber music, symphony, or theater.

  3. Y{sub 3}Fe{sub 5}O{sub 12} spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhui; Wang, Hailong; Hammel, P. Chris

    2015-05-07

    Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.

  4. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladii, O.; Henry, Y.; Bailleul, M.

    2016-05-16

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  5. Chronological analysis of architectural and acoustical indices in music performance halls.

    PubMed

    Kwon, Youngmin; Siebein, Gary W

    2007-05-01

    This study aims to identify the changes in architectural and acoustical indices in halls for music performance built in the 18th through the 20th Centuries. Seventy-one halls are classified in five specific periods from the Classical Period (1751-1820) to the Contemporary Period (1981-2000) based on chronology in music and architectural acoustics. Architectural indices such as room shape, seating capacity, room volume, balcony configuration, and the like as well as acoustical indices such as RT, EDT, G, C80, IACC, and the like for the halls found in the literature are chronologically tabulated and statistically analyzed to identify trends and relationships in architectural and acoustical design for each of the historical periods identified. Some indices appear correlated with each other.

  6. Nonequilibrium Fractional Hall Response After a Topological Quench

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Mueller, Erich; Oktel, M. O.

    When a system is suddenly driven between two topologically different phases, aspects of the original topology survive the quench, but most physical observables (edge currents, Hall conductivity) appear to be non-universal. I will present the non-equilibrium Hall response of a Chern insulator following a quench where the mass term of a single Dirac cone changes sign. In the limit where the physics is dominated by a single Dirac cone, we theoretically find that the Hall conductivity universally changes by two-thirds of the quantum of conductivity. I will analyze this universal behavior by considering the Haldane model, and discuss experimental aspects for its observation in cold atoms. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.

  7. Nonequilibrium Hall Response After a Topological Quench

    NASA Astrophysics Data System (ADS)

    Unal, F. Nur; Mueller, Erich; Oktel, M. O.

    2017-04-01

    We theoretically study the Hall response of a lattice system following a quench where the topology of a filled band is suddenly changed. In the limit where the physics is dominated by a single Dirac cone, we find that the change in the Hall conductivity is two-thirds of the quantum of conductivity. We explore this universal behavior in the Haldane model, and discuss cold-atom experiments for its observation. Beyond linear response, the Hall effect crosses over from fractional to integer values. We investigate finite-size effects, and the role of the harmonic confinement. Furthermore, we explore the magnetic field quenches in ladders formed in synthetic dimensions. This work is supported by TUBITAK, NSFPHY-1508300, ARO-MURI W9111NF-14-1-0003.

  8. Electronic Phenomena in Two-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Hart, Sean

    In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the nu = 2/3 fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the nu = 1integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.

  9. Occupational hygiene in a Finnish drum composting plant.

    PubMed

    Tolvanen, Outi; Nykänen, Jenni; Nivukoski, Ulla; Himanen, Marina; Veijanen, Anja; Hänninen, Kari

    2005-01-01

    Bioaerosols (microbes, dust and endotoxins) and volatile organic compounds (VOCs) were determined in the working air of a drum composting plant treating source-separated catering waste. Different composting activities at the Oulu drum composting plant take place in their own units separated by modular design and constructions. Important implication of this is that the control room is a relatively clean working environment and the risk of exposure to harmful factors is low. However, the number of viable airborne microbes was high both in the biowaste receiving hall and in the drum composting hall. The concentration (geometric average) of total microbes was 21.8 million pcs/m3 in the biowaste receiving hall, 13.9 million pcs/m3 in the drum composting hall, and just 1.4 million pcs/m3 in the control room. Endotoxin concentrations were high in the biowaste receiving hall and in the drum composting hall. The average (arithmetic) endotoxin concentration was over the threshold value of 200 EU/m3 in both measurement locations. In all working areas, the average (arithmetic) dust concentrations were in a low range of 0.6-0.7 mg/m3, being below the Finnish threshold value of 5 mg/m3. In the receiving hall and drum composting hall, the concentrations of airborne microbes and endotoxins may rise to levels hazardous to health during prolonged exposure. It is advisable to use a respirator mask (class P3) in these areas. Detected volatile organic compounds were typical compounds of composting plants: carboxylic acids and their esters, alcohols, ketones, aldehydes, and terpenes. Concentrations of VOCs were much lower than the Finnish threshold limit values (Finnish TLVs), many of the quantified compounds exceeded their threshold odour concentrations (TOCs). Primary health effects due VOCs were not presumable at these concentrations but unpleasant odours may cause secondary symptoms such as nausea and hypersensitivity reactions. This situation is typical of composting plants where the workers are exposed to dozens of VOCs simultaneously. The odour units (OU/m3) were measured using olfactometer. The numbers were 23,000 OU/m3 at the output end of the composting drum and 6300 OU/m3 in the exhaust pipe. Inside the composting hall, the number of odour units was 500 and 560 OU/m3.

  10. GRC-2005-C-00637

    NASA Image and Video Library

    2001-05-10

    NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions

  11. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  12. Using nutrition labeling as a potential tool for changing eating habits of university dining hall patrons.

    PubMed

    Driskell, Judy A; Schake, Marian C; Detter, Hillary A

    2008-12-01

    The purpose of this cross-sectional study was to examine the influence of the nutritional labeling Nutrition Bytes on the eating habits of adults eating in dining halls at a Midwestern university and to assess differences between sexes. Dining hall patrons (114 men, 91 women) 19 years of age or older voluntarily completed a descriptive 15-item written questionnaire that examined the use and nonuse of Nutrition Bytes, which contains much of the information included in the Nutrition Facts label. A significantly higher percentage of women than men patrons reported currently using Nutrition Bytes labels (P<0.001). Predominant reasons for using Nutrition Bytes labels were: general knowledge, concern about overall health, calorie counting, and concern about a certain nutrient(s). Predominant reasons given for not using Nutrition Bytes labels were: will not change my mind about food items selected and not enough time. Reasons given by men and women for using or not using Nutrition Bytes labels were similar. Significantly higher percentages of women than men using Nutrition Bytes labels indicated being interested in having serving sizes (P<0.005) and ingredients (P<0.0005) listed, whereas higher percentages of men than women indicated being interested in having protein listed (P<0.05). The percentages of users who indicated nearly always and sometimes changing their food choices after reading Nutrition Bytes labels inside the dining halls were 12% and 80%, respectively, whereas 23% and 65%, respectively, indicated changing their food choices after reading the nutrition label when eating outside the dining halls. Nutrition Bytes labeling seemed to positively impact food choices of these adult dining hall patrons, and likely would do so at other dining halls.

