Sample records for halo cluster pal

  1. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  2. Duration of the Early Galactic Formation Epoch: HST Photometry for Red-Horizontal Branch Clusters in the Outer Halo

    NASA Astrophysics Data System (ADS)

    Hesser, J. E.; Stetson, P. B.; McClure, R. D.; van den Bergh, S.; Bolte, M.; Harris, W. E.; van den Berg, D. A.; Bell, R. A.; Fahlman, G. G.; Richer, H. B.; Bond, H. E.

    1997-12-01

    Last year we presented evidence from HST photometry of the low-metallicity cluster NGC 2419 (M_V = -9.5, R_⊙ ~ 90 kpc, [Fe/H] = -2.2) that globular cluster formation began at essentially the same time throughout a region of the Galactic halo now almost 200 kpc in diameter (Harris et al. 1997 AJ 114, 1030). We now turn to the time spread of halo formation, with the ultimate aim of addressing the relative roles of mergers over the first 4 or more Gyrs (Searle & Zinn 1978, ApJ, 225, 357; Lee, Demarque & Zinn 1994 ApJ, 423, 248) versus models favoring a rapid collapse (Eggen, Lynden-Bell & Sandage 1962, ApJ, 236, 748; Stetson, VandenBerg & Bolte 1996, PASP, 108, 560), or some combination of those and other processes. We provide the first reliable measurements from the giant branch through the main-sequence turnoffs of red-horizontal-branch clusters in the outer halo, which are frequently postulated to be younger than most other globular clusters. From WFPC2 F555W (`V') and F814W (`I') photometry for Pal 3 (M_V = -5.2, R_⊙ ~ 87 kpc), Pal 4 (M_V = -5.8, R_⊙ ~ 98 kpc), and Eridanus (M_V = -4.8, R_⊙ ~ 78 kpc), all with [Fe/H] ~ -1.5, we estimate their relative ages by making differential comparisons among them and with respect to inner-halo objects of, presumably, comparable chemical compositions. It seems likely at this stage of our analysis that (a) the three clusters are the same age to our measurement precision of ~ 1 Gyr, and, (b) the CMDs of all three outer halo clusters differ from those of M 3 and M 5 (our template clusters of similar metallicity), in the sense that the outer halo clusters are younger by ~ 3 Gyr, or they are ~ 0.5 dex more metal-rich than currently thought. Large uncertainties in chemical compositions (He, [alpha /Fe], [CNO/Fe]) for outer halo and template clusters alike mask the true interpretation.

  3. Disruption of the Globular Cluster Pal 5

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Orbit calculations suggest that the sparse globular cluster, Pal 5, will pass within 7 kpc of the Galactic center the next time it crosses the plane, where it might be destroyed by tidal stresses. We study this problem, treating Pal 5 as a self-consistent dynamical system orbiting through an external potential that represents the Galaxy. The first part of the problem is to find suitable analytic approximations to the Galactic potential. They must be valid in all regions the cluster is likely to explore. Observed velocity and positional data for Pal 5 are used as initial conditions to determine the orbit. Methods we used for a different problem some 12 years ago have been adapted to this problem. Three experiments have been run, with M/L= 1, 3, and 10, for the cluster model. The cluster blew up shortly after passing through the Galactic plane (about 130 Myrs after the beginning of the run) with M/L=1. At M/L = 3 and 10 the cluster survived, although it got quite a kick in the fundamental mode on passing through the plane. But the fundamental mode oscillation died out in a couple of oscillation cycles at M/L=10. Pal 5 will probably be destroyed on its next crossing of the Galactic plane if M/L=1, but it can survive (albeit with fairly heavy damage) if NI/L=3. We haven't tried to trap the mass limits more closely than that. Pal 5 comes through pretty well unscathed at M/L=10. An interesting follow-up experiment would be to back the cluster up along its orbit to look at its previous passage through the Galactic plane, to see what kind of object it might have been at earlier times.

  4. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE PAGES

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2017-12-01

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  5. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  6. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  7. Cosmic web type dependence of halo clustering

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.

    2018-01-01

    We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.

  8. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  9. Stellar-to-halo mass relation of cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  10. Stellar-to-halo mass relation of cluster galaxies

    DOE PAGES

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...

    2017-07-04

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  11. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  12. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    NASA Astrophysics Data System (ADS)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  13. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N., E-mail: cockcroft@physics.mcmaster.ca, E-mail: harris@physics.mcmaster.ca, E-mail: ferguson@roe.ac.uk

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color,more » and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.« less

  14. The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster?

    NASA Astrophysics Data System (ADS)

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N.; Huxor, Avon; Ibata, Rodrigo; Irwin, Mike J.; McConnachie, Alan W.; Woodley, Kristin A.; Chapman, Scott C.; Lewis, Geraint F.; Puzia, Thomas H.

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg2. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc <= r <= 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' ≈ 19.9, (g' - i') ≈ 0.6, concentration parameter c ≈ 1.0, a core radius rc ≈ 3.5 pc, and a half-light radius rh ≈ 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  15. The halo boundary of galaxy clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  16. The Halo Boundary of Galaxy Clusters in the SDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  17. The halo boundary of galaxy clusters in the SDSS

    DOE PAGES

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...

    2017-05-18

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less

  18. The Halo Boundary of Galaxy Clusters in the SDSS

    NASA Astrophysics Data System (ADS)

    Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.

    2017-05-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  19. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    NASA Astrophysics Data System (ADS)

    Salcedo, Andrés N.; Maller, Ariyeh H.; Berlind, Andreas A.; Sinha, Manodeep; McBride, Cameron K.; Behroozi, Peter S.; Wechsler, Risa H.; Weinberg, David H.

    2018-04-01

    We explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 1011-5.0 × 1013 h-1 M⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.

  20. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  1. On the absence of radio haloes in clusters with double relics

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Cassano, R.; Brüggen, M.; Ogrean, G. A.; Riseley, C. J.; Cuciti, V.; de Gasperin, F.; Golovich, N.; Kale, R.; Venturi, T.; van Weeren, R. J.; Wik, D. R.; Wittman, D.

    2017-09-01

    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio haloes, through complex processes likely linked to turbulent re-acceleration of cosmic ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4 GHz-M500 correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass-ratio has an impact on the presence or absence of radio haloes (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggest that the absence of radio haloes could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.

  2. The Newly-Discovered Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, D.; Huxor, A.; Ferguson, A.

    2012-08-01

    In this contribution we describe the discovery of a large number of globular clusters in the outer halo of M31 from the Pan-Andromeda Archaeological Survey (PAndAS). New globular clusters have also been found in the outskirts of M33, and NGC 147 and 185. Many of the remote M31 clusters are observed to preferentially project onto tidal debris streams in the stellar halo, suggesting that much of the outer M31 globular cluster system has been assembled via the accretion of satellite galaxies. We briefly discuss the global properties of the M31 halo globular cluster system.

  3. A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.

    We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less

  4. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    DOE PAGES

    Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.; ...

    2018-01-15

    Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less

  5. Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcedo, Andres N.; Maller, Ariyeh H.; Berlind, Andreas A.

    Here, we explore the phenomenon commonly known as halo assembly bias, whereby dark matter haloes of the same mass are found to be more or less clustered when a second halo property is considered, for haloes in the mass range 3.7 × 10 11–5.0 × 10 13 h –1 M ⊙. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if haloes are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clusteringmore » information of the halo population. The mean values of some halo properties depend on their halo's distance to a more massive neighbour. Halo samples selected by having high values of one of these properties therefore inherit a neighbour bias such that they are much more likely to be close to a much more massive neighbour. This neighbour bias largely accounts for the secondary bias seen in haloes binned by mass and split by concentration or age. However, haloes binned by other mass-like properties still show a secondary bias even when the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.« less

  6. Baryonic dark clusters in galactic halos and their observable consequences

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Salpeter, Edwin E.

    1994-01-01

    We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within

  7. Neutralinos and the Origin of Radio Halos in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Colafrancesco, S.; Mele, B.

    2001-11-01

    We assume that the supersymmetric lightest neutralino is a good candidate for the cold dark matter in the galaxy halo and explore the possibility to produce extended diffuse radio emission from high-energy electrons arising from the neutralino annihilation in galaxy clusters whose intracluster medium is filled with a large-scale magnetic field. We show that these electrons fit the population of seed relativistic electrons that is postulated in many models for the origin of cluster radio halos. For a uniform magnetic field of ~1-3 μG the population of seed relativistic electrons from neutralino annihilation can fit the radio halo spectra of two well-studied clusters: Coma and 1E 0657-56. In the case of a magnetic field that is radially decreasing from the cluster center, central values ~8 μG (for Coma) and ~50 μG (for 1E 0657-56) are required to fit the data. The radio halo data strongly favor a centrally peaked dark matter density profile (like a Navarro, Frenk, & White [NFW97] density profile). The shape and the frequency extension of the radio halo spectra are connected with the mass and physical composition of the neutralino. A pure gaugino neutralino with mass Mχ>=80 GeV can reasonably fit the radio halo spectra of both Coma and 1E 0657-56. The model we present here provides a number of extra predictions that make it definitely testable. On the one hand, it agrees quite well with the observations that (1) the radio halo is centered on the cluster dynamical center, usually coincident with the center of its X-ray emission; (2) the radio halo surface brightness is similar to the X-ray one; and (3) the monochromatic radio luminosity at 1.4 GHz correlates strongly with the intracluster (IC) gas temperature. On the other hand, the same model predicts that radio halos should be present in every cluster, which is not presently observed, although the predicted radio halo luminosities can change (decrease) by factors of up to ~102-106, depending on the amplitude and

  8. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  9. Real- and redshift-space halo clustering in f(R) cosmologies

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder

    2017-05-01

    We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.

  10. Globular cluster systems - Comparative evolution of Galactic halos

    NASA Astrophysics Data System (ADS)

    Harris, William E.

    Space distributions, metallicity/age distributions, and kinematics are considered for the Milky Way halo system. Comparisons are made with other systems, and time scales for dynamical evolution are considered. It is noted that the globular cluster subsystems of halos resemble each other more closely than their parent galaxies do; this forms a reasonable basis for supposing that they represent a kind of underlying unity in the protogalaxy formation process.

  11. High-Resolution CCD Spectra of Stars in Globular Clusters. IX. The "Young" Clusters Ruprecht 106 and PAL 12

    NASA Astrophysics Data System (ADS)

    Brown, Jeffrey A.; Wallerstein, George; Zucker, Daniel

    1997-07-01

    We have performed a spectroscopic abundance analysis of two stars each in the anomalously young globular clusters Rup 106 and Pal 12. We find [Fe/H] =~ -1.45 for Rup 106 and -1.0 for Pal 12. The abundance ratios in both clusters are peculiar in comparison to other globulars: the alpha -elements are not enhanced over the solar ratio. We find that oxygen in Rup 106 is also relatively low, with [O/Fe] =~ 0.0 - +0.1. The similarity of the ratio of the alpha-elements to iron to the solar ratio shows that species contributed by supernovae of type Ia have ``caught up" with species produced by SN II's. The similar contributions of the alpha - and Fe-peak species to disk stars shows that age, not metallicity, is the determining factor in the ratio of SN II/SN Ia nucleosynthesis. Galactic enrichment models show that these abundance ratios can be understood as being the result of these two clusters coming from an environment with multiple discontinuous star formation events.

  12. The STREGA survey - II. Globular cluster Palomar 12

    NASA Astrophysics Data System (ADS)

    Musella, I.; Di Criscienzo, M.; Marconi, M.; Raimondo, G.; Ripepi, V.; Cignoni, M.; Bono, G.; Brocato, E.; Dall'Ora, M.; Ferraro, I.; Grado, A.; Iannicola, G.; Limatola, L.; Molinaro, R.; Moretti, M. I.; Stetson, P. B.; Capaccioli, M.; Cioni, M.-R. L.; Getman, F.; Schipani, P.

    2018-01-01

    In the framework of the STREGA (STRucture and Evolution of the GAlaxy) survey, two fields around the globular cluster Pal 12 were observed with the aim of detecting the possible presence of streams and/or an extended halo. The adopted stellar tracers are the main sequence, turn-off and red giant branch stars. We discuss the luminosity function and the star counts in the observed region covering about 2 tidal radii, confirming that Pal 12 appears to be embedded in the Sagittarius Stream. Adopting an original approach to separate cluster and field stars, we do not find any evidence of significant extra-tidal Pal 12 stellar populations. The presence of the Sagittarius stream seems to have mimicked a larger tidal radius in previous studies. Indeed, adopting a King model, a redetermination of this value gives rT = 0.22 ± 0.1 deg.

  13. clustep: Initial conditions for galaxy cluster halo simulations

    NASA Astrophysics Data System (ADS)

    Ruggiero, Rafael

    2017-11-01

    clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

  14. Comparison of Intra-cluster and M87 Halo Orphan Globular Clusters in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Louie, Tiffany Kaye; Tuan, Jin Zong; Martellini, Adhara; Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric; Longobardi, Alessia; Lim, Sungsoon

    2018-01-01

    We present a study of “orphan” globular clusters (GCs) — GCs with no identifiable nearby host galaxy — discovered in NGVS, a 104 deg2 CFHT/MegaCam imaging survey. At the distance of the Virgo cluster, GCs are bright enough to make good spectroscopic targets and many are barely resolved in good ground-based seeing. Our orphan GC sample is derived from a subset of NGVS-selected GC candidates that were followed up with Keck/DEIMOS spectroscopy. While our primary spectroscopic targets were candidate GC satellites of Virgo dwarf elliptical and ultra-diffuse galaxies, many objects turned out to be non-satellites based on a radial velocity mismatch with the Virgo galaxy they are projected close to. Using a combination of spectral characteristics (e.g., absorption vs. emission), Gaussian mixture modeling of radial velocity and positions, and extreme deconvolution analysis of ugrizk photometry and image morphology, these non-satellites were classified into: (1) intra-cluster GCs (ICGCs) in the Virgo cluster, (2) GCs in the outer halo of M87, (3) foreground Milky Way stars, and (4) background galaxies. The statistical distinction between ICGCs and M87 halo GCs is based on velocity distributions (mean of 1100 vs. 1300 km/s and dispersions of 700 vs. 400 km/s, respectively) and radial distribution (diffuse vs. centrally concentrated, respectively). We used coaddition to increase the spectral SNR for the two classes of orphan GCs and measured the equivalent widths (EWs) of the Mg b and H-beta absorption lines. These EWs were compared to single stellar population models to obtain mean age and metallicity estimates. The ICGCs and M87 halo GCs have <[Fe/H> = –0.6+/–0.3 and –0.4+/–0.3 dex, respectively, and mean ages of >~ 5 and >~ 10 Gyr, respectively. This suggests the M87 halo GCs formed in relatively high-mass galaxies that avoided being tidally disrupted by M87 until they were close to the cluster center, while IGCCs formed in relatively low-mass galaxies that

  15. Towards Accurate Modelling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-04-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  16. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    NASA Astrophysics Data System (ADS)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  17. Towards accurate modelling of galaxy clustering on small scales: testing the standard ΛCDM + halo model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-07-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter haloes. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the `accurate' regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard Λ cold dark matter (ΛCDM) + halo model against the clustering of Sloan Digital Sky Survey (SDSS) seventh data release (DR7) galaxies. Specifically, we use the projected correlation function, group multiplicity function, and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir haloes) matches the clustering of low-luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the `standard' halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  18. Modelling galaxy clustering: halo occupation distribution versus subhalo matching.

    PubMed

    Guo, Hong; Zheng, Zheng; Behroozi, Peter S; Zehavi, Idit; Chuang, Chia-Hsun; Comparat, Johan; Favole, Ginevra; Gottloeber, Stefan; Klypin, Anatoly; Prada, Francisco; Rodríguez-Torres, Sergio A; Weinberg, David H; Yepes, Gustavo

    2016-07-01

    We model the luminosity-dependent projected and redshift-space two-point correlation functions (2PCFs) of the Sloan Digital Sky Survey (SDSS) Data Release 7 Main galaxy sample, using the halo occupation distribution (HOD) model and the subhalo abundance matching (SHAM) model and its extension. All the models are built on the same high-resolution N -body simulations. We find that the HOD model generally provides the best performance in reproducing the clustering measurements in both projected and redshift spaces. The SHAM model with the same halo-galaxy relation for central and satellite galaxies (or distinct haloes and subhaloes), when including scatters, has a best-fitting χ 2 /dof around 2-3. We therefore extend the SHAM model to the subhalo clustering and abundance matching (SCAM) by allowing the central and satellite galaxies to have different galaxy-halo relations. We infer the corresponding halo/subhalo parameters by jointly fitting the galaxy 2PCFs and abundances and consider subhaloes selected based on three properties, the mass M acc at the time of accretion, the maximum circular velocity V acc at the time of accretion, and the peak maximum circular velocity V peak over the history of the subhaloes. The three subhalo models work well for luminous galaxy samples (with luminosity above L * ). For low-luminosity samples, the V acc model stands out in reproducing the data, with the V peak model slightly worse, while the M acc model fails to fit the data. We discuss the implications of the modelling results.

  19. The globular cluster-dark matter halo connection

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500<-17, values of ξ > 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  20. Accurate Modeling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    NASA Astrophysics Data System (ADS)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron; Scoccimarro, Roman

    2015-01-01

    The large-scale distribution of galaxies can be explained fairly simply by assuming (i) a cosmological model, which determines the dark matter halo distribution, and (ii) a simple connection between galaxies and the halos they inhabit. This conceptually simple framework, called the halo model, has been remarkably successful at reproducing the clustering of galaxies on all scales, as observed in various galaxy redshift surveys. However, none of these previous studies have carefully modeled the systematics and thus truly tested the halo model in a statistically rigorous sense. We present a new accurate and fully numerical halo model framework and test it against clustering measurements from two luminosity samples of galaxies drawn from the SDSS DR7. We show that the simple ΛCDM cosmology + halo model is not able to simultaneously reproduce the galaxy projected correlation function and the group multiplicity function. In particular, the more luminous sample shows significant tension with theory. We discuss the implications of our findings and how this work paves the way for constraining galaxy formation by accurate simultaneous modeling of multiple galaxy clustering statistics.

  1. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo.more » We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.« less

  2. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  3. An Unlikely Radio Halo in the Low X-Ray Luminosity Galaxy Cluster RXCJ1514.9-1523

    NASA Technical Reports Server (NTRS)

    Marketvitch, M.; ZuHone, J. A.; Lee, D.; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Markevitch, M.; Athreya, R. M.

    2011-01-01

    Aims: We report the discovery of a giant radio halo in the galaxy cluster RXCJ1514,9-1523 at z=0.22 with a relatively low X-ray luminosity, L(sub X) (0.1-2.4kev) approx. 7 x 10(exp 44) ergs/s. Methods: This faint, diffuse radio source is detected with the Giant Meterwave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. Results: The integrated radio spectrum of the halo is quite steep, with a slope alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L(sub X) < 8 x 10(exp 44) ergs/s. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the very rare, new class of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.

  4. A survey for dwarf galaxy remnants around 14 globular clusters in the outer halo

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Martínez Delgado, D.; Muñoz, R. R.; Carballo-Bello, J. A.; Valls-Gabaud, D.; Grebel, E. K.; Santana, F. A.; Côté, P.; Djorgovski, S. G.

    2018-06-01

    We report the results of a systematic photometric survey of the peripheral regions of a sample of 14 globular clusters in the outer halo of the Milky Way at distances dGC > 25 kpc from the Galactic Centre. The survey is aimed at searching for the remnants of the host satellite galaxies where these clusters could originally have been formed before being accreted on to the Galactic halo. The limiting surface brightness varies within our sample, but reaches μV, lim = 30-32 mag arcsec-2. For only two globular clusters (NGC 7492 and Whiting 1; already suggested to be associated with the Sagittarius galaxy), we detect extended stellar populations that cannot be associated with either the clusters themselves or with the surrounding Galactic field population. We show that the lack of substructures around globular clusters at these Galactocentric distances is still compatible with the predictions of cosmological simulations whereby in the outer halo the Galactic globular cluster system is built up through hierarchical accretion at early epochs.

  5. The XMM Cluster Survey: the halo occupation number of BOSS galaxies in X-ray clusters

    NASA Astrophysics Data System (ADS)

    Mehrtens, Nicola; Romer, A. Kathy; Nichol, Robert C.; Collins, Chris A.; Sahlén, Martin; Rooney, Philip J.; Mayers, Julian A.; Bermeo-Hernandez, A.; Bristow, Martyn; Capozzi, Diego; Christodoulou, L.; Comparat, Johan; Hilton, Matt; Hoyle, Ben; Kay, Scott T.; Liddle, Andrew R.; Mann, Robert G.; Masters, Karen; Miller, Christopher J.; Parejko, John K.; Prada, Francisco; Ross, Ashley J.; Schneider, Donald P.; Stott, John P.; Streblyanska, Alina; Viana, Pedro T. P.; White, Martin; Wilcox, Harry; Zehavi, Idit

    2016-12-01

    We present a direct measurement of the mean halo occupation distribution (HOD) of galaxies taken from the eleventh data release (DR11) of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS). The HOD of BOSS low-redshift (LOWZ: 0.2 < z < 0.4) and Constant-Mass (CMASS: 0.43 < z < 0.7) galaxies is inferred via their association with the dark matter haloes of 174 X-ray-selected galaxy clusters drawn from the XMM Cluster Survey (XCS). Halo masses are determined for each galaxy cluster based on X-ray temperature measurements, and range between log10(M180/M⊙) = 13 and 15. Our directly measured HODs are consistent with the HOD-model fits inferred via the galaxy-clustering analyses of Parejko et al. for the BOSS LOWZ sample and White et al. for the BOSS CMASS sample. Under the simplifying assumption that the other parameters that describe the HOD hold the values measured by these authors, we have determined a best-fitting alpha-index of 0.91 ± 0.08 and 1.27^{+0.03}_{-0.04} for the CMASS and LOWZ HOD, respectively. These alpha-index values are consistent with those measured by White et al. and Parejko et al. In summary, our study provides independent support for the HOD models assumed during the development of the BOSS mock-galaxy catalogues that have subsequently been used to derive BOSS cosmological constraints.

  6. Discovery of a Giant Radio Halo in a New Planck Galaxy Cluster PLCKG171.9-40.7

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Kale, Ruta; Wik, Daniel R.; Venturi, Tiziana; Markevitch, Maxim

    2013-01-01

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from a NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, has an extent of approx.1 Mpc and a radio power of approx. 5×10(exp 24)W/Hz at 1.4 GHz. Its integrated radio spectrum has a slope of alpha approx. = 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMMNewton X-ray data shows that the cluster is hot (approx. 10 keV) and disturbed, consistent with X-ray selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  7. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE PAGES

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; ...

    2018-01-04

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  8. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh

    Here, we study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halomore » shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.« less

  9. New Halo Stars of the Galactic Globular Clusters M3 and M13 in the LAMOST DR1 Catalog

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2016-10-01

    M3 and M13 are Galactic globular clusters with previous reports of surrounding stellar halos. We present the results of a search for members and extratidal cluster halo stars within and outside of the tidal radius of these clusters in the LAMOST Data Release 1. We find seven candidate cluster members (inside the tidal radius) of both M3 and M13, respectively. In M3 we also identify eight candidate extratidal cluster halo stars at distances up to ˜9.8 times the tidal radius, and in M13 we identify 12 candidate extratidal cluster halo stars at distances up to ˜13.8 times the tidal radius. These results support previous indications that both M3 and M13 are surrounded by extended stellar halos, and we find that the GC destruction rates corresponding to the observed mass loss are generally significantly higher than theoretical studies predict.

  10. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution inmore » Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging

  11. The halo Boltzmann equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  12. STRUCTURAL PARAMETERS FOR 10 HALO GLOBULAR CLUSTERS IN M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jun, E-mail: majun@nao.cas.cn

    2015-05-15

    In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5–7 × 10{sup 5} L{sub ⊙} in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parametersmore » include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.« less

  13. Chronology of the halo globular cluster system formation.

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Weiss, A.

    1997-11-01

    Using up-to-date stellar models and isochrones we determine the age of 25 galactic halo clusters. The clusters are distributed into four groups according to metallicity. We measure the absolute age of a reference cluster in each group, and then find the relative ages of the other clusters relative to this one. This combination yields the most reliable results. We find that the oldest cluster group on average is 11.8+/-0.9Gyr or 12.3+/-0.3Gyr old, depending on whether we include Arp 2 and Rup 106. The average age of all clusters is about 10.5Gyr. Questions concerning a common age for all clusters and a relation between metallicity and age are addressed. The groups of lower metallicity appear to be coeval, but our results indicate that globally the sample has an age spread, and age and metallicity are correlated but not with a simple linear relation.

  14. Mergers and Mass Accretion for Infalling Halos Both End Well Outside Cluster Virial Radii

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-06-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8^{+2.3}_{-1.0} \\,R_{vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7^{+3.3}_{-2.2} \\,R_{vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  15. Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Chapman, S. C.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond ≈30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  16. Revealing modified gravity signals in matter and halo hierarchical clustering

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Koyama, Kazuya; Bose, Benjamin; Zhao, Gong-Bo

    2017-07-01

    We use a set of N-body simulations employing a modified gravity (MG) model with Vainshtein screening to study matter and halo hierarchical clustering. As test-case scenarios we consider two normal branch Dvali-Gabadadze-Porrati (nDGP) gravity models with mild and strong growth rate enhancement. We study higher-order correlation functions ξn(R ) up to n =9 and associated reduced cumulants Sn(R )≡ξn(R )/σ (R )2n -2. We find that the matter probability distribution functions are strongly affected by the fifth force on scales up to 50 h-1 Mpc , and the deviations from general relativity (GR) are maximized at z =0 . For reduced cumulants Sn, we find that at small scales R ≤6 h-1 Mpc the MG is characterized by lower values, with the deviation growing from 7% in the reduced skewness up to even 40% in S5. To study the halo clustering we use a simple abundance matching and divide haloes into thee fixed number density samples. The halo two-point functions are weakly affected, with a relative boost of the order of a few percent appearing only at the smallest pair separations (r ≤5 h-1 Mpc ). In contrast, we find a strong MG signal in Sn(R )'s, which are enhanced compared to GR. The strong model exhibits a >3 σ level signal at various scales for all halo samples and in all cumulants. In this context, we find that the reduced kurtosis to be an especially promising cosmological probe of MG. Even the mild nDGP model leaves a 3 σ imprint at small scales R ≤3 h-1 Mpc , while the stronger model deviates from a GR signature at nearly all scales with a significance of >5 σ . Since the signal is persistent in all halo samples and over a range of scales, we advocate that the reduced kurtosis estimated from galaxy catalogs can potentially constitute a strong MG-model discriminatory as well as GR self-consistency test.

  17. Abundances in the Young Globulars Ruprecht 106 and PAL 12

    NASA Astrophysics Data System (ADS)

    Brown, J. A.; Wallerstein, G.; Zucker, D.

    1995-12-01

    We have observed two red giants in each of the young globular clusters Ruprecht 106 and Pal 12 with the CTIO 4m echelle and analyzed the spectra for chemical composition. We find for Rup 106 [Fe/H] =~ -1.5, [O/Fe] =~ 0.0, and [alpha /Fe] =~ -0.2. For Pal 12 we find [Fe/H] =~ -1.0 and [alpha /Fe] =~ -0.05; we have no information on oxygen in Pal 12. The light odd-Z metals Na and Al are both overdeficient in both clusters' stars. The stars are all CN-weak compared to similar giants in nearby globulars of comparable [Fe/H]. The abundance results for Rup 106 rule out the possibility that the apparent youth of the cluster as derived from its color-magnitude diagram is caused by an anomalous composition; the lack of results for oxygen prevent us from making a similar statement for Pal 12. These abundances imply a very different star formation history for the material from which these clusters formed, compared to the well-studied old nearby globulars, and are consistent with the suggestion that these clusters are accreted objects, and were not formed in the same environment as the old clusters.

  18. The two-component giant radio halo in the galaxy cluster Abell 2142

    NASA Astrophysics Data System (ADS)

    Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.

    2017-07-01

    Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, I.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, I.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, I.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On

  19. Distant star clusters of the Milky Way in MOND

    NASA Astrophysics Data System (ADS)

    Haghi, H.; Baumgardt, H.; Kroupa, P.

    2011-03-01

    We determine the mean velocity dispersion of six Galactic outer halo globular clusters, AM 1, Eridanus, Pal 3, Pal 4, Pal 15, and Arp 2 in the weak acceleration regime to test classical vs. modified Newtonian dynamics (MOND). Owing to the nonlinearity of MOND's Poisson equation, beyond tidal effects, the internal dynamics of clusters is affected by the external field in which they are immersed. For the studied clusters, particle accelerations are much lower than the critical acceleration a0 of MOND, but the motion of stars is neither dominated by internal accelerations (ai ≫ ae) nor external accelerations (ae ≫ ai). We use the N-body code N-MODY in our analysis, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti et al. (2006, ApJ, 640, 741) to derive the line-of-sight velocity dispersion by adding the external field effect. We show that Newtonian dynamics predicts a low-velocity dispersion for each cluster, while in modified Newtonian dynamics the velocity dispersion is much higher. We calculate the minimum number of measured stars necessary to distinguish between Newtonian gravity and MOND with the Kolmogorov-Smirnov test. We also show that for most clusters it is necessary to measure the velocities of between 30 to 80 stars to distinguish between both cases. Therefore the observational measurement of the line-of-sight velocity dispersion of these clusters will provide a test for MOND.

  20. The Age of the Inner Halo Globular Cluster NGC 6652

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  1. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  2. The clustering of baryonic matter. I: a halo-model approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedeli, C., E-mail: cosimo.fedeli@oabo.inaf.it

    2014-04-01

    In this paper I generalize the halo model for the clustering of dark matter in order to produce the power spectra of the two main baryonic matter components in the Universe: stars and hot gas. As a natural extension, this can be also used to describe the clustering of all mass. According to the design of the halo model, the large-scale power spectra of the various matter components are physically connected with the distribution of each component within bound structures and thus, ultimately, with the complete set of physical processes that drive the formation of galaxies and galaxy clusters. Besidesmore » being practical for cosmological and parametric studies, the semi-analytic model presented here has also other advantages. Most importantly, it allows one to understand on physical ground what is the relative contribution of each matter component to the total clustering of mass as a function of scale, and thus it opens an interesting new window to infer the distribution of baryons through high precision cosmic shear measurements. This is particularly relevant for future wide-field photometric surveys such as Euclid. In this work the concept of the model and its uncertainties are illustrated in detail, while in a companion paper we use a set of numerical hydrodynamic simulations to show a practical application and to investigate where the model itself needs to be improved.« less

  3. A Giant Warm Baryonic Halo for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Max; Lieu, Richard; Joy, Marshall K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Several deep PSPC observations of the Coma cluster unveil a very large-scale halo of soft X-ray emission, substantially in excess of the well know radiation from the hot intra-cluster medium. The excess emission, previously reported in the central cluster regions through lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.5 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission at warm temperatures. The mass of this plasma is at least on par with that of the hot X-ray emitting plasma, and significantly more massive if the plasma resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict greater than 50 percent by mass of today's baryons reside in warm-hot filaments converging at clusters of galaxies.

  4. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  5. The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo

    NASA Astrophysics Data System (ADS)

    Harris, William

    2011-10-01

    The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.

  6. VizieR Online Data Catalog: CCD photometry of Pal 1 (Borissova+ 1995)

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1997-06-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color- magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & VandenBerg (1987ApJS...63..335B) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)g0=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives rc=1.5pc and c=1.46. A mass estimate of 1.1x103M⊙ and a mass-to-light ratio of 1.79 have been obtained using King's (1966AJ.....71...64K) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one. For a description of the uvgr photometric system, see e.g. (1 data file).

  7. Revealing the Cosmic Web-dependent Halo Bias

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  8. The radio relics and halo of El Gordo, a massive z = 0.870 cluster merger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Robert R.; Baker, Andrew J.; Hughes, John P.

    We present 610 MHz and 2.1 GHz imaging of the massive Sunyaev-Zel'dovich Effect selected z = 0.870 cluster merger ACT-CL J0102–4915 ({sup E}l Gordo{sup )}, obtained with the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array (ATCA), respectively. We detect two complexes of radio relics separated by 3.'4 (1.6 Mpc) along the system's northwest-to-southeast collision axis that have high integrated polarization fractions (33%) and steep spectral indices (α between 1 and 2; S {sub ν}∝ν{sup –α}), consistent with creation via Fermi acceleration by shocks in the intracluster medium triggered by the cluster collision. From the spectral index ofmore » the relics, we compute a Mach number M=2.5{sub −0.3}{sup +0.7} and shock speed of 2500{sub −300}{sup +400} km s{sup −1}. With our wide-bandwidth, full-polarization ATCA data, we compute the Faraday depth φ across the northwest relic and find a range of values spanning Δφ = 30 rad m{sup –2}, with a mean value of (φ) = 11 rad m{sup –2} and standard deviation σ{sub φ} = 6 rad m{sup –2}. With the integrated line-of-sight gas density derived from new Chandra X-ray observations, our Faraday depth measurement implies B {sub ∥} ∼ 0.01 μG in the cluster outskirts. The extremely narrow shock widths in the relics (d {sub shock} ≤ 23 kpc), caused by the short synchrotron cooling timescale of relativistic electrons at z = 0.870, prevent us from placing a meaningful constraint on the magnetic field strength B using cooling time arguments. In addition to the relics, we detect a large (r {sub H} ≅ 1.1 Mpc radius), powerful (log (L {sub 1.4}/W Hz{sup –1}) = 25.66 ± 0.12) radio halo with a shape similar to El Gordo's 'bullet'-like X-ray morphology. The spatially resolved spectral-index map of the halo shows the synchrotron spectrum is flattest near the relics, along the system's collision axis, and in regions of high T {sub gas}, all locations associated with recent energy

  9. Giant mini-clusters as possible origin of halo phenomena observed in super-families

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Among 91 mini-clusters from 30 high energy Chiron-type families in Chacaltaya emulsion chambers, there were observed several extremely large multiplicity clusters in the highest energy range, far beyond the average of ordinary type clusters. Some details of microscopic observation of those giant mini-clusters in nuclear emulsion plates and some phenomenological regularity found in common among them are described. Such giant mini-clusters are possible candidates for the origin of narrow symmetric single halo phenomena in X-ray films which are frequently observed in super-families of visible energy greater than 1,000 TeV.

