Science.gov

Sample records for halogen absorbing means

  1. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    mineralogenic components derived from the erosion of fine grained sediments or soils. Assuming 50% geogenic particles with a mean Cl concentration of 103 mg/kg (as in shales and clays) the mineralogenic Cl-content could add about 50 mg/kg to the organic AOX in sewage sludge. The occurrence of insoluble and non-adsorbable PVC in sewage sludge exhibits the same problems as the mineralogenic constituents: a detection as AOX-S18 is possible when the final high temperature analytical step is applied. Plants as major sources of organohalogens have never been doubted. Only recently [Science 295 (2002) 985] based on the determination of the form of Cl with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy and extended X-ray adsorption showed the variations in the inorganic Cl(-) and organo-Cl compounds with increasing humification of plant leaves from "fresh leaves--senescent leaves on plants--senescent leaves on soil--powdered top soil--isolated soil humus". His finding of exclusively inorganic Cl(-) in the starting material (fresh leaves) is controverse to our earlier results indicating the presence of ionic inorganic Cl together with water insoluble absorbed organohalogens (AOX-S18) in eight different macrophytes of both terrestrial and marine environments. Our research on AOX in interstitial water of anaerobic limnic sediments has led to the role of bromine playing in the diagenesis of the organic matter of sediments. In sediments of Lake Constance Br(-) concentrations in lake water at the sediment water interface increased from <0.01 to 0.25 mg/l in the pore water at 77 cm sediment depth. In the Neckar River a Br concentrations of 0.02 mg/l at the water/sediment interface increasing to 0.74 mg/l in pore water in 85 cm depth was found. Here a parallel development could be found with ammonium concentration and alkalinity. The very high positive correlation ammonium:bromide and bromide:alkalinity leads to the conclusion, that bromine, originally a high molecular

  2. Destruction of halogen-containing pesticides by means of detonation combustion.

    PubMed

    Biegańska, Jolanta

    2013-02-01

    Pesticides that contain a halogen functional group have been destructed by means of detonative combustion. The following compounds were examined: (1) atrazine-2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine-herbicide; (2) bromophos-O,4-bromo-2,5-dichlorophenyl O,O-dimethyl phosphorothioate-insecticide; (3) chloridazon-5-amino-4-chloro-2-phenylopyridazin-3(2H)-one-herbicide; (4) linuron-3-(3,4-dichlorophenyl)-1-metoxy-1-methylurea-herbicide; (5) metoxychlor-1,1,1-trichloro-2,2-bis(4-metoxyphenyl)ethane-insecticide and acaricide; and (6) trichlorfon-dimethyl 2,2,2-trichloro-1-hydroxyethylphosphonate-insecticide. Explosive material has been produced on the basis of ammonium nitrate, which served as an oxidizer while the pesticides were used as fuels. Composition of the explosive was adjusted in such a way as to respect thermodynamic parameters. Detonative decomposition of the mixtures has been carried out in shot-holes pre-drilled in soil. Efficiency of the pesticide decomposition has been examined with gas chromatography in order to determine pesticides residues in the environment. It was found that for some, the amount of pesticides in some compounds in the analyzed samples after decomposition was below the determination threshold of the applied method.

  3. Tropospheric Halogen Chemistry

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  4. Randomly accelerated particle in a box: mean absorption time for partially absorbing and inelastic boundaries.

    PubMed

    Kotsev, Stanislav N; Burkhardt, Theodore W

    2005-04-01

    Consider a particle which is randomly accelerated by Gaussian white noise on the line segment 0absorbed as soon as it reaches x=0 or x=1. The mean absorption time T(x,v), where x and v denote the initial position and velocity, was calculated exactly by Masoliver and Porrà in 1995. We consider a more general boundary condition. On arriving at either boundary, the particle is absorbed with probability 1-p and reflected with probability p. The reflections are inelastic, with coefficient of restitution, r. With exact analytical and numerical methods and simulations, we study the mean absorption time as a function of p and r.

  5. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  6. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  7. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  8. Doppler-width thermodynamic thermometry by means of line-absorbance analysis

    SciTech Connect

    Castrillo, A.; De Vizia, M. D.; Gianfrani, L.; Moretti, L.; Galzerano, G.; Laporta, P.; Merlone, A.

    2011-09-15

    A clean and effective implementation of Doppler-width thermometry is described. Exploiting the relationship between line-center absorbance and integrated absorbance, the Doppler width of a molecular spectral line can be retrieved from a set of profiles resulting from different gas pressures. The method is validated by its application to numerically simulated spectra. Preliminary experiments, in water vapor samples, turn out to be successful, demonstrating Doppler-widths' retrieval in the near-infrared with a precision of 8x10{sup -5}, at the water triple point temperature. The direct link to the Boltzmann constant makes the proposed method very attractive for temperature metrology as a tool for the realization of a new thermodynamic temperature scale.

  9. Minimization of the mean square velocity response of dynamic structures using an active-passive dynamic vibration absorber.

    PubMed

    Cheung, Y L; Wong, W O; Cheng, L

    2012-07-01

    An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.

  10. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  11. Mean Absorbed Dose to the Anal-Sphincter Region and Fecal Leakage among Irradiated Prostate Cancer Survivors

    SciTech Connect

    Alsadius, David; Hedelin, Maria; Lundstedt, Dan; Pettersson, Niclas; Wilderaeng, Ulrica; Steineck, Gunnar

    2012-10-01

    Purpose: To supplement previous findings that the absorbed dose of ionizing radiation to the anal sphincter or lower rectum affects the occurrence of fecal leakage among irradiated prostate-cancer survivors. We also wanted to determine whether anatomically defining the anal-sphincter region as the organ at risk could increase the degree of evidence underlying clinical guidelines for restriction doses to eliminate this excess risk. Methods and Materials: We identified 985 men irradiated for prostate cancer between 1993 and 2006. In 2008, we assessed long-term gastrointestinal symptoms among these men using a study-specific questionnaire. We restrict the analysis to the 414 men who had been treated with external beam radiation therapy only (no brachytherapy) to a total dose of 70 Gy in 2-Gy daily fractions to the prostate or postoperative prostatic region. On reconstructed original radiation therapy dose plans, we delineated the anal-sphincter region as an organ at risk. Results: We found that the prevalence of long-term fecal leakage at least once per month was strongly correlated with the mean dose to the anal-sphincter region. Examining different dose intervals, we found a large increase at 40 Gy; {>=}40 Gy compared with <40 Gy gave a prevalence ratio of 3.8 (95% confidence interval 1.6-8.6). Conclusions: This long-term study shows that mean absorbed dose to the anal-sphincter region is associated with the occurrence of long-term fecal leakage among irradiated prostate-cancer survivors; delineating the anal-sphincter region separately from the rectum and applying a restriction of a mean dose <40 Gy will, according to our data, reduce the risk considerably.

  12. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  13. The detection of large amounts of cool, x ray absorbing gas in distant clusters of galaxies. What does this mean?

    NASA Technical Reports Server (NTRS)

    Wang, Qingde; Stocke, John T.

    1993-01-01

    We present an x-ray spectral study of 12 distant (z = 0.17-0.54) rich clusters of galaxies observed with the Einstein Observatory Imaging Proportional Counter. These x-ray spectral data show evidence for substantial excess absorptions beyond those expected in the galaxy, indicating the presence of large amounts of x-ray absorbing cool gas in these distant clusters. The mean value of the excess absorptions corresponds to an absorbing gas column density approximately greater than 10(exp 21)/sq cm. We calculate the x-ray luminosities of the clusters with observed fluxes only in the 0.8-3.5 keV band where the fluxes are less effected by the absorptions, and use the temperature-to-luminosity correlation (known only for nearby clusters) to estimate the temperatures of the hot intracluster medium (ICM) in the distant clusters. These temperature estimates, together with the spectral fits, provide further constraints on the column densities in the individual clusters. For the cluster CL 0016+16, the lower limit on the column density is found to be 8 x 10(exp 20)/sq cm at the 99 percent confidence limit. We also show that the ratio of the temperature obtained from the spectral fit to the temperature expected from the correlation tends to decrease with increasing look-back time, indicating possible temperature evolution of the hot ICM in the recent past. The inclusion of this evolutionary effect further increases the absorptions required in fitting the spectra.

  14. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  15. Halogen bond involving hypervalent halogen: CSD search and theoretical study.

    PubMed

    Wang, Weizhou

    2011-08-25

    The Cambridge Structure Database search shows that there are over seventy crystal structures containing halogen bonds in which hypervalent halogens, not monovalent halogens as usual, behave as acceptors of electron density. The nature of the halogen bond involving hypervalent halogen has been investigated by using several theoretical methods with different basis sets. The HF calculations for the complexes studied cover most of their binding energies, which indicates the electrostatic nature of the halogen bond involving hypervalent halogen. The MP2 methods with medium basis sets fail to predict the relative strength of the halogen bond involving hypervalent halogen and the corresponding halogen bond involving monovalent halogen. Accurate computational results show that the halogen bond involving hypervalent halogen may be weaker than the corresponding halogen bond involving monovalent halogen even in the case that the hypervalent halogen is more positively charged than the monovalent halogen, the reasons of which were discussed in some detail. In comparison with the halogen bond involving monovalent halogen, the bonding characteristic and electron-density transfer of the halogen bond involving hypervalent halogen were also analyzed with the "atoms in molecules" theory and the natural bond orbital theory.

  16. The Halogen Bond.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-02-24

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

  17. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  18. Rechargeable zinc halogen battery

    SciTech Connect

    Spaziante, P.M.; Nidola, A.

    1980-01-01

    A rechargeable zinc halogen battery has an aqueous electrolyte containing ions of zinc and halogen and an amount of polysaccharide and/or sorbitol sufficient to prevent zinc dendrite formation during recharging. The electrolyte may also contain trace amounts of metals such as tungsten, molybdenum, and lead. 7 tables.

  19. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  20. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria; Al-Abany, Massoud; Tucker, Susan; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  1. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  2. Halogens in the atmosphere

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  3. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1975-02-26

    KEY WORDS (Continue on reverse aide il necesxary and identity by block number) Synthesis, Novel Oxidizers, Perchlorates, Fluorination , Halogen...C. J. Schack, R. D. Wilson, and E. C. Curtis, 5th European Fluorine Symposium, Avie.nore, Scotland (September 1974) 20. "New Energetic Halogen...elimination lasers. For NF-, no evidence for protonation was found at tempera- tures as low as -78 C. Furthermore, attempts to fluorinate NH. AsF

  4. Halogens in the troposphere.

    PubMed

    Finlayson-Pitts, Barbara J

    2010-02-01

    Although inorganic halogen gases are believed to play key roles in the chemistry of the lower atmosphere, many of them have not yet been detected or measured in ambient air. This article describes some of the current techniques and future needs for inorganic halogens in air. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  5. Occurrence of halogenated alkaloids.

    PubMed

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  6. Sources of Halogen Oxides Along the Coastline of New Zealand: A Field Measurement Study

    NASA Astrophysics Data System (ADS)

    Martínez-Avilés, Mónica; Kreher, Karin; Johnston, Paul; Thomas, Alan; Hay, Tim; Schofield, Robyn; Kenntner, Mareike

    2010-05-01

    The 2006 WMO/UNEP Scientific Assessment of Ozone Depletion identified halogenated very short-lived substances (VSLS) as contributors to the atmospheric budget of halogens. As well, it raised a question regarding the extent of the contribution of halogenated VSLS to atmospheric Bry and Iy. Traditionally, scientists have been more concerned in determining the anthropogenic budget of halogenated compounds while nature is the major producer of such species. In order to have a complete atmospheric budget of halogenated VSLS, it is important to have a better understanding of what species are biogenically produced as well as their respective degradation pathways. Oceanic emissions of halocarbons may be a new link between climate change and the composition of the global atmosphere. The rates of halocarbon emissions are sensitive to sea-surface temperatures (SSTs), nutrient supply and upwelling; all of which are to be affected by climate change. Therefore, increases in SSTs will increase emission rates. On the one hand, seaweed has been identified as a major producer of biogenic polyhalogenated VSLS. Marine macroalgae (kelp) and phytoplankton emit halogen containing gases into the marine boundary layer, constituting 90 to 95% of the total global flux of volatile halocarbons to the atmosphere. On the other hand, the possibility of industrial scale marine kelp farming as a means of carbon sequestration (i.e. marine analogy of the Kyoto Protocol forest) is being pondered by countries with long coastlines and little land suitable for forestation. Would a Kyoto Protocol forest analog be the right strategy for climate change mitigation? With the use of a portable Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) spectrometer, studies have been performed in the coast of New Zealand in order to determine the presence of BrO and IO during the spring and summer months of the Southern Hemisphere. MAX-DOAS uses scattered sunlight received from multiple viewing

  7. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  8. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  9. Cytotoxicity of halogenated graphenes

    NASA Astrophysics Data System (ADS)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  10. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.

    PubMed

    Lu, Yunxiang; Wang, Yong; Zhu, Weiliang

    2010-05-14

    Halogenation is an important approach in lead optimization for drug development and about half of the molecules used in high-throughput screening are halogenated. However, there is neither a suitable theoretical algorithm for evaluating the interaction between the halogen atoms of a ligand and its target protein nor a detailed understanding of how a halogen atom interacts with electron-rich atoms or groups of the residues in the binding pocket. In this Perspective, we concentrate on nonbonding interactions of halogens from both crystallographic data and theoretical viewpoints. It is found that organic halogen atoms are favorably involved in a wide variety of noncovalent protein-ligand interactions, such as halogen bonds C-X...O and hydrogen bonds C-X...H, that show remarkable differences in terms of the geometrical and energetic features. In biological molecules, heavier halogens prefer to form linear interactions with oxygen atoms and aromatic pi systems as compared to N or S, while the mean intermolecular distances for these types of halogen bonds increase with the radius or polarizability of halogen atoms, viz., Cl < Br < I. Furthermore, F...H interactions in protein-ligand complexes exhibit disparate behavior relative to X...H (X = Cl, Br, I) counterparts. These observed tendencies of the interactions involving halogens are subsequently rationalized by means of ab initio calculations using small model systems. The results presented herein should be of great use in the rational design of halogenated ligands as inhibitors and drugs as well as in biological engineering.

  11. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  12. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  13. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  14. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  15. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  16. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  17. [Halogens: discoveries of pharmacists].

    PubMed

    Rabiant, J

    2008-01-01

    The discovery of four halogens is due to pharmacists. Chlorine was isolated by Carl Wilhem Scheele, a Swedish who was first an assistant to a pharmacist, then a pharmacist himself. Bernard Courtois, a pharmacist under the First Empire, the son of a saltpetre worker isolated iodine in I811, after a modification of the ancestral production protocol of potassium nitrate, which is the major component of the gunpowder: he replaced wood ashes by varech ashes which are less expensive. Antoine Jerôme Balard was still an assistant in chemistry and physics when he discovered bromine in the residues of the salt marshes. He became soon after a pharmacist and started a famous career as then he became Professor in the College de France and General Inspector of Higher Education. The last halogen: fluorine was isolated by Henri Moissan who received the Nobel Prize of Chemistry. The discovery will be the subject of our next communication.

  18. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1)...

  19. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1)...

  20. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1)...

  1. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1)...

  2. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1)...

  3. Halogen Chemistry in the CMAQ Model

    EPA Science Inventory

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  4. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  5. Double-chamber electrode for spectrochemical determination of chlorine and other halogens

    USGS Publications Warehouse

    de Paiva, Azevedo; Specht, A.W.; Harner, R.S.

    1954-01-01

    A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.

  6. Halogen chemistry reduces tropospheric O3 radiative forcing

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás; Evans, Mat J.; Carpenter, Lucy J.; Schmidt, Johan A.; Mickley, Loretta J.

    2017-01-01

    Tropospheric ozone (O3) is a global warming gas, but the lack of a firm observational record since the preindustrial period means that estimates of its radiative forcing (RFTO3) rely on model calculations. Recent observational evidence shows that halogens are pervasive in the troposphere and need to be represented in chemistry-transport models for an accurate simulation of present-day O3. Using the GEOS-Chem model we show that tropospheric halogen chemistry is likely more active in the present day than in the preindustrial. This is due to increased oceanic iodine emissions driven by increased surface O3, higher anthropogenic emissions of bromo-carbons, and an increased flux of bromine from the stratosphere. We calculate preindustrial to present-day increases in the tropospheric O3 burden of 113 Tg without halogens but only 90 Tg with, leading to a reduction in RFTO3 from 0.43 to 0.35 Wm-2. We attribute ˜ 50 % of this reduction to increased bromine flux from the stratosphere, ˜ 35 % to the ocean-atmosphere iodine feedback, and ˜ 15 % to increased tropospheric sources of anthropogenic halogens. This reduction of tropospheric O3 radiative forcing due to halogens (0.087 Wm-2) is greater than that from the radiative forcing of stratospheric O3 (˜ 0.05 Wm-2). Estimates of RFTO3 that fail to consider halogen chemistry are likely overestimates (˜ 25 %).

  7. Halogen substituted quinolylsalicylaldimines: Four halogens three structural types

    NASA Astrophysics Data System (ADS)

    Sirirak, Jitnapa; Phonsri, Wasinee; Harding, David J.; Harding, Phimphaka; Phommon, Pimonrat; Chaoprasa, Wannapa; Hendry, Rebecca M.; Roseveare, Thomas M.; Adams, Harry

    2013-03-01

    A series of halogen substituted 5-X-N-(8-quinolyl)salicylaldimines (HqsalX, X = F 1, Cl 2, Br 3 and I 4) have been prepared, characterized and the crystal structures of all four are reported. The compounds form stacks, in most cases held together either by π-π or lone pair(N)-π interactions. All compounds exhibit an intramolecular Osbnd H⋯N hydrogen bond with 2 also displaying an intermolecular Osbnd H⋯O hydrogen bonding square. Additional Csbnd H⋯N/O and Csbnd H⋯π interactions serve to link neighbouring HqsalX molecules with 3 and 4 forming narcissistic dimers. While the halogen has a profound effect on the structure it is not involved in either hydrogen or halogen bonding in any of the structures. DFT calculations suggest that the conformational preference is dependent on the halogen.

  8. Meaning

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  9. CPCs with segmented absorbers

    SciTech Connect

    Keita, M.; Robertson, H.S. )

    1991-01-01

    One of the most promising means of improving the performance of solar thermal collectors is to reduce the energy lost by the hot absorber. One way to do this, not currently part of the technology, is to recognize that since the absorber is usually not irradiated uniformly, it is therefore possible to construct an absorber of thermally isolated segments, circulate the fluid in sequence from low to high irradiance segments, and reduce loss by improving effective concentration. This procedure works even for ideal concentrators, without violating Winston's theorem. Two equivalent CPC collectors with single and segmented absorber were constructed and compared under actual operating conditions. The results showed that the daily thermal efficiency of the collector with segmented absorber is higher (about 13%) than that of the collector with nonsegmented absorber.

  10. RESIDUAL RISK ASSESSMENT: HALOGENATED SOLVENTS

    EPA Science Inventory

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Halogenated Solvent Degreasing Facilities. These assessments utilize existing models and d...

  11. Metal halogen battery construction with improved technique for producing halogen hydrate

    DOEpatents

    Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.

    1983-01-01

    An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.