  13. Hall mobility in multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Geilker, J.; Kwapil, W.; Warta, W.; Schubert, M. C.

    2011-08-01

    Knowledge of the carrier mobility in silicon is of utmost importance for photovoltaic applications, as it directly influences the diffusion length and thereby the cell efficiency. Moreover, its value is needed for a correct quantitative evaluation of a variety of lifetime measurements. However, models that describe the carrier mobility in silicon are based on theoretical calculations or fits to experimental data in monocrystalline silicon. Multicrystalline (mc) silicon features crystal defects such as dislocations and grain boundaries, with the latter possibly leading to potential barriers through the trapping of charge carriers and thereby influencing the mobility, as shown, for example, by Maruska et al. [Appl. Phys. Lett. 36, 381 (1980)]. To quantify the mobilities in multicrystalline silicon, we performed Hall measurements in p-type mc-Si samples of various resistivities and different crystal structures and compared the data to majority carrier Hall mobilities in p-type monocrystalline floatzone (FZ) silicon. For lack of a model that provides reliable values of the Hall mobility in silicon, an empirical fit similar to existing models for conductivity mobilities is proposed based on Hall measurements of monocrystalline p-type FZ silicon. By comparing the measured Hall mobilities obtained from mc silicon with the corresponding Hall mobilities in monocrystalline silicon of the same resistivity, we found that the mobility reduction due to the presence of crystal defects in mc-Si ranges between 0% and 5% only. Mobility decreases of up to 30% as reported by Peter et al. [Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008], or even of a factor of 2 to 3 as detected by Palais et al. [Mater. Sci. Eng. B 102, 184 (2003)], in multicrystalline silicon were not observed.

  14. Hall effects on peristaltic flow of couple stress fluid in a vertical asymmetric channel

    NASA Astrophysics Data System (ADS)

    Maninaga Kumar, P.; Kavitha, A.; Saravana, R.

    2017-11-01

    The influence of Hall effect on peristaltic transport of a couple stress fluid in a vertical asymmetric channel is examined. The problem is solved under the assumptions of low Reynolds number and long wavelength. The velocity, temperature and concentration are obtained by using analytical solutions. Effect of Hall parameter, couple stress fluid parameter, Froude number, Hartmann number and the phase difference on the pumping characteristics, temperature and concentration are discussed graphically.

  15. High-performance LED luminaire for sports hall

    NASA Astrophysics Data System (ADS)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  16. KSC-06pd0793

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Former NASA astronauts and members of the U.S. Astronaut Hall of Fame are presented to the standing-room-only crowd at the 2006 induction ceremony in the Apollo/Saturn V Center. The inductees to the U.S. Astronaut Hall of Fame for 2006 (center stage, from left) are Henry "Hank" Hartsfield Jr., Brewster H. Shaw Jr. and Charles F. Bolden Jr. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  17. Photo-excited zero-resistance states in quasi-two-dimensional GaAs / Al xGa 1- xAs devices

    NASA Astrophysics Data System (ADS)

    Mani, R. G.

    2007-12-01

    We illustrate some experimental features of the recently discovered radiation-induced zero-resistance states in the high-mobility GaAs/AlGaAs system, with a special emphasis on the interplay between the radiation-induced changes in the diagonal resistance and the Hall effect. We show that, quantum Hall effects, i.e., quantum Hall plateaus, disappear under photoexcitation, at the minima of the radiation-induced magnetoresistance oscillations.

  18. Hall viscosity and geometric response in the Chern-Simons matrix model of the Laughlin states

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Hughes, Taylor L.

    2018-05-01

    We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos as a regularization of the noncommutative Chern-Simons theory description of the Laughlin states proposed earlier by Susskind. Both models can be understood as describing the electrons in a FQH state as forming a noncommutative fluid, i.e., a fluid occupying a noncommutative space. Here, we revisit the CSMM in light of recent work on geometric response in the FQH effect, with the goal of determining whether the CSMM captures this aspect of the physics of the Laughlin states. For this model, we compute the Hall viscosity, Hall conductance in a nonuniform electric field, and the Hall viscosity in the presence of anisotropy (or intrinsic geometry). Our calculations show that the CSMM captures the guiding center contribution to the known values of these quantities in the Laughlin states, but lacks the Landau orbit contribution. The interesting correlations in a Laughlin state are contained entirely in the guiding center part of the state/wave function, and so we conclude that the CSMM accurately describes the most important aspects of the physics of the Laughlin FQH states, including the Hall viscosity and other geometric properties of these states, which are of current interest.

  19. KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  1. Graphene-based quantum Hall resistance standards grown by chemical vapor deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, Rebeca; Lafont, Fabien; Kazazis, Dimitris; Michon, Adrien; Couturaud, Olivier; Consejo, Christophe; Jouault, Benoit; Poirier, Wilfrid; Schopfer, Felicien

    2015-03-01

    Replace GaAs-based quantum Hall resistance standards (GaAs-QHRS) by a more convenient one, based on graphene (Gr-QHRS), is an ongoing goal in metrology. The new Gr-QHRS are expected to work in less demanding experimental conditions than GaAs ones. It will open the way to a broad dissemination of quantum standards, potentially towards industrial end-users, and it will support the implementation of a new International System of Units based on fixed fundamental constants. Here, we present accurate quantum Hall resistance measurements in large graphene Hall bars, grown by the hybrid scalable technique of propane/hydrogen chemical vapor deposition (CVD) on silicon carbide (SiC). This new Gr-QHRS shows a relative accuracy of 1 ×10-9 of the Hall resistance under the lowest magnetic field ever achieved in graphene. These experimental conditions surpass those of the most wildely used GaAs-QHRS. These results confirm the promises of graphene for resistance metrology applications and emphasizes the quality of the graphene produced by the CVD on SiC for applications as demanding as the resistance metrology.

  2. Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice

    NASA Astrophysics Data System (ADS)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-03-01

    The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE). Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 .e2/h below and with steps of 1 .e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign change at the van Hove singularity. These unconventional features are deeply connected to the topology of the structural lattice.