  10. The Effect of Halo Mass on the H I Content of Galaxies in Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Rosenberg, Jessica L.

    2015-10-01

    We combine data from the Sloan Digital Sky Survey (SDSS) and the Arecibo Legacy Fast ALFA Survey (ALFALFA) to study the cold atomic gas content of galaxies in groups and clusters in the local universe. A careful cross-matching of galaxies in the SDSS, ALFALFA, and SDSS group catalogs provides a sample of group galaxies with stellar masses {10}8.4{M}⊙ ≤slant {M}*≤slant {10}10.6{M}⊙ and group halo masses {10}12.5{h}-1{M}⊙ ≤slant {M}h≤slant {10}15.0{h}-1{M}⊙ . Controlling our sample in stellar mass and redshift, we find no significant radial variation in the galaxy H i gas-to-stellar mass ratio for the halo mass range in our sample. However, the fraction of galaxies detected in ALFALFA declines steadily toward the centers of groups, with the effect being most prominent in the most massive halos. In the outskirts of massive halos a hint of a depressed detection fraction for low-mass galaxies suggests pre-processing that decreases the H i in these galaxies before they fall into massive clusters. We interpret the decline in the ALFALFA detection of galaxies in the context of a threshold halo mass for ram pressure stripping for a given galaxy stellar mass. The lack of an observable decrease in the galaxy H i gas-to-stellar mass ratio with the position of galaxies within groups and clusters highlights the difficulty of detecting the impact of environment on the galaxy H i content in a shallow H i survey.

  11. The outer halo globular cluster system of M31 - I. The final PAndAS catalogue

    NASA Astrophysics Data System (ADS)

    Huxor, A. P.; Mackey, A. D.; Ferguson, A. M. N.; Irwin, M. J.; Martin, N. F.; Tanvir, N. R.; Veljanoski, J.; McConnachie, A.; Fishlock, C. K.; Ibata, R.; Lewis, G. F.

    2014-08-01

    We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of Canada-France-Hawaii Telescope/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allows us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from Sloan Digital Sky Survey (SDSS) imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to Rproj ˜ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below MV = -6.0; our 50 per cent completeness limit is MV ≈ -4.1. We construct a uniform set of PAndAS photometric measurements for all known GCs outside Rproj = 25 kpc, and any new GCs within this radius. With these data, we update results from Huxor et al., investigating the luminosity function (LF), colours and effective radii of M31 GCs with a particular focus on the remote halo. We find that the GCLF is clearly bimodal in the outer halo (Rproj > 30 kpc), with the secondary peak at MV ˜ -5.5. We argue that the GCs in this peak have most likely been accreted along with their host dwarf galaxies. Notwithstanding, we also find, as in previous surveys, a substantial number of GCs with above-average luminosity in the outer M31 halo - a population with no clear counterpart in the Milky Way.

  12. Analytical halo model of galactic conformity

    NASA Astrophysics Data System (ADS)

    Pahwa, Isha; Paranjape, Aseem

    2017-09-01

    We present a fully analytical halo model of colour-dependent clustering that incorporates the effects of galactic conformity in a halo occupation distribution framework. The model, based on our previous numerical work, describes conformity through a correlation between the colour of a galaxy and the concentration of its parent halo, leading to a correlation between central and satellite galaxy colours at fixed halo mass. The strength of the correlation is set by a tunable 'group quenching efficiency', and the model can separately describe group-level correlations between galaxy colour (1-halo conformity) and large-scale correlations induced by assembly bias (2-halo conformity). We validate our analytical results using clustering measurements in mock galaxy catalogues, finding that the model is accurate at the 10-20 per cent level for a wide range of luminosities and length-scales. We apply the formalism to interpret the colour-dependent clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We find good overall agreement between the data and a model that has 1-halo conformity at a level consistent with previous results based on an SDSS group catalogue, although the clustering data require satellites to be redder than suggested by the group catalogue. Within our modelling uncertainties, however, we do not find strong evidence of 2-halo conformity driven by assembly bias in SDSS clustering.

  13. A Massive Warm Baryonic Halo in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard

    2003-01-01

    Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.

  14. The Biggest Bangs Since the Big Bang: Unveiling Mergers of Galaxy Clusters with Radio Halos/Relics Using X-ray Temperature Maps

    NASA Astrophysics Data System (ADS)

    Burns, Jack

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ( bangs ) since the Big Bang. Cluster mergers stir the ICM creating shocks and turbulence which are illuminated by Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are clear signposts of recent mergers. Our recent cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray and radio relics/halos are clear candidates for very recent mergers. We propose to analyze a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (e 50 ksec) from Chandra and/or XMM. We will use a new x-ray data analysis pipeline, implemented on a parallelprocessor supercomputer, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. In addition, we will use a control sample of clusters from the HIFLUGCS catalog which do not show radio relics/halos or any significant x-ray surface brightness substructure, thus devoid of recent mergers. The temperature maps will be made using 3 different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. We also plan to use archival Suzaku data for 22 clusters in our sample and study the x-ray temperatures at the outskirts of the clusters. All 48 clusters have archival radio data at d1.4 GHz which will be re-analyzed using advanced algorithms in NRAO s CASA software. We also have new radio data on a subset of these clusters and

  15. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  16. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  17. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  18. Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Qianli; Kang, Xi; Wang, Peng

    In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence canmore » be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.« less

  19. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  20. The clustering of QSOs and the dark matter halos that host them

    NASA Astrophysics Data System (ADS)

    Zhao, Dong-Yao; Yan, Chang-Shuo; Lu, Youjun

    2013-10-01

    The spatial clustering of QSOs is an important measurable quantity which can be used to infer the properties of dark matter halos that host them. We construct a simple QSO model to explain the linear bias of QSOs measured by recent observations and explore the properties of dark matter halos that host a QSO. We assume that major mergers of dark matter halos can lead to the triggering of QSO phenomena, and the evolution of luminosity for a QSO generally shows two accretion phases, i.e., initially having a constant Eddington ratio due to the self-regulation of the accretion process when supply is sufficient, and then declining in rate with time as a power law due to either diminished supply or long term disk evolution. Using a Markov Chain Monte Carlo method, the model parameters are constrained by fitting the observationally determined QSO luminosity functions (LFs) in the hard X-ray and in the optical band simultaneously. Adopting the model parameters that best fit the QSO LFs, the linear bias of QSOs can be predicted and then compared with the observational measurements by accounting for various selection effects in different QSO surveys. We find that the latest measurements of the linear bias of QSOs from both the SDSS and BOSS QSO surveys can be well reproduced. The typical mass of SDSS QSOs at redshift 1.5 < z < 4.5 is ~ (3 - 6) × 1012 h-1 Msolar and the typical mass of BOSS QSOs at z ~ 2.4 is ~ 2 × 1012 h-1 Msolar. For relatively faint QSOs, the mass distribution of their host dark matter halos is wider than that of bright QSOs because faint QSOs can be hosted in both big halos and smaller halos, but bright QSOs are only hosted in big halos, which is part of the reason for the predicted weak dependence of the linear biases on the QSO luminosity.

  1. The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates

    NASA Astrophysics Data System (ADS)

    Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop

    2017-03-01

    We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.

  2. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release

    NASA Astrophysics Data System (ADS)

    Rodríguez-Torres, Sergio A.; Chuang, Chia-Hsun; Prada, Francisco; Guo, Hong; Klypin, Anatoly; Behroozi, Peter; Hahn, Chang Hoon; Comparat, Johan; Yepes, Gustavo; Montero-Dorta, Antonio D.; Brownstein, Joel R.; Maraston, Claudia; McBride, Cameron K.; Tinker, Jeremy; Gottlöber, Stefan; Favole, Ginevra; Shu, Yiping; Kitaura, Francisco-Shu; Bolton, Adam; Scoccimarro, Román; Samushia, Lado; Schlegel, David; Schneider, Donald P.; Thomas, Daniel

    2016-08-01

    We present a study of the clustering and halo occupation distribution of Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn from the Final SDSS-III Data Release. We compare the BOSS results with the predictions of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter haloes selected from the large BigMultiDark N-body simulation of a flat Λ cold dark matter Planck cosmology. We compare the observational data with the simulated ones on a light cone constructed from 20 subsequent outputs of the simulation. Observational effects such as incompleteness, geometry, veto masks and fibre collisions are included in the model, which reproduces within 1σ errors the observed monopole of the two-point correlation function at all relevant scales: from the smallest scales, 0.5 h-1 Mpc, up to scales beyond the baryon acoustic oscillation feature. This model also agrees remarkably well with the BOSS galaxy power spectrum (up to k ˜ 1 h Mpc-1), and the three-point correlation function. The quadrupole of the correlation function presents some tensions with observations. We discuss possible causes that can explain this disagreement, including target selection effects. Overall, the standard HAM model describes remarkably well the clustering statistics of the CMASS sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using weak lensing in the Canada-France-Hawaii Telescope Stripe 82 Survey with the prediction of our clustering model, and find a good agreement within 1σ. The BigMD-BOSS light cone including properties of BOSS galaxies and halo properties is made publicly available.

  3. Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos-Almendares, Felipe; Abadi, Mario; Muriel, Hernán; Coenda, Valeria

    2018-01-01

    Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift (z∼ 1) two sets of particles from individual galactic halos constrained by the fact that, at redshift z = 0, they have density profiles similar to observed ones. At redshift z = 0, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. As the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift z = 0 up to 83% for redshift z∼ 2. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.

  4. The Origins of the Ultra Compact Dwarfs in the halos of the central cluster galaxies in Fornax and Virgo

    NASA Astrophysics Data System (ADS)

    Voggel, Karina Theresia

    2015-08-01

    Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos

  5. Metal abundance of Tal 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinn, R.; Diaz, A.I.

    1982-08-01

    Low-resolution spectrograms have been obtained of the three RR Lyrae variables in the distant and very sparse globular cluster Pal 13. A comparison of these spectrograms with similar ones of several RR Lyrae variables in the globular clusters M4, M5, and M22 reveals that Pal 13 is intermediate to M5 and M22 in metal abundance. A value of (Fe/H) = -1.67 +- 0.15 is obtained for Pal 13 by adopting Zinn's (1980a (Astrophys. J. Suppl. 42,19)) values of (Fe/H) for these other clusters. Pal 13 is another example of a distant halo object that is not extremely metal poor.

  6. VizieR Online Data Catalog: Galaxy clusters: radio halos, relics and parameters (Yuan+, 2015)

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2017-10-01

    A large number of radio halos, relics, and mini-halos have been discovered and measured in recent decades through observations with VLA (e.g., Giovannini & Feretti 2000NewA....5..335G; van Weeren et al. 2011A&A...533A..35V), GMRT (e.g., Venturi et al. 2007A&A...463..937V; Kale et al. 2015A&A...579A..92K), WSRT (e.g., van Weeren et al. 2010Sci...330..347V; Trasatti et al. 2015A&A...575A..45T), and also ATCA (e.g., Shimwell et al. 2014MNRAS.440.2901S, 2015MNRAS.449.1486S). We have checked the radio images of radio halos, relics, and mini-halos in the literature and collected in Table 1 the radio flux Sν at frequencies within a few per cent around 1.4 GHz, 610 MHz, and 325 MHz; we have interpolated the flux at an intermediate frequency if measurements are available at higher and lower frequencies. To establish reliable scaling relations, we include only the very firm detection of diffuse radio emission in galaxy clusters, and omit questionable detections or flux estimates due to problematic point-source subtraction. (3 data files).

  7. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less

  8. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    NASA Astrophysics Data System (ADS)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  9. Abundance Ratios in a Common Proper Motion Pair: Chemical Evidence of Accreted Substructure in the Halo Field?

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    1997-06-01

    Elemental abundances are presented for the metal-poor ([Fe/H] =-1.50) common proper motion pair HD 134439 and HD 134440. The abundances for the two stars are in very good agreement, with the neutral species showing only a small difference (˜0.05 dex) which is well within the statistical and Teff uncertainties. The essentially identical abundances, kinematics, and parallaxes of the two stars indicate that they share a common history. This history, however, appears to be different than other metal-poor stars. Suggestions, based on kinematic evidence, that these two-stars are representative of a distinct accretion event are corroborated by our abundance ratios, which indicate [Mg/Fe], [Si/Fe], and [Ca/Fe] are consistently some ˜0.3 dex lower than the vast majority of metal-poor field stars. Such underabundances have been predicted in environments like dwarf Spheroidals and the Magellanic Clouds. Moreover, our abundance ratio deficiencies are consistent with those recently observed in the the anomalously young globular clusters Rup 106 and Pal 12, which have been alleged to have been accreted from the Magellanic Clouds. The [Fe/H] and retrograde motion of the common proper motion pair are characteristic of the subset of Galactic globular clusters suggested by Rodgers & Paltoglou [ApJ, 283, L5 (1984)] to have been coalesced from satellite galaxies. We also call attention to the metal-poor subgiant BD+03 740 as another possible representative of an accreted or chaotically formed member of the halo field. If recent Fe analyses of this star are correct, then [Mg/Fe] and [0/Fe] are 0.5 dex lower than in other metal-poor field stars. This star also has a relatively low photometrically inferred age; relative youth has been noted as a possible characteristic of accreted field populations, and is qualitatively consistent with the young ages of the purportedly accreted globular clusters Rup 106, Pal 12, Ter 7, and Arp 2. Additionally, the revised [O/Fe] ratio for BD+03 740

  10. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  11. The correlation between the sizes of globular cluster systems and their host dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Robison, Bailey

    2018-07-01

    The sizes of entire systems of globular clusters (GCs) depend not only on the formation and destruction histories of the GCs themselves but also on the assembly, merger, and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of GCs in the GC system and the mass of its host DM halo, calibrated from weak lensing. Here, we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for haloes with masses greater than ˜1012 M⊙. The steep non-linear dependence of this relationship (R_{ {e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.

  12. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 < z < 0.037, with a median z = 0.024, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of b=1.04^{+0.10}_{-0.11}, which corresponds to a typical host dark matter halo mass of M_h^typ=12.84^{+0.22}_{-0.30} h^{-1} M_{⊙}. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering, which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4σ and 4.0σ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.

  13. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024more » cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.« less

  14. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  15. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Viola, Massimo; Bremer, Malcolm N.; Brough, Sarah; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Klaes, Dominik; Kuijken, Konrad; McGee, Sean; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Taylor, Edward N.; Valentijn, Edwin

    2017-11-01

    In recent years, many studies have reported substantial populations of large galaxies with low surface brightness in local galaxy clusters. Various theories that aim to explain the presence of such ultra-diffuse galaxies (UDGs) have since been proposed. A key question that will help to distinguish between models is whether UDGs have counterparts in host haloes with lower masses, and if so, what their abundance as a function of halo mass is. We here extend our previous study of UDGs in galaxy clusters to galaxy groups. We measure the abundance of UDGs in 325 spectroscopically selected groups from the Galaxy And Mass Assembly (GAMA) survey. We make use of the overlapping imaging from the ESO Kilo-Degree Survey (KiDS), from which we can identify galaxies with mean surface brightnesses within their effective radii down to 25.5 mag arcsec-2 in the r band. We are able to measure a significant overdensity of UDGs (with sizes reff ≥ 1.5 kpc) in galaxy groups down to M200 = 1012 M⊙, a regime where approximately only one in ten groups contains a UDG that we can detect. We combine measurements of the abundance of UDGs in haloes that cover three orders of magnitude in halo mass, finding that their numbers scale quite steeply with halo mass: NUDG(R < R200) ∝ M2001.11±0.07. To better interpret this, we also measure the mass-richness relation for brighter galaxies down to Mr* + 2.5 in the same GAMA groups, and find a much shallower relation of NBright(R < R200) ∝ M2000.78±0.05. This shows that compared to bright galaxies, UDGs are relatively more abundant in massive clusters than in groups. We discuss the implications, but it is still unclear whether this difference is related to a higher destruction rate of UDGs in groups or if massive haloes have a positive effect on UDG formation.

  16. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  17. Impact of Neutrinos on Dark Matter Halo Environment

    NASA Astrophysics Data System (ADS)

    Court, Travis; Villaescusa-Navarro, Francisco

    2018-01-01

    The spatial clustering of galaxies is commonly used to infer the shape of the matter power spectrum and therefore to place constraints on the value of the cosmological parameters. In order to extract the maximum information from galaxy surveys it is required to provide accurate theoretical predictions. The first step to model galaxy clustering is to understand the spatial distribution of the structures where they reside: dark matter halos. I will show that the clustering of halos does not depend only on mass, but on other quantities like local matter overdensity. I will point out that halo clustering is also sensitive to the local overdensity of the cosmic neutrino background. I will show that splitting halos according to neutrino overdensity induces a very large scale-dependence bias, an effect that may lead to a new technique to constraint the sum of the neutrino masses.

  18. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  19. STAR FORMATION HISTORY OF THE MILKY WAY HALO TRACED BY THE OOSTERHOFF DICHOTOMY AMONG GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sohee; Lee, Young-Wook, E-mail: ywlee2@yonsei.ac.kr

    2015-06-22

    In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation historiesmore » are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the “population-shift” effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.« less

  20. Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms

    PubMed Central

    2014-01-01

    Background Phenylalanine ammonia-lyase (PAL; E.C.4.3.1.5) is a key enzyme of the phenylpropanoid pathway in plant development, and it catalyses the deamination of phenylalanine to trans-cinnamic acid, leading to the production of secondary metabolites. This enzyme has been identified in many organisms, ranging from prokaryotes to higher plants. Because Nelumbo nucifera is a basal dicot rich in many secondary metabolites, it is a suitable candidate for research on the phenylpropanoid pathway. Results Three PAL members, NnPAL1, NnPAL2 and NnPAL3, have been identified in N. nucifera using genome-wide analysis. NnPAL1 contains two introns; however, both NnPAL2 and NnPAL3 have only one intron. Molecular and evolutionary analysis of NnPAL1 confirms that it is an ancient PAL member of the angiosperms and may have a different origin. However, PAL clusters, except NnPAL1, are monophyletic after the split between dicots and monocots. These observations suggest that duplication events remain an important occurrence in the evolution of the PAL gene family. Molecular assays demonstrate that the mRNA of the NnPAL1 gene is 2343 bp in size and encodes a 717 amino acid polypeptide. The optimal pH and temperature of the recombinant NnPAL1 protein are 9.0 and 55°C, respectively. The NnPAL1 protein retains both PAL and weak TAL catalytic activities with Km values of 1.07 mM for L-phenylalanine and 3.43 mM for L-tyrosine, respectively. Cis-elements response to environmental stress are identified and confirmed using real-time PCR for treatments with abscisic acid (ABA), indoleacetic acid (IAA), ultraviolet light, Neurospora crassa (fungi) and drought. Conclusions We conclude that the angiosperm PAL genes are not derived from a single gene in an ancestral angiosperm genome; therefore, there may be another ancestral duplication and vertical inheritance from the gymnosperms. The different evolutionary histories for PAL genes in angiosperms suggest different mechanisms of functional

  1. Mapping Compound Cosmic Telescopes Containing Multiple Projected Cluster-scale Halos

    NASA Astrophysics Data System (ADS)

    Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.

    2014-01-01

    Lines of sight with multiple projected cluster-scale gravitational lenses have high total masses and complex lens plane interactions that can boost the area of magnification, or étendue, making detection of faint background sources more likely than elsewhere. To identify these new "compound" cosmic telescopes, we have found directions in the sky with the highest integrated mass densities, as traced by the projected concentrations of luminous red galaxies (LRGs). We use new galaxy spectroscopy to derive preliminary magnification maps for two such lines of sight with total mass exceeding ~3 × 1015 M ⊙. From 1151 MMT Hectospec spectra of galaxies down to i AB = 21.2, we identify two to three group- and cluster-scale halos in each beam. These are well traced by LRGs. The majority of the mass in beam J085007.6+360428 (0850) is contributed by Zwicky 1953, a massive cluster at z = 0.3774, whereas beam J130657.5+463219 (1306) is composed of three halos with virial masses of 6 × 1014-2 × 1015 M ⊙, one of which is A1682. The magnification maps derived from our mass models based on spectroscopy and Sloan Digital Sky Survey photometry alone display substantial étendue: the 68% confidence bands on the lens plane area with magnification exceeding 10 for a source plane of zs = 10 are [1.2, 3.8] arcmin2 for 0850 and [2.3, 6.7] arcmin2 for 1306. In deep Subaru Suprime-Cam imaging of beam 0850, we serendipitously discover a candidate multiply imaged V-dropout source at z phot = 5.03. The location of the candidate multiply imaged arcs is consistent with the critical curves for a source plane of z = 5.03 predicted by our mass model. Incorporating the position of the candidate multiply imaged galaxy as a constraint on the critical curve location in 0850 narrows the 68% confidence band on the lens plane area with μ > 10 and zs = 10 to [1.8, 4.2] arcmin2, an étendue range comparable to that of MACS 0717+3745 and El Gordo, two of the most powerful single cluster lenses known

  2. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  3. A Giant Radio Halo in a Low-Mass Sz-selected Galaxy Cluster: ACT-CLJ0256.5+0006

    NASA Technical Reports Server (NTRS)

    Knowles, Kendra; Intema, H. T.; Baker, A. J.; Bharadwaj, V.; Bond, J. R.; Cress, C.; Gupta, N.; Hajian, A.; Hilton, M.; Hincks, A. D.; hide

    2016-01-01

    We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)- selected merging galaxy cluster ACT-CL J0256.5+ 0006 (z = 0.363), observed with the Giant Metrewave Radio Telescope at 325 and 610 MHz. We find this cluster to host a faint (S610 = 5.6 +/- 1.4mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest mass systems, M500, SZ = (5.0 +/- 1.2) × 10(exp14) M, found to host a GRH. We measure the GRH at lower significance at 325 MHz (S325 = 10.3 +/- 5.3mJy), obtaining a spectral index measurement of a610 325 = 1.0+ 0.7 - 0.9. This result is consistent with the mean spectral index of the population of typical radio haloes, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P1.4 GHz = (1.0 +/- 0.3) × 10(exp 24)W/Hz, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the intracluster medium morphology, suggest that ACT-CL J0256.5+ 0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of v? = 1880 +/- 210 km/s. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the P1.4GHz-LX scaling relation, we infer that we observe ACT-CL J0256.5+ 0006 just before first core crossing.

  4. THE YOUNG OPEN CLUSTERS KING 12, NGC 7788, AND NGC 7790: PRE-MAIN-SEQUENCE STARS AND EXTENDED STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidge, T. J.

    2012-12-20

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less

  5. Young accreted globular clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Veljanoski, J.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2013-02-01

    We report on observations of two newly discovered globular clusters in the outskirts of M31 made using the Gemini Multi-Object Spectrograph (GMOS) instrument on Gemini North. These objects, PAndAS-7 (PA-7) and PAndAS-8 (PA-8), lie at a galactocentric radius of ≈87 kpc and are projected, with separation ≈19 kpc, on to a field halo substructure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 ± 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.

  6. The Impact of Environment on the Stellar Mass–Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Golden-Marx, Jesse B.; Miller, Christopher J.

    2018-06-01

    A large variance exists in the amplitude of the stellar mass–halo mass (SMHM) relation for group- and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a larger magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM–magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link the assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group- and cluster-size halos.

  7. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  8. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.

    2017-03-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)-this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

  9. Globular Cluster Orbits from HST Proper Motions: Constraining the Formation and Mass of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Sohn, S. Tony; Van Der Marel, Roeland P.; Deason, Alis J.; Bellini, Andrea; Besla, Gurtina; Watkins, Laura

    2016-06-01

    The globular cluster (GC) system of the Milky Way (MW) provides important information on the MW's present structure and past evolution. GCs in the halo are particularly useful tracers; because of their long dynamical timescales, their orbits retain imprints of their origin or accretion history. Full 3D motions are required to calculate past orbits. While most GCs have known line of sight velocities, accurate proper motion (PM) measurements are currently available for only a few halo GCs. Our goal is to create the first high-quality PM database for halo GCs. We have identified suitable 1st-epoch data in the HST Archive for 20 halo GCs at 10-100 kpc from the Galactic Center. We are in the process of obtaining the necessary 2nd-epoch data to determine absolute PMs of the target GCs through our HST program GO-14235. We will use the same advanced astrometric techniques that allowed us to measure the PMs of M31 and Leo I. Previous studies of the halo GC system based on e.g., stellar populations, metallicities, RR Lyrae properties, and structural properties have revealed a dichotomy between old and young halo GCs. This may reflect distinct formation scenarios (in situ vs. accreted). Orbit calculations based on our PMs will directly test this. The PMs will also yield the best handle yet on the velocity anisotropy profile of any tracer population in the halo. This will resolve the mass-anisotropy degeneracy to provide an improved estimate of the MW mass, which is at present poorly known. In summary, our project will deliver the first accurate PMs for halo GCs, and will significantly increase our understanding of the formation, evolution, and mass of the MW.

  10. A Giant Radio Halo in a Low-Mass SZ-Selected Galaxy Cluster: ACT-CL J0256.5+0006

    NASA Technical Reports Server (NTRS)

    Knowles, K.; Intema, H. T.; Baker, A. J.; Bharadwaj, V.; Bond, J. R.; Cress, C.; Gupta, N.; Hajian, A.; Hilton, M.; Hincks, A. D.; hide

    2016-01-01

    We present the detection of a giant radio halo (GRH) in the Sunyaev-Zel'dovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 (zeta = 0.363), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to host a faint (S(sub 610) = 5.6 +/- 1.4 mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, M(sub 500,SZ) = (5.0 +/- 1.2) x 10(sup14) solar mass foud to host a GRH. We measure the GRH at lower significance at 325 MHz (S(sub 325) = 10.3 +/- 5.3 mJy), obtaining a spectral index measurement of alpha sup 610 sub 325 = 1.0(sup +0.7)(sub 0.9). This result is consistent with the mean spectral index of the population of typical radio halos, alpha = 1.2 +/- 0.2. Adopting the latter value, we determine a 1.4 GHz radio power of P(sub 1.4GHz) = (1.0 +/- 03) x 10(sup 24) W Hz(sup -1), placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of perpendicular = 1880 +/- 210 km s(sup -1). We construct a simple merger model of infer relevant time-scales in the merger. From its location on the P1.4GHz-L(sub x) scaling relation, we infer that we observe ACT-CL J0256.5+0006 just before first core crossing.

  11. The CCD photometry of the globular cluster Palomar 1.

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1995-04-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color-magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & Vanden Berg (1987) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)_g0_=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives r_c_=1.5pc and c=1.46. A mass estimate of 1.1 10^3^Msun_ and a mass-to-light ratio of 1.79 have been obtained using King's (1966) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one.

  12. Color-magnitude diagram of Palomar 4 - CCD photometry

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Heasley, J. N.

    1986-04-01

    Photometry of the globular cluster Pal 4 was obtained with the RCA CCD camera on the 3.6 m Canada-France-Hawaii Telescope on Mauna Kea. The color-magnitude diagram of the cluster shows a well-defined red horizontal branch, typical of outer halo systems, and an asymptotic giant branch well separated from the giant branch. The population of Pal 4 has been sampled to the main-sequence turnoff region (V = 25), allowing a detailed comparison of this distant object with theoretical models. The cluster parameters consistent with the CCD data are (m - M)0 = 20.1 + or - 0.1 mag, E(B - V) = 0.02 + or - 0.02, and Fe/H forbidden line = -1.7 + or - 0.1 with Y =0.2. The age of the cluster, determined by comparison with the isochrones of VandenBerg and Bell (1985) is consistent with an age of 15 + or - 1 Gyr, similar to inner halo globular clusters with ages determined in the same way.

  13. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-05-30

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.

  14. Dark matter haloes: a multistream view

    NASA Astrophysics Data System (ADS)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  15. The halo model in a massive neutrino cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo, E-mail: emassara@sissa.it, E-mail: villaescusa@oats.inaf.it, E-mail: viel@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also inmore » a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.« less

  16. Halo correlations in nonlinear cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.; Schaeffer, R.

    1999-09-01

    The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are

  17. Testing approximate predictions of displacements of cosmological dark matter halos

    NASA Astrophysics Data System (ADS)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  18. Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints

    NASA Astrophysics Data System (ADS)

    Dai, Biwei; Robertson, Brant E.; Madau, Piero

    2018-05-01

    Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.

  19. The Ongoing Assembly of a Central Cluster Galaxy: Phase-space Substructures in the Halo of M87

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Strader, Jay; Brodie, Jean P.; Mihos, J. Christopher; Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline; Arnold, Jacob A.

    2012-03-01

    The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a ~0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of ~1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.

  20. Ab initio calculation of one-nucleon halo states

    NASA Astrophysics Data System (ADS)

    Rodkin, D. M.; Tchuvil'sky, Yu M.

    2018-02-01

    We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.

  1. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Sharma, Prateek; Quataert, Eliot; Parrish, Ian J.

    2012-02-01

    We study the interplay among cooling, heating, conduction and magnetic fields in gravitationally stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive haloes such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling time-scale to the dynamical time-scale tcool/tff controls the non-linear evolution and saturation of the thermal instability: when tcool/tff≲ 1, the plasma develops extended multiphase structure, whereas when tcool/tff≳ 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool/tff≲ 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multiphase gas is essentially independent of the thermal conductivity of the plasma. Our criterion for local thermal instability to produce multiphase structure is an extension of the cold versus hot accretion modes in galaxy formation that applies at all radii in hot haloes, not just to the virial shock. We show that this criterion is consistent with data on multiphase gas in galaxy groups and clusters; in addition, when tcool/tff≳ 1, the net cooling rate to low temperatures and the mass flux to small radii are suppressed enough relative to models without heating to be qualitatively consistent with star formation rates and X-ray line emission in groups and clusters.

  2. Testing approximate predictions of displacements of cosmological dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these

  3. Deep photometry of two accreted families of globular clusters in the remote M31 halo

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.

  4. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  5. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes?

    NASA Astrophysics Data System (ADS)

    Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.

    2016-08-01

    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.

  6. Massive Halos in Millennium Gas Simulations: Multivariate Scaling Relations

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rasia, E.; Evrard, A. E.; Pearce, F.; Gazzola, L.

    2010-06-01

    The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multiwavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 h -1 Mpc Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zel'dovich (SZ) signals for samples of thousands of halos with M 200 >= 5 × 1013 h -1 M sun and z < 2. While the X-ray scaling behavior of PH model halos at low redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable-mass relations and ~10% departures from self-similar redshift evolution for 1014 h -1 M sun halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r = 0.88/0.69 for PH/GO at z = 0) or X-ray temperature (r = 0.62/0.83). The levels of variance in X-ray luminosity, temperature, and gas mass fraction are sensitive to the physical treatment, but offsetting shifts in the latter two measures maintain a fixed 12% scatter in the integrated SZ signal under both gas treatments. We discuss halo mass selection by signal pairs, and find a minimum mass

  7. Insights into the chemical composition of the metal-poor Milky Way halo globular cluster NGC 6426

    NASA Astrophysics Data System (ADS)

    Hanke, M.; Koch, A.; Hansen, C. J.; McWilliam, A.

    2017-03-01

    We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] =-2.34 ± 0.05 dex (stat.) in accordance with previous studies. At a mean α-abundance of [(Mg, Si, Ca)/3 Fe] = 0.39 ± 0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter α-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population have polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn points toward an enrichment history governed by the r-process with little, if any, sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Equivalent widths and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A97

  8. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurementsmore » within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f

  9. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  10. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  11. Redshift-space distortions with the halo occupation distribution - II. Analytic model

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2007-01-01

    We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at

  12. PAL: Positional Astronomy Library

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Berry, D. S.

    2016-06-01

    The PAL library is a partial re-implementation of Pat Wallace's popular SLALIB library written in C using a Gnu GPL license and layered on top of the IAU's SOFA library (or the BSD-licensed ERFA) where appropriate. PAL attempts to stick to the SLA C API where possible.

  13. The global dark halo structure of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We set new limits on the global shape of the dark halo in the Andromeda galaxy based on axisymmetric mass models constructed by Hayashi & Chiba (2012). This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Based on the application of our models to latest kinematical data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield not a spherical but a prolate shape for its dark halo. We also find that the prolate dark halo is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their galactic host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web.

  14. TURBULENT COSMIC-RAY REACCELERATION AT RADIO RELICS AND HALOS IN CLUSTERS OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Yutaka; Takizawa, Motokazu; Yamazaki, Ryo

    Radio relics are synchrotron emission found on the periphery of galaxy clusters. From the position and the morphology, it is often believed that the relics are generated by cosmic-ray (CR) electrons accelerated at shocks through a diffusive shock acceleration (DSA) mechanism. However, some radio relics have harder spectra than the prediction of the standard DSA model. One example is observed in the cluster 1RXS J0603.3+4214, which is often called the “Toothbrush Cluster.” Interestingly, the position of the relic is shifted from that of a possible shock. In this study, we show that these discrepancies in the spectrum and the positionmore » can be solved if turbulent (re)acceleration is very effective behind the shock. This means that for some relics turbulent reacceleration may be the main mechanism to produce high-energy electrons, contrary to the common belief that it is the DSA. Moreover, we show that for efficient reacceleration, the effective mean free path of the electrons has to be much smaller than their Coulomb mean free path. We also study the merging cluster 1E 0657−56, or the “Bullet Cluster,” in which a radio relic has not been found at the position of the prominent shock ahead of the bullet. We indicate that a possible relic at the shock is obscured by the observed large radio halo that is generated by strong turbulence behind the shock. We propose a simple explanation of the morphological differences of radio emission among the Toothbrush, the Bullet, and the Sausage (CIZA J2242.8+5301) Clusters.« less

  15. Dependence of Halo Bias and Kinematics on Assembly Variables

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoju; Zheng, Zheng

    2018-06-01

    Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.