  12. The Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Russell, James M., III; Gordley, Larry L.; Park, Jae H.; Drayson, S. R.; Hesketh, W. D.; Cicerone, Ralph J.; Tuck, Adrian F.; Frederick, John E.; Harries, John E.; Crutzen, Paul J.

    1993-01-01

    The Halogen Occultation Experiment (HALOE) uses solar occultation to measure vertical profiles of O3, HCl, HF, CH4, H2O, NO, NO2, aerosol extinction, and temperature versus pressure with an instantaneous vertical field of view of 1.6 km at the earth limb. Latitudinal coverage is from 80 deg S to 80 deg N over the course of 1 year and includes extensive observations of the Antarctic region during spring. The altitude range of the measurements extends from about 15 km to about 60-130 km, depending on channel. Experiment operations have been essentially flawless, and all performance criteria either meet or exceed specifications. Internal data consistency checks, comparisons with correlative measurements, and qualitative comparisons with 1985 atmospheric trace molecule spectroscopy (ATMOS) results are in good agreement. Examples of pressure versus latitude cross sections and a global orthographic projection for the September 21 to October 15, 1992, period show the utility of CH4, HF, and H2O as tracers, the occurrence of dehydration in the Antarctic lower stratosphere, the presence of the water vapor hygropause in the tropics, evidence of Antarctic air in the tropics, the influence of Hadley tropical upwelling, and the first global distribution of HCl, HF, and NO throughout the stratosphere. Nitric oxide measurements extend through the lower thermosphere.

  13. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  14. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  15. Reactive halogen chemistry in the troposphere.

    PubMed

    Saiz-Lopez, Alfonso; von Glasow, Roland

    2012-10-07

    Halogen chemistry is well known for ozone destruction in the stratosphere, however reactive halogens also play an important role in the chemistry of the troposphere. In the last two decades, an increasing number of reactive halogen species have been detected in a wide range of environmental conditions from the polar to the tropical troposphere. Growing observational evidence suggests a regional to global relevance of reactive halogens for the oxidising capacity of the troposphere. This critical review summarises our current understanding and uncertainties of the main halogen photochemistry processes, including the current knowledge of the atmospheric impact of halogen chemistry as well as open questions and future research needs.

  16. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  17. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  18. Risk assessment for halogenated solvents

    SciTech Connect

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area.

  19. Halogen Bonding in Organic Synthesis and Organocatalysis.

    PubMed

    Bulfield, David; Huber, Stefan M

    2016-10-04

    Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen-bonding-based organocatalysis is a well-established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen-bond donors in halide abstraction reactions or in the activation of neutral organic substrates.

  20. Halogen bonding in solution: thermodynamics and applications.

    PubMed

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  1. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  2. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  3. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  4. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  5. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  6. The unique role of halogen substituents in the design of modern agrochemicals.

    PubMed

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  7. Multitechnique Determination of Halogens in Soil after Selective Volatilization Using Microwave-Induced Combustion.

    PubMed

    Pereira, L S F; Pedrotti, M F; Enders, M S P; Albers, C N; Pereira, J S F; Flores, E M M

    2017-01-03

    A method for digestion of soils with high inorganic matter content (ranging from 50 to 92%) by microwave-induced combustion (MIC) is proposed for the first time for further halogens (F, Cl, Br, and I) determination by ion chromatography (IC) and also by inductively coupled plasma mass spectrometry (ICP-MS). Microcrystalline cellulose (100-500 mg), used as a combustion aid, was mixed with sample and water or NH4OH solutions (10-100 mmol L(-1)) were investigated for analytes absorption. The use of cellulose (400 mg) was mandatory to volatilize the halogens from soils with high inorganic matter. It was possible to use diluted absorbing solutions (up to 100 mmol L(-1) NH4OH) for halogens retention, providing limits of quantification in the range of 0.06 (I) to 60 (Cl) μg g(-1). Accuracy was evaluated using certified reference materials (CRMs), spiked samples, and pyrohydrolysis method. Recoveries for halogens after spiked samples were in the range of 94 to 103% and the results after digestion of CRMs by MIC were in agreement better than 95% to certified values. Blanks were low, relative standard deviation was below 8% for all soils and no statistical difference was observed for results by pyrohydrolysis and MIC methods showing the feasibility of the proposed method for further halogens determination in soil samples.

  8. Effects of mercury emission control technologies using halogens on coal combustion product chemical properties.

    PubMed

    Heebink, Loreal V; Pflughoeft-Hassett, Debra F; Hassett, David J

    2010-03-01

    Fly ash and spray dryer absorber (SDA) material samples collected during mercury emission control technology tests that incorporated the use of halogens were evaluated for select chemical composition and leachability. Corresponding samples were also collected under standard operating conditions and examined using the same protocols. Included in these evaluations were pH and total and leachable concentrations of the mercury control technology (MCT) halogen of interest (Br, Cl, or I) and Hg, As, Cr, and Se. The use of a MCT using halogens decreased the pH values of coal combustion products (CCPs) collected in fabric filters compared with that of the corresponding standard CCPs. In many cases, the total As, Cr, and Se concentrations were similar between the standard and MCT test CCPs. However, at least a slight increase in total Se was noted in each sample set from the standard to the MCT test CCPs. Short-term leaching was performed on all samples, and long-term leaching was performed on most highly alkaline samples. On the basis of percentage of maximum leachability, the MCT additive halogens were more mobile than the other elements evaluated. The Hg in fly ash and SDA material samples was stable. Generally, more As and Se leached from the MCT test CCPs than the standard CCPs. Cr leachate results were more variable. The data indicate a need to further examine the effects of MCT using halogens applications on CCPs.

  9. Selective Halogenation Using an Aniline Catalyst.

    PubMed

    Samanta, Ramesh C; Yamamoto, Hisashi

    2015-08-17

    Electrophilic halogenation is used to produce a wide variety of halogenated compounds. Previously reported methods have been developed mainly using a reagent-based approach. Unfortunately, a suitable "catalytic" process for halogen transfer reactions has yet to be achieved. In this study, arylamines have been found to generate an N-halo arylamine intermediate, which acts as a highly reactive but selective catalytic electrophilic halogen source. A wide variety of heteroaromatic and aromatic compounds are halogenated using commercially available N-halosuccinimides, for example, NCS, NBS, and NIS, with good to excellent yields and with very high selectivity. In the case of unactivated double bonds, allylic chlorides are obtained under chlorination conditions, whereas bromocyclization occurs for polyolefin. The reactivity of the catalyst can be tuned by varying the electronic properties of the arene moiety of catalyst.

  10. Stereoselective Halogenation in Natural Product Synthesis.

    PubMed

    Chung, Won-jin; Vanderwal, Christopher D

    2016-03-24

    At last count, nearly 5000 halogenated natural products have been discovered. In approximately half of these compounds, the carbon atom to which the halogen is bound is sp(3) -hybridized; therefore, there are an enormous number of natural products for which stereocontrolled halogenation must be a critical component of any synthesis strategy. In this Review, we critically discuss the methods and strategies used for stereoselective introduction of halogen atoms in the context of natural product synthesis. Using the successes of the past, we also attempt to identify gaps in our synthesis technology that would aid the synthesis of halogenated natural products, as well as existing methods that have not yet seen application in complex molecule synthesis. The chemistry described herein demonstrates yet again how natural products continue to provide the inspiration for critical advances in chemical synthesis.

  11. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  12. Insights into halogen bond-driven enantioseparations.

    PubMed

    Peluso, Paola; Mamane, Victor; Aubert, Emmanuel; Dessì, Alessandro; Dallocchio, Roberto; Dore, Antonio; Pale, Patrick; Cossu, Sergio

    2016-10-07

    Although the halogen bond (XB) has been so far mainly studied in silico and in the solid state, its potential impact in solution is yet to be fully understood. In this study, we describe the first systematic investigation on the halogen bond in solvated environment by high-performance liquid chromatography (HPLC). Thirty three atropisomeric polyhalogenated-4,4'-bipyridines (HBipys), containing Cl, Br and I as substituents, were selected and used as potential XB donors (XBDs) on two cellulose-based chiral stationary phases (CSPs) containing potential XB acceptors (XBAs). The impact of the halogens on the enantiodiscrimination mechanism was investigated and iodine showed a pivotal role on the enantioseparation in non-polar medium. Electrostatic potentials (EPs) were computed to understand the electrostatic component of CSP-analyte interaction. Moreover, van't Hoff studies for ten HBipys were performed and the thermodynamic parameters governing the halogen-dependent enantioseparations are discussed. Finally, a molecular dynamic (MD) simulation is proposed to model halogen bond in polysaccharide-analyte complexes by inclusion of a charged extra point to represent the positive 'σ-hole' on the halogen atom. On the basis of both experimental results and theoretical data, we have profiled the halogen bond as a chemo-, regio-, site- and stereoselective interaction which can work in HPLC environment besides other known interactions based on the complementarity between selector and selectand.

  13. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  14. Does fluorine participate in halogen bonding?

    PubMed

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  15. Crystal engineering through halogen bonding

    NASA Astrophysics Data System (ADS)

    Walsh, Rosa Daneen Bailey

    Crystal engineering has been defined as "the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties." The field of crystal engineering is growing rapidly and is generally centered on the use of hydrogen bonding or coordination polymers in the design and synthesis of new materials. Other interactions, such as halogen bonding also lend themselves to crystal design. In halogen-bonding, donation of a lone pair of electrons into the sigma and sigma* orbitals of an acceptor molecule, like elemental iodine or bromine, allows for relatively strong and highly directional interactions. Charge-transfer interactions involving aromatic nitrogen heterocycles and diiodine (I 2) will be discussed. With weaker donors, such as pyrazine, we have prepared target complexes with infinite chain structures consisting of alternating donor and acceptor molecules. But with stronger donors, such as 4,4 '-bipyridine, only simple adducts are formed. Strong donation at one end of the I2 reduces the Lewis acid character at the other end and extended interactions do not form. With some strong donors, reduction in Lewis acidity occurs to the point that the I2 exhibits amphoteric behavior. In these systems, the non-complexed end serves as a Lewis base to a second-bridging I2 molecule to form neutral polyiodine systems. To reduce electronic communication between the two iodine atoms, organoiodides, in which an organic spacer has been inserted between the two iodine atoms, have been employed. The organic spacer also offers a manifold for adjusting the Lewis acidity of the acceptors in these compounds. Acceptors involving more than two iodines provide the possibility of multidirectional extended interactions leading to interesting layered or network solids. Useful acceptors include 1,4-diiodobenzene, 4,4'-diiodobiphenyl, 1,4-diiodotetraflurobenzene, and

  16. Efficiency of light-emitting diode and halogen units in reducing residual monomers

    PubMed Central

    de Assis Ribeiro Carvalho, Felipe; Almeida, Rhita C.; Almeida, Marco Antonio; Cevidanes, Lucia H. S.; Leite, Marcia C. Amorim M.

    2011-01-01

    Introduction In this in-vitro study, we aimed to compare the residual monomers in composites beneath brackets bonded to enamel, using a light-emitting diode (LED) or a halogen unit, and to compare the residual monomers in the central to the peripheral areas of the composite. Methods Twenty bovine teeth preserved in 0.1% thymol were used in this study. Ten teeth were used to standardize the thickness of the composite film, since different thicknesses would cause different absorbance of light. Brackets were bonded to 10 bovine incisors, with the halogen light (n = 5) and the LED (n = 5). The brackets were debonded, and the remaining composite on the enamel surface was sectioned in 2 regions: peripheral (0.8 mm) and central, resulting in 2 subgroups per group: central halogen (n = 5), peripheral halogen (n = 5), central LED (n = 5), and peripheral LED (n = 5). The spectrometric analysis in the infrared region was used to measure the free monomers with the attenuated total reflectance method. Results Normal distribution was tested by using the Kolmogorov-Smirnov test. Data were compared by 2-way analysis of variance (ANOVA) at P <0.05. The LED group showed fewer residual monomers than did the halogen group (P = 0.014). No differences were found among the regions (P = 0.354), and there were no interactions between light type and region (P = 0.368). Conclusions LED leaves less residual monomer than does the halogen light, even with half of the irradiation time; there were no differences between the central and peripheral regions, and no interaction between light type and region. PMID:21055603

  17. Cross-reactivity of Halogenated Platinum Salts

    EPA Science Inventory

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  18. Energy efficient alternatives to halogen torchieres

    SciTech Connect

    Siminovitch, M.; Marr, L.; Mitchell, J.; Page, E.

    1997-03-01

    A series of novel energy efficient torchiere systems have been developed using compact fluorescent lamps (CFLs). These systems were studied photometrically and compared with the performance of traditional commercially available tungsten halogen sources. Gonio-photometric data and power assessments indicate that significant lighting energy savings can be obtained by utilizing CFL sources instead of standard tungsten halogen sources. This energy savings is jointly due to the higher source efficacy of the CFLs and the surprisingly poor performance of the imported 300 Watt halogen lamps. Experimental data shows that a 50 to 60 Watt CFL will effectively lumen match a variety of 300 Watt tungsten halogen sources with 5 to 10 times the efficacy. CFL torchieres have additional benefits of higher power quality and cooler lamp operating temperature, making them safer fixtures.

  19. Latest generation of halogen-containing pesticides.

    PubMed

    Jeschke, Peter

    2017-02-01

    Agriculture is confronted with enormous challenges, from production of enough high-quality food to water use, environmental impacts and issues combined with a continually growing world population. Modern agricultural chemistry has to support farmers by providing innovative agrichemicals, used in applied agriculture. In this context, the introduction of halogen atoms into an active ingredient is still an important tool to modulate the properties of new crop protection compounds. Since 2010, around 96% of the launched products (herbicides, fungicides, insecticides/acaricides and nematicides) contain halogen atoms. The launched nematicides contain the largest number of halogen atoms, followed by insecticides/acaricides, herbicides and fungicides. In this context, fungicides and herbicides contain in most cases fluorine atoms, whereas nematicides and insecticides contain in most cases 'mixed' halogen atoms, for example chlorine and fluorine. This review gives an overview of the latest generation of halogen-containing pesticides launched over the past 6 years and describes current halogen-containing development candidates. © 2017 Society of Chemical Industry.

  20. Two-Dimensional Inorganic Cationic Network of Thorium Iodate Chloride with Unique Halogen-Halogen Bonds.

    PubMed

    Lu, Huangjie; Wang, Yaxing; Wang, Congzhi; Chen, Lanhua; Shi, Weiqun; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-09-06

    A unique two-dimensional inorganic cationic network with the formula [Th3O2(IO3)5(OH)2]Cl was synthesized hydrothermally. Its crystal structure can best be described as positively charged slabs built with hexanuclear thorium clusters connected by iodate trigonal pyramids. Additional chloride anions are present in the interlayer spaces but surprisingly are not exchangeable, as demonstrated by a series of CrO4(2-) uptake experiments. This is because all chloride anions are trapped by multiple strong halogen-halogen interactions with short Cl-I bond lengths ranging from 3.134 to 3.333 Å, forming a special Cl-centered trigonal-pyramidal polyhedron as a newly observed coordination mode for halogen bonds. Density functional theory calculations clarified that electrons transformed from central Cl atoms to I atoms, generating a halogen-halogen interaction energy with a value of about -8.3 kcal mol(-1) per Cl···I pair as well as providing a total value of -57.9 kcal mol(-1) among delocalized halogen-halogen bonds, which is a new record value reported for a single halogen atom. Additional hydrogen-bonding interaction is also present between Cl and OH, and the interaction energy is predicted to be -8.1 kcal mol(-1), confirming the strong total interaction to lock the interlayer Cl anions.

  1. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  2. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  3. Spontaneous emission and absorber theory

    NASA Astrophysics Data System (ADS)

    Pegg, David T.

    1997-01-01

    One of the long term interests of George Series was the construction of a theory of spontaneous emission which does not involve field quantisation. His approach was written in terms of atomic operators only and he drew a parallel with the Wheeler-Feynman absorber theory of radiation. By making a particular extra postulate, he was able to obtain the correct spontaneous emission rate and the Lamb shift reasonably simply and directly. An examination of his approach indicates that this postulate is physically reasonable and the need for it arises because quantisation in his theory occurs after the response of the absorber has been accounted for by means of the radiative reaction field. We review briefly an alternative absorber theory approach to spontaneous emission based on the direct action between the emitting atom and a quantised absorber, and outline some applications to more recent effects of interest in quantum optics.

  4. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  5. Halogen degassing during ascent and eruption of water-poor basaltic magma

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  7. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  8. Evaluation of Halogenated Coumarins for Antimosquito Properties

    PubMed Central

    Narayanaswamy, Venugopala K.; Gleiser, Raquel M.; Kasumbwe, Kabange; Aldhubiab, Bandar E.; Attimarad, Mahesh V.; Odhav, Bharti

    2014-01-01

    Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate. PMID:25610898

  9. Halogen bonds in organic synthesis and organocatalysis.

    PubMed

    Schindler, S; Huber, Stefan M

    2015-01-01

    In contrast to hydrogen bonding, halogen bonding has so far found very little use in organic synthesis and organocatalysis. Although there are multiple reports on the use of elemental iodine in a wide range of organic reactions, the understanding of the actual mode of activation in these cases is very rudimentary. Recently, first proof-of-principle reactions have been established towards the use of carbon-based halogen-bond donors as activators or organocatalysts. These halogen-based Lewis acids offer more structural variety and potential than elemental iodine itself, and the mode of activation is better understood. Yet, the reported cases still only cover simple benchmark reactions, and there is a clear need for further and more complex applications.

  10. The effect of halogenated hydantoins on biofilms

    SciTech Connect

    Ludyanskiy, M.L.; Himpler, F.J.

    1997-12-01

    The biocidal efficacy of halogenated hydantoins against laboratory-prepared biofilms was compared to the free halogen donors NaOCl and NaOBr. Higher biocide concentrations were required to control a filamentous biofilm than to control free floating planktonic bacteria. Control of a biocide-resistant S. antans biofilm was best obtained with a repeated slug+3 hour continuous treatment procedure or with conventional continuous biocide treatment. A bromine, methylethylhydantoin-containing oxidizing biocide (BrMEH) was found to be more efficacious than either free chlorine or free bromine in controlling filamentous biofilms. Previous studies indicating the inability of free chlorine to penetrate biofilms were supported as the combination of free and combined halogen was demonstrated to be more effective than free chlorine or bromine alone against attached bacteria.

  11. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  12. Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery.

    PubMed

    Zimmermann, Markus O; Lange, Andreas; Wilcken, Rainer; Cieslik, Markus B; Exner, Thomas E; Joerger, Andreas C; Koch, Pierre; Boeckler, Frank M

    2014-04-01

    Halogen bonding has recently experienced a renaissance, gaining increased recognition as a useful molecular interaction in the life sciences. Halogen bonds are favorable, fairly directional interactions between an electropositive region on the halogen (the σ-hole) and a number of different nucleophilic interaction partners. Some aspects of halogen bonding are not yet understood well enough to take full advantage of its potential in drug discovery. We describe and present the concept of halogen-enriched fragment libraries. These libraries consist of unique chemical probes, facilitating the identification of favorable halogen bonds by sharing the advantages of classical fragment-based screening. Besides providing insights into the nature and applicability of halogen bonding, halogen-enriched fragment libraries provide smart starting points for hit-to-lead evolution.