  3. Observation of the fractional quantum Hall effect in graphene.

    PubMed

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  4. Mini array of quantum Hall devices based on epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed thatmore » the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.« less

  5. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    NASA Astrophysics Data System (ADS)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  6. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  7. Imaginary part of Hall conductivity in a tilted doped Weyl semimetal with both broken time-reversal and inversion symmetry

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2018-01-01

    We consider a Weyl semimetal with finite doping and tilt within a continuum model Hamiltonian with both broken time-reversal and inversion symmetry. We calculate the absorptive part of the anomalous ac Hall conductivity as a function of photon energy Ω for both type-I and type-II Weyl semimetals. For a given Weyl node, changing the sign of its chirality or of its tilt changes the sign of its contribution to the absorptive Hall conductivity with no change in magnitude. For a noncentrosymmetric system we find that there are ranges of photon energies for which only the positive or only the negative-chirality node contributes to the imaginary (absorptive) part of the Hall conductivity. There are also other photon energies where both chiralities contribute, and there can be other ranges of Ω where there is no absorption associated with the ac Hall conductivity in type-I semimetals and regions where it is instead constant for type-II semimetals. We comment on implications for the absorption of circularly polarized light.

  8. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  9. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  10. Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng

    2018-03-01

    Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.

  11. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  12. Quantum Hall physics: Hierarchies and conformal field theory techniques

    NASA Astrophysics Data System (ADS)

    Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F.

    2017-04-01

    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the 30 years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.

  13. Facilty Focus: Residence Halls.

    ERIC Educational Resources Information Center

    Hunnewell, James F., Jr.

    2002-01-01

    Describes the Western Ridge Residence at Colorado College and Beard Hall at Wheaton College. The buildings feature multiple levels that take advantage of views and also help create a "homey" feeling. (EV)

  14. Hall effect in Ce/sub 1-x/Y/sub x/Pd/sub 3/ mixed-valence alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fert, A.; Pureur, P.; Hamzic, A.

    Mixed-valence and Kondo lattice systems exhibit large anomalous Hall coefficients with a striking change of sign at low temperature in several systems (CePd/sub 3/, CeCu/sub 6/,..., etc.). We have studied the Hall effect of Ce/sub 1-x/Y/sub x/Pd/sub 3/, in which the substitution of small amounts of Y for Ce prevents the development of coherence at low temperature. We find that the Hall coefficient does not change its sign at low temperature and can be well understood in the one-impurity model of Ramakrishnan, Coleman, and Anderson. We infer that the change of sign observed in CePd/sub 3/ is an effect ofmore » coherence.« less

  15. Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Charles; Elementi, Luciano; Feher, Sandor

    The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less

  16. Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System

    DOE PAGES

    Orozco, Charles; Elementi, Luciano; Feher, Sandor; ...

    2018-02-22

    The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less

  17. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  18. Chiral Maxwell demon in a quantum Hall system with a localized impurity

    NASA Astrophysics Data System (ADS)

    Rosselló, Guillem; López, Rosa; Platero, Gloria

    2017-08-01

    We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.

  19. Topological transitions for lattice bosons in a magnetic field

    PubMed Central

    Huber, Sebastian D.; Lindner, Netanel H.

    2011-01-01

    The Hall response provides an important characterization of strongly correlated phases of matter. We study the Hall conductivity of interacting bosons on a lattice subjected to a magnetic field. We show that for any density or interaction strength, the Hall conductivity is characterized by an integer. We find that the phase diagram is intersected by topological transitions between different values of this integer. These transitions lead to surprising effects, including sign reversal of the Hall conductivity and extensive regions in the phase diagram where it acquires a negative sign, which implies that flux flow is reversed in these regions—vortices there flow upstream. Our findings have immediate applications to a wide range of phenomena in condensed matter physics, which are effectively described in terms of lattice bosons. PMID:22109548

  20. KSC-2013-2070

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, agency Administrator Charles Bolden speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  1. KSC-2013-2072

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Astronaut Scholarship Foundation Charmin Charlie Duke speaks at the ceremony during which Bonnie Dunbar, Curt Brown and Eileen Collins were inducted into the U.S. Astronaut Hall of Fame. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  2. Hall thruster with grooved walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings helpmore » to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.« less

  3. Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters

    NASA Astrophysics Data System (ADS)

    Singh, Sukhmander

    2017-10-01

    There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.

  4. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less

  5. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    PubMed

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  6. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, C.; Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In thismore » case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.« less

  7. Overview of NASA Iodine Hall Thruster Propulsion System Development

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  8. Topological Phase Transitions in the Photonic Spin Hall Effect

    DOE PAGES

    Kort-Kamp, Wilton Junior de Melo

    2017-10-04

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less

  9. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  10. High Performance Power Module for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  11. 93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TOWER STAIRHALL, SOUTH WALL, WEST TABERNACLE FRAME. DETAIL OF DOG EAR AND TRUSS (BRACKET) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  12. Novel High Speed Devices and Heterostructures Prepared by Molecular Beam Epitaxy

    DTIC Science & Technology

    1989-02-13

    GaSb/GaAs system was reported from the results of photoreflectance measurements : w ereport a heavy-hole band offset s5; 1.7 for GaAs.g9bd.,, establishing...studied by variable temperature Hall measurements . For the GaA# 1_hb# material grown on InP, a two-acceptor model was forwarded to describe the Hall...Meanwhile, from Hall measurements , room temperature electron mobilities as high as 57000 m./Vs were reported in a 4.6 & thick unintentionally-doped InSb

  13. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrichs, H., E-mail: henning.ulrichs@uni-muenster.de; Demidov, V. E.; Demokritov, S. O.

    2014-01-27

    We present a numerical study of magnetization dynamics in a recently introduced spin torque nano-oscillator, whose operational principle relies on the spin-Hall effect—spin-Hall nano-oscillators. Our numerical results show good agreement with the experimentally observed behaviors and provide detailed information about the features of the primary auto-oscillation mode observed in the experiments. They also clarify the physical nature of the secondary auto-oscillation mode, which was experimentally observed under certain conditions only.

  14. Direct and Indirect Economic Impacts of the Department of Residence Halls of the University of Tennessee at Knoxville (U.T.K.) on U.T.K. and the Knoxville Area Tennessee, U.S.A.: An Exploratory Report.

    ERIC Educational Resources Information Center

    Roddy, Vernon; Stoner, Kenneth L.