  16. A design of PAL with astigmatism

    NASA Astrophysics Data System (ADS)

    Wei, Yefei; Xiang, Huazhong; Zhu, Tianfeng; Chen, Jiabi

    2015-08-01

    Progressive addition lens (PAL) is designed for those who suffer from myopia and presbyopia to have a clear vision from a far distance to a nearby distance. Additionally there are many people that also suffer from astigmatism and need to be corrected. The cylinder power can't be simply added to the diopter of the PAL directly, because the diopter of the PAL needs to be changed smoothly. A methods has been proposed in this article to solve the problem, the freeform surface height of a PAL without astigmatism and the cylindrical lens surface height for the correction of astigmatism are calculated separately. The both two surface heights were added together, then the final surface is produced and shown with the both properties of PALs and cylindrical lenses used to correct the astigmatism.

  17. Preliminary Evidence on the Social Standing of Students with Learning Disabilities in PALS and No-PALS Classrooms.

    ERIC Educational Resources Information Center

    Fuchs, Douglas; Fuchs, Lynn S.; Mathes, Patricia G.; Martinez, Elizabeth A.

    2002-01-01

    A study collected sociometric data in 39 second- through sixth-grade classrooms, 22 of which were engaged in Peer-Assisted Learning Strategies (PALS), a form of peer tutoring. Students with learning disabilities in PALS classes were more socially accepted than those in no-PALS classes and enjoyed the same social standing as controls. (Contains…

  18. Light and Heavy Element Abundance Variations in the Outer Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Walker, Matthew G.

    2017-10-01

    NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R ≈ 38,000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -{138.1}-1.0+1.0 {km} {{{s}}}-1, a small dispersion of {3.8}-0.7+1.0 {km} {{{s}}}-1, and a relatively low {(M/{L}{{V}})}⊙ ={0.82}-0.28+0.49. The cluster is moderately metal-poor with < [{Fe}/{{H}}]> =-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La, Nd/Fe] ratios that are correlated with a small (˜0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of ω Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na, Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.

  19. The peculiar globular cluster Palomar 1 and persistence in the SDSS-APOGEE data base

    NASA Astrophysics Data System (ADS)

    Jahandar, Farbod; Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike; Bovy, Jo; Sakari, Charli M.; Kielty, Collin L.; Digby, Ruth A. R.; Frinchaboy, Peter M.

    2017-10-01

    The Sloan Digital Sky Survey-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 12 (DR12) is a unique resource to search for stars beyond the tidal radii of star clusters. We have examined the APOGEE DR12 data base for new candidates of the young star cluster Palomar 1 (Pal 1), a system with previously reported tidal tails (Niederste-Ostholt et al. 2010). The APOGEE Stellar Parameters and Chemical Abundances Pipeline data base includes spectra and stellar parameters for two known members of Pal 1 (Stars I and II), however these do not agree with the stellar parameters determined from optical spectra by Sakari et al. (2011). We find that the APOGEE analysis of these two stars is strongly affected by the known persistence problem (Majewski et al. 2015; Nidever et al. 2015). By re-examining the individual visits, and removing the blue (and sometimes green) APOGEE detector spectra affected by persistence, then we find excellent agreement in a re-analysis of the combined spectra. These methods are applied to another five stars in the APOGEE field with similar radial velocities and metallicities as those of Pal 1. Only one of these new candidates, Star F, may be a member located in the tidal tail based on its heliocentric radial velocity, metallicity and chemistry. The other four candidates are not well aligned with the tidal tails, and comparison to the Besançon model (Robin et al. 2003) suggests that they are more likely to be non-members, I.e. part of the Galactic halo. This APOGEE field could be re-examined for other new candidates if the persistence problem can be removed from the APOGEE spectral data base.

  20. Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Werner, N.; Kaastra, J. S.; Raassen, A. J. J.; Gu, L.; Mao, J.; Urdampilleta, I.; Truong, N.; Simionescu, A.

    2018-05-01

    X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT ≲ 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best fit Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r500. For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesised and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed.

  1. Becoming an Effective Peer Assisted Learning (PAL) Leader

    ERIC Educational Resources Information Center

    West, Harry; Jenkins, Rhiannon; Hill, Jennifer

    2017-01-01

    This Directions paper, written by two former Peer Assisted Learning (PAL) Leaders, (West and Jenkins) and a PAL Tutor (Hill), will support any geographer considering a PAL role. It reflects their experiences of participating in a PAL scheme at the University of the West of England (UWE), Bristol, United Kingdom, and research conducted with…

  2. Modelling giant radio halos. Doctoral Thesis Award Lecture 2012

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.

    2013-06-01

    We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.

  3. Bow Shock in Merging Cluster A520: The Edge of the Radio Halo and the Electron–Proton Equilibration Timescale

    NASA Astrophysics Data System (ADS)

    Wang, Qian H. S.; Giacintucci, Simona; Markevitch, Maxim

    2018-04-01

    We studied the prominent bow shock in the merging galaxy cluster A520 using a deep Chandra X-ray observation and archival VLA radio data. This shock is a useful diagnostic tool, owing to its clear geometry and relatively high Mach number. At the “nose” of the shock, we measure a Mach number of M={2.4}-0.2+0.4. The shock becomes oblique away from the merger axis, with the Mach number falling to ≃1.6 around 30° from the nose. The electron temperature immediately behind the shock nose is consistent with that from the Rankine–Hugoniot adiabat, and is higher (at a 95% confidence) than expected for adiabatic compression of electrons followed by Coulomb electron–proton equilibration, indicating the presence of equilibration mechanisms faster than Coulomb collisions. This is similar to an earlier finding for the Bullet cluster. We also combined four archival VLA data sets to obtain a better image of the cluster’s giant radio halo at 1.4 GHz. An abrupt edge of the radio halo traces the shock front, and no emission is detected in the pre-shock region. If the radio edge were due only to adiabatic compression of relativistic electrons in pre-shock plasma, we would expect a pre-shock radio emission detectable in this radio data set; however, an interferometric artifact dominates the uncertainty, so we cannot rule this model out. Other interesting features of the radio halo include a peak at the remnant of the cool core, suggesting that the core used to have a radio minihalo, and a peak marking a possible region of high turbulence.

  4. Bose-Einstein condensate haloes embedded in dark energy

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities

  5. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  6. ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias

    NASA Astrophysics Data System (ADS)

    Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico

    2017-07-01

    The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.

  7. Emergence of Clusters: Halos, Efimov States, and Experimental Signals

    NASA Astrophysics Data System (ADS)

    Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.

    2018-02-01

    We investigate the emergence of halos and Efimov states in nuclei by use of a newly designed model that combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes Ca 72 (Ca 70 +n +n ) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo configurations emerge from the mean-field structure for three-body binding energy less than ˜100 keV . Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta decay.

  8. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    PubMed

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  9. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    PubMed Central

    Rawal, H. C.; Singh, N. K.; Sharma, T. R.

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future. PMID:23671845

  10. The Halo Occupation Distribution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suchetana; Nagai, D.; Richardson, J.; Zheng, Z.; Degraf, C.; DiMatteo, T.

    2011-05-01

    We investigate the halo occupation distribution of active galactic nuclei (AGN) using a state-of-the-art cosmological hydrodynamic simulation that self-consistently incorporates the growth and feedback of supermassive black holes and the physics of galaxy formation (DiMatteo et al. 2008). We show that the mean occupation function can be modeled as a softened step function for central AGN and a power law for the satellite population. The satellite occupation is consistent with weak redshift evolution and a power law index of unity. The number of satellite black holes at a given halo mass follows a Poisson distribution. We show that at low redshifts (z=1.0) feedback from AGN is responsible for higher suppression of black hole growth in higher mass halos. This effect introduces a bias in the correlation between instantaneous AGN luminosity and the host halo mass, making AGN clustering depend weakly on luminosity at low redshifts. We show that the radial distribution of AGN follows a power law which is fundamentally different from those of galaxies and dark matter. The best-fit power law index is -2.26 ± 0.23. The power law exponent do not show any evolution with redshift, host halo mass and AGN luminosity within statistical limits. Incorporating the environmental dependence of supermassive black hole accretion and feedback, our formalism provides the most complete theoretical tool for interpreting current and future measurements of AGN clustering.

  11. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  12. The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron

    2017-01-01

    We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around

  13. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    NASA Astrophysics Data System (ADS)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to ˜ 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  14. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  15. Probing the Merger in ACT-CL J0256.5+0006: Understanding Low-Power Radio Halos

    NASA Astrophysics Data System (ADS)

    Sarazin, Craig

    2017-09-01

    ACT-CL J0256.5+0006 (J0256) is a moderate redshift (z=0.363) merging cluster. We recently detected a cluster giant radio halo which is one of the weakest known. Based on our ACT SZ detection and a very short XMM observation, J0256 has the weakest SZ and possibly the lowest mass ever observed for a radio halo. Our proposed Chandra observation will give J0256's dynamical merger state and an accurate mass. This may be an early stage merger, which challenges the theory that halos are produced by turbulent re-acceleration after the passage of merger shocks. We will search for shocks and cold fronts, and derive the merger speed. We will learn if this weak radio halo is due to an early-stage merger, a late merger, or a low cluster mass, useful for future low frequency radio surveys.

  16. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

    PubMed

    Yusuf, Chong Yu Lok; Abdullah, Janna Ong; Shaharuddin, Noor Azmi; Abu Seman, Idris; Abdullah, Mohd Puad

    2018-02-01

    The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

  17. Effective field theory description of halo nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  18. Squeezing the halo bispectrum: a test of bias models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dizgah, Azadeh Moradinezhad; Chan, Kwan Chuen; Noreña, Jorge

    We study the halo-matter cross bispectrum in the presence of primordial non-Gaussianity of the local type. We restrict ourselves to the squeezed limit, for which the calculation are straightforward, and perform the measurements in the initial conditions of N-body simulations, to mitigate the contamination induced by nonlinear gravitational evolution. Interestingly, the halo-matter cross bispectrum is not trivial even in this simple limit as it is strongly sensitive to the scale-dependence of the quadratic and third-order halo bias. Therefore, it can be used to test biasing prescriptions. We consider three different prescription for halo clustering: excursion set peaks (ESP), local biasmore » and a model in which the halo bias parameters are explicitly derived from a peak-background split. In all cases, the model parameters are fully constrained with statistics other than the cross bispectrum. We measure the cross bispectrum involving one halo fluctuation field and two mass overdensity fields for various halo masses and collapse redshifts. We find that the ESP is in reasonably good agreement with the numerical data, while the other alternatives we consider fail in various cases. This suggests that the scale-dependence of halo bias also is a crucial ingredient to the squeezed limit of the halo bispectrum.« less

  19. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  20. The Spin and Orientation of Dark Matter Halos Within Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Zhang, Youcai; Yang, Xiaohu; Faltenbacher, Andreas; Springel, Volker; Lin, Weipeng; Wang, Huiyuan

    2009-11-01

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses lsim1013 h -1 M sun are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the cluster/node halo at

  1. Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z ≈ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.

    2014-10-01

    We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.

  2. Statistics of Dark Matter Halos from Gravitational Lensing.

    PubMed

    Jain; Van Waerbeke L

    2000-02-10

    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise ratio is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and is possibly not susceptible to the same systematic errors.

  3. Sensitivity of the halo nuclei-12C elastic scattering at incident nucleon energy 800 MeV to the halo density distribution

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.

    2017-10-01

    In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.

  4. Halo abundance matching: accuracy and conditions for numerical convergence

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Prada, Francisco; Yepes, Gustavo; Heß, Steffen; Gottlöber, Stefan

    2015-03-01

    Accurate predictions of the abundance and clustering of dark matter haloes play a key role in testing the standard cosmological model. Here, we investigate the accuracy of one of the leading methods of connecting the simulated dark matter haloes with observed galaxies- the halo abundance matching (HAM) technique. We show how to choose the optimal values of the mass and force resolution in large volume N-body simulations so that they provide accurate estimates for correlation functions and circular velocities for haloes and their subhaloes - crucial ingredients of the HAM method. At the 10 per cent accuracy, results converge for ˜50 particles for haloes and ˜150 particles for progenitors of subhaloes. In order to achieve this level of accuracy a number of conditions should be satisfied. The force resolution for the smallest resolved (sub)haloes should be in the range (0.1-0.3)rs, where rs is the scale radius of (sub)haloes. The number of particles for progenitors of subhaloes should be ˜150. We also demonstrate that the two-body scattering plays a minor role for the accuracy of N-body simulations thanks to the relatively small number of crossing-times of dark matter in haloes, and the limited force resolution of cosmological simulations.

  5. The prolate dark matter halo of the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less

  6. The Origin of the Milky Way's Halo Age Distribution

    NASA Astrophysics Data System (ADS)

    Carollo, Daniela; Tissera, Patricia B.; Beers, Timothy C.; Gudin, Dmitrii; Gibson, Brad K.; Freeman, Ken C.; Monachesi, Antonela

    2018-05-01

    We present an analysis of the radial age gradients for the stellar halos of five Milky Way (MW) mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately ‑7 to ‑19 Myr kpc‑1, shallower than those determined by recent observational studies of the Milky Way’s stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from ‑8 to ‑32 Myr kpc‑1, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MW’s halo age distribution if the stellar halo was assembled from accretion and the disruption of satellite galaxies with dynamical masses less than ∼109.5 M ⊙, and a minimal in situ contribution.

  7. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  8. Candidate members of the Pal 5, GD-1, Cetus Polar and Orphan tidal stellar halo streams from SDSS DR9, LAMOST DR3 and APOGEE catalogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang -Wei; Yanny, Brian; Zhang, Hao -Tong

    We present candidate members of the Pal 5, GD-1, Cetus Polar, and Orphan tidal stellar streams found in LAMOST DR3, SDSS DR9 and APOGEE catalogs. In LAMOST DR3, we find 20, 4, 24 high confidence candidates of tidal streams GD-1, Cetus Polar and Orphan respectively. We also list from the SDSS DR9 spectroscopic catalog 59, 118, 10 high confidence candidates of tidal streams Cetus Polar, Orphan and Pal 5, respectively. Furthermore, we find 7 high confidence candidates of the Pal 5 tidal stream in APOGEE data. Compared with SDSS, the new candidates from LAMOST DR3 are brighter, so that together, more of the color-magnitude diagram, including the giant branch can be explored. Analysis of SDSS data shows that there are 3 metallicity peaks of the Orphan stream and also shows some spatial separation. LAMOST data confirms multiple metallicities in this stream. The metallicity, given by the higher resolution APOGEE instrument, of the Pal 5 tidal stream is [Fe/H]more » $$\\sim -1.2$$, higher than that given earlier by SDSS spectra. Here, many previously unidentified stream members are tabulated here for the first time, along with existing members, allowing future researchers to further constrain the orbits of these objects as they move within the Galaxy's dark matter potential.« less

  9. Candidate members of the Pal 5, GD-1, Cetus Polar and Orphan tidal stellar halo streams from SDSS DR9, LAMOST DR3 and APOGEE catalogs

    DOE PAGES

    Li, Guang -Wei; Yanny, Brian; Zhang, Hao -Tong; ...

    2017-05-01

    We present candidate members of the Pal 5, GD-1, Cetus Polar, and Orphan tidal stellar streams found in LAMOST DR3, SDSS DR9 and APOGEE catalogs. In LAMOST DR3, we find 20, 4, 24 high confidence candidates of tidal streams GD-1, Cetus Polar and Orphan respectively. We also list from the SDSS DR9 spectroscopic catalog 59, 118, 10 high confidence candidates of tidal streams Cetus Polar, Orphan and Pal 5, respectively. Furthermore, we find 7 high confidence candidates of the Pal 5 tidal stream in APOGEE data. Compared with SDSS, the new candidates from LAMOST DR3 are brighter, so that together, more of the color-magnitude diagram, including the giant branch can be explored. Analysis of SDSS data shows that there are 3 metallicity peaks of the Orphan stream and also shows some spatial separation. LAMOST data confirms multiple metallicities in this stream. The metallicity, given by the higher resolution APOGEE instrument, of the Pal 5 tidal stream is [Fe/H]more » $$\\sim -1.2$$, higher than that given earlier by SDSS spectra. Here, many previously unidentified stream members are tabulated here for the first time, along with existing members, allowing future researchers to further constrain the orbits of these objects as they move within the Galaxy's dark matter potential.« less

  10. Membrane curvature and the Tol-Pal complex determine polar localization of the chemoreceptor Tar in E. coli.

    PubMed

    Saaki, Terrens N V; Strahl, Henrik; Hamoen, Leendert W

    2018-02-20

    Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years different mechanisms have been put forward to explain this polar localization; from stochastic clustering, membrane curvature driven localization, interactions with the Tol-Pal complex, to nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterised by strong membrane curvature. Chemoreceptors, like Tar, form trimer-of-dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favourable as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or cell poles. These findings favour a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex. Importance Bacteria have exquisite mechanisms to sense and to adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli

  11. On the scatter in the relation between stellar mass and halo mass: random or halo formation time dependent?

    NASA Astrophysics Data System (ADS)

    Wang, Lan; De Lucia, Gabriella; Weinmann, Simone M.

    2013-05-01

    The empirical traditional halo occupation distribution (HOD) model of Wang et al. fits, by construction, both the stellar mass function and correlation function of galaxies in the local Universe. In contrast, the semi-analytical models of De Lucia & Blazoit (hereafter DLB07) and Guo et al. (hereafter Guo11), built on the same dark matter halo merger trees than the empirical model, still have difficulties in reproducing these observational data simultaneously. We compare the relations between the stellar mass of galaxies and their host halo mass in the three models, and find that they are different. When the relations are rescaled to have the same median values and the same scatter as in Wang et al., the rescaled DLB07 model can fit both the measured galaxy stellar mass function and the correlation function measured in different galaxy stellar mass bins. In contrast, the rescaled Guo11 model still overpredicts the clustering of low-mass galaxies. This indicates that the detail of how galaxies populate the scatter in the stellar mass-halo mass relation does play an important role in determining the correlation functions of galaxies. While the stellar mass of galaxies in the Wang et al. model depends only on halo mass and is randomly distributed within the scatter, galaxy stellar mass depends also on the halo formation time in semi-analytical models. At fixed value of infall mass, galaxies that lie above the median stellar mass-halo mass relation reside in haloes that formed earlier, while galaxies that lie below the median relation reside in haloes that formed later. This effect is much stronger in Guo11 than in DLB07, which explains the overclustering of low mass galaxies in Guo11. Assembly bias in Guo11 model might be overly strong. Nevertheless, in case that a significant assembly bias indeed exists in the real Universe, one needs to use caution when applying current HOD and abundance matching models that employ the assumption of random scatter in the relation

  12. The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.

    2015-10-01

    This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (MICECATv1.0) publicly available through a dedicated web portal to help develop and exploit the new generation of astronomical surveys.

  13. Faint Submillimeter Galaxies Identified through Their Optical/Near-infrared Colors. I. Spatial Clustering and Halo Masses

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, James M.; Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.; Mortlock, Alice; Simpson, Chris; Wilkinson, Aaron

    2016-11-01

    The properties of submillimeter galaxies (SMGs) that are fainter than the confusion limit of blank-field single-dish surveys ({S}850 ≲ 2 mJy) are poorly constrained. Using a newly developed color selection technique, Optical-Infrared Triple Color (OIRTC), that has been shown to successfully select such faint SMGs, we identify a sample of 2938 OIRTC-selected galaxies, dubbed Triple Color Galaxies (TCGs), in the UKIDSS-UDS field. We show that these galaxies have a median 850 μm flux of {S}850=0.96+/- 0.04 mJy (equivalent to a star formation rate SFR ˜ 60{--}100 {M}⊙ yr-1 based on spectral energy distribution fitting), representing the first large sample of faint SMGs that bridges the gap between bright SMGs and normal star-forming galaxies in S 850 and L IR. We assess the basic properties of TCGs and their relationship with other galaxy populations at z˜ 2. We measure the two-point autocorrelation function for this population and derive a typical halo mass of log10({M}{halo}) = {12.9}-0.3+0.2, {12.7}-0.2+0.1, and {12.9}-0.3+0.2 {h}-1 {M}⊙ at z=1{--}2, 2-3, and 3-5, respectively. Together with the bright SMGs ({S}850≳ 2 mJy) and a comparison sample of less far-infrared luminous star-forming galaxies, we find a lack of dependence between spatial clustering and S 850 (or SFR), suggesting that the difference between these populations may lie in their local galactic environment. Lastly, on the scale of ˜ 8{--}17 {kpc} at 1\\lt z\\lt 5 we find a tentative enhancement of the clustering of TCGs over the comparison star-forming galaxies, suggesting that some faint SMGs are physically associated pairs, perhaps reflecting a merging origin in their triggering.

  14. PAL: A Positional Astronomy Library

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Berry, D. S.

    2013-10-01

    PAL is a new positional astronomy library written in C that attempts to retain the SLALIB API but is distributed with an open source GPL license. The library depends on the IAU SOFA library wherever a SOFA routine exists and uses the most recent nutation and precession models. Currently about 100 of the 200 SLALIB routines are available. Interfaces are also available from Perl and Python. PAL is freely available via github.

  15. Health-based Provisional Advisory Levels (PALs) for homeland security.

    PubMed

    Adeshina, Femi; Sonich-Mullin, Cynthia; Ross, Robert H; Wood, Carol S

    2009-12-01

    The Homeland Security Presidential Directive #8 (HSPD-8) for National Emergency Preparedness was issued to " establish policies to strengthen the preparedness of the United States to prevent and respond to threatened or actual domestic terrorist attacks, major disasters, and other emergencies by requiring a national domestic all- hazards preparedness goal. "In response to HSPD-8 and HSPD-22 (classified) on Domestic Chemical Defense, the US Environmental Protection Agency (US EPA) National Homeland Security Research Center (NHSRC) is developing health-based Provisional Advisory Levels (PALs) for priority chemicals (including chemical warfare agents, pesticides, and toxic industrial chemicals) in air and drinking water. PALs are temporary values that will neither be promulgated, nor be formally issued as regulatory guidance. They are intended to be used at the discretion of risk managers in emergency situations. The PAL Program provides advisory exposure levels for chemical agents to assist in emergency planning and response decision-making, and to aid in making informed risk management decisions for evacuation, temporary re-entry into affected areas, and resumed-use of infrastructure, such as water resources. These risk management decisions may be made at the federal, state, and local levels. Three exposure levels (PAL 1, PAL 2, and PAL 3), distinguished by severity of toxic effects, are developed for 24-hour, 30-day, 90-day, and 2-year durations for potential exposure to drinking water and ambient air by the general public. Developed PALs are evaluated both by a US EPA working group, and an external multidisciplinary panel to ensure scientific credibility and wide acceptance. In this Special Issue publication, we present background information on the PAL program, the methodology used in deriving PALs, and the technical support documents for the derivation of PALs for acrylonitrile, hydrogen sulfide, and phosgene.

  16. Probing the galaxy-halo connection in UltraVISTA to z ˜ 2

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.

    2015-05-01

    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.

  17. Halo Profiles and the Concentration–Mass Relation for a ΛCDM Universe

    NASA Astrophysics Data System (ADS)

    Child, Hillary L.; Habib, Salman; Heitmann, Katrin; Frontiere, Nicholas; Finkel, Hal; Pope, Adrian; Morozov, Vitali

    2018-05-01

    Profiles of dark matter-dominated halos at the group and cluster scales play an important role in modern cosmology. Using results from two very large cosmological N-body simulations, which increase the available volume at their mass resolution by roughly two orders of magnitude, we robustly determine the halo concentration–mass (c‑M) relation over a wide range of masses, employing multiple methods of concentration measurement. We characterize individual halo profiles, as well as stacked profiles, relevant for galaxy–galaxy lensing and next-generation cluster surveys; the redshift range covered is 0 ≤ z ≤ 4, with a minimum halo mass of M 200c ∼ 2 × 1011 M ⊙. Despite the complexity of a proper description of a halo (environmental effects, merger history, nonsphericity, relaxation state), when the mass is scaled by the nonlinear mass scale M ⋆(z), we find that a simple non-power-law form for the c–M/M ⋆ relation provides an excellent description of our simulation results across eight decades in M/M ⋆ and for 0 ≤ z ≤ 4. Over the mass range covered, the c–M relation has two asymptotic forms: an approximate power law below a mass threshold M/M ⋆ ∼ 500–1000, transitioning to a constant value, c 0 ∼ 3 at higher masses. The relaxed halo fraction decreases with mass, transitioning to a constant value of ∼0.5 above the same mass threshold. We compare Navarro–Frenk–White (NFW) and Einasto fits to stacked profiles in narrow mass bins at different redshifts; as expected, the Einasto profile provides a better description of the simulation results. At cluster scales at low redshift, however, both NFW and Einasto profiles are in very good agreement with the simulation results, consistent with recent weak lensing observations.

  18. An order statistics approach to the halo model for galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Paranjape, Aseem; Sheth, Ravi K.

    2017-04-01

    We use the halo model to explore the implications of assuming that galaxy luminosities in groups are randomly drawn from an underlying luminosity function. We show that even the simplest of such order statistics models - one in which this luminosity function p(L) is universal - naturally produces a number of features associated with previous analyses based on the 'central plus Poisson satellites' hypothesis. These include the monotonic relation of mean central luminosity with halo mass, the lognormal distribution around this mean and the tight relation between the central and satellite mass scales. In stark contrast to observations of galaxy clustering; however, this model predicts no luminosity dependence of large-scale clustering. We then show that an extended version of this model, based on the order statistics of a halo mass dependent luminosity function p(L|m), is in much better agreement with the clustering data as well as satellite luminosities, but systematically underpredicts central luminosities. This brings into focus the idea that central galaxies constitute a distinct population that is affected by different physical processes than are the satellites. We model this physical difference as a statistical brightening of the central luminosities, over and above the order statistics prediction. The magnitude gap between the brightest and second brightest group galaxy is predicted as a by-product, and is also in good agreement with observations. We propose that this order statistics framework provides a useful language in which to compare the halo model for galaxies with more physically motivated galaxy formation models.

  19. AstroPAL: A Mentoring Program for Grad Students

    NASA Astrophysics Data System (ADS)

    Cabrera, Nicole

    2016-01-01

    The Astronomy Peer Advising Leaders program (AstroPAL) provides guidance for incoming grad students from a team of student volunteers who have passed their 2nd year Qualifier Exam. The purpose is to pair first years with a mentor who can help them through some of the stresses or difficulties that come with being a new grad student. AstroPALs and mentees meet privately about once a month in a casual setting to talk about how they're adjusting to the new surroundings, how they're handling the workload, etc. New students can join AstroPAL at any time during their first two years, and can stop receiving guidance once they feel comfortable in the program. Mentees will be assigned an AstroPAL based on preference and availability, and an AstroPAL Liason will always be in place to facilitate mentor reassignments or other issues if necessary. After passing the 2nd year Qualifier Exam, mentees are eligible to serve as mentors to incoming students.

  20. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    NASA Astrophysics Data System (ADS)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  1. One dark matter mystery: halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  2. Evolution of clustering length, large-scale bias, and host halo mass at 2 < z < 5 in the VIMOS Ultra Deep Survey (VUDS)⋆

    NASA Astrophysics Data System (ADS)

    Durkalec, A.; Le Fèvre, O.; Pollo, A.; de la Torre, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-11-01

    We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0 clustering amplitude r0 changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model ξ(r) = (r/r0)- γ we find that the correlation function for the general population is best fit by a model with a clustering length r0 = 3.95+0.48-0.54 h-1 Mpc and slope γ = 1.8+0.02-0.06 at z ~ 2.5, r0 = 4.35 ± 0.60 h-1 Mpc and γ = 1.6+0.12-0.13 at z ~ 3.5. We use these clustering parameters to derive the large-scale linear galaxy bias bLPL, between galaxies and dark matter. We find bLPL = 2.68 ± 0.22 at redshift z ~ 3 (assuming σ8 = 0.8), significantly higher than found at intermediate and low redshifts for the similarly general galaxy populations. We fit a halo occupation distribution (HOD) model to the data and we obtain that the average halo mass at redshift z ~ 3 is Mh = 1011.75 ± 0.23 h-1M⊙. From this fit we confirm that the large-scale linear galaxy bias is relatively high at bLHOD = 2.82 ± 0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at z ~ 3 should evolve into the massive and bright (Mr< -21.5)galaxy population, which typically occupy haloes of mass ⟨ Mh ⟩ = 1013.9 h-1M⊙ at redshift z = 0. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.Appendices are available in electronic form at http://www.aanda.org

  3. Quenching of satellite galaxies at the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke

    2018-04-01

    We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.

  4. Peer-assisted learning (PAL) in undergraduate medical education: An overview.

    PubMed

    Herrmann-Werner, Anne; Gramer, Regina; Erschens, Rebecca; Nikendei, Christoph; Wosnik, Annette; Griewatz, Jan; Zipfel, Stephan; Junne, Florian

    2017-04-01

    Peer-assisted learning (PAL) has a long tradition and is nowadays implemented in the curricula of most medical faculties. Besides traditional areas of application like problem-based learning, anatomy, or CPR, more and more departments and institutes have established PAL as part of their everyday teaching. This narrative review provides some background information and basic definitions of PAL. It offers an overview on features and determinants as well as underlying learning theories and developments in PAL. In addition, motives for implementation are highlighted followed by a comparison of advantages and disadvantages. After outlining aspects of quality management including the training of tutors and the evaluation and acceptance of PAL formats, this review concludes with an outlook on how PAL can proceed into the future and where further research is necessary. Copyright © 2017. Published by Elsevier GmbH.

  5. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less

  6. Localized massive halo properties in BAHAMAS and MACSIS simulations: scalings, log-normality, and covariance

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.

    2018-05-01

    Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.

  7. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    PubMed

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.

  8. Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin

    2009-05-01

    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.

  9. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  10. FRONTIER FIELDS CLUSTERS: CHANDRA AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.

    2015-10-20

    Merging galaxy clusters leave long-lasting signatures on the baryonic and non-baryonic cluster constituents, including shock fronts, cold fronts, X-ray substructure, radio halos, and offsets between the dark matter (DM) and the gas components. Using observations from Chandra, the Jansky Very Large Array, the Giant Metrewave Radio Telescope, and the Hubble Space Telescope, we present a multiwavelength analysis of the merging Frontier Fields cluster MACS J0416.1-2403 (z = 0.396), which consists of NE and SW subclusters whose cores are separated on the sky by ∼250 kpc. We find that the NE subcluster has a compact core and hosts an X-ray cavity,more » yet it is not a cool core. Approximately 450 kpc south–southwest of the SW subcluster, we detect a density discontinuity that corresponds to a compression factor of ∼1.5. The discontinuity was most likely caused by the interaction of the SW subcluster with a less massive structure detected in the lensing maps SW of the subcluster's center. For both the NE and the SW subclusters, the DM and the gas components are well-aligned, suggesting that MACS J0416.1-2403 is a pre-merging system. The cluster also hosts a radio halo, which is unusual for a pre-merging system. The halo has a 1.4 GHz power of (1.3 ± 0.3) × 10{sup 24} W Hz{sup −1}, which is somewhat lower than expected based on the X-ray luminosity of the cluster if the spectrum of the halo is not ultra-steep. We suggest that we are either witnessing the birth of a radio halo, or have discovered a rare ultra-steep spectrum halo.« less

  11. A spectroscopic survey of EC4, an extended cluster in Andromeda's halo

    NASA Astrophysics Data System (ADS)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M.; Ibata, R.; Martin, N. F.; Ferguson, A. M. N.; Huxor, A.; Lewis, G. F.; Mackey, A. D.; McConnachie, A. W.; Tanvir, N.

    2009-07-01

    We present a spectroscopic survey of candidate red giant branch stars in the extended star cluster, EC4, discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey, overlapping the tidal streams, Streams`Cp' and `Cr'. These observations used the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope to obtain spectra around the CaII triplet region with ~1.3 Å resolution. Six stars lying on the red giant branch within two core radii of the centre of EC4 are found to have an average vr = -287.9+1.9-2.4kms-1 and σv,corr = 2.7+4.2-2.7kms-1, taking instrumental errors into account. The resulting mass-to-light ratio for EC4 is M/L = 6.7+15-6.7Msolar/Lsolar, a value that is consistent with a globular cluster within the 1σ errors we derive. From the summed spectra of our member stars, we find EC4 to be metal-poor, with [Fe/H] = -1.6 +/- 0.15. We discuss several formation and evolution scenarios which could account for our kinematic and metallicity constraints on EC4, and conclude that EC4 is most comparable with an extended globular cluster. We also compare the kinematics and metallicity of EC4 with Streams `Cp' and`Cr', and find that EC4 bears a striking resemblance to Stream`Cp' in terms of velocity, and that the two structures are identical in terms of both their spectroscopic and photometric metallicities. From this, we conclude that EC4 is likely related to Stream`Cp'. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. E-mail: mlmc2@ast.cam.ac.uk

  12. Formation and evolution of substructures in tidal tails: spherical dark matter haloes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Fellhauer, M.; Véjar, R.

    2018-05-01

    Recently a theory about the formation of overdensities of stars along tidal tails of globular clusters has been presented. This theory predicts the position and the time of the formation of such overdensities and was successfully tested with N-body simulations of globular clusters in a point-mass galactic potential. In this work, we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter haloes to study the effects of a cored and a cuspy halo on the formation and the evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading arm and the trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to the first overdensity and its size as well. We establish a relation between the distance to the first overdensity and the size of this overdensity.

  13. Evidence of lensing of the cosmic microwave background by dark matter halos.

    PubMed

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  14. ZOMG - III. The effect of halo assembly on the satellite population

    NASA Astrophysics Data System (ADS)

    Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2018-01-01

    We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.