  13. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  14. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  15. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  16. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  17. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  18. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  19. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated phenyl alkane. 721.536... Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  20. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane (generic). 721.535... Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  1. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  2. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  3. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  4. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  5. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  6. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  7. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  8. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  9. Halogenases: A Biotechnological Alternative for the Synthesis of Halogenated Pharmaceuticals.

    PubMed

    Ayala, Marcela; Segovia, Lorenzo; Torres, Eduardo

    2016-01-01

    The role of halogen atoms in pharmaceutical compounds has been recently revised, due to the weak interaction through the so called "halogen bond" between small molecules and proteins or other biomacromolecules, which could be fundamental for binding at a particular site within the macromolecule. Moreover, thousands of natural halogenated compounds have been described to date, pointing to a functional role of halogen atoms in these compounds, as well as a diversity of halogenating enzymes involved in the synthesis of these halogenated metabolites. In this mini-review the different halogenases described to date are presented, particularly those catalyzing halogenation reactions with potential applications in the pharmaceutical field. Oxidative halogenases following an electrophilic halogenation mechanism are the oldest and best characterized halogenases; however, novel halogenases following a nucleophilic halogenation mechanism have been recently described. The catalytic properties as well as the selectivity of some of these enzymes can be modulated through protein engineering, both by single point mutations or by directed evolution; on the other hand, metabolic pathway engineering has been used to improve the production of halogenated metabolites, as well as to produce novel halogenated compounds, potentially important in the pharmaceutical field. Recent advances and prospective on the field of enzymatic halogenation are covered.

  10. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  11. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  12. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  13. Genotoxic activity of halogenated phenylglycine derivatives.

    PubMed

    Boto, Alicia; Gallardo, Juan A; Hernández, Rosendo; Ledo, Francisco; Muñoz, Ana; Murguía, José R; Menacho-Márquez, Mauricio; Orjales, Aurelio; Saavedra, Carlos J

    2006-12-01

    The discovery of genotoxic amino acids derived from phenylglycine, and possessing halogen substituents, is described. The utility of hypervalent iodine reagents in the synthesis of this class of compounds is highlighted. The mechanism of action of the (haloaryl)glycines was studied in Saccharomyces cerevisiae.

  14. Retention of Halogens in Waste Glass

    SciTech Connect

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  15. Reactions of halogen-pyridine systems

    SciTech Connect

    Coury, A.J.; Cahalan, P.T.

    1980-01-01

    The combination of halogens (acceptors) with pyridine derivatives (donors) produces, initially, charge transfer complexes with conductivities useful as depolarizers in lithium-halogen power cell cathodes. The complex most often employed in pacemaker batteries is I/sub 2//P2VP. Pyridines and halogens undergo additional reactions of consequence to cell performance. Such side reactions include: Alkyl group substitution, ring coupling, polymer molecular weight degradation, olefin addition and ring substitution. Instrumental analysis of model systems and the commercial iodine/poly-2-vinylpyridine (I/sub 2//P2VP) system provided evidence for alkyl group substitution, coupling and molecular weight degradation. The addition reaction was inferred from the presence of the needed reactants and their facile reactivity. Halogenation of the pyridine ring was not found. Side reactions cause reduced cathode capacity. Hydrogen halides generated by such side reactions may cause corrosion, but may enhance conductivity properties. Deleterious pressure buidup or dimensional changes may result from side reactions occurring within sealed battery cans. 7 refs.

  16. Iron Catalyzed Halogenation Processes in Saline Soils

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Lippe, S.; Kullik, V.; Hauck, L.; Krause, T.; Keppler, F.; Schoeler, H. F.

    2014-12-01

    Within upcoming years the extent of salt deserts and salt lakes will probably increase due to climate change. It is known that volatile organic halogens (VOX) are released from saline soils and thus higher emissions from these environments are likely expected in the future. The origin of some organohalogens is not reasonably constrained by established natural halogenation processes. Therefore detailed biogeochemical investigations of these environments are necessary to identify the specific halogenation pathways. Redox-sensitive metals like iron are already known as triggers of chemical reactions via so called Fenton and Fenton-like reactions requiring H2O2 which is photochemically produced in water. In this study we collected soil samples from several salt lakes in Western Australia with pH values ranging from 2 to 8. The high pH variability was considered useful to study the impact of iron mobility and availability on halogenation processes. Iron was found to mainly occur as oxides and sulfides within the alkaline soils and acidic soils, respectively. All soil samples were lyophilised and finely ground prior to incubation at 40 °C for 24 h in aqueous solutions. Formation of volatile organic compounds (VOC) and VOX from these soils was observed using GC-FID and GC-MS. When H2O2 was added to the samples much higher concentrations of VOC and VOX were observed. Furthermore, when the pH of the soils was changed towards lower values higher emissions of VOC were also observed. Based on C-H activation processes we delineate a halide containing iron complex as a provider of anions reacting with previously generated hydrocarbon radicals. We suggest iron sulfate derivatives as those complexes which are generated if the above-mentioned natural H2O2 addition to iron sulfates and sulfides occurs. The origin of these complexes is able to explain the halogenation of chemically unreactive alkanes.

  17. Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás; Schmidt, Johan A.; Evans, Mat J.; Carpenter, Lucy J.; Großmann, Katja; Eastham, Sebastian D.; Jacob, Daniel J.; Dix, Barbara; Koenig, Theodore K.; Sinreich, Roman; Ortega, Ivan; Volkamer, Rainer; Saiz-Lopez, Alfonso; Prados-Roman, Cristina; Mahajan, Anoop S.; Ordóñez, Carlos

    2016-09-01

    We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28 × 106 molecules cm-3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (˜ 2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (˜ 15-27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.

  18. Adaptive inertial shock-absorber

    NASA Astrophysics Data System (ADS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-03-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated.

  19. Ozone in the remote marine boundary layer: A possible role for halogens

    NASA Astrophysics Data System (ADS)

    Dickerson, Russell R.; Rhoads, Kevin P.; Carsey, Thomas P.; Oltmans, Samuel J.; Burrows, John P.; Crutzen, Paul J.

    1999-09-01

    On the spring 1995 cruise of the National Oceanic and Atmospheric Administration research vessel Malcolm Baldrige, we measured very large diurnal variations in ozone concentrations in the marine boundary layer. Average diurnal variations of about 32% of the mean were observed over the tropical Indian Ocean. We simulated these observations with the Model of Chemistry in Clouds and Aerosols, a photochemical box model with detailed aerosol chemistry. The model was constrained with photolysis rates, humidity, aerosol concentrations, NO, CO, and O3 specified by shipboard observations and ozonesondes. Conventional homogeneous chemistry, where ozone photolysis to O(1D) and HOx chemistry dominate ozone destruction, can account for a diurnal variation of only about 12%. On wet sea-salt aerosols (at humidities above the deliquescence point), absorption of HOBr leads to release of BrCl and Br2, which photolyze to produce Br atoms that may provide an additional photochemical ozone sink. After 8 days of simulation, these Br atoms reach a peak concentration of 1.2×107 cm-3 at noon and destroy ozone through a catalytic cycle involving BrO and HOBr. Reactive Br lost to HBr can be absorbed into the aerosol phase and reactivated. The model predicts a diurnal variation in O3 of 22% with aerosol-derived Br reaction explaining much, but not all, of the observed photochemical loss. The lifetime of ozone under these conditions is short, about 2 days. These results indicate that halogens play an important role in oxidation processes and the ozone budget in parts of the remote marine boundary layer.

  20. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  1. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  2. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    PubMed

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (<10mgL(-1)) and suitable pH for analysis by both IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS.

  3. Rediscovery of halogen bonds in protein-ligand complexes.

    PubMed

    Zhou, P; Tian, F; Zou, J; Shang, Z

    2010-04-01

    Although the halogen bond has attracted much interest in chemistry and material science communities, its implications for drug design are just now coming to light. The protein-ligand interactions through short halogen-oxygen/nitrogen/sulfur contacts have been observed in crystal structures for a long time, but only in recent years, with the experimental and theoretical progress in weak biological interactions, especially the pioneering works contributed by Ho and co-workers (Auffinger, P.; Hays, F. A.; Westhof, E.; Ho, P. S. Proc. Natl. Acad. Sci. USA 2004, 101, 16789-16794), these short contacts involving halogens in biomolecules were rediscovered and re-recognized as halogen bonds to stress their shared similarities with hydrogen bonds in strength and directionality. Crystal structure determinations of protein complexes with halogenated ligands preliminarily unveiled the functionality of halogen bonds in protein-ligand recogni-tion. Database surveys further revealed a considerable number of short halogen-oxygen contacts between proteins and halogenated ligands. Theoretical calculations on model and real systems eventually gave a quantitative pronouncement for the substantial contribution of halogen bonds to ligand binding. All of these works forebode that the halogen bond can be exploited as a new and versatile tool for rational drug design and bio-crystal engineering.

  4. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  5. Halogen bonding origin properties and applications

    NASA Astrophysics Data System (ADS)

    Hobza, Pavel

    2015-12-01

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  6. Halogen bonding origin properties and applications

    SciTech Connect

    Hobza, Pavel

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  7. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  8. Halogenating activities detected in Antarctic macroalgae

    SciTech Connect

    Laturnus, F.; Adams, F.C.; Gomez, I.; Mehrtens, G.

    1997-03-01

    Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11 {+-} 0.01 U g{sup -1} wet algal weight and 0.18 U g{sup -1} wet algal weight, respectively) and Myriogramme mangini (3.62 {+-} 0.17 U g{sup -1} wet algal weight and 4.5 U g{sup -1} wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g{sup -1} wet algal weight). 30 refs., 2 figs., 1 tab.

  9. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  10. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  11. Reduction of halogenated ethanes by green rust.

    SciTech Connect

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research; Air Force Research Lab.; Integrated Science and Technology, Inc.

    2004-01-01

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanes having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.

  12. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    PubMed

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  13. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  14. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  15. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  16. The destruction of halogenated organic chemicals by plasma pyrolysis.

    PubMed

    Barton, T G; Mordy, J A

    1984-08-01

    Very high destruction efficiencies for halogenated chemicals have been achieved by plasma pyrolysis. Destruction efficiencies exceeded 99.9999999% for tests with polychlorinated biphenyls (PCBs). Preliminary tests with tetrachloromethane have obtained destruction efficiencies exceeding 99.99%. The plasma pyrolysis process involved the creation of a 250-kW plasma with a temperature in excess of 25 000 degrees C. The toxic material was injected into the plasma zone at a rate between 1 and 2 L/min. Thermochemical and photochemical dissociation of the toxic materials produced atoms and ions which recombined to form primarily H2, CO, HCl, and particulate carbon. The HCl was neutralized by NaOH. The flaring of the H2 and CO should destroy to a high degree any trace residuals. The application of plasma pyrolysis for the ultimate disposal of toxicological waste was also investigated. Rat carcasses containing mean lethal dosage of PCB were pyrolyzed.

  17. Supramolecular chemistry of halogens: complementary features of inorganic (M-X) and organic (C-X') halogens applied to M-X...X'-C halogen bond formation.

    PubMed

    Zordan, Fiorenzo; Brammer, Lee; Sherwood, Paul

    2005-04-27

    Electronic differences between inorganic (M-X) and organic (C-X) halogens in conjunction with the anisotropic charge distribution associated with terminal halogens have been exploited in supramolecular synthesis based upon intermolecular M-X...X'-C halogen bonds. The synthesis and crystal structures of a family of compounds trans-[MCl(2)(NC(5)H(4)X-3)(2)] (M = Pd(II), Pt(II); X = F, Cl, Br, I; NC(5)H(4)X-3 = 3-halopyridine) are reported. With the exception of the fluoropyridine compounds, network structures propagated by M-Cl...X-C halogen bonds are adopted and involve all M-Cl and all C-X groups. M-Cl...X-C interactions show Cl...X separations shorter than van der Waals values, shorter distances being observed for heavier halogens (X). Geometries with near linear Cl...X-C angles (155-172 degrees ) and markedly bent M-Cl...X angles (92-137 degrees ) are consistently observed. DFT calculations on the model dimers {trans-[MCl(2)(NH(3))(NC(5)H(4)X-3)]}(2) show association through M-Cl...X-C (X not equal F) interactions with geometries similar to experimental values. DFT calculations of the electrostatic potential distributions for the compounds trans-[PdCl(2)(NC(5)H(4)X-3)(2)] (X = F, Cl, Br, I) demonstrate the effectiveness of the strategy to activate C-X groups toward halogen bond formation by enhancing their electrophilicity, and explain the absence of M-Cl...F-C interactions. The M-Cl...X-C halogen bonds described here can be viewed unambiguously as nucleophile-electrophile interactions that involve an attractive electrostatic contribution. This contrasts with some types of halogen-halogen interactions previously described and suggests that M-Cl...X-C halogen bonds could provide a valuable new synthon for supramolecular chemists.

  18. Hexahalogenated and their mixed benzene derivatives as prototypes for the understanding of halogen···halogen intramolecular interactions: New insights from combined DFT, QTAIM-, and RDG-based NCI analyses.

    PubMed

    Varadwaj, Pradeep R; Varadwaj, Arpita; Jin, Bih-Yaw

    2015-12-05

    A large number of fully halogenated benzene derivatives containing the fluorine, chlorine, bromine, and iodine atoms have been experimentally synthesized both as single- and co-crystals (e.g., Desiraju et al., Chem. Eur. J. 2006, 12, 2222), yet the natures of the halogen ··· halogen interactions between the vicinal halogens in these compounds within the intramolecular domain are undisclosed. Given a fundamental understanding of these interactions is incredibly important in many areas of chemical, biological, supramolecular, and material sciences, we present here our newly discovered theoretical results that delineate whilst the nature of an F···F interaction in a pair of two adjacent fluorine atoms in either of the hexafluorobenzene and 1,4-dibromotetrafluorobenzene compounds examined is almost unclear, each of the latter three hexahalogenated benzene derivatives (viz., C6 Cl6 , C6 Br6 , and C6 I6 ), and each of the seven of their fully mixed hexahalogenated benzene analogues, are found to be stabilized by means of a number of halogen···halogen interactions, each a form of long-range attraction within the intramolecular domain. The Molecular Electrostatic Surface Potential model was found to be unsurprisingly unsuitable in unraveling any of the aforesaid attractions between the halogen atoms. However, such interactions successfully enunciated by a set of noncovalent interaction descriptors of geometrical, topological, and electrostatic origins. These latter properties were extracted combining the results of the Density Functional Theory electronic structure calculations with those revealed from Atoms in Molecules, and Reduced Density Gradient charge density-based topological calculations, and are expounded in detail to formalize the conclusions. © 2015 Wiley Periodicals, Inc.

  19. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    PubMed

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  20. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  1. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  2. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  3. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  4. Review of Rate Constants and Exploration of Correlations of the Halogen Transfer Reaction of Tri-substituted Carbon-centered Radicals with Molecular Halogens

    SciTech Connect

    Poutsma, Marvin L

    2012-01-01

    Rate constants for the reaction (R 3C + X2 R 3CX + X ; X = F, Cl, Br, and I) are reviewed. Because of curved Arrhenius plots and negative EX values, empirical structure-reactivity correlations are sought for log kX,298 rather than EX. The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R 3C is p, the sum of the Hammett p constants for the three substituents, R . Electronegative substituents with lone pairs, such as halogen or oxygen, thus appear to destabilize the formation of a polarized pre-reaction complex and/or TS ( +R---X---X -) by -inductive/field electron withdrawal while simultaneously stabilizing them by -resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I2 > Br2 >> Cl2 F2, is the polarizability of the halogen, (X-X). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log kX,298 is achieved with only two parameters, p and (X-X), with a mean unsigned deviation of 0.59 log units. How much of this residual variance is the result of inaccuracies in the data compared with over-simplification of the correlation approach remains to be seen.

  5. Retrieval Algorithms for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.; Gordley, Larry L.

    2009-01-01

    The Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) provided high quality measurements of key middle atmosphere constituents, aerosol characteristics, and temperature for 14 years (1991-2005). This report is an outline of the Level 2 retrieval algorithms, and it also describes the great care that was taken in characterizing the instrument prior to launch and throughout its mission life. It represents an historical record of the techniques used to analyze the data and of the steps that must be considered for the development of a similar experiment for future satellite missions.

  6. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  7. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  8. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  9. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  10. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  11. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  12. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  13. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  14. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  15. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  16. Field-Reversal Source for Negative Halogen Ions

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Orient, O. J.; Aladzhadzhyan, S. H.

    1987-01-01

    Large zero-energy electron-attachment cross sections result in intense ion beams. Concept for producing negative halogen ions takes advantage of large cross sections at zero kinetic energy for dissociative attachment of electrons to such halogen-containing gases as SF6, CFCI3, and CCI4.

  17. Parametrization of the SCC-DFTB Method for Halogens.

    PubMed

    Kubař, Tomáš; Bodrog, Zoltán; Gaus, Michael; Köhler, Christof; Aradi, Bálint; Frauenheim, Thomas; Elstner, Marcus

    2013-07-09

    Parametrization of the approximative DFT method SCC-DFTB for halogen elements is presented. The new parameter set is intended to describe halogenated organic as well as inorganic molecules, and it is compatible with the established parametrization of SCC-DFTB for carbon, hydrogen, oxygen, and nitrogen. The performance of the parameter set is tested on a representative set of molecules and discussed.

  18. Scientific conferences: A big hello to halogen bonding

    NASA Astrophysics Data System (ADS)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  19. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated...

  20. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated...

  1. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated...

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  4. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  5. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated...

  6. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  7. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  8. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  9. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R. S. (Inventor)

    1979-01-01

    A structure is presented with a surface portion of dielectric material which passes electromagnetic radiation and with a portion below the surface which includes material that absorbs the radiation, the face of the structure being formed with numerous steep ridges. The steepness of the dielectric material results in a high proportion of the electromagnetic energy passing through the surface for absorption by the absorbing material under the surface. A backing of aluminum or other highly heat-conductive and reflective material lies under the face and has very steep protuberances supporting the absorbing and dielectric materials.

  10. Electrogenerative cell for the oxidation or halogenation of hydrocarbons

    SciTech Connect

    McIntyre, J.M.

    1988-03-15

    A process for producing electric power by the electrogenerative halogenation or oxidation of at least one unsaturated hydrocarbon in an electrochemical cell having an anode and cathode separated by a permselective membrane or electrolyte permeable diaphragm is described comprising: (A) flowing a first liquid electrolyte and the unsaturated hydrocarbon to an anolyte compartment of the cell containing a porous anode; (B) flowing a second liquid electrolyte and a halogen or oxygen gas to a catholyte compartment of the cell containing a porous cathode; (C) reacting the unsaturated hydrocarbon with the halogen or the oxygen at ambient or elevated temperatures and pressures; (D) recovering a halogenated or oxygenated hydrocarbon; (E) recycling the electrolytes, unsaturated hydrocarbon, and halogen or oxygen gas to the cell.