    The University of Tennessee residence halls have been considered a central component of the total university educational program. Although they play an important role in the socialization and development of students, the residence halls also have a considerable economic impact on the Knoxville community. Statistics from a study of the university's…

  15. Identification of a Gene on Chromosome 18q21 Involved in Suppressing Metastatic Prostate Cancer

    DTIC Science & Technology

    2005-12-01

    manuscript: Padalecki SS, Weldon KS, Reveles XT, Buller CL, Grubbs B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M , Guise TA, Leach RJ...B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M , Guise TA, Leach RJ, Johnson-Pais TL 2003. Chromosome 18 suppresses prostate cancer...Postdoctoral Fellow Devon C. Hall – Graduate Student References Chen J, Sun M , Lee S, Zhou G, Rowley JD, Wang SM 2002. Identifying novel

  16. The non-commutative topology of two-dimensional dirty superconductors

    NASA Astrophysics Data System (ADS)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  17. KSC-06pd0788

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - The stage in the Apollo/Saturn V Center is lined with former NASA astronauts attending the 2006 induction ceremony for the U.S. Astronaut Hall of Fame. All of them had been previously inducted to the U.S. Astronaut Hall of Fame. They came to welcome the inductees for 2006: Henry "Hank" Hartsfield Jr., Brewster H. Shaw Jr. and Charles F. Bolden Jr. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  18. A Study to Determine Patient Waiting Time at the Outpatient Pharmacy at Wilford Hall USAF Medical Center

    DTIC Science & Technology

    1988-06-01

    at Wilford Hall USAF Medical Center significantly reduced the patient wait time at the main outpatient pharmacy. Satellite pharmacies have been ).’l...PRESENTING TO WINDOW 1, 19 MAR 88. 47 C:. A’.’E-:A: -ESCRIRTIONS PER PATIENT ...........48 H. WILFORD HALL MEDICAL CENTER OUTPATIENT QUESTIONNAIRE...that wait times at tne outpatient pharmacy were excessive. It was this concern that motivated the Medical Center Administrator to request that patient

  19. KSC-2012-2725

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz, at the podium, speaks during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2732

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Charlie Precourt speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Kevin Chilton also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-2727

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-2728

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-2729

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, shuttle astronaut Kevin Chilton speaks after being inducted into the U.S. Astronaut Hall of Fame Class of 2012. Shuttle astronauts Franklin Chang Diaz and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-2724

    NASA Image and Video Library

    2012-05-05

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, space shuttle astronaut and U.S. Astronaut Hall of Fame Class of 2012 inductee Franklin Chang Diaz, at the podium, speaks during the induction ceremony. Shuttle astronauts Kevin Chilton and Charlie Precourt also were inducted into the Hall of Fame. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. Photo credit: NASA/Jim Grossmann

  5. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  6. Optical Boron Nitride Insulator Erosion Characterization of a 200 W Xenon Hall Thruster

    DTIC Science & Technology

    2005-05-01

    Hall thruster boron nitride insulator is evaluated as a diagnostic for real-time evaluation of thruster insulator erosion. Three Hall thruster plasma control variables are examined: ion energy (discharge potential), ion flux (propellant flow), and plasma conductivity (magnetic field strength). The boron emission, and hence the insulator erosion rate, varies linearly with ion energy and ion flux. A minimum erosion rate appears at intermediate magnetic field strengths. This may indicate that local plasma conductivity significantly affects the divergence

  7. Microwave Interferometry (90 GHz) for Hall Thruster Plume Density Characterization

    DTIC Science & Technology

    2005-06-01

    Hall thruster . The interferometer has been modified to overcome initial difficulties encountered during the preliminary testing. The modifications include the ability to perform remote and automated calibrations as well as an aluminum enclosure to shield the interferometer from the Hall thruster plume. With these modifications, it will be possible to make unambiguous electron density measurements of the thruster plume as well as to rapidly and automatically calibrate the interferometer to eliminate the effects of signal drift. Due to the versatility

  8. Moiré assisted fractional quantum Hall state spectroscopy

    DOE PAGES

    Wu, Fengcheng; MacDonald, A. H.

    2016-12-14

    Intra-Landau level excitations in the fractional quantum Hall regime are not accessible via optical absorption measurements. Here we point out that optical probes are enabled by the periodic potentials produced by a moire pattern. Our observation is motivated by the recent observations of fractional quantum Hall incompressible states in moire-patterned graphene on a hexagonal boron nitride substrate, and is theoretically based on f-sum rule considerations supplemented by a perturbative analysis of the influence of the moire potential on many-body states.

  9. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, S.; Walter Schottky Institut and Physik-Department, Technische Universität München, 85748 Garching; Tshitoyan, V.

    2016-05-09

    We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe mainly to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.

  10. An Interpolation Procedure to Patch Holes in a Ground and Flight Test Data Base (MARS)

    DTIC Science & Technology

    2010-08-01

    FAIRFAX VA 22030 DR N RAO CHAGANTY 1 DEPT OF MATHEMATICS AND STATISTICS OLD DOMINION UNIVERSITY HAMPTON BLVD NORFOLK VA 23529 DR SAID E SAID 1 DEPT OF...DR EDWARD R SCHEINERMAN 1 DEPT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY 104 WHITEHEAD HALL BALTIMORE MD 21218 DR BENJAMIN KADEM 1 DEPT OF MATHEMATICS ... ACTUARIAL SCIENCE UNIVERSITY OF IOWA 241 SCHAEFFER HALL IOWA CITY IA 52242-1409 DR JOHN E BOYER 1 DEPT OF STATISTICS KANSAS STATE UNIVERSITY DICKENS HALL

  11. Applying Energy Conservation Retrofits to Standard Army Buildings: Project Design and Initial Energy Data

    DTIC Science & Technology

    1988-07-01

    Window Area 33 24 New Exterior Doors of Dining Hall 34 25 New Window Panels of Dining Hall 34 I 26 New Pneumatic Reset Controllers of Dining Hall 35 27...of conditioned air that is exhausted from the building soace during hood operation. HW temperature reset A new heating system controller from Taylor...to be as high. The converse is true as outdoor temperatures get colder. Resetting the temperature of the heating hot water with changes in the outdoor

  12. New pathways towards efficient metallic spin Hall spintronics

    DOE PAGES

    Jungfleisch, Matthias Benjamin; Zhang, Wei; Jiang, Wanjun; ...

    2015-11-16

    Spin Hall effects (SHEs) interconvert spin- and charge currents due to spin- orbit interaction, which enables convenient electrical generation and detection of diffusive spin currents and even collective spin excitations in magnetic solids. Here, we review recent experimental efforts exploring efficient spin Hall detector materials as well as new approaches to drive collective magnetization dynamics and to manipulate spin textures by SHEs. As a result, these studies are also expected to impact practical spintronics applications beyond their significance in fundamental research.