  15. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Blanton, Michael R.; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ8) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, wp (rp ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our wp (rp ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both wp (rp ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using wp (rp ) and M/N alone, we find Ω0.5 m σ8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  16. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  17. A general framework to test gravity using galaxy clusters - I. Modelling the dynamical mass of haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu

    2018-06-01

    We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.

  18. Exploring the Variable Sky with LINEAR. II. Halo Structure and Substructure Traced by RR Lyrae Stars to 30 kpc

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Ivezić, Željko; Stuart, J. Scott; Morgan, Dylan M.; Becker, Andrew C.; Sharma, Sanjib; Palaversa, Lovro; Jurić, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of ~5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over ~8000 deg2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of ~4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  19. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum andmore » show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.« less

  20. Relics of Galaxy Merging: Observational Predictions for a Wandering Massive Black Hole and Accompanying Star Cluster in the Halo of M31

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  1. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  2. The star formation history in the Andromeda halo

    NASA Astrophysics Data System (ADS)

    Brown, Thomas M.

    I present the preliminary results of a program to measure the star formation history in the halo of the Andromeda galaxy. Using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, we obtained the deepest optical images of the sky to date, in a field on the southeast minor axis of Andromeda, 51' (11 kpc) from the nucleus. The resulting color-magnitude diagram (CMD) contains approximately 300,000 stars and extends more than 1.5 mag below the main sequence turnoff, with 50% completeness at V = 30.7 mag. We interpret this CMD using comparisons to ACS observations of five Galactic globular clusters through the same filters, and through χ2-fitting to a finely-spaced grid of calibrated stellar population models. We find evidence for a major (~30%) intermediate-age (6-8 Gyr) metal-rich ([Fe/H])>-0.5) population in the Andromeda halo, along with a significant old metal-poor population akin to that in the Milky Way halo. The large spread in ages suggests that the Andromeda halo formed as a result of a more violent merging history than that in our own Milky Way.

  3. Milky Way mass and potential recovery using tidal streams in a realistic halo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonaca, Ana; Geha, Marla; Küpper, Andreas H. W.

    2014-11-01

    We present a new method for determining the Galactic gravitational potential based on forward modeling of tidal stellar streams. We use this method to test the performance of smooth and static analytic potentials in representing realistic dark matter halos, which have substructure and are continually evolving by accretion. Our FAST-FORWARD method uses a Markov Chain Monte Carlo algorithm to compare, in six-dimensional phase space, an 'observed' stream to models created in trial analytic potentials. We analyze a large sample of streams that evolved in the Via Lactea II (VL2) simulation, which represents a realistic Galactic halo potential. The recovered potentialmore » parameters are in agreement with the best fit to the global, present-day VL2 potential. However, merely assuming an analytic potential limits the dark matter halo mass measurement to an accuracy of 5%-20%, depending on the choice of analytic parameterization. Collectively, the mass estimates using streams from our sample reach this fundamental limit, but individually they can be highly biased. Individual streams can both under- and overestimate the mass, and the bias is progressively worse for those with smaller perigalacticons, motivating the search for tidal streams at galactocentric distances larger than 70 kpc. We estimate that the assumption of a static and smooth dark matter potential in modeling of the GD-1- and Pal5-like streams introduces an error of up to 50% in the Milky Way mass estimates.« less

  4. SMC west halo: a slice of the galaxy that is being tidally stripped?. Star clusters trace age and metallicity gradients

    NASA Astrophysics Data System (ADS)

    Dias, B.; Kerber, L.; Barbuy, B.; Bica, E.; Ortolani, S.

    2016-06-01

    Context. The evolution and structure of the Magellanic Clouds is currently under debate. The classical scenario in which both the Large and Small Magellanic Clouds (LMC, SMC) are orbiting the Milky Way has been challenged by an alternative in which the LMC and SMC are in their first close passage to our Galaxy. The clouds are close enough to us to allow spatially resolved observation of their stars, and detailed studies of stellar populations in the galaxies are expected to be able to constrain the proposed scenarios. In particular, the west halo (WH) of the SMC was recently characterized with radial trends in age and metallicity that indicate tidal disruption. Aims: We intend to increase the sample of star clusters in the west halo of the SMC with homogeneous age, metallicity, and distance derivations to allow a better determination of age and metallicity gradients in this region. Positions are compared with the orbital plane of the SMC from models. Methods: Comparisons of observed and synthetic V(B-V) colour-magnitude diagrams were used to derive age, metallicity, distance, and reddening for star clusters in the SMC west halo. Observations were carried out using the 4.1 m SOAR telescope. Photometric completeness was determined through artificial star tests, and the members were selected by statistical comparison with a control field. Results: We derived an age of 1.23 ± 0.07 Gyr and [Fe/H] = -0.87 ± 0.07 for the reference cluster NGC 152, compatible with literature parameters. Age and metallicity gradients are confirmed in the WH: 2.6 ± 0.6 Gyr/° and -0.19 ± 0.09 dex/°, respectively. The age-metallicity relation for the WH has a low dispersion in metallicity and is compatible with a burst model of chemical enrichment. All WH clusters seem to follow the same stellar distribution predicted by dynamical models, with the exception of AM-3, which should belong to the counter-bridge. Brück 6 is the youngest cluster in our sample. It is only 130 ± 40 Myr old and

  5. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).

    PubMed

    Dreßen, Alana; Hilberath, Thomas; Mackfeld, Ursula; Billmeier, Arne; Rudat, Jens; Pohl, Martina

    2017-09-20

    Phenylalanine ammonia lyase (PAL) from Arabidopsis thaliana (AtPAL2) was comparatively characterized to the well-studied enzyme from parsley (PcPAL1) and Rhodosporidium toruloides (RtPAL) with respect to kinetic parameters for the deamination and the amination reaction, pH- and temperature optima and the substrate range of the amination reaction. Whereas both plant enzymes are specific for phenylalanine, the bifunctional enzyme from Rhodosporidium toruloides shows K M -values for L-Phe and L-Tyr in the same order of magnitude and, compared to both plant enzymes, a 10-15-fold higher activity. At 30°C all enzymes were sufficiently stable with half-lives of 3.4days (PcPAL1), 4.6days (AtPAL2) and 9.7days (RtPAL/TAL). Very good results for the amination of various trans-cinnamic acid derivatives were obtained using E. coli cells as whole cell biocatalysts in ammonium carbonate buffer. Investigation of the substrate ranges gave interesting results for the newly tested enzymes from A. thaliana and R. toruloides. Only the latter accepts besides 4-hydroxy-CA also 3-methoxy-4-hydroxy-CA as a substrate, which is an interesting intermediate for the formation of pharmaceutically relevant L-Dopa. AtPAL2 is a very good catalyst for the formation of (S)-3-F-Phe, (S)-4-F-Phe and (S)-2-Cl-Phe. Such non-canonical amino acids are valuable building blocks for the formation of various drug molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Stellar to Halo Mass Relation of X-ray Groups at 0.5

    NASA Astrophysics Data System (ADS)

    Patel, Shannon

    2014-08-01

    Combining the deepest X-ray imaging to date in the CDFS with the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey, we study the aggregate stellar mass content in bonafide low mass group halos (down to M_h~10^13 Msun) at 0.5halo mass regime and epoch that have not been previously probed. We find that the stellar to total mass ratio gradually decreases toward higher group masses, bridging the trend seen in the local universe between more efficient L* halos and massive, cluster halos. We compare our findings to various models and show how our measurements provide important constraints over an epoch when groups undergo substantial growth in number density, contribute toward the quenching of star formation, and serve as the building blocks of present day clusters.

  7. Haloes gone MAD: The Halo-Finder Comparison Project

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Knollmann, Steffen R.; Muldrew, Stuart I.; Pearce, Frazer R.; Aragon-Calvo, Miguel Angel; Ascasibar, Yago; Behroozi, Peter S.; Ceverino, Daniel; Colombi, Stephane; Diemand, Juerg; Dolag, Klaus; Falck, Bridget L.; Fasel, Patricia; Gardner, Jeff; Gottlöber, Stefan; Hsu, Chung-Hsing; Iannuzzi, Francesca; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron; Neyrinck, Mark C.; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Read, Justin I.; Ricker, Paul M.; Roy, Fabrice; Springel, Volker; Stadel, Joachim; Stinson, Greg; Sutter, P. M.; Turchaninov, Victor; Tweed, Dylan; Yepes, Gustavo; Zemp, Marcel

    2011-08-01

    We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge. Airport code for Madrid, Spain

  8. Internal dynamics of the radio-halo cluster A2219: A multi-wavelength analysis

    NASA Astrophysics Data System (ADS)

    Boschin, W.; Girardi, M.; Barrena, R.; Biviano, A.; Feretti, L.; Ramella, M.

    2004-03-01

    We present the results of the dynamical analysis of the rich, hot, and X-ray very luminous galaxy cluster A2219, containing a powerful diffuse radio-halo. Our analysis is based on new redshift data for 27 galaxies in the cluster region, measured from spectra obtained at the TNG, with the addition of other 105 galaxies recovered from reduction of CFHT archive data in a cluster region of ˜5 arcmin radius (˜ 0.8 h-1 Mpc ; at the cluster distance) centered on the cD galaxy. The investigation of the dynamical status is also performed using X-ray data stored in the Chandra archive. Further, valuable information comes from other bands - optical photometric, infrared, and radio data - which are analyzed and/or discussed, too. We find that A2219 appears as a peak in the velocity space at z=0.225, and select 113 cluster members. We compute a high value for the line-of-sight velocity dispersion, σv= 1438+109-86 km s-1, consistent with the high average X-ray temperature of 10.3 keV. If dynamical equilibrium is assumed, the virial theorem leads to M˜2.8× 1015 M⊙ ;sun for the global mass within the virial region. However, further investigation based on both optical and X-ray data shows significant signs of a young dynamical status. In fact, we find strong evidence for the elongation of the cluster in the SE-NW direction coupled with a significant velocity gradient, as well as for the presence of substructure both in optical data and X-ray data. Moreover, we point out the presence of several active galaxies. We discuss the results of our multi-wavelength investigation suggesting a complex merging scenario where the main, original structure is subject to an ongoing merger with a few clumps aligned in a filament in the foreground oriented in an oblique direction with respect to the line-of-sight. Our conclusion supports the view of the connection between extended radio emission and merging phenomena in galaxy clusters. Based on observations made on the island of La Palma

  9. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo

  10. Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Al-Khalili, Jim

    2017-10-01

    While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.

  11. Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory

    NASA Astrophysics Data System (ADS)

    Munari, Emiliano; Monaco, Pierluigi; Sefusatti, Emiliano; Castorina, Emanuele; Mohammad, Faizan G.; Anselmi, Stefano; Borgani, Stefano

    2017-03-01

    We present the latest version of PINOCCHIO, a code that generates catalogues of dark matter haloes in an approximate but fast way with respect to an N-body simulation. This code version implements a new on-the-fly production of halo catalogue on the past light cone with continuous time sampling, and the computation of particle and halo displacements are extended up to third-order Lagrangian perturbation theory (LPT), in contrast with previous versions that used Zel'dovich approximation. We run PINOCCHIO on the same initial configuration of a reference N-body simulation, so that the comparison extends to the object-by-object level. We consider haloes at redshifts 0 and 1, using different LPT orders either for halo construction or to compute halo final positions. We compare the clustering properties of PINOCCHIO haloes with those from the simulation by computing the power spectrum and two-point correlation function in real and redshift space (monopole and quadrupole), the bispectrum and the phase difference of halo distributions. We find that 2LPT and 3LPT give noticeable improvement. 3LPT provides the best agreement with N-body when it is used to displace haloes, while 2LPT gives better results for constructing haloes. At the highest orders, linear bias is typically recovered at a few per cent level. In Fourier space and using 3LPT for halo displacements, the halo power spectrum is recovered to within 10 per cent up to kmax ∼ 0.5 h Mpc-1. The results presented in this paper have interesting implications for the generation of large ensemble of mock surveys for the scientific exploitation of data from big surveys.

  12. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  13. Three ancient halo subgiants: precise parallaxes, compositions, ages, and implications for globular clusters , ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VandenBerg, Don A.; Bond, Howard E.; Nelan, Edmund P.

    2014-09-10

    The most accurate ages for the oldest stars are those obtained for nearby halo subgiants because they depend almost entirely on just the measured parallaxes and absolute oxygen abundances. In this study, we have used the Fine Guidance Sensors on the Hubble Space Telescope to determine trigonometric parallaxes, with precisions of 2.1% or better, for the Population II subgiants HD 84937, HD 132475, and HD 140283. High quality spectra have been used to derive their surface abundances of O, Fe, Mg, Si, and Ca, which are assumed to be 0.1-0.15 dex less than their initial abundances due to the effectsmore » of diffusion. Comparisons of isochrones with the three subgiants on the (log T {sub eff}, M{sub V} ) diagram yielded ages of 12.08 ± 0.14, 12.56 ± 0.46, and 14.27 ± 0.38 Gyr for HD 84937, HD 132475, and HD 140283, in turn, where each error bar includes only the parallax uncertainty. The total uncertainty is estimated to be ∼ ± 0.8 Gyr (larger in the case of the near-turnoff star HD 84937). Although the age of HD 140283 is greater than the age of the universe as inferred from the cosmic microwave background by ∼0.4-0.5 Gyr, this discrepancy is at a level of <1σ. Nevertheless, the first Population II stars apparently formed very soon after the Big Bang. (Stellar models that neglect diffusive processes seem to be ruled out as they would predict that HD 140283 is ∼1.5 Gyr older than the universe.) The field halo subgiants appear to be older than globular clusters of similar metallicities: if distances close to those implied by the RR Lyrae standard candle are assumed, M 92 and M 5 are younger than HD 140283 and HD 132475 by ∼1.5 and ∼1.0 Gyr, respectively.« less

  14. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  15. Sloshing in its cD halo: MUSE kinematics of the central galaxy NGC 3311 in the Hydra I cluster

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Mendes de Oliveira, C.; Hilker, M.; Richtler, T.

    2018-01-01

    Context. Early-type galaxies (ETGs) show a strong size evolution with redshift. This evolution is explained by fast "in-situ" star formation at high-z followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. Aims: We aim to identify the main structural components of the Hydra I cD galaxy NGC 3311 to investigate the connection between the central galaxy and the surrounding stellar halo. Methods: We produce maps of the line-of-sight velocity distribution (LOSVD) moments from a mosaic of MUSE pointings covering NGC 3311 out to 25 kpc. Combining deep photometric and spectroscopic data, we model the LOSVD maps using a finite mixture distribution, including four non-concentric components that are nearly isothermal spheroids, with different line-of-sight systemic velocities V, velocity dispersions σ, and small (constant) values of the higher order Gauss-Hermite moments h3 and h4. Results: The kinemetry analysis indicates that NGC 3311 is classified as a slow rotator, although the galaxy shows a line-of-sight velocity gradient along the photometric major axis. The comparison of the correlations between h3 and h4 with V/σ with simulated galaxies indicates that NGC 3311 assembled mainly through dry mergers. The σ profile rises to ≃ 400 km s-1 at 20 kpc, a significant fraction (0.55) of the Hydra I cluster velocity dispersion, indicating that stars there were stripped from progenitors orbiting in the cluster core. The finite mixture distribution modeling supports three inner components related to the central galaxy and a fourth component with large effective radius (51 kpc) and velocity dispersion (327 km s-1) consistent with a cD envelope. We find that the cD envelope is offset from the center of NGC 3311 both spatially (8.6 kpc) and in velocity (ΔV = 204 km s-1), but coincides with the cluster core X-ray isophotes and the mean velocity of core galaxies. Also, the envelope contributes to the broad wings of the

  16. Leader Self Disclosure within PAL: A Case Study

    ERIC Educational Resources Information Center

    Allen, Adelaide; Court, Sue

    2009-01-01

    The purpose of this paper is to explore the value of self disclosure within Peer Assisted Learning (PAL) sessions at Bournemouth University. We consider the role of self disclosure in education contexts in order to inform our understanding of this skill in PAL. Both qualitative and quantitative methods were employed in this research to investigate…

  17. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  18. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyraemore » stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.« less

  19. Witnessing the formation of a radio halo

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2017-09-01

    We propose a 200 ks GO observation which would be joined with a 100 ks GTO observation of Abell 2219. The key aims of this proposal are to; provide constraints on particle acceleration at the identified shock fronts; relate the spectral index variations in the radio halo to the surface brightness fluctuations of the X-ray gas; and, characterize the properties of the disrupted sub-cluster core.

  20. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earliermore » work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.« less

  1. Probing the outer limits of a galactic halo - deep imaging of exceptionally remote globular clusters in M31

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2011-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the formation and growth of galaxies. As part of the ongoing Pan-Andromeda Archaeological Survey {PAndAS} we have discovered a group of exceptionally remote GCs in the M31 halo, spanning a range in projected galactocentric distance of 85-145 kpc. Here we apply for deep ACS imaging of 13 such targets, which will allow us to study their constituent stellar populations, line-of-sight distances, and structural parameters. Our measurements will facilitate the use of these GCs as a unique set of probes of the exceptionally remote halo of a large disk galaxy, opening up a completely new area of parameter space to observational constraint. Comparing the properties of our targets with more centrally-located objects will provide a much clearer picture of the M31 GC population than is presently available, while comparison with the outermost Milky Way GCs will further elucidate well-known disparities between the two systems and offer vital clues to differences in their assembly. In addition, our measurements will substantially augment a broad swathe of science that is presently underway - including probing the dark mass distribution in M31 at very large radii, and investigating the detailed chemical composition of M31 GCs via high-resolution integrated-light spectroscopy.

  2. The clustering of z > 7 galaxies: predictions from the BLUETIDES simulation

    NASA Astrophysics Data System (ADS)

    Bhowmick, Aklant K.; Di Matteo, Tiziana; Feng, Yu; Lanusse, Francois

    2018-03-01

    We study the clustering of the highest z galaxies (from ˜0.1 to a few tens Mpc scales) using the BLUETIDES simulation and compare it to current observational constraints from Hubble legacy and Hyper Suprime Cam (HSC) fields (at z = 6-7.2). With a box length of 400 Mpc h-1 on each side and 0.7 trillion particles, BLUETIDES is the largest volume high-resolution cosmological hydrodynamic simulation to date ideally suited for studies of high-z galaxies. We find that galaxies with magnitude mUV < 27.7 have a bias (bg) of 8.1 ± 1.2 at z = 8, and typical halo masses MH ≳ 6 × 1010 M⊙. Given the redshift evolution between z = 8 and z = 10 [bg ∝ (1 + z)1.6], our inferred values of the bias and halo masses are consistent with measured angular clustering at z ˜ 6.8 from these brighter samples. The bias of fainter galaxies (in the Hubble legacy field at H160 ≲ 29.5) is 5.9 ± 0.9 at z = 8 corresponding to halo masses MH ≳ 1010 M⊙. We investigate directly the 1-halo term in the clustering and show that it dominates on scales r ≲ 0.1 Mpc h-1 (Θ ≲ 3 arcsec) with non-linear effect at transition scales between the one-halo and two-halo term affecting scales 0.1 Mpc h-1≲ r ≲ 20 Mpc h-1 (3 arcsec ≲ Θ ≲ 90 arcsec). Current clustering measurements probe down to the scales in the transition between one-halo and two-halo regime where non-linear effects are important. The amplitude of the one-halo term implies that occupation numbers for satellites in BLUETIDES are somewhat higher than standard halo occupation distributions adopted in these analyses (which predict amplitudes in the one-halo regime suppressed by a factor 2-3). That possibly implies a higher number of galaxies detected by JWST (at small scales and even fainter magnitudes) observing these fields.

  3. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  4. A GRAVITATIONAL DOUBLE-SCATTERING MECHANISM FOR GENERATING HIGH-VELOCITY OBJECTS DURING HALO MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsing, Johan; Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544

    2015-02-01

    We present a dynamical model that describes how halo particles can receive a significant energy kick from the merger between their own host halo and a target halo. This could provide a possible explanation for some high-velocity objects, including extended systems like globular clusters (GCs). In the model we especially introduce a double-scattering mechanism, where a halo particle receives a significant part of its total energy kick by first undergoing a gravitational deflection by the target halo and subsequently by its original host halo. This generates an energy kick that is due to the relative velocity between the halos duringmore » the deflections. We derive analytically the total kick energy of the particle, which is composed of energy from the double-scattering mechanism and tidal fields, as a function of its position in its original host halo just before merger. In the case of a 1:10 merger, we find that the presented mechanisms can easily generate particles with a velocity approximately two times the virial velocity of the target halo. This motivates us to suggest that the high velocity of the recently discovered GC HVGC-1 can be explained by a head-on halo merger. Finally, we illustrate the orbital evolution of high-velocity particles outside the virial sphere of the target halo by solving the equation of motion in an expanding universe. We find a sweet spot around a scale factor of 0.3-0.5 for ejecting particles into large orbits, which can easily reach beyond approximately five virial radii.« less

  5. CLUMP-3D: Testing ΛCDM with Galaxy Cluster Shapes

    NASA Astrophysics Data System (ADS)

    Sereno, Mauro; Umetsu, Keiichi; Ettori, Stefano; Sayers, Jack; Chiu, I.-Non; Meneghetti, Massimo; Vega-Ferrero, Jesús; Zitrin, Adi

    2018-06-01

    The ΛCDM model of structure formation makes strong predictions on the concentration and shape of dark matter (DM) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the ΛCDM model. Accurate and precise measurements needs a full three-dimensional (3D) analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular Cluster Lensing and Supernova survey with Hubble (CLASH) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev–Zel’dovich effect (SZe). The cluster shapes and concentrations are consistent with ΛCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being less effective in making halos rounder.

  6. Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata.

    PubMed

    Jiang, Yumei; Xia, Bing; Liang, Lijian; Li, Xiaodan; Xu, Sheng; Peng, Feng; Wang, Ren

    2013-03-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid biosynthesis, participates in the biosynthesis of flavonoids, lignins, stilbenes and many other compounds. In this study, we cloned a 2,326 bp full-length PAL2 gene from Lycoris radiata by using degenerate oligonucleotide primer PCR (DOP-PCR) and the rapid amplification of cDNA ends method. The cDNA contains a 2,124 bp coding region encoding 707 amino acids. The LrPAL2 shares about 77.0 % nucleic acid identity and 83 % amino acid identity with LrPAL1. Furthermore, genome sequence analysis demonstrated that LrPAL2 gene contains one intron and two exons. The 5' flanking sequence of LrPAL2 was also cloned by self-formed adaptor PCR (SEFA-PCR), and a group of putative cis-acting elements such as TATA box, CAAT box, G box, TC-rich repeats, CGTCA motif and TCA-element were identified. The LrPAL2 was detected in all tissues examined, with high abundance in bulbs at leaf sprouting stage and in petals at blooming stage. Besides, LrPAL2 drastically responded to MJ, SNP and UV, moderately responded to GA and SA, and a little increased under wounding. Comparison of LrPAL2 expression and LrPAL1 expression demonstrated that LrPAL2 can be more significantly induced than LrPAL1 under the above treatments, and LrPAL2 transcripts accumulated prominently at blooming stage, especially in petals, while LrPAL1 transcripts did not accumulated significantly at blooming stage. All these results suggested that LrPAL2 might play distinct roles in different branches of the phenylpropanoid pathway.

  7. Halo assembly bias and the tidal anisotropy of the local halo environment

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  8. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi

    2016-12-01

    We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non

  9. The contribution of dissolving star clusters to the population of ultra faint objects in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.

    2017-04-01

    In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.

  10. Unveiling Galaxy Bias via the Halo Model, KiDS and GAMA

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Schneider, Peter; Amon, Alexandra; Nakajima, Reiko; Viola, Massimo; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Heymans, Catherine; Hildebrandt, Hendrik; Sifón, Cristóbal; Wang, Lingyu

    2018-06-01

    We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function Γgm(rp), where rp is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of Γgm(rp), and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.

  11. The galaxy clustering crisis in abundance matching

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  12. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE PAGES

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; ...

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume V box = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII revealsmore » that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (M halo 10 13.2 M ⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  13. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  14. The concentration dependence of the galaxy–halo connection: Modeling assembly bias with abundance matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.

    Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less

  15. The concentration dependence of the galaxy–halo connection: Modeling assembly bias with abundance matching

    DOE PAGES

    Lehmann, Benjamin V.; Mao, Yao -Yuan; Becker, Matthew R.; ...

    2016-12-28

    Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. Furthermore, this new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the newmore » $$400\\,\\mathrm{Mpc}\\,{h}^{-1}$$ DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.« less

  16. Merger types forming the Virgo cluster in recent gigayears

    NASA Astrophysics Data System (ADS)

    Olchanski, M.; Sorce, J. G.

    2018-06-01

    Context. As our closest cluster-neighbor, the Virgo cluster of galaxies is intensely studied by observers to unravel the mysteries of galaxy evolution within clusters. At this stage, cosmological numerical simulations of the cluster are useful to efficiently test theories and calibrate models. However, it is not trivial to select the perfect simulacrum of the Virgo cluster to fairly compare in detail its observed and simulated galaxy populations that are affected by the type and history of the cluster. Aims: Determining precisely the properties of Virgo for a later selection of simulated clusters becomes essential. It is still not clear how to access some of these properties, such as the past history of the Virgo cluster from current observations. Therefore, directly producing effective simulacra of the Virgo cluster is inevitable. Methods: Efficient simulacra of the Virgo cluster can be obtained via simulations that resemble the local Universe down to the cluster scale. In such simulations, Virgo-like halos form in the proper local environment and permit assessing the most probable formation history of the cluster. Studies based on these simulations have already revealed that the Virgo cluster has had a quiet merging history over the last seven gigayears and that the cluster accretes matter along a preferential direction. Results: This paper reveals that in addition such Virgo halos have had on average only one merger larger than about a tenth of their mass at redshift zero within the last four gigayears. This second branch (by opposition to main branch) formed in a given sub-region and merged recently (within the last gigayear). These properties are not shared with a set of random halos within the same mass range. Conclusions: This study extends the validity of the scheme used to produce the Virgo simulacra down to the largest sub-halos of the Virgo cluster. It opens up great prospects for detailed comparisons with observations, including substructures and

  17. The Proper Motion of Palomar 5

    NASA Astrophysics Data System (ADS)

    Fritz, T. K.; Kallivayalil, N.

    2015-10-01

    Palomar 5 (Pal 5) is a faint halo globular cluster associated with narrow tidal tails. It is a useful system to understand the process of tidal dissolution, as well as to constrain the potential of the Milky Way. A well-determined orbit for Pal 5 would enable detailed study of these open questions. We present here the first CCD-based proper motion measurement of Pal 5 obtained using SDSS as a first epoch and new Large Binocular Telescope/Large Binocular Camera (LBC) images as a second, giving a baseline of 15 years. We perform relative astrometry, using SDSS as a distortion-free reference, and images of the cluster and also of the Pal 5 stream for the derivation of the distortion correction for LBC. The reference frame is made up of background galaxies. We correct for differential chromatic refraction using relations obtained from SDSS colors as well as from flux-calibrated spectra, finding that the correction relations for stars and for galaxies are different. We obtain μα = -2.296 ± 0.186 mas yr-1 and μδ = -2.257 ± 0.181 mas yr-1 for the proper motion of Pal 5. We use this motion, and the publicly available code galpy, to model the disruption of Pal 5 in different Milky Way models consisting of a bulge, a disk, and a spherical dark matter halo. Our fits to the observed stream properties (streak and radial velocity gradient) result in a preference for a relatively large Pal 5 distance of around 24 kpc. A slightly larger absolute proper motion than what we measure also results in better matches but the best solutions need a change in distance. We find that a spherical Milky Way model, with V0 = 220 km s-1 and V20 kpc, i.e., approximately at the apocenter of Pal 5, of 218 km s-1, can match the data well, at least for our choice of disk and bulge parametrization. Based on LBT data. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The Ohio State University, and The Research

  18. The Halo Occupation Distribution of obscured quasars: revisiting the unification model

    NASA Astrophysics Data System (ADS)

    Mitra, Kaustav; Chatterjee, Suchetana; DiPompeo, Michael A.; Myers, Adam D.; Zheng, Zheng

    2018-06-01

    We model the projected angular two-point correlation function (2PCF) of obscured and unobscured quasars selected using the Wide-field Infrared Survey Explorer (WISE), at a median redshift of z ˜ 1 using a five parameter Halo Occupation Distribution (HOD) parametrization, derived from a cosmological hydrodynamic simulation by Chatterjee et al. The HOD parametrization was previously used to model the 2PCF of optically selected quasars and X-ray bright active galactic nuclei (AGNs) at z ˜ 1. The current work shows that a single HOD parametrization can be used to model the population of different kinds of AGN in dark matter haloes suggesting the universality of the relationship between AGN and their host dark matter haloes. Our results show that the median halo mass of central quasar hosts increases from optically selected (4.1^{+0.3}_{-0.4} × 10^{12} h^{-1} M_{⊙}) and infra-red (IR) bright unobscured populations (6.3^{+6.2}_{-2.3} × 10^{12} h^{-1} M_{⊙}) to obscured quasars (10.0^{+2.6}_{-3.7} × 10^{12} h^{-1} M_{⊙}), signifying an increase in the degree of clustering. The projected satellite fractions also increase from optically bright to obscured quasars and tend to disfavour a simple `orientation only' theory of active galactic nuclei unification. Our results also show that future measurements of the small-scale clustering of obscured quasars can constrain current theories of galaxy evolution where quasars evolve from an IR-bright obscured phase to the optically bright unobscured phase.

  19. Three Ancient Halo Subgiants: Precise Parallaxes, Compositions, Ages, and Implications for Globular Clusters

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Bond, Howard E.; Nelan, Edmund P.; Nissen, P. E.; Schaefer, Gail H.; Harmer, Dianne

    2014-09-01

    The most accurate ages for the oldest stars are those obtained for nearby halo subgiants because they depend almost entirely on just the measured parallaxes and absolute oxygen abundances. In this study, we have used the Fine Guidance Sensors on the Hubble Space Telescope to determine trigonometric parallaxes, with precisions of 2.1% or better, for the Population II subgiants HD 84937, HD 132475, and HD 140283. High quality spectra have been used to derive their surface abundances of O, Fe, Mg, Si, and Ca, which are assumed to be 0.1-0.15 dex less than their initial abundances due to the effects of diffusion. Comparisons of isochrones with the three subgiants on the (log T eff, MV ) diagram yielded ages of 12.08 ± 0.14, 12.56 ± 0.46, and 14.27 ± 0.38 Gyr for HD 84937, HD 132475, and HD 140283, in turn, where each error bar includes only the parallax uncertainty. The total uncertainty is estimated to be ~ ± 0.8 Gyr (larger in the case of the near-turnoff star HD 84937). Although the age of HD 140283 is greater than the age of the universe as inferred from the cosmic microwave background by ~0.4-0.5 Gyr, this discrepancy is at a level of <1σ. Nevertheless, the first Population II stars apparently formed very soon after the Big Bang. (Stellar models that neglect diffusive processes seem to be ruled out as they would predict that HD 140283 is ~1.5 Gyr older than the universe.) The field halo subgiants appear to be older than globular clusters of similar metallicities: if distances close to those implied by the RR Lyrae standard candle are assumed, M 92 and M 5 are younger than HD 140283 and HD 132475 by ~1.5 and ~1.0 Gyr, respectively. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations collected at the La Silla Paranal Observatory, ESO, Chile.

  20. Using ground based data as a precursor for Gaia in getting proper motions of satellites

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias K.; Linden, Sean T.; Zivick, Paul; Kallivayalil, Nitya; Bovy, Jo

    2018-04-01

    We present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M⊙.

  1. The Galaxy-Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Toshikawa, Jun; Tanaka, Masayuki; Hamana, Takashi; Niino, Yuu; Ichikawa, Kohei; Uchiyama, Hisakazu

    2017-05-01

    We present the results of clustering analyses of Lyman break galaxies (LBGs) at z˜ 3, 4, and 5 using the final data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). Deep- and wide-field images of the CFHTLS Deep Survey enable us to obtain sufficiently accurate two-point angular correlation functions to apply a halo occupation distribution analysis. The mean halo masses, calculated as < {M}h> ={10}11.7{--}{10}12.8 {h}-1 {M}⊙ , increase with the stellar-mass limit of LBGs. The threshold halo mass to have a central galaxy, {M}\\min , follows the same increasing trend as the low-z results, whereas the threshold halo mass to have a satellite galaxy, M 1, shows higher values at z=3{--}5 than z=0.5{--}1.5, over the entire stellar mass range. Satellite fractions of dropout galaxies, even at less massive halos, are found to drop sharply, from z = 2 down to less than 0.04, at z=3{--}5. These results suggest that satellite galaxies form inefficiently within dark halos at z=3{--}5, even for less massive satellites with {M}\\star < {10}10 {M}⊙ . We compute stellar-to-halo mass ratios (SHMRs) assuming a main sequence of galaxies, which is found to provide SHMRs consistent with those derived from a spectral energy distribution fitting method. The observed SHMRs are in good agreement with model predictions based on the abundance-matching method, within 1σ confidence intervals. We derive observationally, for the first time, {M}{{h}}{pivot}, which is the halo mass at a peak in the star-formation efficiency, at 3< z< 5, and it shows a small increasing trend with cosmic time at z> 3. In addition, {M}{{h}}{pivot} and its normalization are found to be almost unchanged during 0< z< 5. Our study provides observational evidence that galaxy formation is ubiquitously most efficient near a halo mass of {M}{{h}}˜ {10}12 {M}⊙ over cosmic time.

  2. Universal clustering of dark matter in phase space

    NASA Astrophysics Data System (ADS)

    Zavala, Jesús; Afshordi, Niayesh

    2016-03-01

    We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase-space average density (P2SAD). In a two-paper series, we studied the structure of P2SAD in the Milky Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this work, we report a remarkable universality of the clustering of dark matter in phase space as measured by P2SAD within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes (1010-1015 M⊙). Simulations show that the universality of P2SAD holds for more than seven orders of magnitude, over a 2D phase space, covering over three orders of magnitude in distance/velocity, with a simple functional form that can be described by our model. Invoking the universality of P2SAD, we can accurately predict the non-linear power spectrum of dark matter at small scales all the way down to the decoupling mass limit of cold dark matter particles. As an application, we compute the subhalo boost to the annihilation of dark matter in a wide range of host halo masses.