  11. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  12. The halogen analogs of thiolated gold nanoclusters

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2012-01-01

    Is it possible to replace all the thiolates in a thiolated gold nanocluster with halogens while still maintaining the geometry and the electronic structure? In this work, we show from density functional theory that such halogen analogs of thiolated gold nanoclusters are highly likely. Using Au{sub 25}X{sub 18}{sup -} as an example, where X = F, Cl, Br, or I replaces -SR, we find that Au{sub 25}Cl{sub 18}{sup -} demonstrates a high similarity to Au{sub 25}(SR){sub 18}{sup -} by showing Au-Cl distances, Cl-Au-Cl angles, band gap, and frontier orbitals similar to those in Au{sub 25}(SR){sub 18}{sup -}. DFT-based global minimization also indicates the energetic preference of staple formation for the Au{sub 25}Cl{sub 18}{sup -} cluster. The similarity between Au{sub m}(SR){sub n} and Au{sub m}X{sub n} could be exploited to make viable Au{sub m}X{sub n} clusters and to predict structures for Au{sub m}(SR){sub n}.

  13. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  14. OVI absorbers in SDSS spectra

    NASA Astrophysics Data System (ADS)

    Frank, Stephan

    with the ubiquitous Lya forest lines, and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber and the measured S/N of the spectrum by modelling typical Ly forest spectra. These correction factors allow us to derive the 'incompleteness and S/N corrected' redshift number densities of O VI absorbers. We can place a secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: O OV I (2.8 < z < 3.2) >= 1.9 × 10 - 8 h -1 . We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionisation fraction, [Special characters omitted.] , and adopting the Anders & Grevesse (1989) solar abundance values, we derive the mean metallicty of the gas probed in our search : z(2.8 < z < 3.2) >= 3.6 × 10 -4 h , in good agreement with other studies. These results demonstrate that large spectroscopic datasets such as SDSS can play an important role in QSO absorption line studies, in spite of the relatively low resolution. Lastly, we have performed a stacking analysis whereby we shift individual spectra back to the rest-frame of the absorber candidate, and derive a mean absorption spectrum for various subsamples. Besides further validating the reality of the absorbers themselves, i.e. ruling out spurious interlopers and other misclassifications, we can use these stacked spectra for a variety of purposes. First of all, we can judge the effects of additional cut criteria like a minimal strength for associated CIV absorption, and hence produce cleaner and better defined subsamples, increasing the strength of future proposals for high-resolution studies. Secondly, the stack itself contains valuable information about the gas probed in our search. We have

  15. Independent Evolution of Six Families of Halogenating Enzymes

    PubMed Central

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity. PMID:27153321

  16. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    PubMed

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-01-20

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  17. Non-Absorbable Gas Behavior in the Absorber/Evaporator of a Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional numerical study on non-absorbable gas behavior in the absorber/evaporator of an absorption chiller has been performed. In the present study, the effect of the pitch-to-diameter ratio of a cylinder bundle in the absorber was highlighted. From the results, a sudden decrease of the overall heat transfer coefficient of the absorber was observed at a certain mean concentration of non-absorbable gas for each pitch-to-diameter ratio. Such a critical concentration was also found to decrease as the pitch-to- diameter ratio increased. The sudden decrease occurs due to the sudden disappearance of recirculating region, which is formed between the absorber and the evaporator, and where most of non-absorbable gas stays when it exists. As the pitch-to-diameter ratio increases, the recirculating region becomes weak because the velocity of the high velocity region supporting the recirculating flow decreases. Then, the critical mean concentration of non-absorbable gas is found to decrease as pitch-to-ratio increases.

  18. Halogen occultation experiment intergrated test plan

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Butterfield, A. J.

    1986-01-01

    The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2.

  19. Prediction of Thermodynamic Properties for Halogenated Hydrocarbon

    NASA Astrophysics Data System (ADS)

    Higashi, Yukihiro

    The predictive methods of thermodynamic properties are discussed with respect to the halogenated hydrocarbons using as working fluids for refrigeration and heat pump cycles. The methods introduced into this paper can be calculated by the limited information; critical properties, normal boiling point and acentric factor. The results of prediction are compared with the experimental values of PVT property, vapor pressure and saturated liquid density. On the basis of these comparisons, Lydersen's method for predicting the critical properties, the generalized vapor pressure correlation by Ashizawa et, al., and Hankinson-Thomson's method for predicting saturated liquid density can be recommended. With respect to the equation of state, either Soave equation or Peng-Robinson equation is effective in calculating the thermodynamic properties except high density region.

  20. Insights into enzymatic halogenation from computational studies

    PubMed Central

    Senn, Hans M.

    2014-01-01

    The halogenases are a group of enzymes that have only come to the fore over the last 10 years thanks to the discovery and characterization of several novel representatives. They have revealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate halogens and introduce them into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these studies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein serve to illustrate some of the limitations of the current computational approaches and the challenges encountered in computational mechanistic enzymology. PMID:25426489

  1. Halogenated coumarin derivatives as novel seed protectants.

    PubMed

    Brooker, N; Windorski, J; Bluml, E

    2008-01-01

    Development of new and improved antifungal compounds that are target-specific is backed by a strong Federal, public and commercial mandate. Many plant-derived chemicals have proven fungicidal properties, including the coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Preliminary research has shown the coumarins to be a highly active group of molecules with a wide range of antimicrobial activity against both fungi and bacteria. It is believed that these cyclic compounds behave as natural pesticidal defence molecules for plants and they represent a starting point for the exploration of new derivative compounds possessing a range of improved antifungal activity. Within this study, derivatives of coumarin that were modified with halogenated side groups were screened for their antifungal activity against a range of soil-borne plant pathogenic fungi. Fungi included in this in vitro screen included Macrophomina phaseolina (charcoal rot), Phytophthora spp. (damping off and seedling rot), Rhizoctonia spp. (damping off and root rot) and Pythium spp. (seedling blight), four phylogenetically diverse and economically important plant pathogens. Studies indicate that these halogenated coumarin derivatives work very effectively in vitro to inhibit fungal growth and some coumarin derivatives have higher antifungal activity and stability as compared to the original coumarin compound alone. The highly active coumarin derivatives are brominated, iodinated and chlorinated compounds and results suggest that besides being highly active, very small amounts can be used to achieve LD100 rates. In addition to the in vitro fungal inhibition assays, results of polymer seed coating compatibility and phytotoxicity testing using these compounds as seed treatments will also be reported. These results support additional research in this area of natural pesticide development.

  2. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  3. Shock absorber servicing tool

    NASA Technical Reports Server (NTRS)

    Koepler, Jack L. (Inventor); Hill, Robert L. (Inventor)

    1981-01-01

    A tool to assist in the servicing of a shock absorber wherein the shock absorber is constructed of a pair of aligned gas and liquid filled chambers. Each of the chambers is separated by a movable separator member. Maximum efficiency of the shock absorber is achieved in the locating of a precise volume of gas within the gas chamber and a precise volume of liquid within the liquid chamber. The servicing tool of this invention employs a rod which is to connect with the separator and by observation of the position of the rod with respect to the gauge body, the location of the separator is ascertained even though it is not directly observable.

  4. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  5. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  6. Fluorescence spectroscopy for monitoring reduction of natural organic matter and halogenated furanone precursors by biofiltration.

    PubMed

    Peleato, Nicolás M; McKie, Michael; Taylor-Edmonds, Lizbeth; Andrews, Susan A; Legge, Raymond L; Andrews, Robert C

    2016-06-01

    The application of fluorescence spectroscopy to monitor natural organic matter (NOM) reduction as a function of biofiltration performance was investigated. This study was conducted at pilot-scale where a conventional media filter was compared to six biofilters employing varying enhancement strategies. Overall reductions of NOM were identified by measuring dissolved organic carbon (DOC), and UV absorbance at 254 nm, as well as characterization of organic sub-fractions by liquid chromatography-organic carbon detection (LC-OCD) and parallel factors analysis (PARAFAC) of fluorescence excitation-emission matrices (FEEM). The biofilter using granular activated carbon media, with exhausted absorptive capacity, was found to provide the highest removal of all identified PARAFAC components. A microbial or processed humic-like component was found to be most amenable to biodegradation by biofilters and removal by conventional treatment. One refractory humic-like component, detectable only by FEEM-PARAFAC, was not well removed by biofiltration or conventional treatment. All biofilters removed protein-like material to a high degree relative to conventional treatment. The formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), as well as overall treated water genotoxicity are also reported. Using the organic characterization results possible halogenated furanone and genotoxicity precursors are identified. Comparison of FEEM-PARAFAC and LC-OCD results revealed polysaccharides as potential MX/MCA precursors.

  7. Parameterization of Halogens for the Density-Functional Tight-Binding Description of Halide Hydration.

    PubMed

    Jahangiri, Soran; Dolgonos, Grygoriy; Frauenheim, Thomas; Peslherbe, Gilles H

    2013-08-13

    Parameter sets of the self-consistent-charge density-functional tight-binding model with and without its third-order extension have been developed to describe the interatomic interactions of halogen elements (X = Cl, Br, I) with hydrogen and oxygen, with the ultimate goal of investigating halide hydration with this approach. The reliability and accuracy of the model with these newly developed parameters has been evaluated by comparing the structural, energetic, and vibrational properties of small molecules containing halogen atoms with those obtained by means of standard density-functional theory. Furthermore, the newly parametrized model is found to predict equilibrium geometries, binding energies, and vibrational frequencies for small aqueous clusters containing halogen anions, X(-)(H2O)n (n = 1-4), in good agreement with those calculated with density-functional theory and high-level ab initio quantum chemistry and with available experimental data. This demonstrates that the newly parametrized models might be a method of choice for investigating halide hydration in larger clusters.

  8. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    PubMed

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  9. Experimental measurement of noncovalent interactions between halogens and aromatic rings.

    PubMed

    Adams, Harry; Cockroft, Scott L; Guardigli, Claudio; Hunter, Christopher A; Lawson, Kevin R; Perkins, Julie; Spey, Sharon E; Urch, Christopher J; Ford, Rhonan

    2004-05-03

    Chemical double mutant cycles have been used to quantify the interactions of halogens with the faces of aromatic rings in chloroform. The halogens are forced over the face of an aromatic ring by an array of hydrogen-bonding interactions that lock the complexes in a single, well-defined conformation. These interactions can also be engineered into the crystal structures of simpler model compounds, but experiments in solution show that the halogen-aromatic interactions observed in the solid state are all unfavourable, regardless of whether the aromatic rings contain electron-withdrawing or electron-donating substituents. The halogen-aromatic interactions are repulsive by 1-3 kJ mol(-1). The interactions with fluorine are slightly less favourable than with chlorine and bromine.

  10. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  11. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  12. Determination of halogens in coal after digestion using the microwave-induced combustion technique

    SciTech Connect

    Flores, E.M.M.; Mesko, M.F.; Moraes, D.P.; Pereira, J.S.F.; Mello, P.A.; Barin, J.S.; Knapp, G.

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH{sub 4}){sub 2}CO{sub 3} solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L{sup -1} (NH{sub 4}){sub 2}CO{sub 3} as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 {sup o}C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 {mu} g g{sup -1} for all halogens).

  13. Determination of halogens in coal after digestion using the microwave-induced combustion technique.

    PubMed

    Flores, Erico M M; Mesko, Marcia F; Moraes, Diogo P; Pereira, Juliana S F; Mello, Paola A; Barin, Juliano S; Knapp, Günter

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH(4))(2)CO(3) solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L(-1) (NH(4))(2)CO(3) as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 degrees C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 microg g(-1) for all halogens).

  14. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  15. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  16. Shock Absorbing Helmets

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This paper presents a description of helmets used by football players that offer three times the shock-absorbing capacity of earlier types. An interior padding for the helmets, composed of Temper Foam, first used by NASA's Ames Research Center in the design of aircraft seats is described.

  17. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  18. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  19. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  20. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  1. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  2. Data for fire hazard assessment of selected non-halogenated and halogenated fire retardants: Report of Test FR 3983

    NASA Astrophysics Data System (ADS)

    Harris, R. H.; Babrauskas, V.; Levin, B. C.; Paabo, M.

    1991-10-01

    Five plastic materials, with and without fire retardants, were studied to compare the fire hazards of non-halogenated fire retardant additives with halogenated flame retardents. The plastic materials were identified by the sponsors as unsaturated polyesters, thermoplastic high density, low density and cross-linked low density polyethylenes, polypropylene, flexible and rigid poly(vinyl chlorides), and cross-linked and thermoplastic ethylene-vinyl acetate copolymers. The non-halogenated fire retardants tested were aluminum hydroxide, also known as alumina trihydrate, sodium alumino-carbonate, and magnesium hydroxide. The halogenated flame retardants were chlorine or bromine/antimony oxides. The plastics were studied using the Cone Calorimeter and the cup furnace smoke toxicity method (high density polyethylene only). The Cone Calorimeter provided data on mass consumed; time to ignition; peak rate and peak time of heat release; total heat release; effective heat of combustion; average yields of CO, CO2, HCl, and HBr; and average smoke obscuration. The concentrations of toxic gases generated in the cup furnace smoke toxicity method were used to predict the toxic potency of the mixed thermal decomposition products. The data from the Cone Calorimeter indicate that the non-halogenated fire retardants were, in most of the tested plastic formulations, more effective than the halogenated flame retardants in increasing the time to ignition. The non-halogenated fire retardants were also more effective in reducing the mass consumed, peak rate of heat release, total heat released, and effective smoke produced. The use of halogenated flame retardants increased smoke production and CO yields and, additionally, produced the known acid gases and toxic irritants, HCl and HBr, in measureable quantities.

  3. The halogen bond between amantadine and iodine and its application in the determination of amantadine hydrochloride in pharmaceuticals.

    PubMed

    Yan, Xiao Qing; Wang, Hui; Chen, Wei Di; Jin, Wei Jun

    2014-01-01

    It is proposed that molecular iodine as a donor could form halogen bonding complexes with amantadine (AMD) and amantadine hydrochloride (AMD-HCl) in chloroform and the resultant charge transfer bands (CT band) would be located at 259 and 253 nm, respectively. The halogen bonding interaction was explored by UV absorption, Raman and X-ray crystallography, and a new bonding model named N(+)···N(lep) bond in crystal was observed. The halogen bonding complexes were utilized in the development of simple and accurate spectrophotometry for the analysis of AMD/AMD-HCl. Compared with the traditional method based on the absorption of I3(-) at 290 and 365 nm, the new proposed spectrometry based on the CT band of halogen bonding complex was more sensitive and selective for the detection of AMD/AMD-HCl. Linear relationships with good correlation coefficients (>0.9994) were obtained between the absorbance and the AMD/AMD-HCl concentration in the range of 10-180 μg mL(-1) for AMD-HCl and 0.2-13 μg mL(-1) for AMD. The limit of detection (LOD) was 2.23 μg mL(-1) and limit of quantification (LOQ) was 7.45 μg mL(-1) for AMD-HCl. And because of the stronger bond constant between AMD and iodine than AMD-HCl, the method is more sensitive for AMD; the LOD was 0.02 μg mL(-1) and LOQ was 0.08 μg mL(-1) which was 100 times lower than that of AMD-HCl.

  4. Synthesis of Soluble Halogenated Polyphenylenes. Mechanism for the Coupling Halogenated Lithiobenzenes

    DTIC Science & Technology

    1993-11-22

    the halogen content in these polymers was lowered using larger amounts of tert- butyllithium. TGA analysis (N2 , 20C/rmin) of I1 showed a 10% weight...iodide for every three aryl rings. DSC analysis (N2 , 20°C/min) for 1 8 showed no transitions on either the first or second heating scans to 230"C. TGA ... analysis (N2. 20C/rmin) showed a 10% weight loss at 3220C and char yields of 46% at 900"C. Visual analysis of the charred material did indicate that

  5. The relative roles of electrostatics and dispersion in the stabilization of halogen bonds.

    PubMed

    Riley, Kevin E; Hobza, Pavel

    2013-11-07

    In this work we highlight recent work aimed at the characterization of halogen bonds. Here we discuss the origins of the σ-hole, the modulation of halogen bond strength by changing of neighboring chemical groups (i.e. halogen bond tuning), the performance of various computational methods in treating halogen bonds, and the strength and character of the halogen bond, the dihalogen bond, and two hydrogen bonds in bromomethanol dimers (which serve as model complexes) are compared. Symmetry adapted perturbation theory analysis of halogen bonding complexes indicates that halogen bonds strongly depend on both dispersion and electrostatics. The electrostatic interaction that occurs between the halogen σ-hole and the electronegative halogen bond donor is responsible for the high degree of directionality exhibited by halogen bonds. Because these noncovalent interactions have a strong dispersion component, it is important that the computational method used to treat a halogen bonding system be chosen very carefully, with correlated methods (such as CCSD(T)) being optimal. It is also noted here that most forcefield-based molecular mechanics methods do not describe the halogen σ-hole, and thus are not suitable for treating systems with halogen bonds. Recent attempts to improve the molecular mechanics description of halogen bonds are also discussed.

  6. Review of rate constants and exploration of correlations of the halogen transfer reaction of trisubstituted carbon-centered radicals with molecular halogens.

    PubMed

    Poutsma, Marvin L

    2012-03-16

    Rate constants for the reaction (R'(3)C(•) + X(2) → R'(3)CX + X(•); X = F, Cl, Br, I) are reviewed. Because of curved Arrhenius plots and negative E(X) values, empirical structure-reactivity correlations are sought for log k(X,298) rather than E(X). The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R'(3)C(•) is Σσ(p), the sum of the Hammett σ(p) constants for the three substituents, R'. Electronegative substituents with lone pairs, such as halogen and oxygen, thus appear to destabilize the formation of a polarized prereaction complex and/or TS ((δ+)R- - -X- - -X(δ-)) by σ inductive/field electron withdrawal while simultaneously stabilizing them by π resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I(2) > Br(2) ≫ Cl(2) ≈ F(2), is the polarizability of the halogen, α(X(2)). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log k(X,298) is achieved with only two parameters, Σσ(p) and α(X(2)), with a mean unsigned deviation of 0.59 log unit. How much of this residual variance is the result of inaccuracies in the data in comparison with oversimplification of the correlation approach remains to be seen.

  7. Mouse Model of Halogenated Platinum Salt Hypersensitivity ...

    EPA Pesticide Factsheets

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 µL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by oropharyngeal aspiration (OPA) with 0 or 100 µg AHCP in saline. Before and immediately after challenge, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05). This model will be useful for assessing both relative sensitizing potency and cross-reacti

  8. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  9. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  10. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  11. Metasurface Broadband Solar Absorber

    DOE PAGES

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; ...

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  12. Metasurface Broadband Solar Absorber

    SciTech Connect

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  13. Flat solar energy collector with low heat contact between absorber and edge of collector

    SciTech Connect

    Hussmann, E.

    1981-10-27

    The present invention relates to a flat, gas-tight solar energy collector having a novel absorber means consisting of an absorber plate and an edge connecting means attached thereto for connecting the absorber to the edge structure of the collector. No direct thermal contact exists between the edge of the absorber plate and the edge structure means. Thus, heat losses on the sides of the collector are kept to a minimum.

  14. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  15. Apollo couch energy absorbers

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.; Drexel, R. E.

    1972-01-01

    Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.

  16. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I

  17. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-04

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.

  18. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE PAGES

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; ...

    2014-12-05

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σAX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  19. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    SciTech Connect

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; Brown, Asha; Thompson, Amber L.; Kennepohl, Pierre; Beer, Paul D.