  13. Group Γ (2) and the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Georgelin, Yvon; Wallet, Jean-Christophe

    1997-02-01

    We analyze the action of the inhomogeneous modular group Γ (2) on the three cusps of its principal fundamental domain in the Poincaré half plane. From this, we obtain an exhaustive classification of the fractional quantum Hall numbers. This classification, in which the integer and the fractional states appear on an equal level, is somehow similar to the one given by Jain. We also present some resulting remarks concerning direct phase transitions between the different quantum Hall states.

  14. Precision Tests of a Quantum Hall Effect Device DC Equivalent Circuit Using Double-Series and Triple-Series Connections

    PubMed Central

    Jeffery, A.; Elmquist, R. E.; Cage, M. E.

    1995-01-01

    Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768

  15. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  16. Investigation of Luminescent Diode Arrays for Photochromic Film Recording

    DTIC Science & Technology

    1969-06-30

    usually measured by Hall effect and rev.istivity measurements using the Van der Pauw technique.) Ami an example, if GP is Initially 3 x i10 P type and...contacta and eettin% the specimen in a known magnetic field. The Van der Pauw technique Is used to meaeure the HAll coefficient. From the Hall coefficient...iraenuitive within 30 minutes after activation. Un~ der ultr’aviolet exposure, dark red ’Iuoro-cence occurs. When the activation properties of the film are

  17. 67. Joe Moore, Photographer. September, 1996. BEVATRON EXPERIMENTAL HALL (51B), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Joe Moore, Photographer. September, 1996. BEVATRON EXPERIMENTAL HALL (51B), LOOKING SOUTH EAST - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Simmons Hall, Massachusetts.

    ERIC Educational Resources Information Center

    Amelar, Sarah

    2003-01-01

    Describes the design of Simmons Hall, an undergraduate dormitory at the Massachusetts Institute of Technology, including the educational context and design goals. Includes information on the architects, as well as floor plans and photographs. (EV)

  19. 16. ENTRANCE HALL, VIEW OF HALLWAY LOOKING TOWARD STAIR, NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. ENTRANCE HALL, VIEW OF HALLWAY LOOKING TOWARD STAIR, NOTE PEDIMENTED DOORWAYS, CHINESE WALLPAPER, DENTICULATED CORNICE, PANELED DADO - Mt. Harmon Plantation at World's End, Earleville, Cecil County, MD

  20. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less

  1. An evaluation of krypton propellant in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing, ionization processes, and electron dynamics. Electron mobility and the Hall parameter are studied and compared to different mobility models. Azimuthal electron current is studied using a fluid and particle drift approach. Analyses of several magnetic field features are conducted and simple tools are suggested for the development of future Hall thrusters. These findings have strong implications for future Hall thruster design, lifetimes, and modeling.

  2. NASA Chief Technologist Hosts Town Hall

    NASA Image and Video Library

    2010-05-24

    NASA's Chief Technologists, Bobby Braun, hosts a Town Hall meeting to discuss agency-wide technology policy and programs at NASA Headquarters on Tuesday, May 25, 2010, in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. Cabana inducted into Hall of Fame

    NASA Image and Video Library

    2008-05-03

    Former astronaut Al Worden (left) presents Stennis Space Center Director Bob Cabana with a gold medallion signifying his induction into the U.S. Astronaut Hall of Fame at Kennedy Space Center in Florida.

  4. 9. Front door, central hall interior view, cross and open ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Front door, central hall interior view, cross and open bible configuration, with transom and sidelights, facing south. - Landers-Cain House, 915 Pleasant Hill Road, Lawrenceville, Gwinnett County, GA

  5. James Webb Space Telescope (JWST) Town Hall - Panel question and

    NASA Image and Video Library

    2016-11-02

    James Webb Space Telescope (JWST) Town Hall - Panel question and answer - Bill Ochs; Dr. John Mather; Dr. Eric Smith; Thomas Zurbuchen; Center Director Chris Scolese; NASA Administrator Charlie Bolden.

  6. NASA Chief Technologist Hosts Town Hall

    NASA Image and Video Library

    2010-05-24

    Bobby Braun, NASA's Chief Technologist, answers questions during a Town Hall meeting to discuss agency-wide technology policy and programs at NASA Headquarters on Tuesday, May 25, 2010, in Washington. Photo Credit: (NASA/Carla Cioffi)

  7. Protecting Your Residence Hall Furniture Investment.

    ERIC Educational Resources Information Center

    Wiens, Janet

    2003-01-01

    Asserting that residence hall furniture takes abuse simply through use, discusses a three-part approach--student involvement and education, creating the right environment, and ongoing maintenance--that helps reduce normal wear and tear. (EV)

  8. 52. SUPREME COURT ROOM, SOUTH WALL, WEST WINDOW DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. SUPREME COURT ROOM, SOUTH WALL, WEST WINDOW DETAIL OF EAST SPLAYED JAMB AND TRIM (NOTE REPAIRED AREAS) - Independence Hall Complex, Independence Hall, 500 Chestnut Street, Philadelphia, Philadelphia County, PA

  9. 20. INTERIOR OF SOUTHERN ROOM. VIEW LOOKING NORTHWEST TOWARD HALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR OF SOUTHERN ROOM. VIEW LOOKING NORTHWEST TOWARD HALL CONNECTING WITH CENTRAL ROOM. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA

  10. Style of Life and Student Personnel Policy in College Residence Halls

    ERIC Educational Resources Information Center

    White, Julie E.

    1969-01-01

    Doctoral dissertation, Dimensions of Conformity and Evasion in Residence Halls for University Women: A Sociological Analysis of Normative Behavior in a Large-Scale Social Organization, 1962, University of Illinois, Urbana.

  11. 77 FR 47859 - Proposed Flood Hazard Determinations; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Boulevard, Deerfield Beach, FL 33442. City of Fort Lauderdale City Hall, 100 North Andrews Avenue, Fort..., 115 South Andrews Avenue, Room 409, Fort Lauderdale, FL 33301. Village of Lazy Lake Village Hall, 2250...