  3. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2017-01-01

    Observations of the nearby universe fail to locate about half of the baryons observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  4. Human Tissues Investigation Using PALS Technique

    NASA Astrophysics Data System (ADS)

    Jasińska, B.; Zgardzińska, B.; Chołubek, G.; Gorgol, M.; Wiktor, K.; Wysogląd, K.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Hiesmayr, B.; Jodłowska-Jędrych, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiktor, H.; Wiślicki, W.; Zieliński, M.; Moskal, P.

    Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the $3\\gamma$ fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.

  5. Extremely faint, diffuse satellite systems in the M31 halo: exceptional star clusters or tiny dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Recent years have seen the discovery of a variety of low surface brightness, diffuse stellar systems in the Local Group. Of particular prominence are the ultra-faint dwarf satellites of the Milky Way and the extended globular clusters seen in M31, M33, and NGC 6822. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered several very faint and diffuse stellar satellites in the M31 halo. In Cycle 19 we obtained ACS/WFC imaging for one of these, PAndAS-48, which has revealed it to be a puzzling and unusual object. On the size-luminosity plane it falls between the extended clusters and ultra-faint dwarfs; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is an extended cluster then it is the most elliptical, isolated, metal-poor, and lowest-luminosity example yet uncovered. Conversely, while its properties are generally consistent with those observed for the faint dwarf satellites of the Milky Way, it would be a factor 2-3 smaller in spatial extent than its Galactic counterparts at comparable luminosity. Here we propose deep resolved imaging of the remaining five similar objects in our sample, with the aim of probing this hitherto poorly-explored region of parameter space in greater detail. If we are able to confirm any of these objects as faint dwarfs, they will provide the first insight into the behaviour of this class of object in a galaxy other than the Milky Way.

  6. Dynamical evolution of globular-cluster systems in clusters of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  7. Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.

    2016-12-01

    Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.

  8. HaloSat- A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    We propose to develop, build, and fly HaloSat, a CubeSat capable of measuring the oxygen line emission from the hot Galactic halo. A dedicated CubeSat enables an instrument design and observing strategy to maximize the halo signal while minimizing foregrounds from solar wind charge exchange interactions within the solar system. We will use HaloSat to map the distribution of hot gas in the Milky Way and determine whether it fills an extended, and thus massive halo, or whether the halo is compact, and thus does not contribute significantly to the total mass of the Milky Way. HaloSat can be accomplished at modest cost using a CubeSat, a novel platform for space astrophysics missions. We will use a commercially available CubeSat bus and commercially available X-ray detectors to reduce development risk and minimize overall mission cost. HaloSat builds on the initiatives of GSFC/Wallops Flight Facility (WFF) in the development of CubeSats for low cost access to space and relies on the technical expertise of WFF personnel for spacecraft and mission design and operations. The team, from University of Iowa (UI), GSFC, Johns Hopkins, and CNRS (France), contains experts in X-ray detector development and data analysis and the astrophysics of hot plasmas and Galactic structure. The UI team will include a number of junior researchers (undergraduates, graduate students, and a postdoc) and help train them for future leadership roles on NASA space flight missions.

  9. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  10. Pen Pal Writing: A Holistic and Socio-Cultural Approach to Adult English Literacy

    ERIC Educational Resources Information Center

    Larrotta, Clarena; Serrano, Arlene F.

    2012-01-01

    This qualitative study reports the findings implementing a pen pal letter exchange project between adult English language learners and volunteer native English speakers. The pen pal project was implemented using a holistic and socio-cultural approach to English literacy development. This article presents pen pal writing as an authentic language…

  11. High β effects on cosmic ray streaming in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng

    2018-01-01

    Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.

  12. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  13. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  14. Hierarchical Formation of Dark Matter Halos near the Cutoff Scale and Their Impact on Indirect Detections

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2015-08-01

    The smallest dark matter halos are formed first in the early universe. We present results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. In the largest simulation, the motions of 40963 particles in comoving boxes of side lengths 400 pc and 200 pc were followed. The particle masses were 3.4 Χ 10-11 M⊙ and 4.3 Χ 10-12 M⊙, ensuring that halos at the cutoff scale were represented by ˜30,000 and ˜230,000 particles, respectively. We found that the central density cusp is much steeper in these halos than in larger halos (dwarf-galaxy-sized to cluster-sized halos), and scales as ρ ∝ r(-1.5—1.3). The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately -1.3. No strong correlation exists between inner slope and the collapse epoch. The cusp slope of halos above the cutoff scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60—70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Such halos could still exist in the present universe with the same steep density profiles. Strongly depending on the subhalo mass function and the adopted concentration model, the steeper inner cusps of halos near the cutoff scale enhance the annihilation luminosity of a Milky Way sized halo between 12 to 67%.

  15. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  16. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed formore » inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.« less

  17. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  18. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    NASA Astrophysics Data System (ADS)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  19. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta

    2016-12-01

    The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive

  20. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  1. Featured Image: Globular Cluster Orbits

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    This figure (click for the full view) shows the meridional galactic orbits of 12 globular clusters that orbit the Milky Way. The recent release of stellar parallax data from Gaia allowed a team of scientists at Dartmouth College to improve measurements of a number of galactic globular clusters very old clusters of stars that can either orbit within the galactic disk and bulge or more distantly in the galactic halo. In a recent publication led by Erin OMalley, the team presents their findings and combines their new measurements for the clusters with proper motions from past studies to calculate the orbits that these globulars take. These calculations show us whether the clusters reside in the galactic disk and bulge (as only NGC 104 does in the sample shown here, since its orbit is confined to 8 kpc radially and 4 kpc vertically of the galactic center), or if they are halo clusters. To learn more about the authors work, you can check out the paper below!CitationErin M. OMalley et al 2017 ApJ 838 162. doi:10.3847/1538-4357/aa6574

  2. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  3. Palliative Care in Heart Failure: The PAL-HF Randomized, Controlled Clinical Trial.

    PubMed

    Rogers, Joseph G; Patel, Chetan B; Mentz, Robert J; Granger, Bradi B; Steinhauser, Karen E; Fiuzat, Mona; Adams, Patricia A; Speck, Adam; Johnson, Kimberly S; Krishnamoorthy, Arun; Yang, Hongqiu; Anstrom, Kevin J; Dodson, Gwen C; Taylor, Donald H; Kirchner, Jerry L; Mark, Daniel B; O'Connor, Christopher M; Tulsky, James A

    2017-07-18

    Advanced heart failure (HF) is characterized by high morbidity and mortality. Conventional therapy may not sufficiently reduce patient suffering and maximize quality of life. The authors investigated whether an interdisciplinary palliative care intervention in addition to evidence-based HF care improves certain outcomes. The authors randomized 150 patients with advanced HF between August 15, 2012, and June 25, 2015, to usual care (UC) (n = 75) or UC plus a palliative care intervention (UC + PAL) (n = 75) at a single center. Primary endpoints were 2 quality-of-life measurements, the Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary and the Functional Assessment of Chronic Illness Therapy-Palliative Care scale (FACIT-Pal), assessed at 6 months. Secondary endpoints included assessments of depression and anxiety (measured via the Hospital Anxiety and Depression Scale [HADS]), spiritual well-being (measured via the FACIT-Spiritual Well-Being scale [FACIT-Sp]), hospitalizations, and mortality. Patients randomized to UC + PAL versus UC alone had clinically significant incremental improvement in KCCQ and FACIT-Pal scores from randomization to 6 months (KCCQ difference = 9.49 points, 95% confidence interval [CI]: 0.94 to 18.05, p = 0.030; FACIT-Pal difference = 11.77 points, 95% CI: 0.84 to 22.71, p = 0.035). Depression improved in UC + PAL patients (HADS-depression difference = -1.94 points; p = 0.020) versus UC-alone patients, with similar findings for anxiety (HADS-anxiety difference = -1.83 points; p = 0.048). Spiritual well-being was improved in UC + PAL versus UC-alone patients (FACIT-Sp difference = 3.98 points; p = 0.027). Randomization to UC + PAL did not affect rehospitalization or mortality. An interdisciplinary palliative care intervention in advanced HF patients showed consistently greater benefits in quality of life, anxiety, depression, and spiritual well-being compared with UC alone. (Palliative Care in Heart

  4. Optimizing weak lensing mass estimates for cluster profile uncertainty

    DOE PAGES

    Gruen, D.; Bernstein, G. M.; Lam, T. Y.; ...

    2011-09-11

    Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M 200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M ap that minimizes the mass estimate variance <(M ap - M 200m) 2> in the presence of allmore » these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on M ap filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less

  5. 4-H PetPALS Juvenile Diversion Program Supports At-Risk Youth and Seniors

    ERIC Educational Resources Information Center

    Goble, Connie L.; Miller, Lucinda B.

    2014-01-01

    The 4-H PetPALS Juvenile Diversion Program provides a partnership opportunity with Extension and the juvenile court system to positively impact lives of at-risk youth. At-risk youth are taught by 4-H PetPALS adult volunteer leaders and 4-H PetPALS members to value and respect the human-animal bond, as well as to understand and empathize with…

  6. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  7. HALOE Science Investigation

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris

    1998-01-01

    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.

  8. The signal of weak gravitational lensing from galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Markert, Sean

    2017-02-01

    The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies. We used M> 1013.5 h-1M ⊙ halos from the MultiDark Planck simulation at z 0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs. We find that fits to the reduced shear for halos extending past ≈ 2 h-1Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45° rotated component to the reduced tangential shear, and is a breakdown in the approximation of gtan ≈ gnot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h-1Mpc, we see massively improved fits

  9. Hierarchical Galaxy Growth and Scatter in the Stellar Mass-Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Conroy, Charlie; Behroozi, Peter

    2016-12-01

    The relation between galaxies and dark matter halos reflects the combined effects of many distinct physical processes. Observations indicate that the z = 0 stellar mass-halo mass (SMHM) relation has remarkably small scatter in stellar mass at fixed halo mass (≲0.2 dex), with little dependence on halo mass. We investigate the origins of this scatter by combining N-body simulations with observational constraints on the SMHM relation. We find that at the group and cluster scale ({M}{vir}\\gt {10}14 {M}⊙ ) the scatter due purely to hierarchical assembly is ≈ 0.16 dex, which is comparable to recent direct observational estimates. At lower masses, mass buildup since z≈ 2 is driven largely by in situ growth. We include a model for the in situ buildup of stellar mass and find that an intrinsic scatter in this growth channel of 0.2 dex produces a relation between scatter and halo mass that is consistent with observations from {10}12 {M}⊙ \\lt {M}{vir}\\lt {10}14.75 {M}⊙ . The approximately constant scatter across a wide range of halo masses at z = 0 thus appears to be a coincidence, as it is determined largely by in situ growth at low masses and by hierarchical assembly at high masses. These results indicate that the scatter in the SMHM relation can provide unique insight into the regularity of the galaxy formation process.

  10. VizieR Online Data Catalog: Palomar 5 abundance analysis (Koch+, 2017)

    NASA Astrophysics Data System (ADS)

    Koch, A.; Code, P.

    2017-03-01

    The Pal 5 data discussed here were taken as part of a broader program to study the internal dynamics of outer halo GCs (see, e.g., Cote et al., 2002ApJ...574..783C; Jordi et al., 2009AJ....137.4586J; Baumgardt et al., 2009MNRAS.396.2051B; Frank et al., 2012, Cat. J/MNRAS/423/2917). Our Pal 5 target stars were chosen from the red giant branch (RGB) and asymptotic giant branch (AGB) sequences identified in the early photometric studies of Sandage & Hartwick (1977AJ.....82..459S, SH77) and the unpublished photometry and astrometry from Cudworth, Schweitzer, and Majewski (CSM; see Schweitzer et al., 1993, in The Globular Cluster-Galaxy Connection, ASP Conf. Ser., 48, 113). (1 data file).

  11. The special growth history of central galaxies in groups and clusters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo

    2017-05-01

    Central galaxies (CGs) in galaxy groups and clusters are believed to form and assemble a good portion of their stellar mass at early times, but they also accrete significant mass at late times via galactic cannibalism, that is merging with companion group or cluster galaxies that experience dynamical friction against the common host dark-matter halo. The effect of these mergers on the structure and kinematics of the CG depends not only on the properties of the accreted satellites, but also on the orbital parameters of the encounters. Here we present the results of numerical simulations aimed at estimating the distribution of merging orbital parameters of satellites cannibalized by the CGs in groups and clusters. As a consequence of dynamical friction, the satellites' orbits evolve losing energy and angular momentum, with no clear trend towards orbit circularization. The distributions of the orbital parameters of the central-satellite encounters are markedly different from the distributions found for halo-halo mergers in cosmological simulations. The orbits of satellites accreted by the CGs are on average less bound and less eccentric than those of cosmological halo-halo encounters. We provide fits to the distributions of the central-satellite merging orbital parameters that can be used to study the merger-driven evolution of the scaling relations of CGs.

  12. Stellar Mass-gap as a Probe of Halo Assembly History and Concentration: Youth Hidden among Old Fossils

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-01

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 < M halo/M ⊙ < 1014.5. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  13. Statistical Aspects of X-Class Halo and Non-Halo Events, 1996-2014

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2016-01-01

    Of the 166 X-class events that occurred during the interval 1996-2014, 80 had associations with halo events, 68 had no associations with halo events, and 18 occurred during LASCO (Large Angle and Spectrometric COronagraph) data gaps. Both the duration and location of the X-class halo events proved to be statistically important parameters with respect to the geo-effectiveness of the events. Forty-four of the 80 X-class halo events occurred within 45 degrees of the Sun's central meridian and 47 of the 80 had duration greater than or equal to 30 minutes, whereas only 28 of the 68 X-class non-halo events occurred within 45 degrees of the Sun's central meridian (2 events have unknown location) and 22 of the 68 had duration greater than or equal to 30 minutes. Ignoring the 4 largest X-class flares greater than or equal to X4.0 during the LASCO data gaps, 17 of the remaining 20 were associated with halo events, and 14 of the 17 had at least one geo-magnetically disturbed day (Ap (i.e. NOAA's Ap* (ApStar)index: the major magnetic storms going back to 1932) greater than or equal to 25 nanotesias) within 1-5 days following the X-class halo event. Based on the hourly Dst (Disturbance storm time) index, the most geo-effective X-class halo event during the interval 1996-2014 was that of an X1.7 flare that occurred on 2001 March 29 at 0957, having an hourly Disturbance storm time minimum equal to minus 387 nanotesias. On average, the X-class halo events (80 events) were found to have a mean duration (42 minutes) slightly longer than the mean duration (29 minutes) of the X-class non-halo events (68 events) with the difference in the means being statistically important at the 1 percent level of significance.

  14. Evidence for a Significant Intermediate-Age Population in the M31 Halo from Main Sequence Photometry

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Ferguson, Henry C.; Smith, Ed; Kimble, Randy A.; Sweigart, Allen V.; Renzini, Alvio; Rich, R. Michael; Vandenberg, Don A.

    2003-01-01

    We present a color-magnitude diagram (CMD) for a minor-axis field in the halo of the Andromeda galaxy (M3l), 51 arcmin (11 kpc) from the nucleus. These observations, taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, are the deepest optical images yet obtained, attaining 50% completeness at m(sub v) = 30.7 mag. The CMD, constructed from approx. 3 x 10(exp 5) stars, reaches more than 1.5 mag fainter than the old main-sequence turnoff. Our analysis is based on direct comparisons to ACS observations of four globular clusters through the same filters, as well as chi square fitting to a finely-spaced grid of calibrated stellar-population models. We find that the M31 halo contains a major (approx. 30% by mass) intermediate-age (6-8 Gyr) metal-rich ([Fe/H] greater than -0.5) population, as well as a significant globular-cluster age (11-13.5 Gyr) metal-poor population. These findings support the idea that galaxy mergers played an important role in the formation of the M31 halo.

  15. Probing star formation in the dense environments of z ˜ 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Welikala, N.; Béthermin, M.; Guery, D.; Strandet, M.; Aird, K. A.; Aravena, M.; Ashby, M. L. N.; Bothwell, M.; Beelen, A.; Bleem, L. E.; de Breuck, C.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Dole, H.; Doré, O.; Everett, W.; Flores-Cacho, I.; Gonzalez, A. H.; González-Nuevo, J.; Greve, T. R.; Gullberg, B.; Hezaveh, Y. D.; Holder, G. P.; Holzapfel, W. L.; Keisler, R.; Lagache, G.; Ma, J.; Malkan, M.; Marrone, D. P.; Mocanu, L. M.; Montier, L.; Murphy, E. J.; Nesvadba, N. P. H.; Omont, A.; Pointecouteau, E.; Puget, J. L.; Reichardt, C. L.; Rotermund, K. M.; Scott, D.; Serra, P.; Spilker, J. S.; Stalder, B.; Stark, A. A.; Story, K.; Vanderlinde, K.; Vieira, J. D.; Weiß, A.

    2016-01-01

    We probe star formation in the environments of massive (˜1013 M⊙) dark matter haloes at redshifts of z ˜ 1. This star formation is linked to a submillimetre clustering signal which we detect in maps of the Planck High Frequency Instrument that are stacked at the positions of a sample of high redshift (z > 2) strongly lensed dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope (SPT) 2500 deg2 survey. The clustering signal has submillimetre colours which are consistent with the mean redshift of the foreground lensing haloes (z ˜ 1). We report a mean excess of star formation rate (SFR) compared to the field, of (2700 ± 700) M⊙ yr-1 from all galaxies contributing to this clustering signal within a radius of 3.5 arcmin from the SPT DSFGs. The magnitude of the Planck excess is in broad agreement with predictions of a current model of the cosmic infrared background. The model predicts that 80 per cent of the excess emission measured by Planck originates from galaxies lying in the neighbouring haloes of the lensing halo. Using Herschel maps of the same fields, we find a clear excess, relative to the field, of individual sources which contribute to the Planck excess. The mean excess SFR compared to the field is measured to be (370 ± 40) M⊙ yr-1 per resolved, clustered source. Our findings suggest that the environments around these massive z ˜ 1 lensing haloes host intense star formation out to about 2 Mpc. The flux enhancement due to clustering should also be considered when measuring flux densities of galaxies in Planck data.

  16. Study of clustering structures through breakup reactions

    NASA Astrophysics Data System (ADS)

    Capel, Pierre

    2014-12-01

    Models for the description of breakup reactions used to study the structure of exotic cluster structures like halos are reviewed. The sensitivity of these models to the projectile description is presented. Calculations are sensitive to the projectile ground state mostly through its asymptotic normalisation coefficient (ANC). They also probe the continuum of the projectile. This enables studying not only resonant states of the projectile but also its non-resonant continuum both resonant and non-resonant. This opens the possibility to study correlations between both halo neutrons in two-neutron halo nuclei.

  17. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  18. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittariusmore » are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.« less

  19. A CHANDRA-VLA INVESTIGATION OF THE X-RAY CAVITY SYSTEM AND RADIO MINI-HALO IN THE GALAXY CLUSTER RBS 797

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doria, Alberto; Gitti, Myriam; Brighenti, Fabrizio

    2012-07-01

    We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than themore » surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.« less

  20. Palomar 13: An Unusual Stellar System in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Côté, Patrick; Djorgovski, S. G.; Meylan, G.; Castro, Sandra; McCarthy, J. K.

    2002-08-01

    We report the first results of a program to study the internal kinematics of globular clusters in the outer halo of the Milky Way. Using the Keck telescope and High Resolution Echelle Spectrometer, we have measured precise radial velocities for 30 candidate red giants in the direction of Palomar 13, an object traditionally cataloged as a compact, low-luminosity globular cluster. We have combined these radial velocities with published proper motion membership probabilities and new CCD photometry from the Keck and Canada-France-Hawaii telescopes to isolate a sample of 21 probable members. We find a systemic velocity of s=24.1+/-0.5 km s-1 and a projected, intrinsic velocity dispersion of σp=2.2+/-0.4 km s-1. Although modest, this dispersion is nevertheless several times larger than that expected for a globular cluster of this luminosity and central concentration. Taken at face value, it implies a mass-to-light ratio of ΥV=40+24-17 based on the best-fit King-Michie model. The surface density profile of Palomar 13 also appears unusual compared to most Galactic globular clusters; depending upon the details of background subtraction and model-fitting, Palomar 13 either contains a substantial population of ``extratidal'' stars, or is considerably more spatially extended than previously suspected. The full surface density profile is equally well fitted by a King-Michie model having a high concentration and large tidal radius, or by a Navarro-Frenk-White model. We examine-and tentatively reject-a number of possible origins for the observed characteristics of Palomar 13 (e.g., velocity ``jitter'' among the red giant branch stars, spectroscopic binary stars, nonstandard mass functions, modified Newtonian dynamics) and conclude that the two leading explanations are either catastrophic heating during a recent perigalacticon passage or the presence of a dark matter halo. The available evidence therefore suggests that Palomar 13 is either a globular cluster that is now in

  1. Testing the consistency of three-point halo clustering in Fourier and configuration space

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Gaztañaga, E.; Scoccimarro, R.; Crocce, M.

    2018-05-01

    We compare reduced three-point correlations Q of matter, haloes (as proxies for galaxies) and their cross-correlations, measured in a total simulated volume of ˜100 (h-1 Gpc)3, to predictions from leading order perturbation theory on a large range of scales in configuration space. Predictions for haloes are based on the non-local bias model, employing linear (b1) and non-linear (c2, g2) bias parameters, which have been constrained previously from the bispectrum in Fourier space. We also study predictions from two other bias models, one local (g2 = 0) and one in which c2 and g2 are determined by b1 via approximately universal relations. Overall, measurements and predictions agree when Q is derived for triangles with (r1r2r3)1/3 ≳60 h-1 Mpc, where r1 - 3 are the sizes of the triangle legs. Predictions for Qmatter, based on the linear power spectrum, show significant deviations from the measurements at the BAO scale (given our small measurement errors), which strongly decrease when adding a damping term or using the non-linear power spectrum, as expected. Predictions for Qhalo agree best with measurements at large scales when considering non-local contributions. The universal bias model works well for haloes and might therefore be also useful for tightening constraints on b1 from Q in galaxy surveys. Such constraints are independent of the amplitude of matter density fluctuation (σ8) and hence break the degeneracy between b1 and σ8, present in galaxy two-point correlations.

  2. STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over amore » similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.« less

  3. A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique

    NASA Astrophysics Data System (ADS)

    Erkal, Denis; Koposov, Sergey E.; Belokurov, Vasily

    2017-09-01

    Only in the Milky Way is it possible to conduct an experiment that uses stellar streams to detect low-mass dark matter subhaloes. In smooth and static host potentials, tidal tails of disrupting satellites appear highly symmetric. However, perturbations from dark subhaloes, as well as from GMCs and the Milky Way bar, can induce density fluctuations that destroy this symmetry. Motivated by the recent release of unprecedentedly deep and wide imaging data around the Pal 5 stellar stream, we develop a new probabilistic, adaptive and non-parametric technique that allows us to bring the cluster's tidal tails into clear focus. Strikingly, we uncover a stream whose density exhibits visible changes on a variety of angular scales. We detect significant bumps and dips, both narrow and broad: two peaks on either side of the progenitor, each only a fraction of a degree across, and two gaps, ˜2° and ˜9° wide, the latter accompanied by a gargantuan lump of debris. This largest density feature results in a pronounced intertail asymmetry which cannot be made consistent with an unperturbed stream according to a suite of simulations we have produced. We conjecture that the sharp peaks around Pal 5 are epicyclic overdensities, while the two dips are consistent with impacts by subhaloes. Assuming an age of 3.4 Gyr for Pal 5, these two gaps would correspond to the characteristic size of gaps created by subhaloes in the mass range of 106-107 M⊙ and 107-108 M⊙, respectively. In addition to dark substructure, we find that the bar of the Milky Way can plausibly produce the asymmetric density seen in Pal 5 and that GMCs could cause the smaller gap.

  4. Adaptive Reading and Writing Instruction in iSTART and W-Pal

    ERIC Educational Resources Information Center

    Johnson, Amy M.; McCarthy, Kathryn S.; Kopp, Kristopher J.; Perret, Cecile A.; McNamara, Danielle S.

    2017-01-01

    Intelligent tutoring systems for ill-defined domains, such as reading and writing, are critically needed, yet uncommon. Two such systems, the Interactive Strategy Training for Active Reading and Thinking (iSTART) and Writing Pal (W-Pal) use natural language processing (NLP) to assess learners' written (i.e., typed) responses and provide immediate,…

  5. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  6. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  7. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity

    NASA Astrophysics Data System (ADS)

    Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh

    2018-04-01

    The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.

  8. The 6dF Galaxy Survey: dependence of halo occupation on stellar mass

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred

    2013-03-01

    In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp). We find that the typical halo mass (M1) as well as the satellite power-law index (α) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between M1 and the minimum dark matter halo mass (Mmin) of M1 ≈ 22 Mmin, in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at Mstellar = 2.6 × 1010 h-2 M⊙ to 12 per cent at Mstellar = 5.4 × 1010 h-2 M⊙ indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.

  9. A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters

    NASA Astrophysics Data System (ADS)

    Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.

    2018-06-01

    We present structural parameters from a wide-field homogeneous imaging survey of Milky Way satellites carried out with the MegaCam imagers on the 3.6 m Canada–France–Hawaii Telescope and 6.5 m Magellan-Clay telescope. Our survey targets an unbiased sample of “outer halo” satellites (i.e., substructures having galactocentric distances greater than 25 kpc) and includes classical dSph galaxies, ultra-faint dwarfs, and remote globular clusters. We combine deep, panoramic gr imaging for 44 satellites and archival gr imaging for 14 additional objects (primarily obtained with the DECam instrument as part of the Dark Energy Survey) to measure photometric and structural parameters for 58 outer halo satellites. This is the largest and most uniform analysis of Milky Way satellites undertaken to date and represents roughly three-quarters (58/81 ≃ 72%) of all known outer halo satellites. We use a maximum-likelihood method to fit four density laws to each object in our survey: exponential, Plummer, King, and Sérsic models. We systematically examine the isodensity contour maps and color–magnitude diagrams for each of our program objects, present a comparison with previous results, and tabulate our best-fit photometric and structural parameters, including ellipticities, position angles, effective radii, Sérsic indices, absolute magnitudes, and surface brightness measurements. We investigate the distribution of outer halo satellites in the size–magnitude diagram and show that the current sample of outer halo substructures spans a wide range in effective radius, luminosity, and surface brightness, with little evidence for a clean separation into star cluster and galaxy populations at the faintest luminosities and surface brightnesses.

  10. Mixed-methods development of a new patient-reported outcome instrument for chronic low back pain: part 1-the Patient Assessment for Low Back Pain - Symptoms (PAL-S).

    PubMed

    Martin, Mona L; Blum, Steven I; Liedgens, Hiltrud; Bushnell, Donald M; McCarrier, Kelly P; Hatley, Noël V; Ramasamy, Abhilasha; Freynhagen, Rainer; Wallace, Mark; Argoff, Charles; Eerdekens, Mariёlle; Kok, Maurits; Patrick, Donald L

    2018-06-01

    We describe the mixed-methods (qualitative and quantitative) development and preliminary validation of the Patient Assessment for Low Back Pain-Symptoms (PAL-S), a patient-reported outcome measure for use in chronic low back pain (cLBP) clinical trials. Qualitative methods (concept elicitation and cognitive interviews) were used to identify and refine symptom concepts and quantitative methods (classical test theory and Rasch measurement theory) were used to evaluate item- and scale-level performance of the measure using an iterative approach. Patients with cLBP participated in concept elicitation interviews (N = 43), cognitive interviews (N = 38), and interview-based assessment of paper-to-electronic mode equivalence (N = 8). A web-based sample of patients with self-reported cLBP participated in quantitative studies to evaluate preliminary (N = 598) and revised (n = 401) drafts and a physician-diagnosed cohort of patients with cLBP (N = 45) participated in preliminary validation of the measure. The PAL-S contained 14 items describing symptoms (overall pain, sharp, prickling, sensitive, tender, radiating, shocking, shooting, burning, squeezing, muscle spasms, throbbing, aching, and stiffness). Item-level performance, scale structure, and scoring seemed to be appropriate. One-week test-retest reproducibility was acceptable (intraclass correlation coefficient 0.81 [95% confidence interval, 0.61-0.91]). Convergent validity was demonstrated with total score and MOS-36 Bodily Pain (Pearson correlation -0.79), Neuropathic Pain Symptom Inventory (0.73), Roland-Morris Disability Questionnaire (0.67), and MOS-36 Physical Functioning (-0.65). Individual item scores and total score discriminated between numeric rating scale tertile groups and painDETECT categories. Respondent interpretation of paper and electronic administration modes was equivalent. The PAL-S has demonstrated content validity and is potentially useful to assess treatment benefit in cLBP clinical trials.

  11. Testing Fundamental Physics with Distant Star Clusters: Analysis of Observational Data on Palomar 14

    NASA Astrophysics Data System (ADS)

    Jordi, K.; Grebel, E. K.; Hilker, M.; Baumgardt, H.; Frank, M.; Kroupa, P.; Haghi, H.; Côté, P.; Djorgovski, S. G.

    2009-06-01

    We use the distant outer halo globular cluster Palomar 14 as a test case for classical versus modified Newtonian dynamics (MOND). Previous theoretical calculations have shown that the line-of-sight velocity dispersion predicted by these theories can differ by up to a factor of 3 for such sparse, remote clusters like Pal 14. We determine the line-of-sight velocity dispersion of Palomar 14 by measuring radial velocities of 17 red giant cluster members obtained using the Very Large Telescope and Keck telescope. The systemic velocity of Palomar 14 is (72.28 ± 0.12) km s-1. The derived velocity dispersion of (0.38 ± 0.12) km s-1 of the 16 definite member stars is in agreement with the theoretical prediction for the classical Newtonian case according to Baumgardt et al. In order to exclude the possibility that a peculiar mass function might have influenced our measurements, we derived the cluster's main-sequence mass function down to 0.53 M sun using archival images obtained with the Hubble Space Telescope. We found a mass function slope of α = 1.27 ± 0.44, which is, compared to the canonical mass function, a significantly shallower slope. The derived lower limit on the cluster's mass is higher than the theoretically predicted mass in the case of MOND. Our data are consistent with a central density of ρ0 = 0.1 M sun pc-3. We need no dark matter in Palomar 14. If the cluster is on a circular orbit, our spectroscopic and photometric results argue against MOND, unless the cluster experienced significant mass loss. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2017-05-01

    We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, haloes of the same present-day mass but different formation histories will have different z = 0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, σlog M*. For massive haloes that undergo rapid quenching of star formation at z ˜ 2, different mechanisms that trigger this quenching yield different values of σlog M*. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find σlog M* = 0.16 dex for 1011 M⊙ galaxies. Under the assumption that the threshold is constant with time, such a low value of σlog M* rules out all of these models with the exception of quenching by a stellar mass threshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why σlog M* is so small may be key to understanding the physics of galaxy formation.

  13. The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Zinn, Robert

    2006-08-01

    The first catalog of the RR Lyrae stars (RRLSs) in the Galactic halo by the Quasar Equatorial Survey Team (QUEST) has been searched for significant overdensities that may be debris from disrupted dwarf galaxies or globular clusters. These RRLSs are contained in a band ~2.3d wide in declination that spans ~165° in right ascension and lie ~4 to ~60 kpc from the Sun. Away from the major overdensities, the distribution of these stars is adequately fitted by a smooth halo model, in which the flattening of the halo decreases with increasing galactocentric distance (as reported by Preston et al.). This model was used to estimate the ``background'' of RRLSs on which the halo overdensities are overlaid. A procedure was developed for recognizing groups of stars that constitute significant overdensities with respect to this background. To test this procedure, a Monte Carlo routine was used to make artificial RRLS surveys that follow the smooth halo model but with Poisson-distributed noise in the numbers of RRLSs and, within limits, random variations in the positions and magnitudes of the artificial stars. The 104 artificial surveys created by this routine were examined for significant groups in exactly the same way as the QUEST survey. These calculations provided estimates of the frequencies with which random fluctuations produce significant groups. In the QUEST survey there are six significant overdensities that contain six or more stars and several smaller ones. The small ones and possibly one or two of the larger ones may be artifacts of statistical fluctuations, and they need to be confirmed by measurements of radial velocity and/or proper motion. The most prominent groups are the northern stream from the Sagittarius dwarf spheroidal galaxy and a large group in Virgo, formerly known as the ``12.4 hr clump,'' which Duffau and coworkers have recently shown to contain a stellar stream (the Virgo stellar stream). Two other groups lie in the direction of the Monoceros stream

  14. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  15. The X-ray emitting gas in poor clusters with central dominant galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.

    1983-01-01

    The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.