    2014-12-05

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared to the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σAX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.

  20. Absorber for terahertz radiation management

    SciTech Connect

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  1. Atmospheric Chemistry of Halogen Oxides and Oxygenated VOCs over the Tropical Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Volkamer, R.

    2009-12-01

    Recent indirect evidence from some satellites suggests the presence of iodine oxide (IO) and glyoxal (CHOCHO) over the open tropical Pacific Ocean, but different satellites disagree as to the presence of iodine oxide (IO), and the abundance of glyoxal (CHOCHO) over the oceans. Both gases absorb light in the blue spectral range, where also phytoplankton absorbs light and induces a change in ocean color. It is not clear whether IO and CHOCHO as seen from space indicate missing marine sources for halogens and hydrocarbons in current models, or could be an artifact in the satellite retrievals caused by a spectral interference of light absorbing phytoplankton. A novel Ship Multi AXis DOAS (CU SMAX-DOAS) instrument was developed at CU Boulder’s Atmospheric Trace Molecule Spectroscopy Laboratory (AMTOSpeclab) and first deployed from October 2008 to January 2009 on board NOAA’s RV Ronald H. Brown over the eastern tropical Pacific Ocean to probe directly the column abundance of iodine oxide (IO), iodine dioxide (OIO), bromine oxide (BrO), nitrogen dioxide (NO2), glyoxal (CHOCHO), and formaldehyde (HCHO), water vapor (H2O) and oxygen dimers (O4, an indicator for aerosol optical depth); the instrument also measures directly the vertical distribution of gases in the atmosphere, i.e., it can distinguish atmospheric absorbers from ocean color effects. This talk presents data from two field campaigns over the open tropical Pacific Ocean. Our measurements give first direct spectral proof for the presence of IO and CHOCHO in elevated concentrations over the open oceans, and locate IO and CHOCHO inside the marine boundary layer. The atmospheric chemistry of both gases is briefly reviewed. It is argued that the tropical Pacific Ocean is a large scale chemical reactor that destroys tropospheric ozone, and our observations might help explain past observations of Aitken mode sized particles over the open ocean.

  2. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  3. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Investigating Planetary Volatile Accretion Mechanisms Using the Halogens

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.

    2014-12-01

    Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in

  6. Comparative study of halogen- and hydrogen-bond interactions between benzene derivatives and dimethyl sulfoxide.

    PubMed

    Zheng, Yan-Zhen; Deng, Geng; Zhou, Yu; Sun, Hai-Yuan; Yu, Zhi-Wu

    2015-08-24

    The halogen bond, similar to the hydrogen bond, is an important noncovalent interaction and plays important roles in diverse chemistry-related fields. Herein, bromine- and iodine-based halogen-bonding interactions between two benzene derivatives (C6 F5 Br and C6 F5 I) and dimethyl sulfoxide (DMSO) are investigated by using IR and NMR spectroscopy and ab initio calculations. The results are compared with those of interactions between C6 F5 Cl/C6 F5 H and DMSO. First, the interaction energy of the hydrogen bond is stronger than those of bromine- and chlorine-based halogen bonds, but weaker than iodine-based halogen bond. Second, attractive energies depend on 1/r(n) , in which n is between three and four for both hydrogen and halogen bonds, whereas all repulsive energies are found to depend on 1/r(8.5) . Third, the directionality of halogen bonds is greater than that of the hydrogen bond. The bromine- and iodine-based halogen bonds are strict in this regard and the chlorine-based halogen bond only slightly deviates from 180°. The directional order is iodine-based halogen bond>bromine-based halogen bond>chlorine-based halogen bond>hydrogen bond. Fourth, upon the formation of hydrogen and halogen bonds, charge transfers from DMSO to the hydrogen- and halogen-bond donors. The CH3 group contributes positively to stabilization of the complexes.

  7. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  8. Effect of halogenated fluorescent compounds on bioluminescent reactions.

    PubMed

    Kirillova, Tamara N; Gerasimova, Marina A; Nemtseva, Elena V; Kudryasheva, Nadezhda S

    2011-04-01

    The paper investigates an application of luminescent bioassays to monitor the toxicity of organic halides. Effects of xanthene dyes (fluorescein, eosin Y, and erythrosin B), used as model compounds, on bioluminescent reactions of firefly Luciola mingrelica, marine bacteria Photobacterium leiognathi, and hydroid polyp Obelia longissima were studied. Dependence of bioluminescence quenching constants on the atomic weight of halogen substituents in dye molecules was demonstrated. Bacterial bioluminescence was shown to be most sensitive to heavy halogen atoms involved in molecular structure; hence, it is suitable for construction of sensors to monitor toxicity of halogenated compounds. Mechanisms of bioluminescence quenching--energy transfer processes, collisional interactions, and enzyme-dye binding--were considered. Changes of bioluminescence (BL) spectra in the presence of the dyes were analyzed. Interactions of the dyes with enzymes were studied using fluorescence characteristics of the dyes in steady-state and time-resolved experiments. The dependences of fluorescence anisotropy of enzyme-bound dyes, the average fluorescence lifetime, and the number of exponential components in fluorescence decay on the atomic weight of halogen substituents were demonstrated. The results are discussed in terms of "dark effect of heavy halogen atom" in the process of enzyme-dye binding; hydrophobic interactions were assumed to be responsible for the effect.

  9. Multiphase halogen chemistry in the tropical Atlantic Ocean.

    PubMed

    Sommariva, Roberto; von Glasow, Roland

    2012-10-02

    We used a one-dimensional model to simulate the chemical evolution of air masses in the tropical Atlantic Ocean, with a focus on halogen chemistry. The model results were compared to the observations of inorganic halogen species made in this region. The model could largely reproduce the measurements of most chlorine species, especially under unpolluted conditions, but overestimated sea salt chloride, BrCl, and bromine species. Agreement with the measurements could be improved by taking into account the reactivity with aldehydes and the effects of dimethyl sulfide (DMS) and Saharan dust on aerosol pH; a hypothetical HOX → X(-) aqueous-phase reaction could also improve the agreement with measured Cl(2) and HOCl, especially under semipolluted conditions. The results also showed that halogens speciation and concentrations are very sensitive to cloud processing. The model was used to calculate the impact of the observed levels of halogens: Cl atoms accounted for 5.4-11.6% of total methane sinks and halogens (mostly bromine and iodine) accounted for 35-40% of total ozone destruction.

  10. A polarizable ellipsoidal force field for halogen bonds.

    PubMed

    Du, Likai; Gao, Jun; Bi, Fuzhen; Wang, Lili; Liu, Chengbu

    2013-09-05

    The anisotropic effects and short-range quantum effects are essential characters in the formation of halogen bonds. Since there are an array of applications of halogen bonds and much difficulty in modeling them in classical force fields, the current research reports solely the polarizable ellipsoidal force field (PEff) for halogen bonds. The anisotropic charge distribution was represented with the combination of a negative charged sphere and a positively charged ellipsoid. The polarization energy was incorporated by the induced dipole model. The resulting force field is "physically motivated," which includes separate, explicit terms to account for the electrostatic, repulsion/dispersion, and polarization interaction. Furthermore, it is largely compatible with existing, standard simulation packages. The fitted parameters are transferable and compatible with the general AMBER force field. This PEff model could correctly reproduces the potential energy surface of halogen bonds at MP2 level. Finally, the prediction of the halogen bond properties of human Cathepsin L (hcatL) has been found to be in excellent qualitative agreement with the cocrystal structures.

  11. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  12. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  13. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    EPA Science Inventory

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  14. Distribution of halogens during fluid-mediated apatite replacement

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.

    2016-04-01

    Apatite (Ca5(PO4)3(F,Cl,OH)) is one the most abundant halogen containing minerals in the crust. It is present in many different rock types and stable up to P-T conditions of the mantle. Although probably not relevant for the halogen budget of the mantle, apatite is potentially a carrier phase of halogens into the mantle via subduction processes and therefore important for the global halogen cycle. Different partitioning behavior of the halogens between apatite and melt/fluids causes fractionation of these elements. In hydrothermal environments apatite reacts via a coupled dissolution-reprecipitation process that leads to apatite halogen compositions which are in (local) equilibrium with the hydrothermal fluid. This behavior enables apatite to be used as fluid probe and as a tool for tracking fluid evolution during fluid-rock interaction. Here, we present a combined experimental and field related study focused on replacement of apatite under hydrothermal conditions, to investigate the partitioning of halogens between apatite and fluids. Experiments were conducted in a cold seal pressure apparatus at 0.2 GPa and temperatures ranging from 400-700°C using halogen bearing solutions of different composition (KOH, NaF, NaCl, NaBr, NaI) to promote the replacement of Cl-apatite. The halogen composition of reacted apatite was analyzed by electron microprobe (EMPA) and secondary ion mass spectrometry (SIMS). The data was used to calculate partition coefficients of halogens between fluid and apatite. Our new partitioning data show that fluorine is the most compatible halogen followed by chlorine, bromine and iodine. Comparison between partition coefficients of the apatite-fluid system and coefficients derived in the apatite-melt system reveals values for F that are one to two orders of magnitude higher. In contrast, Cl and Br show a similar partition behavior in fluid and melt systems. Consequently, apatite that formed by fluid-rock interaction will fractionate F from Cl more

  15. First principles study of halogens adsorption on intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-02-01

    Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al2Au and Al2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  16. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  17. Fine tuning of graphene properties by modification with aryl halogens.

    PubMed

    Bouša, D; Pumera, M; Sedmidubský, D; Šturala, J; Luxa, J; Mazánek, V; Sofer, Z

    2016-01-21

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.

  18. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  19. Halogenated graphenes: rapidly growing family of graphene derivatives.

    PubMed

    Karlický, František; Kumara Ramanatha Datta, Kasibhatta; Otyepka, Michal; Zbořil, Radek

    2013-08-27

    Graphene derivatives containing covalently bound halogens (graphene halides) represent promising two-dimensional systems having interesting physical and chemical properties. The attachment of halogen atoms to sp(2) carbons changes the hybridization state to sp(3), which has a principal impact on electronic properties and local structure of the material. The fully fluorinated graphene derivative, fluorographene (graphene fluoride, C1F1), is the thinnest insulator and the only stable stoichiometric graphene halide (C1X1). In this review, we discuss structural properties, syntheses, chemistry, stabilities, and electronic properties of fluorographene and other partially fluorinated, chlorinated, and brominated graphenes. Remarkable optical, mechanical, vibrational, thermodynamic, and conductivity properties of graphene halides are also explored as well as the properties of rare structures including multilayered fluorinated graphenes, iodine-doped graphene, and mixed graphene halides. Finally, patterned halogenation is presented as an interesting approach for generating materials with applications in the field of graphene-based electronic devices.

  20. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  1. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl- and Br- by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  2. Behavior of halogens during the degassing of felsic magmas

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Villemant, B.; Boudon, G.

    2010-09-01

    Residual concentrations of halogens (F, Cl, Br, I) and H2O in glass (matrix glass and melt inclusions) have been determined in a series of volcanic clasts (pumice and lava-dome fragments) of plinian, vulcanian and lava dome-forming eruptions. Felsic magmas from calc-alkaline, trachytic and phonolitic systems have been investigated: Montagne Pelée and Soufrière Hills of Montserrat (Lesser Antilles), Santa Maria-Santiaguito (Guatemala), Fogo (Azores) and Vesuvius (Italy). The behavior of halogens during shallow H2O degassing primarily depends on their incompatible character and their partitioning between melt and exsolved H2O vapor. However, variations in pre-eruptive conditions, degassing kinetics, and syn-eruptive melt crystallization induce large variations in the efficiency of halogen extraction. In all systems studied, Cl, Br and I are not fractionated from each other by differentiation or by degassing processes. Cl/Br/I ratios in melt remain almost constant from the magma reservoir to the surface. The ratios measured in erupted clasts are thus characteristic of pre-eruptive magma compositions and may be used to trace deep magmatic processes. F behaves as an incompatible element and, unlike the other halogens, is never significantly extracted by degassing. Cl, Br and I are efficiently extracted from melts at high pressure by H2O-rich fluids exsolved from magmas or during slow effusive magma degassing, but not during rapid explosive degassing. Because H2O and halogen mobility depends on their speciation, which strongly varies with pressure in both silicate melts and exsolved fluids, we suggest that the rapid pressure decrease during highly explosive eruptions prevents complete equilibrium between the diverse species of the volatiles and consequently limits their degassing. Conversely, degassing in effusive eruptions is an equilibrium process and leads to significant halogen output in volcanic plumes.

  3. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    PubMed Central

    Parker, Kimberly M.; Mitch, William A.

    2016-01-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  4. Halogen bonding: a study based on the electronic charge density.

    PubMed

    Amezaga, Nancy J Martinez; Pamies, Silvana C; Peruchena, Nélida M; Sosa, Gladis L

    2010-01-14

    Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.

  5. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  6. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  7. The role of halogen species in the troposphere.

    PubMed

    Platt, U; Hönninger, G

    2003-07-01

    While the role of reactive halogen species (e.g. Cl, Br) in the destruction of the stratospheric ozone layer is well known, their role in the troposphere was investigated only since their destructive effect on boundary layer ozone after polar sunrise became obvious. During these 'Polar Tropospheric Ozone Hole' events O(3) is completely destroyed in the lowest approximately 1000 m of the atmosphere on areas of several million square kilometres. Up to now it was assumed that these events were confined to the polar regions during springtime. However, during the last few years significant amounts of BrO and Cl-atoms were also found outside the Arctic and Antarctic boundary layer. Recently even higher BrO mixing ratios (up to 176 ppt) were detected by optical absorption spectroscopy (DOAS) in the Dead Sea basin during summer. In addition, evidence is accumulating that BrO (at levels around 1-2 ppt) is also occurring in the free troposphere at all latitudes. In contrast to the stratosphere, where halogens are released from species, which are very long lived in the troposphere, likely sources of boundary layer Br and Cl are autocatalytic oxidation of sea salt halides (the 'Bromine Explosion'), while precursors of free tropospheric BrO and coastal IO probably are short-lived organo-halogen species. At the levels suggested by the available measurements reactive halogen species have a profound effect on tropospheric chemistry: In the polar boundary layer during 'halogen events' ozone is usually completely lost within hours or days. In the free troposphere the effective O(3)-losses due to halogens could be comparable to the known photochemical O(3) destruction. Further interesting consequences include the increase of OH levels and (at low NO(X)) the decrease of the HO(2)/OH ratio in the free troposphere.

  8. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  9. Hydrogen/halogen fuel cell with improved water management system

    SciTech Connect

    Molter, T.M.; LaConti, A.B.

    1989-04-04

    This patent describes an improved method of operating a hydrogen/halogen fuel cell, comprising: a. introducing hydrogen fuel into the anode chamber of a fuel cell; b. introducing a halogen oxidant into the cathode chamber of a fuel cell; c. contacting the hydrogen fuel with the catalytic anode thereby catalytically disassociating the hydrogen into hydrogen ions and electrons; d. transporting the hydrogen ions through a solid polymer electrolyte membrane to the cathode electrode; e. passing the electrons through an external circuit to the cathode; and f. reacting the oxidant with the hydrogen ions in the presence of the catalytic cathode to produce an acid.

  10. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  11. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  12. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  13. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  14. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  15. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  16. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  17. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  18. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  19. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  20. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  1. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  2. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  3. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  5. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  6. Halogenated organic species over the tropical rainforest

    NASA Astrophysics Data System (ADS)

    Gebhardt, S.; Colomb, A.; Hofmann, R.; Williams, J.; Lelieveld, J.

    2008-01-01

    Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and 1000 km of pristine tropical rainforest in Suriname and French Guyana (3-6° N, 51-59° W) in October 2005. In the boundary layer (0-1.4 km), maritime air masses initially low in forest hydrocarbons, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4-1.0 years) in comparison to the transport times (1-2 days), emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of forest contact time and the respective relationship used to determine fluxes from the rainforest during the long dry season. Emission fluxes have been calculated for methyl chloride and chloroform as 9.4 (±4.0 2σ) and 0.34 (0.14± 2σ) μg m-2 h-1, respectively. No significant flux from the rainforest was observed for methyl bromide within the limits of these measurements. The flux of methyl chloride was in general agreement with the flux measured over the same region in March 1998 during the LBA Claire project using a different analytical system. This confirms that the rainforest is a strong source for methyl chloride and suggests that this emission is relatively uniform throughout the year. In contrast the chloroform flux derived here is a factor of three less than previous measurements made in March 1998 suggesting a pronounced ecosystem variation. The differences in chloroform fluxes could not be attributed to either temperature or rainfall changes. The global extrapolation of the derived fluxes led to 1.5 (±0.6 2σ) Tg yr-1 for methyl chloride, which is in the range of the missing source postulated by previous model studies and 55 (±22 2σ) Gg yr-1 for chloroform.

  7. Halogen Atom Ratios in the Springtime Arctic Troposphere as Determined From Measurements of Halogenated Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Keil, A.; Shepson, P. B.

    2005-12-01

    The concentrations of a suite of halogenated volatile organic compounds (HVOCs) were measured near Barrow, Alaska from January to April 2005. The HVOCs are produced from the reaction of ethene and propene with bromine and chlorine atoms, which are important atmospheric oxidants in the Arctic troposphere. Chlorine atom oxidation is responsible for significant decreases in non-methane hydrocarbons and bromine atoms are thought to be responsible for the catalytic destruction of tropospheric ozone and mercury. The HVOC concentrations are used to probe the sources of these halogen atoms and their relative ambient concentrations. We find evidence for local production of the halogen atom precursors, and determine [Br]/[Cl] to be between 20 and 300, somewhat lower than those determined by VOC decay methods.

  8. Ferroelectrics based absorbing layers

    NASA Astrophysics Data System (ADS)

    Hao, Jianping; Sadaune, Véronique; Burgnies, Ludovic; Lippens, Didier

    2014-07-01

    We show that ferroelectrics-based periodic structure made of BaSrTiO3 (BST) cubes, arrayed onto a metal plate with a thin dielectric spacer film exhibit a dramatic enhancement of absorbance with value close to unity. The enhancement is found around the Mie magnetic resonance of the Ferroelectrics cubes with the backside metal layer stopping any transmitted waves. It also involves quasi-perfect impedance matching resulting in reflection suppression via simultaneous magnetic and electrical activities. In addition, it was shown numerically the existence of a periodicity optimum, which is explained from surface waves analysis along with trade-off between the resonance damping and the intrinsic loss of ferroelectrics cubes. An experimental verification in a hollow waveguide configuration with a good comparison with full-wave numerical modelling is at last reported by measuring the scattering parameters of single and dual BST cubes schemes pointing out coupling effects for densely packed structures.

  9. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  10. THz-metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Park, J. W.; Vu, Dinh Lam; Zheng, H. Y.; Rhee, J. Y.; Kim, K. W.; Lee, Y. P.

    2013-03-01

    An ultrabroad-band metamaterial absorber was investigated in mid-IR regime based on a similar model in previous work. The high absorption of metamaterial was obtained in a band of 8-11.7 THz with energy loss distributed in SiO2, which is appropriate potentially for solar-cell applications. A perfect absorption peak was provided by using a sandwich structure with periodical anti-dot pattern in the IR region, getting closed to visible-band metamaterials. The dimensional parameters were examined for the corresponding fabrication. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  11. Radio-absorbing properties of nickel-containing schungite powder

    NASA Astrophysics Data System (ADS)

    Lyn'kov, L. M.; Borbot'ko, T. V.; Krishtopova, E. A.