  12. INTERIOR; VIEW OF ENTRY HALL, LOOKING SOUTH. Naval Computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR; VIEW OF ENTRY HALL, LOOKING SOUTH. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Marine Barracks, Intersection of Tower Drive & Morse Street, Makaha, Honolulu County, HI

  13. 1. Historic American Buildings Survey Wells Fargo Bank Historical Museum ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Wells Fargo Bank Historical Museum San Francisco, California Circa 1868 MAGUIRES MUSIC HALL - Maguires Music Hall, Historic View, Pine Street, San Francisco, San Francisco County, CA

  14. 18. West room, second floor. View looking southeast. Center hall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. West room, second floor. View looking southeast. Center hall visible through doorway. - Fort Hill Farm, Mansion, West of Staunton (Roanoke) River between Turkey & Caesar's Runs, Clover, Halifax County, VA

  15. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  16. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.

    2017-02-01

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ~500,000 cm2 V-1 s-1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.

  17. KSC-2013-2060

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Steven Hawley is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  18. Influence of the carrier mobility distribution on the Hall and the Nernst effect measurements in n-type InSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madon, B.; Wegrowe, J.-E.; Drouhin, H.-J.

    2016-01-14

    In this study, we report magneto-resistance measurements on an n-doped InSb film, to separate the contributions of the electrical currents from the heat currents. We have demonstrated a prototype for a magnetic field sensor which is powered by heat currents and does not require any electrical current. We fabricated two Hall bars, where a low frequency (f = 0.05 Hz) AC current, was applied between the two contacts in one of the Hall bars. Separating the f and 2f components of the voltage measured across the second Hall bar was used to distinguish between the electrical and the heat contributions to the electronmore » currents. Our observations can be modeled using a Gaussian distribution of mobility within the sample.« less

  19. KSC-2013-2059

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member George "Pinky" Nelson is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  20. KSC-2013-2063

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Charlie Bolden, who is also NASA administrator, is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  1. KSC-2013-2064

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Franklin Chang Diaz is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  2. KSC-2013-2054

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Rick Hauck is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  3. KSC-2013-2058

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center Visitor Complex in Florida, Master of Ceremonies John Zarrella, CNN's principal correspondent for coverage of NASA’s space programs, introduces Hall of Fame astronauts who gathered to honor 2013 inductees Curt Brown, Eileen Collins and Bonnie Dunbar. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  4. KSC-2013-2055

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Dan Brandenstein is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  5. KSC-2013-2066

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Kathy Thornton is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  6. KSC-2013-2065

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member John Blaha is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  7. KSC-2013-2051

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Bob Crippen is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  8. KSC-2013-2061

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Loren Shriver is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  9. KSC-2013-2056

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Brewster Shaw is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  10. KSC-2013-2053

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Karol Bobko is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  11. KSC-2013-2052

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Joe Allen is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  12. KSC-2013-2062

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Jeff Hoffman is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  13. KSC-2013-2057

    NASA Image and Video Library

    2013-04-20

    CAPE CANAVERAL, Fla. – U.S. Astronaut Hall of Fame member Robert "Hoot" Gibson is introduced at NASA’s Kennedy Space Center Visitor Complex in Florida, prior to the ceremony in which Bonnie Dunbar, Curt Brown and Eileen Collins will be inducted into the group of space pioneers. This induction is the twelfth group of space shuttle astronauts named to the AHOF, and the first time two women are inducted at the same time. The year’s inductees were selected by a committee of current Hall of Fame astronauts, former NASA officials, historians and journalists. The selection process is administered by the Astronaut Scholarship Foundation. For more on the U.S. Astronaut Hall of Fame, go to http://www.kennedyspacecenter.com/astronaut-hall-of-fame.aspx For more on the Astronaut Scholarship Foundation, go to http://astronautscholarship.org/ Photo credit: NASA/ Kim Shiflett

  14. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems

    NASA Astrophysics Data System (ADS)

    Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto

    2017-12-01

    We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

  15. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  16. Carl Gustav Jung and Granville Stanley Hall on Religious Experience.

    PubMed

    Kim, Chae Young

    2016-08-01

    Granville Stanley Hall (1844-1924) with William James (1842-1910) is the key founder of psychology of religion movement and the first American experimental or genetic psychologist, and Carl Gustav Jung (1875-1961) is the founder of the analytical psychology concerned sympathetically about the religious dimension rooted in the human subject. Their fundamental works are mutually connected. Among other things, both Hall and Jung were deeply interested in how the study of religious experience is indispensable for the depth understanding of human subject. Nevertheless, except for the slight indication, this common interest between them has not yet been examined in academic research paper. So this paper aims to articulate preliminary evidence of affinities focusing on the locus and its function of the inner deep psychic dimension as the religious in the work of Hall and Jung.

  17. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  18. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  19. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    PubMed

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  20. A simple approach to detect and correct signal faults of Hall position sensors for brushless DC motors at steady speed

    NASA Astrophysics Data System (ADS)

    Shi, Yongli; Wu, Zhong; Zhi, Kangyi; Xiong, Jun

    2018-03-01

    In order to realize reliable commutation of brushless DC motors (BLDCMs), a simple approach is proposed to detect and correct signal faults of Hall position sensors in this paper. First, the time instant of the next jumping edge for Hall signals is predicted by using prior information of pulse intervals in the last electrical period. Considering the possible errors between the predicted instant and the real one, a confidence interval is set by using the predicted value and a suitable tolerance for the next pulse edge. According to the relationship between the real pulse edge and the confidence interval, Hall signals can be judged and the signal faults can be corrected. Experimental results of a BLDCM at steady speed demonstrate the effectiveness of the approach.

  1. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  2. An exploratory digital analysis of the early years of G. Stanley Hall's American Journal of Psychology and Pedagogical Seminary.

    PubMed

    Young, Jacy L; Green, Christopher D

    2013-11-01

    In this article, we present the results of an exploratory digital analysis of the contents of the two journals founded in the late 19th century by American psychologist G. Stanley Hall. Using the methods of the increasingly popular digital humanities, some key attributes of the American Journal of Psychology (AJP) and the Pedagogical Seminary (PS) are identified. Our analysis reaffirms some of Hall's explicit aims for the two periodicals, while also revealing a number of other features of the journals, as well as of the people who published within their pages, the methodologies they employed, and the institutions at which they worked. Notably, despite Hall's intent that his psychological journal be strictly an outlet for scientific research, the journal-like its sister pedagogically focused publication-included an array of methodologically diverse research. The multiplicity of research styles that characterize the content of Hall's journals in their initial years is, in part, a consequence of individual researchers at times crossing methodological lines and producing a diverse body of research. Along with such variety within each periodical, it is evident that the line between content appropriate to one periodical rather than the other was fluid rather than absolute. The full results of this digitally informed analysis of Hall's two journals suggest a number of novel avenues for future research and demonstrate the utility of digital methods as applied to the history of psychology. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  4. Non-invasive Hall current distribution measurement in a Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Mullins, Carl R.; Farnell, Casey C.; Farnell, Cody C.; Martinez, Rafael A.; Liu, David; Branam, Richard D.; Williams, John D.