  16. Searching for massive clusters in weak lensing surveys

    NASA Astrophysics Data System (ADS)

    Hamana, Takashi; Takada, Masahiro; Yoshida, Naoki

    2004-05-01

    We explore the ability of weak lensing surveys to locate massive clusters. We use both analytic models of dark matter haloes and mock weak lensing surveys generated from a large cosmological N-body simulation. The analytic models describe the average properties of weak lensing haloes and predict the number counts, enabling us to compute an effective survey selection function. We argue that the detectability of massive haloes depends not only on the halo mass but also strongly on the redshift where the halo is located. We test the model prediction for the peak number counts in weak lensing mass maps against mock numerical data, and find that the noise resulting from intrinsic galaxy ellipticities causes a systematic effect which increases the peak counts. We develop a correction scheme for the systematic effect in an empirical manner, and show that, after correction, the model prediction agrees well with the mock data. The mock data is also used to examine the completeness and efficiency of the weak lensing halo search by fully taking into account the noise and the projection effect by large-scale structures. We show that the detection threshold of S/N = 4 ~ 5 gives an optimal balance between completeness and efficiency. Our results suggest that, for a weak lensing survey with a galaxy number density of ng= 30 arcmin-2 with a mean redshift of z= 1, the mean number of haloes which are expected to cause lensing signals above S/N = 4 is Nhalo(S/N > 4) = 37 per 10 deg2, whereas 23 of the haloes are actually detected with S/N > 4, giving the effective completeness as good as 63 per cent. Alternatively, the mean number of peaks in the same area is Npeak= 62 for a detection threshold of S/N = 4. Among the 62 peaks, 23 are caused by haloes with the expected peak height S/N > 4, 13 result from haloes with 3 < S/N < 4 and the remaining 26 peaks are either the false peaks caused by the noise or haloes with a lower expected peak height. Therefore the contamination rate is 44

  17. The mass dependence of dark matter halo alignments with large-scale structure

    NASA Astrophysics Data System (ADS)

    Piras, Davide; Joachimi, Benjamin; Schäfer, Björn Malte; Bonamigo, Mario; Hilbert, Stefan; van Uitert, Edo

    2018-02-01

    Tidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL N-body simulations. We closely follow the observational approach, measuring the halo position-halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power law with slope βM in the range 1/3 to 1/2, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of β M = 0.36^{+0.01}_{-0.01}. This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, β M = 0.56^{+0.05}_{-0.05}. There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations.

  18. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight.more » The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  19. Frontier Fields Clusters: Deep Chandra Observations of the Complex Merger MACS J1149.6+2223

    DOE PAGES

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; ...

    2016-03-04

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. Here, we present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z = 0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the linemore » of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. Lastly, if the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  20. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, Damon; Rudnick, Lawrence; Brown, Shea

    2013-12-20

    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067,more » A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection

  1. Sun-Earth L1 Region Halo-To-Halo Orbit and Halo-To-LisaJous Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.; DeFazio, Robert

    2004-01-01

    Practical techniques for designing transfer trajectories between Libration Point Orbits (LPOs) are presented. Motivation for development of these techniques was provided by a hardware contingency experienced by the Solar Heliospheric Observatory (SOHO), a joint mission of the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) orbiting the L1 point of the Sun-Earth system. A potential solution to the problem involved a transfer from SOHO s periodic halo orbit to a new LPO of substantially different dimensions. Assuming the SOHO halo orbit as the departure orbit, several practical LPO transfer techniques were developed to obtain new Lissajous or periodic halo orbits that satisfy mission requirements and constraints. While not implemented for the SOHO mission, practical LPO transfer techniques were devised that are generally applicable to current and future LPO missions.

  2. Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2018-05-01

    Recent studies suggest that the quenching properties of galaxies are correlated over several megaparsecs. The large-scale `galactic conformity' phenomenon around central galaxies has been regarded as a potential signature of `galaxy assembly bias' or `pre-heating', both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu and Mandelbaum, we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in Sloan Digital Sky Survey, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more versus less red galaxy subsamples, split by the red-sequence ridge line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of (1) halo quenching and (2) the variation of halo mass function with environment - an indirect environmental effect mediated by two separate physical processes.

  3. Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration

    NASA Astrophysics Data System (ADS)

    Brunetti, G.; Zimmer, S.; Zandanel, F.

    2017-12-01

    The Fermi-LAT (Large Area Telescope) collaboration recently published deep upper limits to the gamma-ray emission of the Coma cluster, a cluster hosting the prototype of giant radio haloes. In this paper, we extend previous studies and use a formalism that combines particle reacceleration by turbulence and the generation of secondary particles in the intracluster medium to constrain relativistic protons and their role for the origin of the radio halo. We conclude that a pure hadronic origin of the halo is clearly disfavoured as it would require excessively large magnetic fields. However, secondary particles can still generate the observed radio emission if they are reaccelerated. For the first time the deep gamma-ray limits allow us to derive meaningful constraints if the halo is generated during phases of reacceleration of relativistic protons and their secondaries by cluster-scale turbulence. In this paper, we explore a relevant range of parameter space of reacceleration models of secondaries. Within this parameter space, a fraction of model configurations is already ruled out by current gamma-ray limits, including the cases that assume weak magnetic fields in the cluster core, B ≤ 2-3 μG. Interestingly, we also find that the flux predicted by a large fraction of model configurations assuming magnetic fields consistent with Faraday rotation measures (RMs) is not far from the limits. This suggests that a detection of gamma-rays from the cluster might be possible in the near future, provided that the electrons generating the radio halo are secondaries reaccelerated and the magnetic field in the cluster is consistent with that inferred from RM.

  4. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    NASA Astrophysics Data System (ADS)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  5. The FMOS-COSMOS Survey of Star-forming Galaxies at Z ˜ 1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Kashino, Daichi; More, Surhud; Silverman, John D.; Daddi, Emanuele; Renzini, Alvio; Sanders, David B.; Rodighiero, Giulia; Puglisi, Annagrazia; Kajisawa, Masaru; Valentino, Francesco; Kartaltepe, Jeyhan S.; Le Fèvre, Olivier; Nagao, Tohru; Arimoto, Nobuo; Sugiyama, Naoshi

    2017-07-01

    We study the properties of dark matter halos that contain star-forming galaxies at 1.43 ≤ z ≤ 1.74, using the FMOS-COSMOS survey. The sample consists of 516 objects with a detection of the Hα emission line, which represent the star forming population at this epoch, having a stellar mass range of 109.57 ≤ M */M ⊙ ≲ 1011.4 and a star-formation rate range of 15 ≲ SFR/(M ⊙ yr-1) ≲ 600. We measure the projected two-point correlation function while carefully taking into account observational biases, and find a significant clustering amplitude at scales of 0.04-10 h -1 cMpc, with a correlation length {r}0={5.26}-0.62+0.75 {h}-1 {cMpc} and a bias b={2.44}-0.32+0.38. We interpret our clustering measurement using a halo occupation distribution model. The sample galaxies appear to reside in halos with mass {M}{{h}}={4.71}-1.62+1.19× {10}12 {h}-1 {M}⊙ on average, which will likely become present-day halos of mass M h (z = 0) ˜ 2 × 1013 h -1 M ⊙, equivalent to the typical halo mass scale of galaxy groups. We then confirm the decline of the stellar-to-halo mass ratio at M h < 1012 M ⊙, finding M */M h ≈ 5 × 10-3 at M h = 7. 5 × 1011 M ⊙, which is lower by a factor of 2-4 than those measured at higher masses (M h ˜ 1012-13 M ⊙). Finally, we use our results to illustrate the future capabilities of Subaru’s Prime-Focus Spectrograph, a next-generation instrument that will provide strong constraints on the galaxy-formation scenario by obtaining precise measurements of galaxy clustering at z > 1.

  6. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  7. The Dual Origin Of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total

  8. The Profile of the Galactic Halo from Pan-STARRS1 3π RR Lyrae

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Cohen, Judith G.; Rix, Hans-Walter; Sesar, Branimir; Martin, Nicolas F.; Magnier, Eugene; Wainscoat, Richard; Kaiser, Nick; Tonry, John L.; Kudritzki, Rolf-Peter; Hodapp, Klaus; Chambers, Ken; Flewelling, Heather; Burgett, William

    2018-05-01

    We characterize the spatial density of the Pan-STARRS1 (PS1) sample of Rrab stars to study the properties of the old Galactic stellar halo. This sample, containing 44,403 sources, spans galactocentric radii of 0.55 kpc ≤ R gc ≤ 141 kpc with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disk and bulge, and halo globular clusters, the sample contains ∼11,000 sources within 20 kpc ≤ R gc ≤ 131 kpc. We then apply forward modeling using Galactic halo profile models with a sample selection function. Specifically, we use ellipsoidal stellar density models ρ(l, b, R gc) with a constant and a radius-dependent halo flattening q(R gc). Assuming constant flattening q, the distribution of the sources is reasonably well fit by a single power law with n={4.40}-0.04+0.05 and q={0.918}-0.014+0.016 and comparably well fit by an Einasto profile with n={9.53}-0.28+0.27, an effective radius r eff = 1.07 ± 0.10 kpc, and a halo flattening of q = 0.923 ± 0.007. If we allow for a radius-dependent flattening q(R gc), we find evidence for a distinct flattening of q ∼ 0.8 of the inner halo at ∼25 kpc. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results (e.g., Watkins et al.; Iorio et al.). We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after masking all known overdensities.

  9. A Deep Look at the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These

  10. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  11. Preparation of 1D Hierarchical Material Mesosilica/Pal Composite and Its Performance in the Adsorption of Methyl Orange.

    PubMed

    Wu, Mei; Han, Haifeng; Ni, Lingli; Song, Daiyun; Li, Shuang; Hu, Tao; Jiang, Jinlong; Chen, Jing

    2018-01-20

    This paper highlights the synthesis of a one-dimensional (1D) hierarchical material mesosilica/palygorskite (Pal) composite and evaluates its adsorption performance for anionic dye methyl orange (MO) in comparison with Pal and Mobile crystalline material-41 (MCM-41). The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB) and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM), transmissionelectron microscopy (TEM), N₂ adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD), and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles.

  12. "My Pen Pal Goes to College": A Functional Approach to Literacy Learning.

    ERIC Educational Resources Information Center

    Yellin, David

    A study examined the effects of a "pen pal" letter writing exchange on undergraduate college students and second grade children. Subjects, 23 second graders, completed a letter writing attitude survey, and then (after receiving an explanation of what a pen pal is) exchanged letters with the undergraduates over a l5-week period. Results…

  13. The Milky Way and the Local Group: playing with great circles.

    NASA Astrophysics Data System (ADS)

    Fusi Pecci, F.; Bellazzini, M.; Ferraro, F. R.

    The small group of recently discovered galactic globular clusters (Pal 12, Ter 7, Rup 106, Arp 2) significantly younger than the average cluster population of the Galaxy are shown to lie near great circles passing in the proximity of most satellite galaxies of the Milky Way. Assuming that these great circles are in some way preferential planes of interaction between the Galaxy and its companions, the authors identified along one of them another candidate "young" globular cluster, IC 4499. Within this observational framework, the possibility that the sample of young globulars found in the halo of the Galaxy could have been captured from a satellite galaxy or formed during a close interaction between the Milky Way and one of its companions is briefly discussed.

  14. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chihway; et al.

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less

  15. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  16. Cluster galaxy dynamics and the effects of large-scale environment

    NASA Astrophysics Data System (ADS)

    White, Martin; Cohn, J. D.; Smit, Renske

    2010-11-01

    Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations

  17. Observations of rich clusters of galaxies at metre wavelengths

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.; Hanisch, R. J.; Turner, P. J.

    1981-01-01

    Observations have been made at 10 frequencies between 50 and 120 MHz of 17 rich, X-ray emitting clusters of galaxies with the 78 x 156 m dipole array al Llanherne. The observed flux densities were compared to the flux densities expected on the basis of the known discrete sources in the fields. In no case was a significant flux excess found that might have indicated the presence of a diffuse halo component of radio emission in the cluster. For those clusters in which spectral indices could be determined, the spectra all tend to be much steeper than is normal for extragalactic radio sources, although a strict correlation between the X-ray luminosity and the low-frequency radio luminosity or spectral index is not found. The occurrence of large halo sources such as that which is present in the Coma cluster seems to be quite unusual.

  18. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  19. Correlation between centre offsets and gas velocity dispersion of galaxy clusters in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming-Hua; Zhu, Weishan; Zhao, Dong

    2018-05-01

    The gas is the dominant component of baryonic matter in most galaxy groups and clusters. The spatial offsets of gas centre from the halo centre could be an indicator of the dynamical state of cluster. Knowledge of such offsets is important for estimate the uncertainties when using clusters as cosmological probes. In this paper, we study the centre offsets roff between the gas and that of all the matter within halo systems in ΛCDM cosmological hydrodynamic simulations. We focus on two kinds of centre offsets: one is the three-dimensional PB offsets between the gravitational potential minimum of the entire halo and the barycentre of the ICM, and the other is the two-dimensional PX offsets between the potential minimum of the halo and the iterative centroid of the projected synthetic X-ray emission of the halo. Haloes at higher redshifts tend to have larger values of rescaled offsets roff/r200 and larger gas velocity dispersion σ v^gas/σ _{200}. For both types of offsets, we find that the correlation between the rescaled centre offsets roff/r200 and the rescaled 3D gas velocity dispersion, σ _v^gas/σ _{200} can be approximately described by a quadratic function as r_{off}/r_{200} ∝ (σ v^gas/σ _{200} - k_2)2. A Bayesian analysis with MCMC method is employed to estimate the model parameters. Dependence of the correlation relation on redshifts and the gas mass fraction are also investigated.

  20. The halo current in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  1. Halo substructure in the SDSS-Gaia catalogue: streams and clumps

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Amorisco, N. C.; Koposov, S. E.

    2018-04-01

    We use the Sloan Digital Sky Survey (SDSS)-Gaia Catalogue to identify six new pieces of halo substructure. SDSS-Gaia is an astrometric catalogue that exploits SDSS data release 9 to provide first epoch photometry for objects in the Gaia source catalogue. We use a version of the catalogue containing 245 316 stars with all phase-space coordinates within a heliocentric distance of ˜10 kpc. We devise a method to assess the significance of halo substructures based on their clustering in velocity space. The two most substantial structures are multiple wraps of a stream which has undergone considerable phase mixing (S1, with 94 members) and a kinematically cold stream (S2, with 61 members). The member stars of S1 have a median position of (X, Y, Z) = (8.12, -0.22, 2.75) kpc and a median metallicity of [Fe/H] = -1.78. The stars of S2 have median coordinates (X, Y, Z) = (8.66, 0.30, 0.77) kpc and a median metallicity of [Fe/H] = -1.91. They lie in velocity space close to some of the stars in the stream reported by Helmi et al. By modelling, we estimate that both structures had progenitors with virial masses ≈1010M⊙ and infall times ≳ 9 Gyr ago. Using abundance matching, these correspond to stellar masses between 106 and 107M⊙. These are somewhat larger than the masses inferred through the mass-metallicity relation by factors of 5 to 15. Additionally, we identify two further substructures (S3 and S4 with 55 and 40 members) and two clusters or moving group (C1 and C2 with 24 and 12) members. In all six cases, clustering in kinematics is found to correspond to clustering in both configuration space and metallicity, adding credence to the reliability of our detections.

  2. Getting to Know You: Cross-Cultural Pen Pals Expand Children's World View

    ERIC Educational Resources Information Center

    Shandomo, Hibajene M.

    2009-01-01

    In this article, the author described the Poplar Street-Naledi pen pal project. The goals of this project were to provide elementary school students with a broader view of the world, to increase their social and cultural awareness, to develop content knowledge of where their pen pals live, and to determine the impact of this project on student…

  3. Stimulant Drug Effects on Touchscreen Automated Paired-Associates Learning (PAL) in Rats

    ERIC Educational Resources Information Center

    Roschlau, Corinna; Votteler, Angeline; Hauber, Wolfgang

    2016-01-01

    Here we tested in rats effects of the procognitive drugs modafinil and methylphenidate on post-acquisition performance in an object-location paired-associates learning (PAL) task. Modafinil (32; 64 mg/kg) was without effect, while higher (9 mg/kg) but not lower (4.5 mg/kg) doses of methylphenidate impaired PAL performance. Likewise, higher but not…

  4. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  5. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo

    2017-06-01

    We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.

  6. Constraining AGN triggering mechanisms through the clustering analysis of active black holes

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Shankar, F.; Bouillot, V.; Menci, N.; Lamastra, A.; Hirschmann, M.; Fiore, F.

    2016-02-01

    The triggering mechanisms for active galactic nuclei (AGN) are still debated. Some of the most popular ones include galaxy interactions (IT) and disc instabilities (DIs). Using an advanced semi-analytic model (SAM) of galaxy formation, coupled to accurate halo occupation distribution modelling, we investigate the imprint left by each separate triggering process on the clustering strength of AGN at small and large scales. Our main results are as follows: (I) DIs, irrespective of their exact implementation in the SAM, tend to fall short in triggering AGN activity in galaxies at the centre of haloes with Mh > 1013.5 h-1 M⊙. On the contrary, the IT scenario predicts abundance of active central galaxies that generally agrees well with observations at every halo mass. (II) The relative number of satellite AGN in DIs at intermediate-to-low luminosities is always significantly higher than in IT models, especially in groups and clusters. The low AGN satellite fraction predicted for the IT scenario might suggest that different feeding modes could simultaneously contribute to the triggering of satellite AGN. (III) Both scenarios are quite degenerate in matching large-scale clustering measurements, suggesting that the sole average bias might not be an effective observational constraint. (IV) Our analysis suggests the presence of both a mild luminosity and a more consistent redshift dependence in the AGN clustering, with AGN inhabiting progressively less massive dark matter haloes as the redshift increases. We also discuss the impact of different observational selection cuts in measuring AGN clustering, including possible discrepancies between optical and X-ray surveys.

  7. Preparation of 1D Hierarchical Material Mesosilica/Pal Composite and Its Performance in the Adsorption of Methyl Orange

    PubMed Central

    Wu, Mei; Han, Haifeng; Ni, Lingli; Song, Daiyun; Li, Shuang; Hu, Tao; Jiang, Jinlong; Chen, Jing

    2018-01-01

    This paper highlights the synthesis of a one-dimensional (1D) hierarchical material mesosilica/palygorskite (Pal) composite and evaluates its adsorption performance for anionic dye methyl orange (MO) in comparison with Pal and Mobile crystalline material-41 (MCM-41). The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB) and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM), transmissionelectron microscopy (TEM), N2 adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD), and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles. PMID:29361713

  8. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  9. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  10. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5

    PubMed Central

    Bertalan, Marcelo; Albano, Rodolpho; de Pádua, Vânia; Rouws, Luc; Rojas, Cristian; Hemerly, Adriana; Teixeira, Kátia; Schwab, Stefan; Araujo, Jean; Oliveira, André; França, Leonardo; Magalhães, Viviane; Alquéres, Sylvia; Cardoso, Alexander; Almeida, Wellington; Loureiro, Marcio Martins; Nogueira, Eduardo; Cidade, Daniela; Oliveira, Denise; Simão, Tatiana; Macedo, Jacyara; Valadão, Ana; Dreschsel, Marcela; Freitas, Flávia; Vidal, Marcia; Guedes, Helma; Rodrigues, Elisete; Meneses, Carlos; Brioso, Paulo; Pozzer, Luciana; Figueiredo, Daniel; Montano, Helena; Junior, Jadier; de Souza Filho, Gonçalo; Martin Quintana Flores, Victor; Ferreira, Beatriz; Branco, Alan; Gonzalez, Paula; Guillobel, Heloisa; Lemos, Melissa; Seibel, Luiz; Macedo, José; Alves-Ferreira, Marcio; Sachetto-Martins, Gilberto; Coelho, Ana; Santos, Eidy; Amaral, Gilda; Neves, Anna; Pacheco, Ana Beatriz; Carvalho, Daniela; Lery, Letícia; Bisch, Paulo; Rössle, Shaila C; Ürményi, Turán; Rael Pereira, Alessandra; Silva, Rosane; Rondinelli, Edson; von Krüger, Wanda; Martins, Orlando; Baldani, José Ivo; Ferreira, Paulo CG

    2009-01-01

    Background Gluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins. Results Gluconacetobacter diazotrophicus Pal5 is the third diazotrophic endophytic bacterium to be completely sequenced. Its genome is composed of a 3.9 Mb chromosome and 2 plasmids of 16.6 and 38.8 kb, respectively. We annotated 3,938 coding sequences which reveal several characteristics related to the endophytic lifestyle such as nitrogen fixation, plant growth promotion, sugar metabolism, transport systems, synthesis of auxin and the occurrence of bacteriocins. Genomic analysis identified a core component of 894 genes shared with phylogenetically related bacteria. Gene clusters for gum-like polysaccharide biosynthesis, tad pilus, quorum sensing, for modulation of plant growth by indole acetic acid and mechanisms involved in tolerance to acidic conditions were identified and may be related to the sugarcane endophytic and plant-growth promoting traits of G. diazotrophicus. An accessory component of at least 851 genes distributed in genome islands was identified, and was most likely acquired by horizontal gene transfer. This portion of the genome has likely contributed to adaptation to the plant habitat. Conclusion The genome data offer an important resource of information that can be used to manipulate plant/bacterium interactions with the aim of improving sugarcane crop production and other biotechnological applications. PMID:19775431

  11. Provisional Advisory Levels (PALs) for Hazardous Agents ...

    EPA Pesticide Factsheets

    Technical Brief PROVISIONAL ADVISORY LEVELS. Few health-based guidelines are available to inform decisions regarding the reoccupation of buildings or sites, or the re-use of water resources, following their contamination through the accidental or intentional release of toxic chemicals or chemical warfare agents, or following a large-scale disaster. To address this need, EPA/ORD’s National Homeland Security Research Center (NHSRC) develops health-based Provisional Advisory Levels (PALs) for high priority chemicals including toxic industrial chemicals and chemical warfare agents, for both inhalation and oral exposures. Oral PALs are targeted to drinking water ingestion, but are applicable to other oral exposures such as soil ingestion. This product will be used as a hand-out at professional meetings to promote awareness of NHSRC's Provisional Advisory values. It will be posted on the intra and internet sites describing activities and products of EPA/ORD/NHSRC.

  12. SUPERMODEL ANALYSIS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fusco-Femiano, R.; Cavaliere, A.; Lapi, A.

    2009-11-01

    We present the analysis of the X-ray brightness and temperature profiles for six clusters belonging to both the Cool Core (CC) and Non Cool Core (NCC) classes, in terms of the Supermodel (SM) developed by Cavaliere et al. Based on the gravitational wells set by the dark matter (DM) halos, the SM straightforwardly expresses the equilibrium of the intracluster plasma (ICP) modulated by the entropy deposited at the boundary by standing shocks from gravitational accretion, and injected at the center by outgoing blast waves from mergers or from outbursts of active galactic nuclei. The cluster set analyzed here highlights notmore » only how simply the SM represents the main dichotomy CC versus NCC clusters in terms of a few ICP parameters governing the radial entropy run, but also how accurately it fits even complex brightness and temperature profiles. For CC clusters like A2199 and A2597, the SM with a low level of central entropy straightforwardly yields the characteristic peaked profile of the temperature marked by a decline toward the center, without requiring currently strong radiative cooling and high mass deposition rates. NCC clusters like A1656 require instead a central entropy floor of a substantial level, and some like A2256 and even more A644 feature structured temperature profiles that also call for a definite floor extension; in such conditions the SM accurately fits the observations, and suggests that in these clusters the ICP has been just remolded by a merger event, in the way of a remnant cool core. The SM also predicts that DM halos with high concentration should correlate with flatter entropy profiles and steeper brightness in the outskirts; this is indeed the case with A1689, for which from X-rays we find concentration values c approx 10, the hallmark of an early halo formation. Thus, we show the SM to constitute a fast tool not only to provide wide libraries of accurate fits to X-ray temperature and density profiles, but also to retrieve from the

  13. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Level I Modules.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    These eight learning modules were prepared for parents participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning), which was designed for low socioeconomic parents who are in need of an opportunity to explore effective parenting. First, materials for the BEST-PAL volunteer sponsors…

  14. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Level II Modules.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    These eight learning modules were prepared for parents participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning), which was designed for low socioeconomic parents who are in need of an opportunity to explore effective parenting. First, materials for the BEST-PAL volunteer sponsors…

  15. The effect of gas physics on the halo mass function

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rudd, D.; Evrard, A. E.

    2009-03-01

    Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.

  16. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Kim, Jiyoung; Park, Hyesung; Han, Jae-Gu; Oh, Junsang; Choi, Hyung-Kyoon; Kim, Seong Hwan; Sung, Gi-Ho

    2015-11-01

    Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Gaspari, M.; Vazza, F.; Gastaldello, F.; Tramacere, A.; Zimmer, S.; Ettori, S.; Paltani, S.

    2017-07-01

    Giant radio halos are megaparsec-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected throughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation {P}{radio}\\propto {σ }v3.3+/- 0.7, which implies that the radio power is nearly proportional to the turbulent energy rate. In case turbulence cascades without being dissipated down to the particle acceleration scales, our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.

  18. SPHERES HALO

    NASA Image and Video Library

    2017-06-23

    iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.

  19. Absolute proper motions to B approximately 22.5: Evidence for kimematical substructure in halo field stars

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.; Munn, Jeffrey A.; Hawley, Suzanne L.

    1994-01-01

    Radial velocities have been obtained for six of nine stars identified on the basis of similar distances and common, extreme transverse velocities in the proper motion survey of Majewski (1992) as a candidate halo moving group at the north Galactic pole. These radial velocities correspond to velocities perpendicular to the Galactic plane which span the range -48 +/- 21 to -128 +/- 9 km/sec (but a smaller range, -48 +/- 21 to -86 +/- 19 km/sec, when only our own measurements are considered), significantly different than the expected distribution, with mean 0 km/sec, for a random sample of either halo or thick disk stars. The probability of picking such a set of radial velocities at random is less than 1%. Thus the radial velocity data support the hypothesis that these stars constitute part of a halo moving group or star stream at a distance of approximately 4-5 kpc above the Galactic plane. If real, this moving group is evidence for halo phase space substructure which may be the fossil remains of a destroyed globular cluster, Galactic satellite, or Searle & Zinn (1978) 'fragment.'

  20. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  1. Cosmic Infrared Background Sources Clustered Around Quasars

    NASA Astrophysics Data System (ADS)

    Hall, Kirsten R.; Zakamska, Nadia; Marriage, Tobias; Crichton, Devin; Gralla, Megan

    2017-06-01

    Powerful quasars can be seen out to large distances. As they reside in massive dark matter halos, they provide a useful tracer of large scale structure. We stack Herschel-SPIRE images at 250, 350, and 500 microns at the locations of 13,000 quasars in redshift bins spanning 0.5 < z < 3.5. While the detected signal is dominated on instrumental beam scales by the unresolved dust emission of the quasar and its host galaxy, at z 2 the extended emission is clearly spatially resolved on Mpc scales. This emission is due to star-forming galaxies clustered around the dark matter halos hosting quasars. We measure radial surface brightness profiles of the stacked images to compute the angular correlation function of dusty star-forming galaxies correlated with quasars. We generate a halo occupation distribution model in order to determine the masses of the dark matter halos in which dusty star forming galaxies reside. We are probing potential changes in the halo mass most efficient at hosting star forming galaxies, and assessing any evidence that this halo mass evolved with redshift in the context of "cosmic downsizing".

  2. E-Pal Exchanges: A Way to Connect Preservice Teachers and English Language Learners

    ERIC Educational Resources Information Center

    Patton, Anne; Hirano, Eliana; Garrett, Anna Rose

    2017-01-01

    Pen pal exchanges have been used for years to promote cross-cultural communication. In educational settings, pen pal projects have served additional purposes. One is providing English language learners (ELLs) with a safe but realistic context in which language skills can be practiced and learner motivation increased. This study investigates the…

  3. Comparative analysis of proton- and neutron-halo breakups

    NASA Astrophysics Data System (ADS)

    Mukeru, B.

    2018-06-01

    A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.

  4. Mystery solved: discovery of extended radio emission in the merging galaxy cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Gendron-Marsolais, M.-L.; Fecteau-Beaucage, D.; van Weeren, R. J.; Russell, H. R.; Edge, A.; Olamaie, M.; Rumsey, C.; King, L.; Fabian, A. C.; McNamara, B.; Hogan, M.; Mezcua, M.; Taylor, G.

    2018-04-01

    Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ˜2), yet deep Giant MetreWave Telescope 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multiconfiguration 1-2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 h of observations. These data reveal for the first time the presence of an extended (≈850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock that we classify as a radio relic and one associated with the subcluster core that is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P1.4 GHz, halo = 2.4 ± 0.2 × 1023 W Hz-1 and P1.4 GHz, relic = 2.2 ± 0.2 × 1023 W Hz-1). The flux measurement of the halo, as well as its morphology, also suggests that the halo was recently created (≈0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio haloes in merging clusters should be detected by future radio facilities such as the Square Kilometre Array.

  5. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties.

    PubMed

    Nieto-Peñalver, Carlos G; Savino, María J; Bertini, Elisa V; Sánchez, Leandro A; de Figueroa, Lucía I C

    2014-09-01

    Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Observing halos through airplane windows

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.

    2017-09-01

    A halo is one of the most frequent and impressive optical phenomena easily observable in the sky. It is also one of the natural optical phenomena most often visible through an airplane window. Halos and related phenomena vary from a single spot of light formed by reflection of the sun from the tops of plate-shaped ice crystals to large rings with splashes of colors, caused by a combination of reflection and refraction in ice crystals. Even with extreme heat at the ground, an airplane quickly rises through sufficient altitude to find ice crystals in the clouds, enabling an alert passenger (or pilot) to see ice-crystal optical phenomena. This paper briefly reviews these phenomena with photographs and diagrams. Photographs include commonly seen halos, as well as Bottlinger's rings, a rare halo that is still not fully explained. Tips are given for enhancing your chances of seeing and understanding halos.

  7. Halo-free Phase Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail; Shakir, Haadi M.; Best-Popescu, Catherine; Arikkath, Jyothi; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Acquiring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  8. Ecosystem Pen Pals: Using Place-Based Marine Science and Culture to Connect Students

    ERIC Educational Resources Information Center

    Wiener, Carlie S.; Matsumoto, Karen

    2014-01-01

    The marine environment provides a unique context for students to explore both natural and cultural connections. This paper reports preliminary findings on Ecosystem Pen Pals, an ocean literacy program for 4th and 5th graders focused on using a pen pal model for integrating traditional ecological knowledge into marine science. Surveys with…

  9. Probing the non-thermal emission in Abell 2146 and the Perseus cluster with the JVLA

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; van Weeren, Reinout; Clarke, Tracy; Intema, Huib; Russell, Helen; Edge, Alastair; Fabian, Andy; Olamaie, Malak; Rumsey, Clare; King, Lindsay; McNamara, Brian; Fecteau-Beaucage, David; Hogan, Michael; Mezcua, Mar; Taylor, Gregory; Blundell, Katherine; Sanders, Jeremy

    2018-01-01

    Jets created from accretion onto supermassive black holes release relativistic particles on large distances. These strongly affect the intracluster medium when located in the center of a brightest cluster galaxy. The hierarchical merging of subclusters and groups, from which cluster originate, also generates perturbations into the intracluster medium through shocks and turbulence, constituting a potential source of reacceleration for these particles. I will present deep multi-configuration low radio frequency observations from the Karl G. Jansky Very Large Array of two unique clusters, probing the non-thermal emission from the old particle population of the AGN outflows.Recently awarded of 550 hours of Chandra observations, Abell 2146 is one of the rare clusters undergoing a spectacular merger in the plane of the sky. Our recent deep multi-configuration JVLA 1.4 GHz observations have revealed the presence of a structure extending to 850 kpc in size, consisting of one component associated with the upstream shock and classified as a radio relic, and one associated with the subcluster core, consistent with a radio halo bounded by the bow shock. Theses structures have some of the lowest radio powers detected thus far in any cluster. The flux measurements of the halo, its morphology and measurements of the dynamical state of the cluster suggest that the halo was recently created (~ 0.3 Gyr after core passage). This makes A2146 extremely interesting to study, allowing us to probe the complete evolutionary stages of halos.I will also present results on 230-470 MHz JVLA observations of the Perseus cluster. Our observations of this nearby relaxed cool core cluster have revealed a multitude of new structures associated with the mini-halo, extending to hundreds of kpc in size. Its irregular morphology seems to be have been influenced both by the AGN activity and by the sloshing motion of the cluster’ gas. In addition, it has a filamentary structure similar to that seen in

  10. Halo modelling in chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on localmore » scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.« less

  11. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  12. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis.

    PubMed

    Godlewska, Renata; Wiśniewska, Katarzyna; Pietras, Zbigniew; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2009-09-01

    The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.

  13. Dynamics of asteroid family halos constrained by spin/shape models

    NASA Astrophysics Data System (ADS)

    Broz, Miroslav

    2016-10-01

    A number of asteroid families cannot be identified solely on the basis of the Hierarchical Clustering Method (HCM), because they have additional 'former' members in the surroundings which constitute a so called halo (e.g. Broz & Morbidelli 2013). They are usually mixed up with the background population which has to be taken into account too.Luckily, new photometric observations allow to derive new spin/shape models, which serve as independent constraints for dynamical models. For example, a recent census of the Eos family shows 43 core and 27 halo asteroids (including background) with known spin orientations.To this point, we present a complex spin-orbital model which includes full N-body dynamics and consequently accounts for all mean-motion, secular, or three-body gravitational resonances, the Yarkovsky drift, YORP effect, collisional reorientations and also spin-orbital interactions. These are especially important for the Koronis family. In this project, we make use of data from the DAMIT database and ProjectSoft Blue Eye 600 observatory.

  14. Hunting a wandering supermassive black hole in the M31 halo hermitage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Yohei; Mori, Masao; Kawaguchi, Toshihiro

    2014-03-10

    In the hierarchical structure formation scenario, galaxies enlarge through multiple merging events with less massive galaxies. In addition, the Magorrian relation indicates that almost all galaxies are occupied by a central supermassive black hole (SMBH) of mass 10{sup –3} times the mass of its spheroidal component. Consequently, SMBHs are expected to wander in the halos of their host galaxies following a galaxy collision, although evidence of this activity is currently lacking. We investigate a current plausible location of an SMBH wandering in the halo of the Andromeda galaxy (M31). According to theoretical studies of N-body simulations, some of the manymore » substructures in the M31 halo are remnants of a minor merger occurring about 1 Gyr ago. First, to evaluate the possible parameter space of the infalling orbit of the progenitor, we perform numerous parameter studies using a graphics processing unit cluster. To reduce uncertainties in the predicted position of the expected SMBH, we then calculate the time evolution of the SMBH in the progenitor dwarf galaxy from N-body simulations using the plausible parameter sets. Our results show that the SMBH lies within the halo (∼20-50 kpc from the M31 center), closer to the Milky Way than the M31 disk. Furthermore, the predicted current positions of the SMBH were restricted to an observational field of 0.°6 × 0.°7 in the northeast region of the M31 halo. We also discuss the origin of the infalling orbit of the satellite galaxy and its relationships with the recently discovered vast thin disk plane of satellite galaxies around M31.« less

  15. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  16. Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering

    NASA Astrophysics Data System (ADS)

    Ford, Jes; VanderPlas, Jake

    2016-12-01

    We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.