    2009-05-01

    A nickel-containing shungite powder has been synthesized by means of chemical reduction from aqueous solutions. The chemical composition and radio-absorbing properties of this powder have been studied.

  12. Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Whitehouse, M. J.; John, T.; Nemchin, A. A.; Snape, J. F.; Bland, P. A.; Benedix, G. K.

    2017-01-01

    The Cl isotopic compositions and halogen (Cl, F, Br, and I) abundances in phosphates from eight Martian meteorites, spanning most rock types and ages currently available, have been measured in situ by Secondary Ion Mass Spectrometry (SIMS). Likewise, the distribution of halogens has been documented by x-ray mapping. Halogen concentrations range over several orders of magnitude up to some of the largest concentrations yet measured in Martian samples or on the Martian surface, and the inter-element ratios are highly variable. Similarly, Cl isotope compositions exhibit a larger range than all pristine terrestrial igneous rocks. Phosphates in ancient (>4 Ga) meteorites (orthopyroxenite ALH 84001 and breccia NWA 7533) have positive δ37Cl anomalies (+1.1 to + 2.5 ‰). These samples also exhibit explicit whole rock and grain scale evidence for hydrothermal or aqueous activity. In contrast, the phosphates in the younger basaltic Shergottite meteorites (<600 Ma) have negative δ37Cl anomalies (-0.2 to - 5.6 ‰). Phosphates with the largest negative δ37Cl anomalies display zonation in which the rims of the grains are enriched in all halogens and have significantly more negative δ37Cl anomalies suggestive of interaction with the surface of Mars during the latest stages of basalt crystallization. The phosphates with no textural, major element, or halogen enrichment evidence for mixing with this surface reservoir have an average δ37Cl of - 0.6 ‰, supporting a similar initial Cl isotope composition for Mars, the Earth, and the Moon. Oxidation and reduction of chlorine are the only processes known to strongly fractionate Cl isotopes, both positively and negatively, and perchlorate has been detected in weight percent concentrations on the Martian surface. The age range and obvious mixing history of the phosphates studied here suggest perchlorate formation and halogen cycling via brines, which have been documented on the Martian surface, has been active throughout Martian

  13. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  14. Reconstructing Atmospheric Histories of Halogenated Compounds to Preindustrial Times Using Antarctic Firn Air

    NASA Astrophysics Data System (ADS)

    Shields, J. E.; Mühle, J.; Severinghaus, J. P.; Weiss, R. F.

    2007-12-01

    Atmospheric histories of many halogenated trace gases remain poorly known, hampering understanding of lifetimes and anthropogenic impacts. A profile of air samples dating back to the late 19th century was collected from the firn at the Megadunes site in central Antarctica (80.78° S, 124.5° E) in January 2004. A number of anthropogenic halogenated compounds were measured in these samples using the AGAGE Medusa gas chromatograph-mass spectrometer instrumentation (B. R. Miller et al., in preparation). A firn gas-diffusion forward model based on the work of Schwander et al. (1993) was tuned to CO2 and 15N observations from the same Megadunes site. The age distribution of CO2 in diffusively mixed air samples collected at each depth was approximated by running short pulses through the forward model. The atmospheric histories of a number of halogenated compounds were then reconstructed using the iterative dating technique developed by Trudinger et al. (2002). The modeled age spread at this site is relatively broad, but interstitial air at the close-off zone is comparatively old with a mean age of about 100 years. Reconstructed histories show good agreement with direct measurements, although rapid changes are not well resolved. The mixing ratios of the deepest layer are within the range of preindustrial estimates, most notably for tetrafluoromethane. Schwander, J., J. M. Barnola, C. Andrie, M. Leuenberger, A. Ludin, D. Raynaud, B. Stauffer (1993). The Age of the Air in the Firn and the Ice at Summit, Greenland. J. Geophys. Res. 98(D2): 2831-2838. Trudinger, C. M., D. M. Etheridge, G. A. Sturrock, P. J. Fraser, P. B. Krummel, and A. McCulloch (2004). Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane. J. Geophys. Res. 109(D22310): doi:10.1029/2004JD004932.

  15. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  16. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  17. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  18. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  19. Influence of saponins on the biodegradation of halogenated phenols.

    PubMed

    Kaczorek, Ewa; Smułek, Wojciech; Zdarta, Agata; Sawczuk, Agata; Zgoła-Grześkowiak, Agnieszka

    2016-09-01

    Biotransformation of aromatic compounds is a challenge due to their low aqueous solubility and sorptive losses. The main obstacle in this process is binding of organic pollutants to the microbial cell surface. To overcome these, we applied saponins from plant extract to the microbial culture, to increase pollutants solubility and enhance diffusive massive transfer. This study investigated the efficiency of Quillaja saponaria and Sapindus mukorossi saponins-rich extracts on biodegradation of halogenated phenols by Raoultella planticola WS2 and Pseudomonas sp. OS2, as an effect of cell surface modification of tested strains. Both strains display changes in inner membrane permeability and cell surface hydrophobicity in the presence of saponins during the process of halogenated phenols biotransformation. This allows them to more efficient pollutants removal from the environment. However, only in case of the Pseudomonas sp. OS2 the addition of surfactants to the culture improved effectiveness of bromo-, chloro- and fluorophenols biodegradation. Also introduction of surfactant allowed higher biodegradability of halogenated phenols and can shorten the process. Therefore this suggests that usage of plant saponins can indicate more successful halogenated phenols biodegradation for selected strains.

  20. Double Hole-Lump Interaction between Halogen Atoms.

    PubMed

    Duarte, Darío J R; Peruchena, Nélida M; Alkorta, Ibon

    2015-04-23

    In this paper a theoretical study has been carried out to investigate the nature of the unusual halogen-halogen contacts in the complexes R-X···X-R (with R = -H, -Cl, -F and X = Cl, Br, I). AIM, NBO, and MEP analyses have been used to characterize X···X interactions. Formation of the unusual X···X interactions leads to a significant increase of electron charge density in the bonding region between the two halogen atoms. The geometry and stability of these complexes is mainly due to electrostatic interactions lump(X1) → hole(X2) and lump(X2) → hole(X1) [or equivalently [VS,min(X1) → VS,max(X2) and VS,min(X2) → VS,max(X1)] and the charge transfers LP(X1) → σ*(R-X2) and LP(X2) → σ*(R-X1). In other words, these findings suggest that the electrostatic interactions and the charge transfer play a substantial role in determining the optimal geometry of these complexes, as in conventional halogen bonds, even though the dispersion term is the most important attractive term for all the complexes studied here, save one.

  1. Biochemical studies on the metabolic activation of halogenated alkanes.

    PubMed Central

    Cheeseman, K H; Albano, E F; Tomasi, A; Slater, T F

    1985-01-01

    This paper reviews recent investigations by Slater and colleagues into the metabolic activation of halogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted that free radical intermediates are involved in the toxicity of many such compounds through mechanisms including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The enzymic mechanism of the production of such free radicals and their subsequent reactions with biological molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined techniques provide considerable insight into the process of metabolic activation of halogenated compounds. It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and may be of general importance. However, while these studies have provided much information on the biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be solved. PMID:3007102

  2. The halogens in Luna 16 and Luna 20 soils.

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1973-01-01

    The halogens, uranium, and lithium contents found in Luna 16, Luna 20, and some Apollo lunar soil samples are discussed. Chlorine and phosphorus pentoxide do not appear to exhibit the same correlation in soils from the Luna 20 and possibly the Luna 16 sites as they do in samples from the Apollo 11-15 sites.

  3. Primary cells utilize halogen-organic charge transfer complex

    NASA Technical Reports Server (NTRS)

    Gutmann, F.; Hermann, A. M.; Rembaum, A.

    1966-01-01

    Electrochemical cells with solid state components employ charge transfer complexes or donor-acceptor complexes in which the donor component is an organic compound and the acceptor component is a halogen. A minor proportion of graphite added to these composition helps reduce the resistivity.

  4. Photoproduction of halogens using platinized TiO2

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E.

    1981-01-01

    Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.

  5. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos.

    PubMed

    Fang, Mingliang; Guo, Jiehong; Chen, Da; Li, An; Hinton, David E; Dong, Wu

    2016-10-01

    Halogenated carbazoles are increasingly identified as a novel class of environmental contaminants. However, no in vivo acute toxicity information on those compounds was available. In the present study, an in vivo zebrafish embryonic model (Danio rerio) was used to investigate the developmental toxicity of those halogenated carbazoles. The results suggested that acute toxicity was structure-dependent. Two of the 6 tested carbazoles, 2,7-dibromocarbazole (27-DBCZ) and 2,3,6,7-tetrachlorocarbazole, showed obvious developmental toxicity at nanomolar levels. The typical phenotypes were similar to dioxin-induced cardiotoxicity, including swollen yolk sac, pericardial sac edema, elongated and unlooped heart, and lower jaw shortening. During embryonic development 27-DBCZ also induced a unique pigmentation decrease. Gene expression and protein staining of cytochrome P4501A (CYP1A) showed that both halogenated carbazoles could induce CYP1A expression at the micromolar level and primarily in the heart area, which was similar to dioxin activity. Further, aryl hydrocarbon receptor-(AhR)2 gene knockdown with morpholino confirmed that the acute cardiotoxicity is AhR-dependent. In conclusion, the results demonstrate that halogenated carbazoles represent yet another class of persistent organic pollutants with dioxin-like activity in an in vivo animal model. Environ Toxicol Chem 2016;35:2523-2529. © 2016 SETAC.

  6. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  7. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted...

  8. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted...

  9. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted...

  10. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  11. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  12. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. Link to an amendment published at 79 FR 34638, June 18, 2014. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical...

  13. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted...

  14. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  15. HALOGEN: a tool for fast generation of mock halo catalogues

    NASA Astrophysics Data System (ADS)

    Avila, Santiago; Murray, Steven G.; Knebe, Alexander; Power, Chris; Robotham, Aaron S. G.; Garcia-Bellido, Juan

    2015-06-01

    We present a simple method of generating approximate synthetic halo catalogues: HALOGEN. This method uses a combination of second-order Lagrangian Perturbation Theory (2LPT) in order to generate the large-scale matter distribution, analytical mass functions to generate halo masses, and a single-parameter stochastic model for halo bias to position haloes. HALOGEN represents a simplification of similar recently published methods. Our method is constrained to recover the two-point function at intermediate (10 h-1 Mpc < r < 50 h-1 Mpc) scales, which we show is successful to within 2 per cent. Larger scales (˜100 h-1 Mpc) are reproduced to within 15 per cent. We compare several other statistics (e.g. power spectrum, point distribution function, redshift space distortions) with results from N-body simulations to determine the validity of our method for different purposes. One of the benefits of HALOGEN is its flexibility, and we demonstrate this by showing how it can be adapted to varying cosmologies and simulation specifications. A driving motivation for the development of such approximate schemes is the need to compute covariance matrices and study the systematic errors for large galaxy surveys, which requires thousands of simulated realizations. We discuss the applicability of our method in this context, and conclude that it is well suited to mass production of appropriate halo catalogues. The code is publicly available at https://github.com/savila/halogen.

  16. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOEpatents

    Farcasiu, Malvina; Petrosius, Steven C.

    1994-01-01

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  17. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    PubMed Central

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-01-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis. PMID:27708371

  18. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-10-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.

  19. Metamaterial Resonant Absorbers for Terahertz Sensing

    DTIC Science & Technology

    2015-12-01

    and their periodic nature , finite element (FE) modeling is the preferable means of designing metamaterials. In order to use metamaterials in sensors ...will incorporate the metamaterial absorber design of this research into a more efficient, cost effective, bi-material THz sensor that can be employed...in a variety of naval applications. 14. SUBJECT TERMS terahertz sensors , metamaterials, uncooled detectors 15. NUMBER OF PAGES 73 16

  20. Down hole shock absorber

    SciTech Connect

    Coston, H.A.

    1990-03-05

    This patent describes a well pump system. It comprises: a sucker rod string; a pump reciprocable in response to the string; a cylinder; a piston disposed for vertical reciprocal motion within the cylinder; means for biasing the cylinder and the piston against compressive motion; means for pneumatically relieving pressure in the cylinder during compressive motion; and means for preventing relative rotational motion and for limiting relative expansive motion between the cylinder and the piston; the cylinder and the piston being coaxially mounted in the sucker rod string proximate and above the pump to buffer forces transmitted through the string.

  1. On the formation of tropical rings of atomic halogens: Causes and implications

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Fernandez, Rafael P.

    2016-03-01

    Halogens produced by ocean biological and photochemical processes reach the tropical tropopause layer (TTL), where cold temperatures and the prevailing low ozone abundances favor the diurnal photochemical enhancement of halogen atoms. Under these conditions atomic bromine and iodine are modeled to be the dominant inorganic halogen species in the sunlit TTL, surpassing the abundance of the commonly targeted IO and BrO radicals. We suggest that due to the rapid photochemical equilibrium between halogen oxides and halogen atoms a natural atmospheric phenomenon evolves, which we have collectively termed "tropical rings of atomic halogens." We describe the main causes controlling the modeled appearance and variability of these superposed rings of bare bromine and iodine atoms that circle the tropics following the Sun. Some potential implications for atmospheric oxidizing capacity are also explored. Our model results suggest that if experimentally confirmed, the extent and intensity of the halogen rings would directly respond to changes in oceanic halocarbon emissions, their atmospheric transport, and photochemistry.

  2. Tropospheric impacts of volcanic halogen emissions: first simulations of reactive halogen chemistry in the Eyjafjallajökull eruption plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2013-04-01

    Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is

  3. Core Halogenation as a Construction Principle in Tuning the Material Properties of Tetraazaperopyrenes.

    PubMed

    Hahn, Lena; Maass, Friedrich; Bleith, Tim; Zschieschang, Ute; Wadepohl, Hubert; Klauk, Hagen; Tegeder, Petra; Gade, Lutz H

    2015-12-01

    A detailed study on the effects of core halogenation of tetraazaperopyrene (TAPP) derivatives is presented. Its impact on the solid structure, as well as the photophysical and electrochemical properties, has been probed by the means of X-ray crystallography, UV/Vis and fluorescence spectroscopy, high-resolution electron energy loss spectroscopy (HREELS), cyclic voltammetry (CV), and DFT modeling. The aim was to assess the potential of this approach as a construction principle for organic electron-conducting materials of the type studied in this work. Although halogenation leads to a stabilization of the LUMOs compared to the unsubstituted parent compound, the nature of the halide barely affects the LUMO energy while strongly influencing the HOMO energies. In terms of band-gap engineering, it was demonstrated that the HOMO-LUMO gap is decreased by substitution of the TAPP core with halides, the effect being found to be most pronounced for the iodinated derivative. The performance of the recently reported core-fluorinated and core-iodinated TAPP derivatives in organic thin-film transistors (TFTs) was investigated on both a glass substrate, as well as on a flexible plastic substrate (PEN). Field-effect mobilities of up to 0.17 cm(2)  Vs(-1) and on/off current ratio of >10(6) were established.

  4. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China.

    PubMed

    Hu, Mengyang; Li, Jun; Zhang, Beibei; Cui, Qinglan; Wei, Si; Yu, Hongxia

    2014-09-15

    Thirteen samples of seawater were collected from Yellow Sea and East China Sea near Qingdao, Lianyungang, and Xiamen, China. They were analyzed for halogenated organophosphorus flame retardants (OPFRs). The compounds selected for detection were Tris(2-chloroethyl) phosphate (TCEP), Tris(2-chloroisopropyl) phosphate (TCPP), Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), and Tris(2,3-dibromopropyl) phosphate (TDBPP). The total concentrations ranged from 91.87 to 1392 ng/L and the mean concentrations of these four chemicals were 134.44, 84.12, 109.28, and 96.70 ng/L, respectively. TCEP exhibited the highest concentrations, although concentrations of TCPP and TDCPP were also fairly high in Lianyungang and Xiamen. Generally, Lianyungang was the most heavily polluted district, with very high concentrations of TCEP at LYG-2 (550.54 ng/L) and LYG-4 (617.92 ng/L). The main sources of halogenated OPFRs were municipal and industrial effluents of wastewater treatment plants in the nearby economic and industrial zones.

  5. Curing depth of composite resin light cured by LED and halogen light-curing units

    NASA Astrophysics Data System (ADS)

    Calixto, L. R.; Lima, D. M.; Queiroz, R. S.; Rastelli, A. N. S.; Bagnato, V. S.; Andrade, M. F.

    2008-11-01

    The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37°C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA’s test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.

  6. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  7. Improvement Of The Helmholtz Absorber

    NASA Technical Reports Server (NTRS)

    Morrow, Duane L.

    1992-01-01

    Helmholtz-resonator system improved to enable it to absorb sound at more than one frequency without appreciable loss of effectiveness at primary frequency. Addition of annular cavities enables absorption of sound at harmonic frequencies in addition to primary frequency. Improved absorber designed for use on structures of high transmission loss. Applied to such machines as fixed-speed engines and fans.

  8. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  9. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  10. Performance evaluation of CFRP-rubber shock absorbers

    SciTech Connect

    Lamanna, Giuseppe Sepe, Raffaele

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  11. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  12. All-metal clusters that mimic the chemistry of halogens.

    PubMed

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-07

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.

  13. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  14. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  15. An introduction to absorbent dressings.

    PubMed

    Jones, Menna Lloyd

    2014-12-01

    Exudate bathes the wound bed with a serous fluid that contains essential components that promote wound healing. However, excess exudate is often seen as a challenge for clinicians. Absorbent dressings are often used to aid in the management of exudate, with the aim of providing a moist but unmacerated environment. With so many different types of absorbent dressings available today-alongside making a holistic assessment-it is essential that clinicians also have the knowledge and skill to select the most appropriate absorbent dressing for a given patient.

  16. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  17. Toward the development of the potential with angular distortion for halogen bond: a comparison of potential energy surfaces between halogen bond and hydrogen bond.

    PubMed

    Wang, Lili; Gao, Jun; Bi, Fuzhen; Song, Bo; Liu, Chengbu

    2014-10-02

    As noncovalent intermolecular interactions, hydrogen bond (HB) and halogen bond (XB) are attracting increasing attention. In this work, the potential energy surfaces (PESs) of hydrogen and halogen bonds are compared. Twelve halogen-bonded and three hydrogen-bonded models are scanned for analysis using the MP2 level of theory. This work indicates that potential energy surfaces of both HB and XB have angular distortion. The potential well of XB is narrower than that of HB. With the elongation of the bond length, the potential energy surfaces get flatter. The best fitting functions for angular distortion and the flattening character of angular terms are also combined into a modified Buckingham potential. The testing results show that the essential features of the PES, including angular distortion and flattening character, have been reproduced. These results provide a better understanding of halogen and hydrogen bonds and the optimization of halogen bond force fields.