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  5. Non-invasive Hall current distribution measurement in a Hall effect thruster.

    PubMed

    Mullins, Carl R; Farnell, Casey C; Farnell, Cody C; Martinez, Rafael A; Liu, David; Branam, Richard D; Williams, John D

    2017-01-01

    A means is presented to determine the Hall current density distribution in a closed drift thruster by remotely measuring the magnetic field and solving the inverse problem for the current density. The magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned just outside the thruster channel on a 1.5 kW Hall thruster equipped with a center-mounted hollow cathode. In the sensor array location, the static magnetic field is approximately 30 G, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is approximately tens of milligauss, which is within the sensitivity range of the TMR sensors. Because of the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field does provide the current density distributions. These distributions are shown as a function of time in contour plots. The measured ratios between the average Hall current and the average discharge current ranged from 6.1 to 7.3 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 1.5 kW exhibited a breathing mode frequency of 24 kHz, which was in agreement with temporal measurements of the discharge current.

  6. Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.; Finn, J. M.

    2002-11-01

    The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.

  7. Concert halls with strong lateral reflections enhance musical dynamics.

    PubMed

    Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W; Lokki, Tapio

    2014-03-25

    One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians' skill, but here we show that interactions between the concert-hall acoustics and listeners' hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall's established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note's fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry.

  8. KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  9. Theory of the Quantized Hall Conductance in Periodic Systems: a Topological Analysis.

    NASA Astrophysics Data System (ADS)

    Czerwinski, Michael Joseph

    The integral quantization of the Hall conductance in two-dimensional periodic systems is investigated from a topological point of view. Attention is focused on the contributions from the electronic sub-bands which arise from perturbed Landau levels. After reviewing the theoretical work leading to the identification of the Hall conductance as a topological quantum number, both a determination and interpretation of these quantized values for the sub-band conductances is made. It is shown that the Hall conductance of each sub-band can be regarded as the sum of two terms which will be referred to as classical and nonclassical. Although each of these contributions individually leads to a fractional conductance, the sum of these two contributions does indeed yield an integer. These integral conductances are found to be given by the solution of a simple Diophantine equation which depends on the periodic perturbation. A connection between the quantized value of the Hall conductance and the covering of real space by the zeroes of the sub-band wavefunctions allows for a determination of these conductances under more general potentials. A method is described for obtaining the conductance values from only those states bordering the Brillouin zone, and not the states in its interior. This method is demonstrated to give Hall conductances in agreement with those obtained from the Diophantine equation for the sinusoidal potential case explored earlier. Generalizing a simple gauge invariance argument from real space to k-space, a k-space 'vector potential' is introduced. This allows for a explicit identification of the Hall conductance with the phase winding number of the sub-band wavefunction around the Brillouin zone. The previously described division of the Hall conductance into classical and nonclassical contributions is in this way made more rigorous; based on periodicity considerations alone, these terms are identified as the winding numbers associated with (i) the basis states and (ii) the coefficients of these basis states, respectively. In this way a general Diophantine equation, independent of the periodic potential, is obtained. Finally, the use of the 'parallel transport' of state vectors in the determination of an overall phase convention for these states is described. This is seen to lead to a simple and straightforward method for determining the Hall conductance. This method is based on the states directly, without reference to the particular component wavefunctions of these states. Mention is made of the generality of calculations of this type, within the context of the geometric (or Berry) phases acquired by systems under an adiabatic modification of their environment.

  10. Modeling an anode layer Hall thruster and its plume

    NASA Astrophysics Data System (ADS)

    Choi, Yongjun

    This thesis consists of two parts: a study of the D55 Hall thruster channel using a hydrodynamic model; and particle simulations of plasma plume flow from the D55 Hall thruster. The first part of this thesis investigates the xenon plasma properties within the D55 thruster channel using a hydrodynamic model. The discharge voltage (V) and current (I) characteristic of the D55 Hall thruster are studied. The hydrodynamic model fails to accurately predict the V-I characteristics. This analysis shows that the model needs to be improved. Also, the hydrodynamic model is used to simulate the plasma flow within the D55 Hall thruster. This analysis is performed to investigate the plasma properties of the channel exit. It is found that the hydrodynamic model is very sensitive to initial conditions, and fails to simulate the complete domain of the D55 Hall thruster. However, the model successfully calculates the channel domain of the D55 Hall thruster. The results show that, at the thruster exit, the plasma density has a maximum value while the ion velocity has a minimum at the channel center. Also, the results show that the flow angle varies almost linearly across the exit plane and increases from the center to the walls. Finally, the hydrodynamic model results are used to estimate the plasma properties at the thruster nozzle exit. The second part of the thesis presents two dimensional axisymmetric simulations of xenon plasma plume flow fields from the D55 anode layer Hall thruster. A hybrid particle-fluid method is used for the simulations. The magnetic field near the Hall thruster exit is included in the calculation. The plasma properties obtained from the hydrodynamic model are used to determine boundary conditions for the simulations. In these simulations, the Boltzmann model and a detailed fluid model are used to compute the electron properties, the direct simulation Monte Carlo method models the collisions of heavy particles, and the Particle-In-Cell method models the transport of ions in an electric field. The accuracy of the simulation is assessed through comparison with various sets of measured data. It is found that a magnetic field significantly affects the profile of the plasma in the Detailed model. For instance, the plasma potential decreases more rapidly with distance from the thruster in the presence of a magnetic field. Results predicted by the Detailed model with the magnetic field are in better agreement with experimental data than those obtained with other models investigated.