  17. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  18. Universality of dark matter haloes shape over six decades in mass: insights from the Millennium XXL and SBARBINE simulations

    NASA Astrophysics Data System (ADS)

    Bonamigo, Mario; Despali, Giulia; Limousin, Marceau; Angulo, Raul; Giocoli, Carlo; Soucail, Geneviève

    2015-05-01

    For the last 30 yr many observational and theoretical evidences have shown that galaxy clusters are not spherical objects, and that their shape is much better described by a triaxial geometry. With the advent of multiwavelength data of increasing quality, triaxial investigations of galaxy clusters is gathering a growing interest from the community, especially in the time of `precision cosmology'. In this work, we aim to provide the first statistically significant predictions in the unexplored mass range above 3 × 1014 M⊙h-1, using haloes from two redshift snapshots (z = 0 and z = 1) of the Millennium XXL simulation. The size of this cosmological dark matter-only simulation (4.1 Gpc) allows the formation of a statistically significant number of massive cluster scale haloes (≈500 with M > 2× 1015 M⊙ h-1, and 780 000 with M > 1014 M⊙ h-1). Besides, we aim to extend this investigation to lower masses in order to look for universal predictions across nearly six orders of magnitude in mass, from 1010 to almost 1016 M⊙ h-1. For this purpose we use the SBARBINE simulations, allowing us to model haloes of masses starting from ≈1010 M⊙ h-1. We use an elliptical overdensity method to select haloes and compute the shapes of the unimodal ones (approximately 50 per cent), while we discard the more unrelaxed. The minor to major and intermediate to major axis ratio distributions are found to be well described by simple universal functional forms that do not depend on cosmology or redshift. Our results extend the findings of Jing & Suto to a higher precision and a wider range of mass. This `recipe' is made available to the community in this paper and in a dedicated web page.

  19. LoCuSS: The infall of X-ray groups onto massive clusters

    NASA Astrophysics Data System (ADS)

    Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.

    2018-03-01

    Galaxy clusters are expected to form hierarchically in a ΛCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters ( ˜ 1015 M⊙) at z ˜ 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 × 1013 - 7 × 1014 M⊙, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ˜25 × higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 × 1014 M⊙, or 19 ± 5% of the mass within the primary cluster itself. We estimate that ˜1015 M⊙ clusters increase their masses by 16 ± 4% between z = 0.223 and the present day due to the accretion of groups with M200 ≥ 1013.2 M⊙. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within halos. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of "field" X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter halos being biased tracers of the underlying large-scale density distribution.

  20. The effect of peer assisted learning (PAL) on anatomic competencies of prospective student’s biology teachers

    NASA Astrophysics Data System (ADS)

    Diana, S.

    2018-05-01

    Research about the effect of Peer Assisted Learning (PAL) strategy on Plant Anatomy Course, which aims to improve anatomic competencies of prospective student’s biology teacher, has been done. This study used a quasi-experimental pre-test post-test control group design. The draft includes a group of students who were given a pre-test which is then followed by observing the PAL treatment process and post-test. The other students group (control) was given the pre-test and post-test only. The PAL program began with a discussion between the lecturer and the tutor about the pretest results and then discussion between the tutors and their tutees in the class about the responses items. After that, all students were assigned to answer a set of response items, and then did the posttest. The results showed that the PAL strategy can increase student’s anatomic literacy significantly and can increase student’s anatomic lab skills no significantly. Thus the PAL strategy implementation has a potential to improve student’s anatomic competencies. The generally students weaknesses were they lack practice in interpreting of research results in the graphs form and rarely shared about anatomic lab skills. All students respond positively to the PAL strategy.

  1. Historical halo displays as past weather indicator

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar; Neuhäuser, Ralph

    2017-04-01

    Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.

  2. Accuracy of activPAL Self-Attachment Methods

    ERIC Educational Resources Information Center

    Kringen, Nina L.; Healy, Genevieve N.; Winkler, Elisabeth A. H.; Clark, Bronwyn K.

    2016-01-01

    This study examined the accuracy of self-attachment of the activPAL activity monitor. A convenience sample of 50 participants self-attached the monitor after being presented with written material only (WMO) and then written and video (WV) instructions; and completed a questionnaire regarding the acceptability of the instructional methods.…

  3. Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; NGVS Collaboration

    2018-01-01

    We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.

  4. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  5. The multi-PDZ domain protein-1 (MUPP-1) expression regulates cellular levels of the PALS-1/PATJ polarity complex.

    PubMed

    Assémat, Emeline; Crost, Emmanuelle; Ponserre, Marion; Wijnholds, Jan; Le Bivic, Andre; Massey-Harroche, Dominique

    2013-10-15

    MUPP-1 (multi-PDZ domain protein-1) and PATJ (PALS-1-associated tight junction protein) proteins are closely related scaffold proteins and bind to many common interactors including PALS-1 (protein associated with Lin seven) a member of the Crumbs complex. Our goal is to understand how MUPP-1 and PATJ and their interaction with PALS-1 are regulated in the same cells. We have shown that in MCF10A cells there are at least two different and co-existing complexes, PALS-1/MUPP-1 and PALS-1/PATJ. Surprisingly, MUPP-1 levels inversely correlated with PATJ protein levels by acting on the stabilization of the PATJ/PALS-1 complex. Upon MUPP-1 depletion, the increased amounts of PATJ are in part localized at the migrating front of MCF10A cells and are able to recruit more PAR3 (partition defective 3). All together these data indicate that a precise balance between MUPP-1 and PATJ is achieved in epithelial cells by regulating their association with PALS-1. © 2013 Elsevier Inc. All rights reserved.

  6. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    Aims: We present a spectroscopic study of a sample of 287 planetary nebulas (PNs) around the brightest cluster galaxy (BCG) M 87 in Virgo A, of which 211 are located between 40 kpc and 150 kpc from the galaxy centre. With these data we can distinguish the stellar halo from the co-spatial intracluster light (ICL) and study both components separately. Methods: We obtained PN velocities with a high resolution FLAMES/VLT survey targeting eight fields in a total area of ~0.4 deg2. We identified PNs from their narrow and symmetric redshifted λ5007 Å [OIII] emission line, the presence of the second λ4959 Å [OIII] emission line, and the absence of significant continuum. We implement a robust technique to measure the halo velocity dispersion from the projected phase-space to identify PNs associated with the M 87 halo and ICL. Using photometric magnitudes, we construct PN luminosity functions (PNLFs), which are complete down to m5007 = 28.8. Results: The velocity distribution of the spectroscopically confirmed PNs is bimodal, containing a narrow component centred on the systemic velocity of the BCG and an off-centred broader component, which we identify as halo and ICL, respectively. We find that 243 PNs are part of the velocity distribution of the M 87 halo, while the remaining subsample of 44 PNs are intracluster PNs (ICPNs). Halo and ICPNs have different spatial distributions: the number density of halo PNs follow the galaxy's surface brightness profile, whereas the ICPNs are characterised by a shallower power-law profile, IICL ∝ Rγ with γ in the range [-0.34, -0.04 ]. No evidence is found for an asymmetry in the halo and ICPN density distributions when the NW and SE fields are studied separately. A study of the composite PN number density profile confirms the superposition of different PN populations associated with the M 87 halo and the ICL, characterised by different PN specific numbers α. We derive αhalo = 1.06 × 10-8NPN L⊙,bol-1 and αICL = 2.72 × 10

  7. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Volunteer Sponsor's Leader's Guide.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    This handbook was developed for volunteer group leaders participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning). Project BEST-PAL was developed especially for low socioeconomic parents who are in need of an opportunity to explore effective parenting, with a primary objective being…

  8. How do stars affect ψDM halos?

    NASA Astrophysics Data System (ADS)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  9. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  10. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children.

    PubMed

    Aminian, Saeideh; Hinckson, Erica A

    2012-10-02

    Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit

  11. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children

    PubMed Central

    2012-01-01

    Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). Conclusion The ActivPAL monitor is a valid measurement

  12. Development of new S-band SLED for PAL-XFEL Linac

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  13. Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and Andromeda XXV

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-07-01

    The recent detection of two faint and extended star clusters in the central regions of two Local Group dwarf galaxies, Eridanus II and Andromeda XXV, raises the question of whether clusters with such low densities can survive the tidal field of cold dark matter halos with central density cusps. Using both analytic arguments and a suite of collisionless N-body simulations, I show that these clusters are extremely fragile and quickly disrupted in the presence of central cusps ρ ˜ {r}-α with α ≳ 0.2. Furthermore, the scenario in which the clusters were originally more massive and sank to the center of the halo requires extreme fine tuning and does not naturally reproduce the observed systems. In turn, these clusters are long lived in cored halos, whose central regions are safe shelters for α ≲ 0.2. The only viable scenario for hosts that have preserved their primordial cusp to the present time is that the clusters formed at rest at the bottom of the potential, which is easily tested by measurement of the clusters proper velocity within the host. This offers means to readily probe the central density profile of two dwarf galaxies as faint as {L}V˜ 5× {10}5 {L}⊙ and {L}V˜ 6× {10}4 {L}⊙ , in which stellar feedback is unlikely to be effective.

  14. Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.

    2018-02-01

    We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.

  15. [Malaria research for developing countries: the PAL+ program].

    PubMed

    Agid, F

    2003-01-01

    Despite extensive national and international intervention, little progress has been made in controlling, malaria and other communicable diseases afflicting many developing countries in the world. In response to the need to pursue and enhance investigation, the French Ministry of Research launched the PAL+ program in 1999 with the purpose of promoting concerted "research on malaria and other communicable diseases afflicting developing countries". The program is focused on developing methods of prevention and treatment for countries in Sub-Saharan Africa, Southeast Asia, and Latin America. Advancement of these scientific goals is further by a determined efforts (i) to provide means for national coordination and scientific organization of malaria research in France and (ii) to revive the spirit and mechanisms that characterized previous operations of cooperation between France and countries in the southern hemisphere. This new vision of cooperation is based on two organizational approaches. The first involves integrated programs in which training and transfer of knowledge are essential. The second involves joint projects in which networks maintained by a continuous exchange in operational seminars contribute to establishing a permanent dialogue between the North and South. Priority research areas have been encouraged to respond to specific public health issues with emphasis on establishing a balance between work in the field and development of knowledge. The priority areas include (i) responding to the increasing incidence of drug resistance by identifying of new antimalarial drugs and defining new therapeutic strategies; (ii) understanding the implications of the pathophysiology and physiopathology mechanisms underlying severe malaria manifestations for development of a malaria vaccine; (iii) finding new opportunities for prevention of malaria based on more effective vector control; (iv) using social anthropology to factor population behaviour and habits into the

  16. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  17. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  18. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  19. The Cluster Population of UGC 2885

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    UGC 2885 was discoverd to be the most extended disk galaxy [250 kpc diameter] by Vera Rubin in the 1980's. We ask for HST observations of UGC 2885 as it is close enough to resolve the GC population with HST but it is a substantially more extended disk than any studied before. LCDM galaxy assembly implies that the GC population comes from small accreted systems and the disk -and the clusters associated with it- predominantly from gas accretion (matching angular momentum to the disk). Several scaling relations between the GC population and parent galaxy have been observed but these differ for disk and spheroidal (massive) galaxies.We propose to observe this galaxy with HST in 4 point WFC3 mosaic with coordinated ACS parallels to probe both the disk and outer halo component of the GC population. GC populations have been studied extensively using HST color mosaics of local disk galaxies and these can serve as comparison samples. How UGC 2885 cluster populations relate to its stellar and halo mass, luminosity and with radius will reveal the formation history of extra-ordinary disk.Our goals are twofold: our science goal is to map the luminosity, (some) size, and color distributions of the stellar and globular clusters in and around this disk. In absolute terms, we expect to find many GC but the relative relation of the GC population to this galaxy's mass (stellar and halo) and size will shed light on its formation history; similar to a group or cluster central elliptical or to a field galaxy (albeit one with a disk 10x the Milky Way's size)? Our secondary motive is to make an HST tribute image to the late Vera Rubin.

  20. A self-contamination model for the formation of globular star clusters

    NASA Astrophysics Data System (ADS)

    Brown, James Howard

    Described here is a model of globular cluster formation which allows the self contamination of the cluster by an earlier generation of massive stars. It is first shown that such self-contamination naturally produces an Fe/H in the range from -2.5 to -1.0, precisely the same range observed in the metal poor (halo) globular clusters; this also seems to require that the disk clusters started with a substantial initial metallicity. To minimize the problem of creating homogeneous globular clusters, the second (currently observed) generation of stars is assumed to form in the expanding supershell around the first generation stars. Both numerical and analytic models are used to address this problem. The most important result of this investigation was that the late evolution of the supershell is the most important, and that this phase of the evolution is dominated by the external medium in which the cloud is embedded. This result and the requirement that only the most tightly bound systems may become globular clusters lead to the conclusion that a globular cluster with the mass and binding energy typically observed can be formed at star formation efficiences as low as 10-20 percent. Furthermore, self contamination requires that the typical Fe/H of a bound system be about -1.6, independent of the free parameters of the model, allowing the clusters and field stars to form with different metallicity distributions in spite of their forming at the same time. Since the formation of globular clusters in this model is tied to the external pressure, the halo globular cluster masses and distribution can be used as probes of the early galactic structure. In particular, this model requires an increase in the typical globular cluster mass as one moves out from the galactic center; the masses of the halo clusters are examined, and they show considerable evidence for such a gradient. Based on a pressure distribution derived from this data, the effect of the galactic tidal field on the

  1. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  2. Rosat Observations of Nine Globular Clusters

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Dewey, D.; Levine, A.; Macri, L.

    1994-01-01

    The ROSAT HRI was used to image fields around nine Galactic globular clusters that have central densities in the range of 10(exp 4) - 10(exp 5) solar mass pc(exp -3) and that had not previously been observed with the Einstein Observatory. We detected X-ray sources associated with Pal 2 and NGC 6304 with luminosities of 1.1 x 10(exp 34) ergs/s and 1.2 x 10(exp 33) ergs/s, respectively. No X-ray emission was detected from the source in Ter 6, thus confirming its transient nature. In all, there were 23 serendipitous sources found in the nine fields; none was apparently associated with any of the other seven clusters. The results are discussed in the context of low-luminosity cluster X-ray sources, in general.

  3. THE DUAL ORIGIN OF STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surroundedmore » by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.« less

  4. Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran

    2014-03-01

    We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.

  5. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  6. Writing Pal: Feasibility of an Intelligent Writing Strategy Tutor in the High School Classroom

    ERIC Educational Resources Information Center

    Roscoe, Rod D.; McNamara, Danielle S.

    2013-01-01

    The Writing Pal (W-Pal) is a novel intelligent tutoring system (ITS) that offers writing strategy instruction, game-based practice, essay writing practice, and formative feedback to developing writers. Compared to more tractable and constrained learning domains for ITS, writing is an ill-defined domain because the features of effective writing are…

  7. The rise and fall of a challenger: the Bullet Cluster in Λ cold dark matter simulations

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Davé, Romeel; Nagamine, Kentaro

    2015-09-01

    The Bullet Cluster has provided some of the best evidence for the Λ cold dark matter (ΛCDM) model via direct empirical proof of the existence of collisionless dark matter, while posing a serious challenge owing to the unusually high inferred pairwise velocities of its progenitor clusters. Here, we investigate the probability of finding such a high-velocity pair in large-volume N-body simulations, particularly focusing on differences between halo-finding algorithms. We find that algorithms that do not account for the kinematics of infalling groups yield vastly different statistics and probabilities. When employing the ROCKSTAR halo finder that considers particle velocities, we find numerous Bullet-like pair candidates that closely match not only the high pairwise velocity, but also the mass, mass ratio, separation distance, and collision angle of the initial conditions that have been shown to produce the Bullet Cluster in non-cosmological hydrodynamic simulations. The probability of finding a high pairwise velocity pair among haloes with Mhalo ≥ 1014 M⊙ is 4.6 × 10-4 using ROCKSTAR, while it is ≈34 × lower using a friends-of-friends (FoF)-based approach as in previous studies. This is because the typical spatial extent of Bullet progenitors is such that FoF tends to group them into a single halo despite clearly distinct kinematics. Further requiring an appropriately high average mass among the two progenitors, we find the comoving number density of potential Bullet-like candidates to be of the order of ≈10-10 Mpc-3. Our findings suggest that ΛCDM straightforwardly produces massive, high relative velocity halo pairs analogous to Bullet Cluster progenitors, and hence the Bullet Cluster does not present a challenge to the ΛCDM model.

  8. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    NASA Astrophysics Data System (ADS)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log}< N> =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  9. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  10. LoCuSS: The infall of X-ray groups on to massive clusters

    NASA Astrophysics Data System (ADS)

    Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.

    2018-07-01

    Galaxy clusters are expected to form hierarchically in a Λ cold dark matter (ΛCDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters ( ˜ 1015 M⊙) at z ˜ 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 × 1013-7 × 1014 M⊙, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ˜25× higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 × 1014 M⊙, or 19 ± 5 per cent of the mass within the primary cluster itself. We estimate that ˜1015 M⊙ clusters increase their masses by 16 ± 4 per cent between z = 0.223 and the present day due to the accretion of groups with M200 ≥ 1013.2 M⊙. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within haloes. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of `field' X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter haloes being biased tracers of the underlying large-scale density distribution.

  11. Characteristic time for halo current growth and rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boozer, Allen H., E-mail: ahb17@columbia.edu

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channelmore » in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.« less

  12. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    PubMed

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  13. WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich

    2010-07-20

    The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuringmore » a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.« less

  14. PALs: Fostering Student Engagement and Interactive Learning

    ERIC Educational Resources Information Center

    Hancock, Thomas; Smith, Stella; Timpte, Candace; Wunder, Jennifer

    2010-01-01

    Georgia Gwinnett College (GGC) opened its doors in 2006 and accepted its inaugural class of first-year students in 2007. During the 2007-2008 academic year, faculty members and administrators worked together to develop a model for Partners in Active Learning, or PALs--an initiative designed to fit the GGC vision and mission to build an…

  15. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2009-05-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  16. Is the Milky Way's hot halo convectively unstable?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Usingmore » published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.« less

  17. Interpreting the Clustering of Distant Red Galaxies

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Wechsler, Risa H.; Zheng, Zheng

    2010-01-01

    We analyze the angular clustering of z ~ 2.3 distant red galaxies (DRGs) measured by Quardi et al. We find that, with robust estimates of the measurement errors and realistic halo occupation distribution modeling, the measured clustering can be well fit within standard halo occupation models, in contrast to previous results. However, in order to fit the strong break in w(θ) at θ = 10'', nearly all satellite galaxies in the DRG luminosity range are required to be DRGs. Within this luminosity-threshold sample, the fraction of galaxies that are DRGs is ~44%, implying that the formation of DRGs is more efficient for satellite galaxies than for central galaxies. Despite the evolved stellar populations contained within DRGs at z = 2.3, 90% of satellite galaxies in the DRG luminosity range have been accreted within 500 Myr. Thus, satellite DRGs must have known they would become satellites well before the time of their accretion. This implies that the formation of DRGs correlates with large-scale environment at fixed halo mass, although the large-scale bias of DRGs can be well fit without such assumptions. Further data are required to resolve this issue. Using the observational estimate that ~30% of DRGs have no ongoing star formation, we infer a timescale for star formation quenching for satellite galaxies of 450 Myr, although the uncertainty on this number is large. However, unless all non-star-forming satellite DRGs were quenched before accretion, the quenching timescale is significantly shorter than z ~ 0 estimates. Down to the completeness limit of the Quadri et al. sample, we find that the halo masses of central DRGs are ~50% higher than non-DRGs in the same luminosity range, but at the highest halo masses the central galaxies are DRGs only ~2/3 of the time.

  18. Stabilizing properties of the halo apparatus.

    PubMed

    Mirza, S K; Moquin, R R; Anderson, P A; Tencer, A F; Steinmann, J; Varnau, D

    1997-04-01

    A cadaveric cervical spine specimen fixed between a fiberglass torso and a plastic skull was used as a model to determine the effect of halo structural parameters on motion at a lesion simulated at C5-C6. In a second part, nine commercially available halo devices were compared. To define the contributions of the various components of the halo apparatus to reducing motion in an injured cervical spine and to compare the stability offered by a sample of commercially available halo devices. Controversy exists concerning the ability of the halo apparatus to stabilize the injured cervical spine. The halo apparatus has been shown to be the most effective nonsurgical method for stabilizing the fractured spine. Nonetheless, several clinical studies have demonstrated that unacceptably large motions can occur at the injured spinal segment stabilized with a halo apparatus. Each cadaveric cervical spine was mounted onto a fiberglass torso and a rigid plastic skull was attached to the base of the occiput. A posterior ligamentous lesion was created between C5 and C6. The halo ring was fitted to the skull and a vest to the torso. Loads were applied to the skull in flexion, extension, and lateral bending, and relative angulation between C5 and C6 was measured with electroinclinometers. In the first part, the effect of parameters such as vest tightness, vest-thorax friction, vest deformation, and connecting bar rigidity on spinal angulation were measured using one vest. In the second part, the stability offered by each of nine commercially available halo devices was compared. Increasing chest strap tightness and decreasing vest deformation reduced angulation at the spinal lesion. Once connecting bar joints were tightened to 25% of their recommended torque, increased tightening or adding additional bars had no effect on rigidity. Although specific vests permitted significantly greater motion in specific directions, no vest allowed greater angulation consistently in all loading planes

  19. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  20. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the

  1. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  2. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu

    2013-06-01

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  3. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  4. One NASA: Sharing Knowledge Through an Agency-wide Process Asset Library (PAL)

    NASA Technical Reports Server (NTRS)

    Truss, Baraka J.

    2006-01-01

    This poster session will cover the key purpose and components behind implementing the NASA PAL website. This session will present the current results, describing the process used to create the website, the current usage measure, and will demonstrate how NASA is truly becoming ONE. The target audience for the poster session includes those currently implementing the CMMI model and looking for PAL adoption techniques. To continue to be the leader in space, science and technology, NASA is using this agency-wide PAL to share knowledge, work products and lessons learned through this website. Many organizations have failed to recognize how the efforts of process improvement fit into overall organizational effort. However, NASA as an agency has adopted the benefits of process improvement by the creation of this website to foster communication between its ten centers. The poster session will cover the following, topics outlined below: 1) Website purpose; 2) Characteristics of the website; 3) User accounts status; 4) Website content size; and 5) Usage percentages.

  5. Cosmic Vorticity and the Origin Halo Spins

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Hoffman, Yehuda; Steinmetz, Matthias; Gottlöber, Stefan; Knebe, Alexander; Hess, Steffen

    2013-04-01

    In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e 1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e 1, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.

  6. Small scale clustering of late forming dark matter

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.

    2015-09-01

    We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.

  7. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  8. Smooth halos in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaite, José, E-mail: jose.gaite@upm.es

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description ofmore » the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.« less

  9. A cluster version of the GGT sum rule

    NASA Astrophysics Data System (ADS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2004-03-01

    We discuss the derivation of a "cluster sum rule" from the Gellmann-Goldberger-Thirring (GGT) sum rule as an alternative to the Thomas-Reiche-Kuhn (TRK) sum rule, which was used as the basis up to now. We compare differences in the assumptions and approximations. Some applications of the sum rule for halo nuclei, as well as, nuclei with a pronounced cluster structure are discussed.

  10. On the Distribution of Orbital Poles of Milky Way Satellites

    NASA Astrophysics Data System (ADS)

    Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.

    2002-01-01

    results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.

  11. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less

  12. Resolving the problem of galaxy clustering on small scales: any new physics needed?

    NASA Astrophysics Data System (ADS)

    Kang, X.

    2014-02-01

    Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.

  13. The stable clustering ansatz, consistency relations and gravity dual of large-scale structure

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak

    2018-02-01

    Gravitational clustering in the nonlinear regime remains poorly understood. Gravity dual of gravitational clustering has recently been proposed as a means to study the nonlinear regime. The stable clustering ansatz remains a key ingredient to our understanding of gravitational clustering in the highly nonlinear regime. We study certain aspects of violation of the stable clustering ansatz in the gravity dual of Large Scale Structure (LSS). We extend the recent studies of gravitational clustering using AdS gravity dual to take into account possible departure from the stable clustering ansatz and to arbitrary dimensions. Next, we extend the recently introduced consistency relations to arbitrary dimensions. We use the consistency relations to test the commonly used models of gravitational clustering including the halo models and hierarchical ansätze. In particular we establish a tower of consistency relations for the hierarchical amplitudes: Q, Ra, Rb, Sa,Sb,Sc etc. as a functions of the scaled peculiar velocity h. We also study the variants of popular halo models in this context. In contrast to recent claims, none of these models, in their simplest incarnation, seem to satisfy the consistency relations in the soft limit.

  14. COSMIC VORTICITY AND THE ORIGIN HALO SPINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libeskind, Noam I.; Steinmetz, Matthias; Gottloeber, Stefan

    2013-04-01

    In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular momentum is affected by the vorticity of their ambient velocity field.more » Using a cosmological simulation, we have examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor (e{sub 1}). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on the tendency of halo spin to be perpendicular to e{sub 1}, and of the spin of (simulated) halos and (observed) galaxies to be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases. First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin becomes partially aligned with the vorticity of the ambient flow field.« less

  15. CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing

    NASA Astrophysics Data System (ADS)

    Chiu, I.-Non; Umetsu, Keiichi; Sereno, Mauro; Ettori, Stefano; Meneghetti, Massimo; Merten, Julian; Sayers, Jack; Zitrin, Adi

    2018-06-01

    We perform a three-dimensional triaxial analysis of 16 X-ray regular and 4 high-magnification galaxy clusters selected from the CLASH survey by combining two-dimensional weak-lensing and central strong-lensing constraints. In a Bayesian framework, we constrain the intrinsic structure and geometry of each individual cluster assuming a triaxial Navarro–Frenk–White halo with arbitrary orientations, characterized by the mass {M}200{{c}}, halo concentration {c}200{{c}}, and triaxial axis ratios ({q}{{a}}≤slant {q}{{b}}), and investigate scaling relations between these halo structural parameters. From triaxial modeling of the X-ray-selected subsample, we find that the halo concentration decreases with increasing cluster mass, with a mean concentration of {c}200{{c}}=4.82+/- 0.30 at the pivot mass {M}200{{c}}={10}15{M}ȯ {h}-1. This is consistent with the result from spherical modeling, {c}200{{c}}=4.51+/- 0.14. Independently of the priors, the minor-to-major axis ratio {q}{{a}} of our full sample exhibits a clear deviation from the spherical configuration ({q}{{a}}=0.52+/- 0.04 at {10}15{M}ȯ {h}-1 with uniform priors), with a weak dependence on the cluster mass. Combining all 20 clusters, we obtain a joint ensemble constraint on the minor-to-major axis ratio of {q}{{a}}={0.652}-0.078+0.162 and a lower bound on the intermediate-to-major axis ratio of {q}{{b}}> 0.63 at the 2σ level from an analysis with uniform priors. Assuming priors on the axis ratios derived from numerical simulations, we constrain the degree of triaxiality for the full sample to be { \\mathcal T }=0.79+/- 0.03 at {10}15{M}ȯ {h}-1, indicating a preference for a prolate geometry of cluster halos. We find no statistical evidence for an orientation bias ({f}geo}=0.93+/- 0.07), which is insensitive to the priors and in agreement with the theoretical expectation for the CLASH clusters.

  16. Effect of the cosmological constant on halo size

    NASA Astrophysics Data System (ADS)

    Kulchoakrungsun, Ekapob; Lam, Adrian; Lowe, David A.

    2018-04-01

    In this work, we consider the effect of the cosmological constant on galactic halo size. As a model, we study the general relativistic derivation of orbits in the Schwarzschild-de Sitter metric. We find that there exists a length scale rΛ corresponding to a maximum size of a circular orbit of a test mass in a gravitationally bound system, which is the geometric mean of the cosmological horizon size squared and the Schwarzschild radius. This agrees well with the size of a galactic halo when the effects of dark matter are included. The size of larger structures such as galactic clusters and superclusters are also well-approximated by this scale. This model provides a simplified approach to computing the size of such structures without the usual detailed dynamical models. Some of the more detailed approaches that appear in the literature are reviewed, and we find the length scales agree to within a factor of order one. Finally, we note the length scale associated with the effects of MOND or Verlinde’s emergent gravity, which offer explanations of the flattening of galaxy rotation curves without invoking dark matter, may be expressed as the geometric mean of the cosmological horizon size and the Schwarzschild radius, which is typically 100 times smaller than rΛ.

  17. PAL Boot Camp: Preparing Cognitive Assistants for Deployment

    DTIC Science & Technology

    2007-06-01

    to program it. Another technique used in the military for training humans is simulation. Officers moving to a joint staff tour are taught crisis...a PAL, it may be easier to have it learn from experiencing the military domain within a training setting rather than having an engineer decide how

  18. Halo vest effect on balance.

    PubMed

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, p<.01). A halo vest causes an acute impairment in balance in the healthy young. It is likely that the impairment would be greater in older or injured patients, thus increasing their risk for a fall, which could have devastating consequences.

  19. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  20. Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Gruen, D.; McClintock, T.; ...

    2017-05-16

    Here, we use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter 5 ≤ λ ≤ 180 and redshift 0.2 ≤ z ≤ 0.8, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentring; deviations from the NFW halo profile; halo triaxiality and line-of-sight projections.

  1. Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, P.; Gruen, D.; McClintock, T.

    Here, we use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter 5 ≤ λ ≤ 180 and redshift 0.2 ≤ z ≤ 0.8, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentring; deviations from the NFW halo profile; halo triaxiality and line-of-sight projections.

  2. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  3. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques.

  4. Can cluster environment modify the dynamical evolution of spiral galaxies?

    NASA Technical Reports Server (NTRS)

    Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III

    1993-01-01

    Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows

  5. Peer Assistance and Leadership (PAL) Program. Program Summary.

    ERIC Educational Resources Information Center

    Thomas, H. Grant, Jr.

    This document describes the Peer Assistance and Leadership (PAL) Program, a peer helping program developed by the Austin Independent School District in Austin, Texas. It explains how selected high school students are trained to work as peer facilitators with younger students either on their own campus or from feeder junior high or elementary…

  6. Exploring the nature and synchronicity of early cluster formation in the Large Magellanic Cloud - III. Horizontal branch morphology

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; Mackey, Dougal; Sarajedini, Ata; Cohen, Roger E.; Geisler, Doug; Yang, Soung-Chul; Grocholski, Aaron J.; Cummings, Jeffrey D.

    2018-03-01

    We leverage new high-quality data from Hubble Space Telescope program GO-14164 to explore the variation in horizontal branch morphology among globular clusters in the Large Magellanic Cloud (LMC). Our new observations lead to photometry with a precision commensurate with that available for the Galactic globular cluster population. Our analysis indicates that, once metallicity is accounted for, clusters in the LMC largely share similar horizontal branch morphologies regardless of their location within the system. Furthermore, the LMC clusters possess, on average, slightly redder morphologies than most of the inner halo Galactic population; we find, instead, that their characteristics tend to be more similar to those exhibited by clusters in the outer Galactic halo. Our results are consistent with previous studies, showing a correlation between horizontal branch morphology and age.

  7. Metallicity and Kinematics of M31's Outer Stellar Halo from a Keck Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Reitzel, David B.; Guhathakurta, Puragra

    2002-07-01

    explored for the apparent discrepancy between the mean [Fe/H] found in our spectroscopic survey (corrected for metallicity selection bias) and the slightly higher mean values found in earlier photometric studies. Field halo red giants in M31 appear to be somewhat more metal-rich on average than their Milky Way counterparts. The M31 halo [Fe/H] distribution is comparable to that of M31 globular clusters, Galactic globular clusters, and Local Group dwarf satellite galaxies. The data in this 19 kpc outer halo field are broadly consistent with a scenario in which the halo is built from the accretion of small stellar subsystems. There are four stars in the secure M31 sample that have particularly strong Ca II lines, indicating solar metallicity, at a common velocity of ~-340 km s-1 close to the galaxy's systemic velocity, similar to what might be expected for M31 disk giants on the minor axis. An extrapolation of the inner disk brightness profile, however, falls far short of accounting for these four stars-the disk would instead have to be very large (Rdisk>~80 kpc) and/or warped. More likely, these four stars represent a metal-rich debris trail from a past accretion event in the halo. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor

    2014-11-10

    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described bymore » a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large

  9. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  10. Simulation of halo particles with Simpsons

    NASA Astrophysics Data System (ADS)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  11. Self-consistent construction of virialized wave dark matter halos

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  12. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  13. Probing dark matter physics with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    2016-10-01

    We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.

  14. Tidally Induced Bars of Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain

    2016-08-01

    Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.

  15. PalC, One of Two Bro1 Domain Proteins in the Fungal pH Signalling Pathway, Localizes to Cortical Structures and Binds Vps32

    PubMed Central

    Galindo, Antonio; Hervás-Aguilar, América; Rodríguez-Galán, Olga; Vincent, Olivier; Arst, Herbert N; Tilburn, Joan; Peñalva, Miguel A

    2007-01-01

    PalC, distantly related to Saccharomyces cerevisiaeperipheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulanspH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Δ impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiaeorthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes. PMID:17696968

  16. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old

  17. PALS: A unique probe for the molecular organisation of biopolymer matrices

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Alam, M. A.