  18. On the physical nature of halogen bonds: a QTAIM study.

    PubMed

    Syzgantseva, Olga A; Tognetti, Vincent; Joubert, Laurent

    2013-09-12

    In this article, we report a detailed study on halogen bonds in complexes of CHCBr, CHCCl, CH2CHBr, FBr, FCl, and ClBr with a set of Lewis bases (NH3, OH2, SH2, OCH2, OH(-), Br(-)). To obtain insight into the physical nature of these bonds, we extensively used Bader's Quantum Theory of Atoms-in-Molecules (QTAIM). With this aim, in addition to the examination of the bond critical points properties, we apply Pendás' Interacting Quantum Atoms (IQA) scheme, which enables rigorous and physical study of each interaction at work in the formation of the halogen-bonded complexes. In particular, the influence of primary and secondary interactions on the stability of the complexes is analyzed, and the roles of electrostatics and exchange are notably discussed and compared. Finally, relationships between QTAIM descriptors and binding energies are inspected.

  19. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  20. Halogens and the Chemistry of the Free Troposphere

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    The role of halogens in both the marine boundary layer and the stratosphere has long been recognized, while their role in the free troposphere is often not considered in global chemical models. However, a careful examination of free-tropospheric chemistry constrained by observations using a full chemical data assimilation system shows that halogens do play a significant role in the free troposphere. In particular, the chlorine initiation of methane oxidation in the free troposphere can contribute more than 10%, and in some regions up to 50%, of the total rate of initiation. The initiation of methane oxidation by chlorine is particularly important below the polar vortex and in northern mid-latitudes. Likewise, the hydrolysis of BrONO2 alone can contribute more than 35% of the HNO3 production rate in the free-troposphere.

  1. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  2. On the mechanism of silicon activation by halogen atoms.

    PubMed

    Soria, Federico A; Patrito, Eduardo M; Paredes-Olivera, Patricia

    2011-03-15

    Despite the widespread use of chlorinated silicon as the starting point for further functionalization reactions, the high reactivity of this surface toward a simple polar molecule such as ammonia still remains unclear. We therefore undertook a comprehensive investigation of the factors that govern the reactivity of halogenated silicon surfaces. The reaction of NH3 was investigated comparatively on the Cl-Si(100)-2 × 1, Br-Si(100)-2 × 1, H-Si(100)-2 × 1, and Si(100)-2 × 1 surfaces using density functional theory. The halogenated surfaces show considerable activation with respect to the hydrogenated surface. The reaction on the halogenated surfaces proceeds via the formation of a stable datively bonded complex in which a silicon atom is pentacoordinated. The activation of the halogenated Si(100)-2 × 1 surfaces toward ammonia arises from the large redistribution of charge in the transition state that precedes the breakage of the Si-X bond and the formation of the Si-NH2 bond. This transition state has an ionic nature of the form Si-NH3(+)X(-). Steric effects also play an important role in surface reactivity, making brominated surfaces less reactive than chlorinated surfaces. The overall activation-energy barriers on the Cl-Si(100)-2 × 1 and Br-Si(100)-2 × 1 surfaces are 12.3 and 19.9 kcal/mol, respectively, whereas on the hydrogenated Si(100)-2 × 1 surface the energy barrier is 38.3 kcal/mol. The reaction of ammonia on the chlorinated surface is even more activated than on the bare Si(100)-2 × 1 surface, for which the activation barrier is 21.3 kcal/mol. Coadsorption effects in partially aminated surfaces and in the presence of reaction products increase activation-energy barriers and have a blocking effect for further reactions of NH3.

  3. Halogen Bonding in Iodo-perfluoroalkane/Pyridine Mixtures

    NASA Astrophysics Data System (ADS)

    Fan, Haiyan; Eliason, Jeffrey K.; Moliva A., C. Diane; Olson, Jason L.; Flancher, Scott M.; Gealy, M. W.; Ulness, Darin J.

    2009-12-01

    Mole fraction and temperature studies of halogen bonding between 1-iodo-perfluorobutane, 1-iodo-perfluorohexane, or 2-iodo-perfluoropropane and pyridine were performed using noisy light-based coherent anti-Stokes Raman scattering (I(2) CARS) spectroscopy. The ring breathing mode of pyridine both is highly sensitive to halogen bonding and provides a strong I(2) CARS signal. As the lone pair electrons from the pyridinyl nitrogen interact with the σ-hole on the iodine from the iodo-perfluoroalkane, the ring breathing mode of pyridine blue-shifts proportionately with the strength of the interaction. The measured blue shift for halogen bonding of pyridine and all three iodo-perfluoroalkanes is comparable to that for hydrogen bonding between pyridine and water. 2-Iodo-perfluoropropane displays thermodynamic behavior that is different from that of the 1-iodo-perfluoroalkanes, which suggests a fundamental difference at the molecular level. A potential explanation of this difference is offered and discussed.

  4. Chemical Action of Halogenated Agents in Fire Extinguishing

    NASA Technical Reports Server (NTRS)

    Belles, Frank E.

    1955-01-01

    The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.

  5. Bacterial dehalogenation of halogenated alkanes and fatty acids.

    PubMed Central

    Omori, T; Alexander, M

    1978-01-01

    Sewage samples dehalogenated 1,9-dichloronane, 1-chloroheptane, and 6-bromohexanoate, but an organism able to use 1,9-dichlorononane as the sole carbon source could not be isolated from these samples. Resting cells of Pseudomonas sp. grown on n-undecane, but not cells grown on glycerol, dehalogenated 1,9-dichlorononane in the presence of chloramphenicol. Resting cells of five other n-undecane-utilizing bacteria cleaved the halogen from dichlorononane and 6-bromohexanoate, and four dehalogenated 1-chloroheptane; however, none of these organisms used 1,9-dichlorononane for growth. By contrast, four benzoate-utilizing bacteria removed bromine from 6-bromohexanoate but had little or no activity on the chlorinated hydrocarbons. Incubation of sewage with 1,9-dichlorononane increased its subsequent capacity to dehalogenate 1,9-dichlorononane and 6-bromohexanoate but not 1-chloroheptane. A soil isolate could dehalogenate several dichloralkanes, three halogenated heptanes, and halogen-containing fatty acids. An enzyme preparation from this bacterium released chloride from 1,9-dichlorononane. PMID:655703

  6. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  7. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Vander Zanden, Crystal M; Billman, M Marie; Ho, P Shing; Rappé, Anthony K

    2015-07-23

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry--its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as an accurate computational tool that can be applied, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular-based materials.

  8. Halogen bonding (X-bonding): A biological perspective

    PubMed Central

    Scholfield, Matthew R; Zanden, Crystal M Vander; Carter, Megan; Ho, P Shing

    2013-01-01

    The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials. PMID:23225628

  9. Integrating carbon-halogen bond formation into medicinal plant metabolism.

    PubMed

    Runguphan, Weerawat; Qu, Xudong; O'Connor, Sarah E

    2010-11-18

    Halogenation, which was once considered a rare occurrence in nature, has now been observed in many natural product biosynthetic pathways. However, only a small fraction of halogenated compounds have been isolated from terrestrial plants. Given the impact that halogenation can have on the biological activity of natural products, we reasoned that the introduction of halides into medicinal plant metabolism would provide the opportunity to rationally bioengineer a broad variety of novel plant products with altered, and perhaps improved, pharmacological properties. Here we report that chlorination biosynthetic machinery from soil bacteria can be successfully introduced into the medicinal plant Catharanthus roseus (Madagascar periwinkle). These prokaryotic halogenases function within the context of the plant cell to generate chlorinated tryptophan, which is then shuttled into monoterpene indole alkaloid metabolism to yield chlorinated alkaloids. A new functional group-a halide-is thereby introduced into the complex metabolism of C. roseus, and is incorporated in a predictable and regioselective manner onto the plant alkaloid products. Medicinal plants, despite their genetic and developmental complexity, therefore seem to be a viable platform for synthetic biology efforts.

  10. Guided tissue regeneration. Absorbable barriers.

    PubMed

    Wang, H L; MacNeil, R L

    1998-07-01

    Over the past 15 years, techniques aimed at regeneration of lost periodontal tissue have become widely used and accepted in clinical practice. Among these techniques are those which use the principles of guided tissue regeneration (GTR), wherein barriers (i.e., membranes) are used to control cell and tissue repopulation of the periodontal wound. A variety of non-absorbable and absorbable barriers have been developed and used for this purpose, with a trend in recent years toward increased use of absorbable GTR materials. This article describes the evolution of absorbable barrier materials and overview materials available for clinical use today. In addition, advantages and disadvantages of these materials are discussed, as well as possible new developments in barrier-based GTR therapy.

  11. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada.

    PubMed

    Leiker, Thomas J; Abney, Sonja R; Goodbred, Steven L; Rosen, Michael R

    2009-03-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596 microg kg(-1) wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (<51 microg kg(-1) ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  12. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, Michael R.

    2009-01-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596????g kg- 1 wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (< 51????g kg- 1 ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  13. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  14. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  15. Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling

    NASA Astrophysics Data System (ADS)

    Thierry, Pauline; Villemant, Benoit; Caron, Benoit

    2016-04-01

    Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to

  16. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites

    NASA Astrophysics Data System (ADS)

    Kendrick, Mark A.; Honda, Masahiko; Pettke, Thomas; Scambelluri, Marco; Phillips, David; Giuliani, Andrea

    2013-03-01

    excess 40Ar*. Three of six serpentinites analysed for helium also have measurable excess 4He contents that cannot be explained by in situ production. The data show that serpentinites trap noble gases and halogens that originate from seawater, organic matter and diverse crustal lithologies. Combined with previous analyses of metamorphosed serpentinites, the new data suggest that approximately 60-70% of the 36Ar entering subduction zones in serpentinites is lost from chrysotile and/or antigorite and could potentially escape through the forearc. An additional, ˜20-30% of the 36Ar entering subduction zones in serpentinites is lost during antigorite breakdown and may be cycled through the arc or back-arc, and ˜1-10% of the 36Ar entering subduction zones in serpentinites may be subducted into the deeper mantle. The data demonstrate decoupling of noble gases, halogens and water during subduction and suggest that subduction-zone fluid fluxes can produce especially high concentrations of noble gases and iodine in newly formed forearc serpentinites. The distinctive I/Cl enrichment of forearc serpentinites suggest that halogen abundance ratios provide a plausible means for inferring the geotectonic setting of serpentinisation in ophiolite samples. The exceptional Cl, Br, I and noble gas concentrations of serpentinites, the potential subduction of the forearc serpentinites and the stability of serpentine minerals to mantle depths of >200 km, imply that serpentinites could dominate the deep recycling budgets of both the heavy halogens and atmospheric noble gases.

  17. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  18. An investigation of halogens in Izmit hazardous and clinical waste incinerator.

    PubMed

    Cetin, Senay; Veli, Sevil; Ayberk, Savaş

    2004-01-01

    In the combustion facilities, halogens (Cl, F, Br, I) should be considered with regard to the control of the compounds such as polychlorinated dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), halogenated polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and volatile heavy metals formed as a result of incomplete combustion and caused adverse environmental effects. In this study halogens were observed in Izmit Hazardous and Clinical Waste Incinerator (IZAYDAS). Halogen contents of the combustion menu, flue gas, fly ash, bottom ash and filter cake were measured and their distributions in these exit streams were determined. Results showed that the major part of the halogens was partitioned to solid residues, i.e., bottom ash and filter cake which represents the removal by wet scrubbers. Fly ash and flue gas fractions of halogens were much lower due to the reduced formation of volatile compounds.

  19. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  20. Perfect selective metamaterial solar absorbers.

    PubMed

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  1. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  2. Halogens in diamonds and the origin of their variability

    NASA Astrophysics Data System (ADS)

    Burgess, R.; Cartigny, P.; Harris, J. W.

    2005-12-01

    Micro-inclusions in fibrous diamonds provide unique samples of deep fluids from the sub-continental lithospheric mantle. Investigation of the isotopic and chemical composition of these fluids in diamonds that have formed at different epochs and from different geographical regions has the potential to trace the time-resolved, global evolution of volatiles in the mantle. Previous studies have shown that the isotopic composition of volatiles such as C and N and noble gases in micro-inclusion-bearing diamonds from Africa, Siberia and Canada record a clear upper mantle signature. However the fluids show strong chemical fractionations that include the halogens, a group of elements not normally considered to be fractionated by mantle processes, and yet showing Br/Cl and I/Cl that exceed crustal values. The extreme enrichment of halogens in the fluids, up to four orders of magnitude higher than present -day upper mantle values suggests that the fluids have accumulated from large volumes of the mantle and therefore unlikely to represent local heterogeneities. The formation of carbonatitic-hydrous silicic fluid mixtures is associated with major K/Cl fractionation and minor Br/Cl and I/Cl fractionation from the MORB ratios typified by diamonds from Africa, Siberia and a few Canadian diamonds. In contrast, carbonatitic-brine mixtures are typified by relatively constant K/Cl with major Br/Cl and I/Cl variations and are predominant in Canadian diamonds. The variations in K/Br/I/Cl between diamonds from Canada, Africa and Siberia can not be explained by crystallisation of a single Cl-bearing mineral phase, and the upper mantle He, Ar, C and N isotope ratios appear to rule-out the presence of recycled seawater or crustal halogens in the mantle fluids. In Siberian and African diamonds minor halogen fractionation may occur during partitioning controlled by halide ion radius between a hydrous silicic and carbonatitic melts. Much larger halogen fractionation is present in most

  3. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development.

    PubMed

    Xu, Zhijian; Yang, Zhuo; Liu, Yingtao; Lu, Yunxiang; Chen, Kaixian; Zhu, Weiliang

    2014-01-27

    Halogen bond has attracted a great deal of attention in the past years for hit-to-lead-to-candidate optimization aiming at improving drug-target binding affinity. In general, heavy organohalogens (i.e., organochlorines, organobromines, and organoiodines) are capable of forming halogen bonds while organofluorines are not. In order to explore the possible roles that halogen bonds could play beyond improving binding affinity, we performed a detailed database survey and quantum chemistry calculation with close attention paid to (1) the change of the ratio of heavy organohalogens to organofluorines along the drug discovery and development process and (2) the halogen bonds between organohalogens and nonbiopolymers or nontarget biopolymers. Our database survey revealed that (1) an obviously increasing trend of the ratio of heavy organohalogens to organofluorines was observed along the drug discovery and development process, illustrating that more organofluorines are worn and eliminated than heavy organohalogens during the process, suggesting that heavy halogens with the capability of forming halogen bonds should have priority for lead optimization; and (2) more than 16% of the halogen bonds in PDB are formed between organohalogens and water, and nearly 20% of the halogen bonds are formed with the proteins that are involved in the ADME/T process. Our QM/MM calculations validated the contribution of the halogen bond to the binding between organohalogens and plasma transport proteins. Thus, halogen bonds could play roles not only in improving drug-target binding affinity but also in tuning ADME/T property. Therefore, we suggest that albeit halogenation is a valuable approach for improving ligand bioactivity, more attention should be paid in the future to the application of the halogen bond for ligand ADME/T property optimization.

  4. The halogen bond in the design of functional supramolecular materials: recent advances.

    PubMed

    Priimagi, Arri; Cavallo, Gabriella; Metrangolo, Pierangelo; Resnati, Giuseppe

    2013-11-19

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  5. Theoretical study of the complementarity in halogen-bonded complexes involving nitrogen and halogen as negative sites.

    PubMed

    Esrafili, Mehdi D; Vakili, Mahshad; Solimannejad, Mohammad

    2014-02-01

    This article analyzes the interplay between X···N and X···X halogen bonds interactions in NCX···NCX···XCH3 complexes, where X=Cl and Br. To better understand the properties of these systems, the corresponding dyads were also studied. These effects are studied theoretically in terms of geometric and energetic features of the complexes, which are computed by ab initio methods. The estimated values of cooperative energy (E coop) are all negative with much larger E coop in absolute value for the NCBr···NCBr···BrCH3 system. The effect of X···N on the properties of X···X is larger than that of X···X bonding on the properties of X···N. These results can be understood in terms of the electrostatic potentials of the negative sites with which the positive regions on the halogens are interacting. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the energy decomposition analysis.

  6. Mixture Toxicity of SN2-Reactive Soft Electrophiles: 3. Evaluation of Ethyl α-Halogenated Acetates with α-Halogenated Acetonitriles

    PubMed Central

    Pöch, G.; Schultz, T. W.

    2014-01-01

    Mixture toxicity for each of four ethyl α-halogenated acetates (ExACs) with each of three α-halogenated acetonitriles (xANs) was assessed. Inhibition of bioluminescence in Vibrio fischeri was measured after 15, 30 and 45-min of exposure. Concentration-response curves were developed for each chemical at each exposure duration and used to develop predicted concentration-response curves for the dose-addition and independence models of combined effect. Concentration-response curves for each mixture and each exposure duration were then evaluated against the predicted curves, using three metrics per model: 1) EC50-based additivity quotient (AQ) or independence quotient (IQ) values, 2) mean AQ (mAQ) or mean IQ (mIQ) values, calculated by averaging the EC25, EC50 and EC75 AQ or IQ values, and 3) deviation values from additivity (DV-A) or independence (DV-I). Mixture toxicity for ethyl iodoacetate (EIAC) was dose-additive with each of the xANs at all exposure durations and was often consistent with independence as well. The same was true for mixture toxicity of ethyl bromoacetate (EBAC) with each xAN. However, for the two more slowly reactive chemicals ethyl chloroacetate (ECAC) and ethyl fluoroacetate (EFAC) mixture toxicity with each xAN only became consistent with dose-addition upon increasing exposure duration. Consistency with independence for both ECAC and EFAC with the xANs was essentially limited to the EC50-IQ metric; thereby demonstrating the utility of calculating the mean quotient (mAQ, mIQ) and deviation value (DV-A, DV-I) metrics. Upon review of these findings with those from the first two papers in the series, the results suggest that instances in which mixture toxicity was not consistent with dose-addition relate: 1) to differences in the capability of the chemicals to form strong H-bonds with water and 2) to differences in relative reactivity and time-dependent toxicity levels of the chemicals. PMID:24368709

  7. Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples.

    PubMed

    Nakamoto, Tomoshi; Oura, Yasuji; Ebihara, Mitsuru

    2007-09-01

    Halogens (fluorine, chlorine, bromine and iodine) were determined by activation analyses (neutron activation analysis (NAA), photon activation analysis (PAA) and prompt gamma-ray analysis (PGA)) for geological and cosmochemical solid samples. We studied how each analytical method was for the determination of trace amounts of halogens in rock samples. Radiochemical NAA (RNAA) showed the highest analytical reliability for three halogens (chlorine, bromine and iodine), whereas a set of four halogens (fluorine, chlorine, bromine and iodine) could be determined in principle by radiochemical PAA (RPAA) from a single specimen. Although it is a non-destructive method, PGA showed an analytical sensitivity for chlorine comparable to those of RNAA and RPAA.

  8. Vibration and thermal vacuum qualification test results for a low-voltage tungsten-halogen light

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1991-01-01

    The results of a space flight qualification test program for a low-voltage, quartz tungsten-halogen light are presented. The test program was designed to qualify a halogen light for use in the Pool Boiling Experiment, a Get Away Special (GAS) payload that will be flown in the space shuttle payload bay. Vibration and thermal vacuum tests were performed. The test results indicated that the halogen light will survive the launch and ascent loads, and that the convection-free environment associated with the GAS payload system will not detrimentally affect the operation of the halogen light.