  11. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  12. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  13. Various applications of Active Field Control (AFC)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  14. A binaural Web-based tour of the acoustics of Troy Music Hall

    NASA Astrophysics Data System (ADS)

    Torres, Rendell R.; Cooney, James; Shimizu, Yasushi

    2004-05-01

    For classical music to become more widely enjoyed, it must sound exciting. We hypothesize that if people could hear examples of truly exciting acoustics, classical music would be perceived less as a rarefied delicacy and more as a viscerally engaging listening experience. The Troy Savings Bank Music Hall in Troy, New York, is a legendary 1200-seat concert hall famous for its acoustics. Such landmarks are commonly documented architecturally but with few attempts to document their acoustics in a way that it is listenable. Thus, the goal is to capture and sonically disseminate the hall's acoustics through a Web-based acoustical tour, where one can click on various seats to hear binaural auralizations of different instruments and see corresponding views of the stage. The hope is that these auralizations will not only sonically document the acoustics of the hall but also tantalize even geographically distant listeners with binaural samples of how exciting music can be in excellent acoustics. The fun and challenges of devising (let alone standardizing) such an auralization-based system of documentation will be discussed, and a demonstration given. This process can be applied to other historically and acoustically significant spaces. [Work supported by the National Endowment for the Arts.

  15. Total colonic aganglionosis and imperforate anus in a severely affected infant with Pallister-Hall syndrome.

    PubMed

    Li, Mindy H; Eberhard, Moriah; Mudd, Pamela; Javia, Luv; Zimmerman, Robert; Khalek, Nahla; Zackai, Elaine H

    2015-03-01

    Pallister-Hall syndrome is a complex malformation syndrome characterized by a wide range of anomalies including hypothalamic hamartoma, polydactyly, bifid epiglottis, and genitourinary abnormalities. It is usually caused by truncating frameshift/nonsense and splicing mutations in the middle third of GLI3. The clinical course ranges from mild to lethal in the neonatal period. We present the first patient with Pallister-Hall syndrome reported with total colonic aganglionosis, a rare form of Hirschsprung disease with poor long-term outcome. The patient also had an imperforate anus, which is the third individual with Pallister-Hall syndrome reported with both Hirschsprung disease and an imperforate anus. Molecular testing via amniocentesis showed an apparently de novo novel nonsense mutation c.2641 C>T (p.Gln881*). His overall medical course was difficult and was complicated by respiratory failure and pan-hypopituitarism. Invasive care was ultimately withdrawn, and the patient expired at three months of age. This patient's phenotype was complex with unusual gastrointestinal features ultimately leading to a unfavorable prognosis and outcome, highlighting the range of clinical severity in patients with Pallister-Hall syndrome. © 2015 Wiley Periodicals, Inc.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.; Ghimire, N. J.; Jiang, J. S.

    Extremely large magnetoresistance (XMR) was recently discovered in YSb but its origin, along with that of many other XMR materials, is an active subject of debate. Here we demonstrate that YSb, with a cubic crystalline lattice and anisotropic bulk electron Fermi pockets, can be an excellent candidate for revealing the origin of XMR. We carried out angle dependent Shubnikov – de Haas quantum oscillation measurements to determine the volume and shape of the Fermi pockets. In addition, by investigating both Hall and longitudinal magnetoresistivities, we reveal that the origin of XMR in YSb lies in its carrier high mobility withmore » a diminishing Hall factor that is obtained from the ratio of the Hall and longitudinal magentoresistivities. The high mobility leads to a strong magnetic field dependence of the longitudinal magnetoconductivity while a diminishing Hall factor reveals the latent XMR hidden in the longitudinal magnetoconductivity whose inverse has a nearly quadratic magnetic-field dependence. The Hall factor highlights the deviation of the measured magnetoresistivity from its full potential value and provides a general formulation to reveal the origin of XMR behavior in high mobility materials and of nonsaturating MR behavior as a whole. Our approach can be readily applied to other XMR materials.« less

  17. Measurements of dynamo electric field and momentum transport induced by fluctuations on HIST

    NASA Astrophysics Data System (ADS)

    Hirono, H.; Hanao, T.; Hyobu, T.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Coaxial Helicity injection (CHI) is an efficient current-drive method used in spheromak and spherical torus (ST) experiments. It is an important issue to investigate dynamo effect to explore CHI current drive mechanisms. To establish the dynamo model with two-fluid Hall effects, we verify the parallel mean-field Ohm's law balance. The spatial profiles of the MHD/Hall dynamo electric fields are measured by using Mach probe and Hall probe involving 3-axis magnetic pick-up coils. The MHD/Hall fluctuation-induced electromotive forces are large enough to sustain the mean toroidal current against the resistive decay. We have measured the electron temperature and the density with great accuracy by using a new electrostatic probe with voltage sweeping. The result shows that the electron temperature is high in the core region and low in the central open flux column (OFC), and the electron density is highest in the OFC region. The Hall dynamo becomes more dominant in a lower density region compared to the MHD dynamo. In addition, the fluctuation-induced Maxwell and Reynolds stresses are calculated to examine the fast radial transport of momentum from the OFC to the core region during the dynamo drive.

  18. The Hall Instability of Weakly Ionized, Radially Stratified, Rotating Disks

    NASA Astrophysics Data System (ADS)

    Liverts, Edward; Mond, Michael; Chernin, Arthur D.

    2007-09-01

    Cool weakly ionized gaseous rotating disks are considered by many models to be the origin of the evolution of protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony. Traditionally, axisymmetric magnetohydrodynamic (MHD) and, recently, Hall-MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum and of radial density stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating fluid in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the protoplanetary disk and, thus, perhaps initiates the road to planet formation. The Hall instability is excited due to the combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the rotation period. This family of instabilities is introduced here for the first time in an astrophysical context.

  19. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  20. Outdoor concert hall sound design: idea and possible solutions

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann; Lee, Jung-Min; Kim, Wanjung; Kim, Hwan; Choi, Jung-Woo; Wang, Semyung

    Sound design of outdoor concert halls needs to satisfy two contradictory objectives: good sound reproduction within the hall, as well as the minimization of external sound radiation. Outdoor concert hall usually has open space, therefore good sound for the listeners can be bad sound for its neighborhood. It would be a good attempt to have a virtual sound wall that can reflect all sound, therefore making a relatively quiet zone in the outside. This attempt can be possible if we could produce invisible but very high impedance mismatch around the hall, for a selected frequency band. This can be possible if we can generate an acoustically bright zone inside and a dark (quite) zone outside. Earlier work [Choi, J.-W. and Kim, Y.-H. (2002). J. Acoust. Soc. Am. 111, 1695-1700], at least, assures it is possible for a selected region and frequencies. Simulations show that it is possible for a two-dimensional case. Experimental verification has been also tried. The discrepancies have been explained in terms of the number of loudspeakers, their spatial distributions, spacing with regard to wavelength. The dependency of its performances with respect to the size of bright and dark zone scaled by wavelength of interest has also been explained.

Top