    2013-06-01

    This short review aims to illustrate the versatility of Positron Annihilation Lifetime Spectroscopy (PALS) when utilized for the characterization of biopolymers (e.g.: starch, fractionated maltooligomers, gelatin and cellulose derivatives) commonly used for the formulation of pharmaceutical encapsulants. By showing examples from a number of recent PALS studies, we illustrate that this technique can be used to probe the changes in thermodynamic state and molecular packing for a wide range of biopolymer matrices as a function of temperature, matrix composition and water content. This provides a basis for establishing composition-structure-property relationships for these materials, which would eventually enable the rational control of their macroscopic properties and the design of optimal encapsulating matrices and intelligent drug delivery systems.

  18. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt; Mansfield, Philip; Kravtsov, Andrey V.; More, Surhud

    2017-07-01

    The splashback radius R sp, the apocentric radius of particles on their first orbit after falling into a dark matter halo, has recently been suggested to be a physically motivated halo boundary that separates accreting from orbiting material. Using the Sparta code presented in Paper I, we analyze the orbits of billions of particles in cosmological simulations of structure formation and measure R sp for a large sample of halos that span a mass range from dwarf galaxy to massive cluster halos, reach redshift 8, and include WMAP, Planck, and self-similar cosmologies. We analyze the dependence of R sp/R 200m and M sp/M 200m on the mass accretion rate Γ, halo mass, redshift, and cosmology. The scatter in these relations varies between 0.02 and 0.1 dex. While we confirm the known trend that R sp/R 200m decreases with Γ, the relationships turn out to be more complex than previously thought, demonstrating that R sp is an independent definition of the halo boundary that cannot trivially be reconstructed from spherical overdensity definitions. We present fitting functions for R sp/R 200m and M sp/M 200m as a function of accretion rate, peak height, and redshift, achieving an accuracy of 5% or better everywhere in the parameter space explored. We discuss the physical meaning of the distribution of particle apocenters and show that the previously proposed definition of R sp as the radius of the steepest logarithmic density slope encloses roughly three-quarters of the apocenters. Finally, we conclude that no analytical model presented thus far can fully explain our results.

  19. [Halos and multifocal intraocular lenses: origin and interpretation].

    PubMed

    Alba-Bueno, F; Vega, F; Millán, M S

    2014-10-01

    To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non

  20. On physical scales of dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemp, Marcel, E-mail: mzemp@pku.edu.cn

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to themore » illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.« less

  1. Accurate mass and velocity functions of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.

  2. RaPAL Bulletin, Numbers 5-13, 1988-1990.

    ERIC Educational Resources Information Center

    RaPAL Bulletin, 1988

    1988-01-01

    This document consists of a 3-year compilation (9 issues) of the RaPAL (Research and Practice in Adult Literacy) Bulletin. Typical articles are: "Student Involvement in Research" (a report of a workshop by Alex Golightly, Nick Nicola, and Marilyn Stone); part of a dialogue between Paolo Freire and Ira Shor, writer/educators of Brazil and…

  3. Halo models of HI selected galaxies

    NASA Astrophysics Data System (ADS)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  4. Baryonic distributions in galaxy dark matter haloes - II. Final results

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  5. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  6. Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs

    NASA Astrophysics Data System (ADS)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.

    2018-01-01

    In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.

  7. HST/WFC3 OBSERVATIONS OF LOW-MASS GLOBULAR CLUSTERS AM 4 AND PALOMAR 13: PHYSICAL PROPERTIES AND IMPLICATIONS FOR MASS LOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamren, Katherine M.; Smith, Graeme H.; Guhathakurta, Puragra

    2013-11-01

    We investigate the loss of low-mass stars in two of the faintest globular clusters known, AM 4 and Palomar 13 (Pal 13), using HST/WFC3 F606W and F814W photometry. To determine the physical properties of each cluster—age, mass, metallicity, extinction, and present day mass function (MF)—we use the maximum likelihood color-magnitude diagram (CMD) fitting program MATCH and the Dartmouth, Padova, and BaSTI stellar evolution models. For AM 4, the Dartmouth models provide the best match to the CMD and yield an age of >13 Gyr, metallicity log Z/Z {sub ☉} = –1.68 ± 0.08, a distance modulus (m – M) {submore » V} = 17.47 ± 0.03, and reddening A{sub V} = 0.19 ± 0.02. For Pal 13 the Dartmouth models give an age of 13.4 ± 0.5 Gyr, log Z/Z {sub ☉} = –1.55 ± 0.06, (m – M) {sub V} = 17.17 ± 0.02, and A{sub V} = 0.43 ± 0.01. We find that the systematic uncertainties due to choice in assumed stellar model greatly exceed the random uncertainties, highlighting the importance of using multiple stellar models when analyzing stellar populations. Assuming a single-sloped power-law MF, we find that AM 4 and Pal 13 have spectral indices α = +0.68 ± 0.34 and α = –1.67 ± 0.25 (where a Salpeter MF has α = +1.35), respectively. Comparing our derived slopes with literature measurements of cluster integrated magnitude (M{sub V} ) and MF slope indicates that AM 4 is an outlier. Its MF slope is substantially steeper than clusters of comparable luminosity, while Pal 13 has an MF in line with the general trend. We discuss both primordial and dynamical origins for the unusual MF slope of AM 4 and tentatively favor the dynamical scenario. However, MF slopes of more low luminosity clusters are needed to verify this hypothesis.« less

  8. Research Progresses of Halo Streams in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  9. Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-parsley PAL2 chimera gene.

    PubMed

    Moriwaki, M; Yamakawa, T; Washino, T; Kodama, T; Igarashi, Y

    1999-01-01

    The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at 44 degrees C for 5 h, the PAL activity in both transgenic and normal (untransformed) plants was 35-38% lower than that before HS. At normal temperature (25-26 degrees C), the PAL activity recovered within 5 h of ending the HS treatment in normal plants, but not until 12-24 h in transgenic plants containing the HSP18.2-PAL2 gene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of parsley PAL2 mRNA in transgenic plants, which remained for 8-12 h following 5-h HS at 44 degrees C; the mRNA was not observed before HS. The content of chlorogenic acid (CGA; 3-caffeoylquinic acid) decreased drastically 8-12 h after HS in transgenic plants, but only slightly in normal plants. Thus, the decrease in PAL activity accompanied by expression of the parsley PAL2 gene after HS treatment corresponded to the decrease in CGA synthesis. These results might be attributed to post-transcriptional degradation of endogenous PAL mRNA triggered by transcription of the transgene.

  10. The Star Cluster System in the Local Group Starburst Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoon; Lee, Myung Gyoon

    2015-05-01

    We present a survey of star clusters in the halo of IC 10, a starburst galaxy in the Local Group, based on Subaru R-band images and NOAO Local Group Survey UBVRI images. We find five new star clusters. All of these star clusters are located far from the center of IC 10, while previously known star clusters are mostly located in the main body. Interestingly, the distribution of these star clusters shows an asymmetrical structure elongated along the east and southwest directions. We derive UBVRI photometry of 66 star clusters, including these new star clusters, as well as previously known star clusters. Ages of the star clusters are estimated from a comparison of their UBVRI spectral energy distribution with the simple stellar population models. We find that the star clusters in the halo are all older than 1 Gyr, while those in the main body have various ages, from very young (several Myr) to old (\\gt 1 Gyr). The young clusters (\\lt 10 Myr) are mostly located in the Hα emission regions and are concentrated on a small region at 2\\prime\\prime in the southeast direction from the galaxy center, while the old clusters are distributed in a wider area than the disk. Intermediate-age clusters (∼100 Myr) are found in two groups. One is close to the location of the young clusters and the other is at ∼ 4\\prime\\prime from the location of the young clusters. The latter may be related to past mergers or tidal interaction.

  11. A look into the inside of haloes: a characterization of the halo shape as a function of overdensity in the Planck cosmology

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Tormen, Giuseppe

    2017-04-01

    In this paper, we study the triaxial properties of dark matter haloes of a wide range of masses extracted from a set of cosmological N-body simulations. We measure the shape at different distances from the halo centre (characterized by different overdensity thresholds), both in three and in two dimensions. We discuss how halo triaxiality increases with mass, redshift and distance from the halo centre. We also examine how the orientations of the different ellipsoids are aligned with each other and what is the gradient in internal shapes for haloes with different virial configurations. Our findings highlight that the internal part of the halo retains memory of the violent formation process keeping the major axis oriented towards the preferential direction of the infalling material while the outer part becomes rounder due to continuous isotropic merging events. This effect is clearly evident in high-mass haloes - which formed more recently - while it is more blurred in low-mass haloes. We present simple distributions that may be used as priors for various mass reconstruction algorithms, operating in different wavelengths, in order to recover a more complex and realistic dark matter distribution of isolated and relaxed systems.

  12. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine.

    PubMed

    Zang, Ying; Jiang, Ting; Cong, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2015-06-01

    Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the L-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

  13. Procura-PALavras (P-PAL): A Web-based interface for a new European Portuguese lexical database.

    PubMed

    Soares, Ana Paula; Iriarte, Álvaro; de Almeida, José João; Simões, Alberto; Costa, Ana; Machado, João; França, Patrícia; Comesaña, Montserrat; Rauber, Andreia; Rato, Anabela; Perea, Manuel

    2018-05-31

    In this article, we present Procura-PALavras (P-PAL), a Web-based interface for a new European Portuguese (EP) lexical database. Based on a contemporary printed corpus of over 227 million words, P-PAL provides a broad range of word attributes and statistics, including several measures of word frequency (e.g., raw counts, per-million word frequency, logarithmic Zipf scale), morpho-syntactic information (e.g., parts of speech [PoSs], grammatical gender and number, dominant PoS, and frequency and relative frequency of the dominant PoS), as well as several lexical and sublexical orthographic (e.g., number of letters; consonant-vowel orthographic structure; density and frequency of orthographic neighbors; orthographic Levenshtein distance; orthographic uniqueness point; orthographic syllabification; and trigram, bigram, and letter type and token frequencies), and phonological measures (e.g., pronunciation, number of phonemes, stress, density and frequency of phonological neighbors, transposed and phonographic neighbors, syllabification, and biphone and phone type and token frequencies) for ~53,000 lemmatized and ~208,000 nonlemmatized EP word forms. To obtain these metrics, researchers can choose between two word queries in the application: (i) analyze words previously selected for specific attributes and/or lexical and sublexical characteristics, or (ii) generate word lists that meet word requirements defined by the user in the menu of analyses. For the measures it provides and the flexibility it allows, P-PAL will be a key resource to support research in all cognitive areas that use EP verbal stimuli. P-PAL is freely available at http://p-pal.di.uminho.pt/tools .

  14. The clustering of Hβ +[OIII] and [OII] emitters since z ˜ 5: dependencies with line luminosity and stellar mass

    NASA Astrophysics Data System (ADS)

    Khostovan, A. A.; Sobral, D.; Mobasher, B.; Best, P. N.; Smail, I.; Matthee, J.; Darvish, B.; Nayyeri, H.; Hemmati, S.; Stott, J. P.

    2018-04-01

    We investigate the clustering properties of ˜7000 Hβ +[OIII] and [OII] narrowband-selected emitters at z ˜ 0.8 - 4.7 from the High-z Emission Line Survey. We find clustering lengths, r0, of 1.5 - 4.0 h-1 Mpc and minimum dark matter halo masses of 1010.7 - 12.1 M⊙ for our z = 0.8 - 3.2 Hβ +[OIII] emitters and r0˜2.0 - 8.3 h-1 Mpc and halo masses of 1011.5 - 12.6 M⊙ for our z = 1.5 - 4.7 [OII] emitters. We find r0 to strongly increase both with increasing line luminosity and redshift. By taking into account the evolution of the characteristic line luminosity, L⋆(z), and using our model predictions of halo mass given r0, we find a strong, redshift-independent increasing trend between L/L⋆(z) and minimum halo mass. The faintest Hβ +[OIII] emitters are found to reside in 109.5 M⊙ halos and the brightest emitters in 1013.0 M⊙ halos. For [OII] emitters, the faintest emitters are found in 1010.5 M⊙ halos and the brightest emitters in 1012.6 M⊙ halos. A redshift-independent stellar mass dependency is also observed where the halo mass increases from 1011 M⊙ to 1012.5 M⊙ for stellar masses of 108.5 M⊙ to 1011.5 M⊙, respectively. We investigate the interdependencies of these trends by repeating our analysis in a Lline - Mstar grid space for our most populated samples (Hβ +[OIII] z = 0.84 and [OII] z = 1.47) and find that the line luminosity dependency is stronger than the stellar mass dependency on halo mass. For L > L⋆ emitters at all epochs, we find a relatively flat trend with halo masses of 1012.5 - 13 M⊙ which may be due to quenching mechanisms in massive halos which is consistent with a transitional halo mass predicted by models.

  15. Detection of massive tidal tails around the globular cluster Pal 5 with SDSS commissioning data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odenkirchen, Michael; Grebel, Eva K.; Rockosi, Constance M.

    2000-12-01

    We report the discovery of two well-defined tidal tails emerging from the sparse remote globular cluster Palomar 5. These tails stretch out symmetrically to both sides of the cluster in the direction of constant Galactic latitude and subtend an angle of 2.6{sup o} on the sky. The tails have been detected in commissioning data of the Sloan Digital Sky Survey (SDSS), providing deep five-color photometry in a 2.5{sup o}-wide band along the equator. The stars in the tails make up a substantial part ({approx} 1/3) of the current total population of cluster stars in the magnitude interval 19.5 {le} i*more » {le} 22.0. This reveals that the cluster is subject to heavy mass loss. The orientation of the tails provides an important key for the determination of the cluster's Galactic orbit.« less

  16. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  17. Dark Matter in Ultra-diffuse Galaxies in the Virgo Cluster from Their Globular Cluster Populations

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Lim, Sungsoon; Peng, Eric; Sales, Laura V.; Guhathakurta, Puragra; Mihos, J. Christopher; Côté, Patrick; Boselli, Alessandro; Cuillandre, Jean-Charles; Ferrarese, Laura; Gwyn, Stephen; Lançon, Ariane; Muñoz, Roberto; Puzia, Thomas

    2018-04-01

    We present Keck/DEIMOS spectroscopy of globular clusters (GCs) around the ultra-diffuse galaxies (UDGs) VLSB‑B, VLSB‑D, and VCC615 located in the central regions of the Virgo cluster. We spectroscopically identify 4, 12, and 7 GC satellites of these UDGs, respectively. We find that the three UDGs have systemic velocities (V sys) consistent with being in the Virgo cluster, and that they span a wide range of velocity dispersions, from ∼16 to ∼47 km s‑1, and high dynamical mass-to-light ratios within the radius that contains half the number of GCs ({407}-407+916, {21}-11+15, {60}-38+65, respectively). VLSB‑D shows possible evidence for rotation along the stellar major axis and its V sys is consistent with that of the massive galaxy M84 and the center of the Virgo cluster itself. These findings, in addition to having a dynamically and spatially (∼1 kpc) off-centered nucleus and being extremely elongated, suggest that VLSB‑D could be tidally perturbed. On the contrary, VLSB‑B and VCC615 show no signs of tidal deformation. Whereas the dynamics of VLSB‑D suggest that it has a less massive dark matter halo than expected for its stellar mass, VLSB‑B and VCC615 are consistent with a ∼1012 M ⊙ dark matter halo. Although our samples of galaxies and GCs are small, these results suggest that UDGs may be a diverse population, with their low surface brightnesses being the result of very early formation, tidal disruption, or a combination of the two.

  18. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  19. Active Galactic Nucleus Feedback with the Square Kilometre Array and Implications for Cluster Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Iqbal, Asif; Kale, Ruta; Majumdar, Subhabrata; Nath, Biman B.; Pandge, Mahadev; Sharma, Prateek; Malik, Manzoor A.; Raychaudhury, Somak

    2017-12-01

    Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of z>1 clusters discovered by eROSITA X-ray mission can be expected to be followed up through a 1000 hour SKA1-mid programme. Moreover, approximately 1000 radio mini halos and ˜ 2500 radio halos at z<0.6 can be potentially detected by SKA1 and SKA2 and used as tracers of galaxy clusters and determination of cluster selection function.

  20. Content Analysis Schedule for Bilingual Education Programs: Proyecto PAL.

    ERIC Educational Resources Information Center

    Gonzalez, Castor

    This content analysis schedule for "Proyecto PAL" in San Jose, California, presents information on the history, funding, and scope of the project. Included are sociolinguistic process variables such as the native and dominant languages of students and their interaction. Information is provided on staff selection and the linguistic…

  1. Next Generation Virgo Cluster Survey. XXI. The Weak Lensing Masses of the CFHTLS and NGVS RedGOLD Galaxy Clusters and Calibration of the Optical Richness

    NASA Astrophysics Data System (ADS)

    Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.

    2017-10-01

    We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

  2. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  3. Disc-halo interactions in ΛCDM

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  4. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  5. Halo-free phase contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail E.; Shakir, Haadi M.; Best, Catherine; Do, Minh N.; Popescu, Gabriel

    2017-02-01

    The phase contrast (PC) method is one of the most impactful developments in the four-century long history of microscopy. It allows for intrinsic, nondestructive contrast of transparent specimens, such as live cells. However, PC is plagued by the halo artifact, a result of insufficient spatial coherence in the illumination field, which limits its applicability. We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Measuring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  6. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  7. Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson's disease mouse model.

    PubMed

    Zhang, YanFang; Chen, YiMei; Li, Lin; Hölscher, Christian

    2015-10-15

    Glucagon-like peptide 1 (GLP-1) is a hormone and a growth factor. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. They also have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a first clinical trial in PD patients showed promising results. (Val8)GLP-1-glu-PAL is a new GLP-1 analogue which has a longer biological half-life than exendin-4. We previously showed that (Val8)GLP-1-glu-PAL has neuroprotective properties. Here we tested the drug in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected (30mg/kg i.p.) along with (Val8)GLP-1-glu-PAL (25nmol/kg i.p.) once-daily for 8 days. (Val8)GLP-1-glu-PAL showed good effects in preventing the MPTP-induced motor impairment (Rotarod, open field locomotion, swim test), reduction in tyrosine hydroxylase levels (dopamine synthesis) in the substantia nigra, a reduction of activated caspase 3 levels, of TUNEL positive cell numbers, of the pro-apoptotic signaling molecule BAX and an increase in the growth signaling molecule Bcl-2. The results demonstrate that (Val8)GLP-1-glu-PAL shows promise as a novel treatment of PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The growth and structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Zhao, D. H.; Mo, H. J.; Jing, Y. P.; Börner, G.

    2003-02-01

    In this paper, we analyse in detail the mass-accretion histories and structural properties of dark haloes in high-resolution N-body simulations. We model the density distribution in individual haloes using the Navarro-Frenk-White (NFW) profile. For a given halo, there is a tight correlation between its inner-scale radius rs and the mass within it, Ms, for all its main progenitors. Using this correlation, one can predict quite well the structural properties of a dark halo at any time in its history from its mass-accretion history, implying that the structure properties and the mass-accretion history are closely correlated. The predicted growing rate of concentration c with time tends to increase with decreasing mass-accretion rate. The build-up of dark haloes in cold dark matter (CDM) models generally consists of an early phase of fast accretion (where the halo mass Mh increases with time much faster than the expansion rate of the Universe) and a late phase of slow accretion (where Mh increases with time approximately as the expansion rate). These two phases are separated at a time when c~ 4 and the typical binding energy of the halo is approximately equal to that of a singular isothermal sphere with the same circular velocity. Haloes in the two accretion phases show systematically different properties, for example, the circular velocity vh increases rapidly with time in the fast accretion phase but remains almost constant in the slow accretion phase, the inner properties of a halo, such as rs and Ms increase rapidly with time in the fast accretion phase but change only slowly in the slow accretion phase, the inner circular velocity vs is approximately equal to vh in the fast accretion phase but is larger in the slow accretion phase. The potential well associated with a halo is built up mainly in the fast accretion phase, while a large amount of mass can be accreted in the slow accretion phase without changing the potential well significantly. We discuss our results

  9. The Stellar Mass-Halo Mass Relation for Low-mass X-Ray Groups At 0.5< z< 1 in the CDFS With CSI

    NASA Astrophysics Data System (ADS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-02-01

    Since z˜ 1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ˜8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5\\lt z\\lt 1, enabling the calibration of stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ˜3%-4% of the total mass of group halos with masses {{10}12.8}\\lt {{M}200}/{{M}⊙ }\\lt {{10}13.5} (about the mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is σ ˜ 0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z≲ 1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  10. FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale

    NASA Astrophysics Data System (ADS)

    Dias, B.; Barbuy, B.; Saviane, I.; Held, E. V.; Da Costa, G. S.; Ortolani, S.; Gullieuszik, M.; Vásquez, S.

    2016-05-01

    Context. Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. Aims: We obtain homogeneous metallicities and α-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. Methods: We observed R ~ 2000 spectra in the wavelength interval 456-586 nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. Results: [Fe/H], [Mg/Fe], and [α/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within σ = 0.08 dex over the interval -2.5< [Fe/H] < 0.0. Furthermore, a comparison of previous metallicity scales with our values yields σ< 0.16 dex. We also find that the distribution of [Mg/Fe] and [α/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three

  11. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  12. Formation of intermediate-mass black holes through runaway collisions in the first star clusters

    NASA Astrophysics Data System (ADS)

    Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo

    2017-12-01

    We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.

  13. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  14. Updating the MACHO fraction of the Milky Way dark halo with improved mass models

    NASA Astrophysics Data System (ADS)

    Calcino, Josh; García-Bellido, Juan; Davis, Tamara M.

    2018-05-01

    Recent interest in primordial black holes as a possible dark matter candidate has motivated the reanalysis of previous methods for constraining massive astrophysical compact objects in the Milky Way halo and beyond. In order to derive these constraints, a model for the dark matter distribution around the Milky Way must be used. Previous microlensing searches have assumed a semi-isothermal density sphere for this task. We show this model is no longer consistent with data from the Milky Way rotation curve, and test two replacement models, namely NFW and power-law. The power-law model is the most flexible as it can break spherical symmetry, and best fits the data. Thus, we recommend the power-law model as a replacement, although it still lacks the flexibility to fully encapsulate all possible shapes of the Milky Way halo. We then use the power-law model to rederive some previous microlensing constraints in the literature, while propagating the primary halo-shape uncertainties through to our final constraints. Our analysis reveals that the microlensing constraints towards the Large Magellanic Cloud weaken somewhat for MACHO masses around 10 M⊙ when this uncertainty is taken into account, but the constraints tighten at lower masses. Exploring some of the simplifying assumptions of previous constraints we also study the effect of wide mass distributions of compact halo objects, as well as the effect of spatial clustering on microlensing constraints. We find that both effects induce a shift in the constraints towards smaller masses, and can effectively remove the microlensing constraints from M ˜ 1 - 10M⊙ for certain MACHO populations.

  15. The stellar mass, star formation rate and dark matter halo properties of LAEs at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Kusakabe, Haruka; Shimasaku, Kazuhiro; Ouchi, Masami; Nakajima, Kimihiko; Goto, Ryosuke; Hashimoto, Takuya; Konno, Akira; Harikane, Yuichi; Silverman, John D.; Capak, Peter L.

    2018-01-01

    We present average stellar population properties and dark matter halo masses of z ˜ 2 Lyα emitters (LAEs) from spectral energy distribution fitting and clustering analysis, respectively, using ≃ 1250 objects (NB387≤25.5) in four separate fields of ≃ 1 deg2 in total. With an average stellar mass of 10.2 ± 1.8 × 108 M⊙ and star formation rate of 3.4 ± 0.4 M⊙ yr-1, the LAEs lie on an extrapolation of the star-formation main sequence (MS) to low stellar mass. Their effective dark matter halo mass is estimated to be 4.0_{-2.9}^{+5.1} × 10^{10}{ }M_{⊙} with an effective bias of 1.22^{+0.16}_{-0.18}, which is lower than that of z ˜ 2 LAEs (1.8 ± 0.3) obtained by a previous study based on a three times smaller survey area, with a probability of 96%. However, the difference in the bias values can be explained if cosmic variance is taken into account. If such a low halo mass implies a low H I gas mass, this result appears to be consistent with the observations of a high Lyα escape fraction. With the low halo masses and ongoing star formation, our LAEs have a relatively high stellar-to-halo mass ratio (SHMR) and a high efficiency of converting baryons into stars. The extended Press-Schechter formalism predicts that at z = 0 our LAEs are typically embedded in halos with masses similar to that of the Large Magellanic Cloud (LMC); they will also have similar SHMRs to the LMC, if their star formation rates are largely suppressed after z ˜ 2 as some previous studies have reported for the LMC itself.

  16. Cosmic variance of the galaxy cluster weak lensing signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, D.; Seitz, S.; Becker, M. R.

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  17. Cosmic variance of the galaxy cluster weak lensing signal

    DOE PAGES

    Gruen, D.; Seitz, S.; Becker, M. R.; ...

    2015-04-13

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  18. Mass functions for globular cluster main sequences based on CCD photometry and stellar models

    NASA Astrophysics Data System (ADS)

    McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.

    1986-08-01

    Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.

  19. Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.

    2015-10-01

    It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.

  20. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  1. The effect of gas dynamics on semi-analytic modelling of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.

    2008-12-01

    We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.

  2. An improved catalog of halo wide binary candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christine; Monroy-Rodríguez, Miguel A., E-mail: chris@astro.unam.mx

    2014-08-01

    We present an improved catalog of halo wide binaries compiled from an extensive literature search. Most of our binaries stem from the common proper motion binary catalogs by Allen et al. and Chanamé and Gould, but we have also included binaries from the lists of Ryan and Zapatero-Osorio and Martín. All binaries were carefully checked and their distances and systemic radial velocities are included when available. Probable membership to the halo population was tested by means of reduced proper motion diagrams for 251 candidate halo binaries. After eliminating obvious disk binaries, we ended up with 211 probable halo binaries, 150more » of which have radial velocities available. We compute galactic orbits for these 150 binaries and calculate the time they spend within the galactic disk. Considering the full sample of 251 candidate halo binaries as well as several subsamples, we find that the distribution of angular separations (or expected major semiaxes) follows a power law f(a) ∼ a {sup –1} (Oepik's relation) up to different limits. For the 50 most disk-like binaries, those that spend their entire lives within z = ±500 pc, this limit is found to be 19,000 AU (0.09 pc), while for the 50 most halo-like binaries, those that spend on average only 18% of their lives within z = ±500 pc, the limit is 63,000 AU (0.31 pc). In a companion paper, we employ this catalog to establish limits on the masses of the halo massive perturbers (massive compact halo objects).« less

  3. The Phase-space Density Distribution of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Austin, Crystal; Barnes, Eric; Babul, Arif; Dalcanton, Julianne

    2004-12-01

    High resolution N-body simulations have all but converged on a common empirical form for the shape of the density profiles of halos, but the full understanding of the underlying physics of halo formation has eluded them so far. We investigate the formation and structure of dark matter halos using analytical and semi-analytical techniques. Our halos are formed via an extended secondary infall model (ESIM); they contain secondary perturbations and hence random tangential and ra- dial motions which affect the halo’s evolution at it undergoes shell-crossing and virialization. Even though the density profiles of NFW and ESIM halos are different their phase-space density distributions are the same: ρ σ3 ∝ r α , with α 1 875 over 3 decades in radius. We use two approaches to try to explain this “universal” slope: (1) The Jeans equation analysis yields many insights, however, does not answer why α 1 875. (2) The secondary infall model of the 1960’s £ ¤ and 1970’s, augmented by “thermal motions” of particles does predict that halos should have α 1 875. However, this relies on assumptions of spherical symmetry and slow accretion. While £ ¤ for ESIM halos these assumptions are justified, they most certainly break down for simulated halos which forms hierarchically. We speculate that our argument may apply to an “on-average” formation scenario of halos within merger-driven numerical simulations, and thereby explain why α 1 875 for NFW halos. Thus, ρ σ3 ∝ r 1 875 may be a generic feature of violent relaxation.

  4. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  5. What sets the central structure of dark matter haloes?

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  6. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    NASA Astrophysics Data System (ADS)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  7. RESOLVE and ECO: The Halo Mass-dependent Shape of Galaxy Stellar and Baryonic Mass Functions

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.

    2016-06-01

    In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M bary ˜ 109.1 M ⊙, probing the gas-rich dwarf regime below M bary ˜ 1010 M ⊙. The second, ECO, covers a ˜40× larger volume (containing RESOLVE-A) and is complete to M bary ˜ 109.4 M ⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M star ˜ 1010 M ⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ˜1010 M ⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <1013.5 M ⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution.

  8. A Universal Angular Momentum Profile for Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liao, Shihong; Chen, Jianxiong; Chu, M.-C.

    2017-07-01

    The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.

  9. Semi-empirical catalog of early-type galaxy-halo systems: dark matter density profiles, halo contraction and dark matter annihilation strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.

    With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less

  10. Effects of PHENYLALANINE AMMONIA LYASE ( PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    DOE PAGES

    Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.; ...

    2015-06-19

    The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less

  11. Effects of PHENYLALANINE AMMONIA LYASE ( PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.

    The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less

  12. Length dependence of a halo orthosis on cervical immobilization.

    PubMed

    Triggs, K J; Ballock, R T; Byrne, T; Garfin, S R

    1993-02-01

    This study was designed to observe the length dependence of a well-molded fiberglass body cast attached to a halo on motion restriction in an unstable cadaveric cervical spine. Also, by using this technique, comparison between the immobilization provided by a body cast and that provided by a standard premolded polyethylene halo vest could be made. Extreme cervical instability was created on adult cadavers. A halo ring was applied and then attached to a fiberglass body cast or to a polyethylene halo vest. Sequential lateral cervical radiographs were obtained during maximum flexion as the body cast was shortened from the level of the iliac crests to the level of the xiphoid process. Radiographic motion was also assessed within the polyethylene halo vest. Results revealed minimal motion difference as the fiberglass body cast was sequentially shortened. In contrast, motions within the polyethylene halo vest were variable. These results suggest that cervical immobilization may be relatively independent of support structure length and that immobilization can be maintained by a well-fitting halo vest extending to the level of the xiphoid process.

  13. Optimal linear reconstruction of dark matter from halo catalogues

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  14. Minimizing the stochasticity of halos in large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias

    2010-08-01

    In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the

  15. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    NASA Astrophysics Data System (ADS)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  16. Hot and turbulent gas in clusters

    DOE PAGES

    Schmidt, W.; Engels, J. F.; Niemeyer, J. C.; ...

    2016-03-20

    The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes also produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows towards cluster cores. This enables us to infer the velocity dispersionmore » associated with the turbulent fluctuation relative to the bulk flow. For haloes with masses above 10 13 M ⊙, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding to a roughly linear relation between turbulent and thermal energies and transonic Mach numbers. However, turbulence is only weakly correlated with the halo mass. Since the power-law relation is stiffer for the WHIM, the turbulent Mach number tends to increase with the mean temperature of the WHIM. This can be attributed to enhanced turbulence production relative to dissipation in particularly hot and turbulent clusters.« less

  17. Isobar analog states (IAS), double isobar analog states (DIAS), configuration states (CS), and double configuration states (DCS) in halo nuclei. Halo isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, I. N., E-mail: izosimov@jinr.ru

    2015-10-15

    It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in {sup 6,7,8}Li, {sup 8,9,10}Be, {sup 8,10,11}B, {sup 10,11,12,13,14}C, {sup 13,14,15,16,17}N, {sup 15,16,17,19}O, and {sup 17}F are analyzed. Specialmore » attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.« less

  18. The halo of M 49 and its environment as traced by planetary nebulae populations

    NASA Astrophysics Data System (ADS)

    Hartke, J.; Arnaboldi, M.; Longobardi, A.; Gerhard, O.; Freeman, K. C.; Okamura, S.; Nakata, F.

    2017-07-01

    Context. The galaxy M 49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light (IGL). Aims: We aim to present a photometric survey of PNe in the galaxy's extended halo to characterise its PN population, as well as the surrounding IGL of the subcluster B. Methods: PNe were identified based on their bright [OIII]5007 Å emission and absence of a broad-band continuum through automated detection techniques. Results: We identify 738 PNe out to a radius of 155 kpc from M 49's centre from which we define a complete sample of 624 PNe within a limiting magnitude of m5007,lim = 28.8. Comparing the PN number density to the broad-band stellar surface brightness profile, we find a variation of the PN-specific frequency (α-parameter) with radius. The outer halo beyond 60kpc has a 3.2 times higher α-parameter compared to the main galaxy halo (α2.5,innerM 49 = (3.20 ± 0.43) × 10-9 PN L-1⊙,bol), which is likely due to contribution from the surrounding blue IGL. We use the planetary nebulae luminosity function (PNLF) as an indicator of distance and stellar population. Its slope, which correlates empirically with galaxy type, varies within the inner halo. In the eastern quadrant of M 49, the PNLF slope is shallower, indicating an additional localised, bright PN population following an accretion event, likely that of the dwarf irregular galaxy VCC1249. We also determined a distance modulus of μPNLF = 31.29+ 0.07-0.08 for M 49, corresponding to a physical distance of 18.1 ± 0.6 Mpc, which agrees with a recent surface-brightness fluctuations distance. Conclusions: The PN populations in the outer halo of M 49 are consistent with the presence of a main Sérsic galaxy halo with a slight (B - V) colour gradient of 10-4 mag arcsec-1 surrounded by IGL with a very blue colour of (B - V) = 0.25 and a constant

  19. Characterising large-scale structure with the REFLEX II cluster survey

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung

    2016-10-01

    We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.

  20. Validation of the Actigraph GT3X and ActivPAL Accelerometers for the Assessment of Sedentary Behavior

    ERIC Educational Resources Information Center

    Kim, Youngdeok; Barry, Vaughn W.; Kang, Minsoo

    2015-01-01

    This study examined (a) the validity of two accelerometers (ActiGraph GT3X [ActiGraph LLC, Pensacola, FL, USA] and activPAL [PAL Technologies Ltd., Glasgow, Scotland]) for the assessment of sedentary behavior; and (b) the variations in assessment accuracy by setting minimum sedentary bout durations against a proxy for direct observation using an…