  9. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    PubMed

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  10. Spatial Gradients in Halogen Oxides Across the North Slope of Alaska Indicate That Halogen Activated Airmasses are Spatially Large

    NASA Astrophysics Data System (ADS)

    Simpson, W. R.; Hoenninger, G. S.; Platt, U.

    2005-12-01

    Reactive halogens are important oxidizers in the polar atmosphere during springtime. They deplete tropospheric ozone, oxidize hydrocarbons, and oxidize gas-phase mercury, causing it to deposit to the snow pack. We want to understand the mechanism by which halides in on snow/ice crystals and/or in aerosol particles are converted to reactive halogen species. This understanding can assist in prediction of mercury deposition and how that deposition depends on environmental variables like sea-ice extent and temperature. This mechanistic knowledge is particularly important in the context of a changing Arctic system. To study halogen activation, we are working in the Studies of the Northern Alaskan Coastal System (SNACS) project and here show results from 2005 including the LEADX experiment. A number of studies have implicated leads (cracks in the sea ice) as a source of halogen activation, but it is unclear if halogens are directly activated on ice surfaces at the lead (e.g. frost flowers) or if the lead is less directly involved. To address the role of leads in halogen activation, we measured bromine monoxide (BrO) using Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Barrow and Atqasuk, Alaska over a four-month period. The locations of these sites, either on the coast near a recurring lead in the case of Barrow, or 100km inland in the case of Atqasuk provides an ability to measure spatial gradients on the 100km length scale. In addition, the Barrow instrument was the first implementation of fully automated two dimensional MAX-DOAS where both elevation and azimuth were scanned. Because the MAX-DOAS method typically detects path-averaged BrO amounts between the instrument and a range of approximately 10km, differences in BrO between viewing azimuths allows us to determine short-length scale BrO gradients. From the 2-D MAX-DOAS observations at Barrow, we find that there are very small if any spatial gradients on the 10km length scale. From the

  11. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  12. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  13. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  14. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  15. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  16. How do halogen bonds (S-O⋯I, N-O⋯I and C-O⋯I) and halogen-halogen contacts (C-I⋯I-C, C-F⋯F-C) subsist in crystal structures? A quantum chemical insight.

    PubMed

    Pandiyan, B Vijaya; Deepa, P; Kolandaivel, P

    2017-01-01

    Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen-halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of -9.58 kcal mol(-1) and -7.10 kcal mol(-1) observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen-halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures. Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.

  17. The physiological and ecological roles of volatile halogen production by marine diatoms

    NASA Astrophysics Data System (ADS)

    Hughes, Claire; Sun, Shuo

    2015-04-01

    Sea-to-air halogen flux is known to have a major impact on catalytic ozone cycling and aerosol formation in the troposphere. The biological production of volatile organic (e.g. bromoform, diiodomethane) and reactive inorganic halogens (e.g. molecular iodine) is believed to play an important role in mediating halogen emissions from the marine environment. Marine diatoms in particular are known to produce the organic and inorganic volatile halogens at high rates in pelagic waters and sea-ice systems. The climate-induced changes in diatom communities that have already been observed and are expected to occur throughout the world's oceans as warming progresses are likely to alter sea-to-air halogen flux. However, we currently have insufficient understanding of the physiological and ecological functions of volatile halogen production to develop modelling tools that can predict the nature and magnitude of the impact. The results of a series of laboratory studies aimed at establishing the physiological and ecological role of volatile halogen production in two marine polar diatoms (Thalassiosira antarctica and Porosira glacialis) will be described in this presentation. We will focus on our work investigating how the activity of the haloperoxidases, a group of enzymes known to be involved in halogenation reactions in marine organisms, is altered by environmental conditions. This will involve exploring the antioxidative defence role proposed for marine haloperoxidases by showing specifically how halogenating activity varies with photosynthetic rate and changes in the ambient light conditions in the two model marine diatoms. We will also present results from our experiments designed to investigate how volatile halogen production is impacted by and influences diatom-bacterial interactions. We will discuss how improved mechanistic understanding like this could pave the way for future volatile halogen-ecosystem model development.

  18. Revealing halogen bonding interactions with anomeric systems: an ab initio quantum chemical studies.

    PubMed

    Lo, Rabindranath; Ganguly, Bishwajit

    2015-02-01

    A computational study has been performed using MP2 and CCSD(T) methods on a series of O⋯X (X=Br, Cl and I) halogen bonds to evaluate the strength and characteristic of such highly directional noncovalent interactions. The study has been carried out on a series of dimeric complexes formed between interhalogen compounds (such as BrF, BrCl and BrI) and oxygen containing electron donor molecule. The existence and consequences of the anomeric effect of the electron donor molecule has also been investigated through an exploration of halogen bonding interactions in this halogen bonded complexes. The ab initio quantum chemical calculations have been employed to study both the nature and directionality of the halogen molecules toward the sp(3) oxygen atom in anomeric systems. The presence of anomeric nO→σ*CN interaction involves a dominant role for the availability of the axial and equatorial lone pairs of donor O atom to participate with interhalogen compounds in the halogen-bonded complexes. The energy difference between the axial and equatorial conformers with interhalogen compounds reaches up to 4.60 kJ/mol, which however depends upon the interacting halogen atoms and its attaching atoms. The energy decomposition analysis further suggests that the total halogen bond interaction energies are mainly contributed by the attractive electrostatic and dispersion components. The role of substituents attached with the halogen atoms has also been evaluated in this study. With the increase of halogen atom size and the positive nature of σ-hole, the halogen atom interacted more with the electron donor atom and the electrostatic contribution to the total interaction energy enhances appreciably. Further, noncovalent interaction (NCI) studies have been carried out to locate the noncovalent halogen bonding interactions in real space.

  19. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  20. Vibration absorbers for chatter suppression: A new analytical tuning methodology

    NASA Astrophysics Data System (ADS)

    Sims, Neil D.

    2007-04-01

    Vibration absorbers have been widely used to suppress undesirable vibrations in machining operations, with a particular emphasis on avoiding chatter. However, it is well known that for vibration absorbers to function effectively their stiffness and damping must be accurately tuned based upon the natural frequency of the vibrating structure. For general vibration problems, suitable tuning strategies were developed by Den Hartog and Brock over 50 years ago. However, the special nature of the chatter stability problem means that this classical tuning methodology is no longer optimal. Consequently, vibration absorbers for chatter mitigation have generally been tuned using ad hoc methods, or numerical or graphical approaches. The present article introduces a new analytical solution to this problem, and demonstrates its performance using time domain milling simulations. A 40-50% improvement in the critical limiting depth of cut is observed, compared to the classically tuned vibration absorber.

  1. Magnetically tunable metamaterial perfect absorber

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Ningyue; Wang, Qingmin; Hao, Yanan; Huang, Shanguo; Bi, Ke

    2016-06-01

    A magnetically tunable metamaterial perfect absorber (MPA) based on ferromagnetic resonance is experimentally and numerically demonstrated. The ferrite-based MPA is composed of an array of ferrite rods and a metallic ground plane. Frequency dependent absorption of the ferrite-based MPA under a series of applied magnetic fields is discussed. An absorption peak induced by ferromagnetic resonance appears in the range of 8-12 GHz under a certain magnetic field. Both the simulated and experimental results demonstrate that the absorption frequency of the ferrite-based MPA can be tuned by the applied magnetic field. This work provides an effective way to fabricate the magnetically tunable metamaterial perfect absorber.

  2. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  3. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  4. Cardioprotection with halogenated gases: how does it occur?

    PubMed Central

    Guerrero-Orriach, Jose Luis; Escalona Belmonte, Juan Jose; Ramirez Fernandez, Alicia; Ramirez Aliaga, Marta; Rubio Navarro, Manuel; Cruz Mañas, Jose

    2017-01-01

    Numerous studies have studied the effect of halogenated agents on the myocardium, highlighting the beneficial cardiac effect of the pharmacological mechanism (preconditioning and postconditioning) when employed before and after ischemia in patients with ischemic heart disease. Anesthetic preconditioning is related to the dose-dependent signal, while the degree of protection is related to the concentration of the administered drug and the duration of the administration itself. Triggers for postconditioning and preconditioning might have numerous pathways in common; mitochondrial protection and a decrease in inflammatory mediators could be the major biochemical elements. Several pathways have been identified, including attenuation of NFκB activation and reduced expression of TNFα, IL-1, intracellular adhesion molecules, eNOS, the hypercontraction reduction that follows reperfusion, and antiapoptotic activating kinases (Akt, ERK1/2). It appears that the preconditioning and postconditioning triggers have numerous similar paths. The key biochemical elements are protection of the mitochondria and reduction in inflammatory mediators, both of which are developed in various ways. We have studied this issue, and have published several articles on cardioprotection with halogenated gases. Our results confirm greater cardioprotection through myocardial preconditioning in patients anesthetized with sevoflurane compared with propofol, with decreasing levels of troponin and N-terminal brain natriuretic peptide prohormone. The difference between our studies and previous studies lies in the use of sedation with sevoflurane in the postoperative period. The results could be related to a prolonged effect, in addition to preconditioning and postconditioning, which could enhance the cardioprotective effect of sevoflurane in the postoperative period. With this review, we aim to clarify the importance of various mechanisms involved in preconditioning and postconditioning with halogenated

  5. Comparison of halogen, plasma and LED curing units.

    PubMed

    Nomoto, Rie; McCabe, John F; Hirano, Susumu

    2004-01-01

    This study evaluated the characteristics of two kinds of recently developed light-curing unit; plasma arc and blue light emitting diodes (LED), in comparison with a conventional tungsten-halogen light-curing unit. The light intensity and spectral distribution of light from these light-curing units, the temperature rise of the bovine enamel surface and the depth of cure of composites exposed to each unit were investigated. The light intensity and depth of cure were determined according to ISO standards. The spectral distributions of emitted light were measured using a spectro-radiometer. The temperature increase induced by irradiation was measured by using a thermocouple. Generally, light intensities in the range 400-515 nm emitted from the plasma arc were greater than those from other types. Light in the UV-A region was emitted from some plasma arc units. The required irradiation times were six to nine seconds for the plasma arc units and 40 to 60 seconds for the LED units to create a depth of cure equal to that produced by the tungsten-halogen light with 20 seconds of irradiation. The temperature increased by increasing the irradiation time for every light-curing unit. The temperature increases were 15 degrees C to 60 degrees C for plasma arc units, around 15 degrees C for a conventional halogen unit and under 10 degrees C for LED units. Both the plasma arc and LED units required longer irradiation times than those recommended by their respective manufacturers. Clinicians should be aware of potential thermal rise and UV-A hazard when using plasma arc units.

  6. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  7. Gas-phase reactions of halogen species of atmospheric importance

    NASA Astrophysics Data System (ADS)

    Heard, Anne C.

    A low-pressure discharge-flow technique, with various optical detection methods, has been used to determine bimolecular rate coefficients for a number of reactions in the gas-phase between OH radicals and organic halogen-containing molecules and between NO3 radicals and the iodine species I2 and I. These experiments have shown that: (1) the reaction of methyl iodide with OH accounts for approximately 2 percent of the removal of CH3I from the troposphere as compared with photolysis; (2) abstraction of I-atoms from a C-I bond by OH is probable in the gas-phase; (3) the halogen-containing anaesthetic substances halothane CF3CClBrH, enflurane CF2HOCF2CFClH, isoflurane CF2HOCClHCF3 and sevoflurane (CF3)2CHOCFH2 have significantly shorter tropospheric lifetimes than the fully halogenated CFCs and halons because of reaction with the OH radical and are thus unlikely to be transported up to the stratosphere where they could contribute to the depletion of ozone. Data obtained for reactions between OH and some 'CFC alternatives' along with measurements of the integrated absorption cross-sections of the compounds in the spectral region 800-1200 cm(exp -1) were used to calculate ozone depletion potentials (ODP) and greenhouse warming potentials relative to CFCl3 for each compound. The study of the reactions between OH and CF3CFBrH and CF2BrH was used to provide a useful first estimate of the environmental acceptability of these compounds in the context of their possible use as replacements for the conventional CFCs. A method was developed to provide a first estimate of the ODP of a halogenated alkane without use of a complicated (and expensive) computer modeling scheme. A reaction between molecular iodine and the nitrate radical in the gas-phase was discovered and the kinetics of this reaction have been studied. No temperature or pressure dependence was observed for the rate of reaction, the rate constant of which was found to be (1.5 +/- 0.5) x 10(exp -12)/cu cm

  8. Toluene dioxygenase mediated oxidation of halogen-substituted benzoate esters.

    PubMed

    Semak, Vladislav; Metcalf, Thomas A; Endoma-Arias, Mary Ann A; Mach, Pavel; Hudlicky, Tomas

    2012-06-14

    A series of ortho-, meta-, and para- halogen-substituted methyl benzoate esters was subjected to enzymatic dihydroxylation via the whole-cell fermentation with E. coli JM109 (pDTG601A). Only ortho-substituted benzoates were metabolized. Methyl 2-fluorobenzoate yielded one diol regioselectively whereas methyl 2-chloro-, methyl 2-bromo- and methyl 2-iodobenzoates each yielded a mixture of regioisomers. Absolute stereochemistry was determined for all new metabolites. Computational analysis of these results and a possible rationale for the regioselectivity of the enzymatic dihydroxylation is advanced.

  9. Halogen occultation experiment (HALOE) optical witness-plate program

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Raper, James L.

    1989-01-01

    An optical witness plate program was implemented to monitor buildup of molecular contamination in the clean room during the assembly and testing of the Halogen Occulation Experiment (HALOE) instrument. Travel plates to monitor molecular contamination when the instrument is not in the clean room are also measured. The instrument technique is high-resolution transmission spectroscopy in the 3 micron spectral region using a Fourier transform spectrometer. Witness specimens of low index of refraction, infrared transmitting material are used for contaminant monitoring and for spectral signature analysis. Spectral signatures of possible molecular contamination are presented. No condensible volatile material contamination of HALOE optical witness specimens have yet been found.

  10. Halogen Occultation Experiment (HALOE) gas cell life test program

    NASA Technical Reports Server (NTRS)

    Sullivan, E. M.; Thompson, R. E.; Harvey, G. A.; Park, J. H.; Richardson, D. J.

    1983-01-01

    The Halogen Occultation Experiment (HALOE) will use gas filter correlation radiometry to measure the atmospheric concentration profiles of HCl, HF, NO, and CH4 from the Upper Atmosphere Research Satellite. The need to contain the gases for the gas filter measurements has resulted in the development of gas cells and the need for a life test program to demonstrate that the gas cells will perform their functions for extended periods (several years) of time. This report describes the tests in the life test program, the test apparatus used, and the analysis techniques developed. The report also presents data obtained during the first 14 months of the test program.

  11. Thermal design, analysis and testing of the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Foss, Richard A.; Smith, Dewey M.

    1987-01-01

    This paper briefly introduces the Halogen Occultation Experiment (HALOE) and describes the thermal requirements in some detail. The thermal design of the HALOE is described, together with the design process and the analytical techniques used to arrive at this design. The flight hardware has undergone environmental testing in a thermal vacuum chamber to validate the thermal design. The HALOE is a unique problem in thermal control due to its variable solar loading, its extremely sensitive optical components and the high degree of pointing accuracy required. This paper describes the flight hardware, the design process and its verification.

  12. Halogenated Cyclic Peptides Isolated From the Sponge Corticium sp

    PubMed Central

    Laird, Damian W.; LaBarbera, Daniel V.; Feng, Xidong; Bugni, Tim S.; Harper, Mary Kay; Ireland, Chris M.

    2008-01-01

    Fractionation of two Fijian specimens of the sponge Corticium sp., led to the isolation of the known active alkaloid steroid plakinamine A and two new halogenated cyclic peptides, corticiamide A (1) and cyclocinamide B (2). Structural elucidation of 1 and 2 was achieved by an extensive combination of high field NMR and HRFT MS/MS experiments, and the absolute stereochemistry of 2 was determined by acid hydrolysis and Marfey’s analysis. Corticiamide A (1) and cyclocinamide B (2) represent the first peptides to be described from the genus Corticium. PMID:17391049

  13. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  14. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan

    2016-08-16

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  15. Halogen-free benzoxazine based curable compositions for high TG applications

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan

    2015-03-10

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  16. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    EPA Science Inventory

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  17. Cooperative and substitution effects in enhancing strengths of halogen bonds in FCl⋯CNX complexes

    NASA Astrophysics Data System (ADS)

    Li, Qingzhong; Ma, Shumin; Liu, Xiaofeng; Li, Wenzuo; Cheng, Jianbo

    2012-08-01

    In this paper, the cooperative effect of halogen bond with hydrogen bond has been used to make a halogen bond in FCl-CNH dimer vary from a chlorine-shared one to an ion-pair one. The halogen bond is strengthened in FCl-CNH-CNH trimer and its maximal interaction energy equals to -76 kJ/mol when the number of CNH in FCl-CNH-(CNH)n polymer approaches infinity. Once the free H atom in FCl-CNH-CNH trimer is replaced with alkali metals, the halogen bond becomes strong enough to be an ion-pair one in FCl-CNH-CNLi and FCl-CNH-CNNa trimers. An introduction of a Lewis acid in FCl-CNH dimer has a more prominent effect on the type of halogen bond. A prominent cooperative effect is found for the halogen bond and hydrogen bond in the trimers. FH-FCl-CNH-CNH and FH-FCl-CNH-CNLi tetramers have also been studied and the interaction energy of halogen bonding in FH-FCl-CNH-CNLi tetramer is about 12 times as much as that in the FCl-CNH dimer. The atoms in molecules and natural bond orbital analyses have been carried out for these complexes to understand the nature of halogen bond and the origin of the cooperativity.

  18. Development of a new Method for Determination of Atmospheric Halogen Atom Concentrations

    NASA Astrophysics Data System (ADS)

    Tackett, P. J.; Shepson, P. B.

    2007-05-01

    A flowtube reactor has been developed for the quantitative determination of atmospheric halogen atom concentrations. The technique operates by drawing atmospheric halogen atoms (Cl, Br, I) into a 20 mm diameter quartz flowtube, in which they quickly react with an introduced alkene (trifluoropropene) and NO to produce a halogenated ketone that is detected by gas chromatography with electron capture detection (GC-ECD). This method allows for the "direct" determination of atmospheric halogen atom concentrations, which have so far only been determined by indirect methods, e.g. as inferred from hydrocarbon decay rates. The fluorinated alkene reagent is utilized to increase the final product's ECD sensitivity as well as provide a compound not found in the environment (i.e. very low blanks), leading to greater overall instrument sensitivity. A solid-sorbent sample preconcentrator is used following reaction in the flow tube to increase the sample volume and allow detection of the halogenated ketone product at concentrations in the ppq and ppt range. The halogen monoxide radicals (XO) can also be determined by conversion to X via reaction with NO at the inlet. The resulting halogen atom concentration measurements allow for the greater understanding of halogen atom photochemistry in the lower troposphere. Here we show results from laboratory tests and system calibrations.

  19. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    a) Depiction of metamaterial array of square resonators atop FR4. (b) Metamaterial dimensions and structure...comparison for varying resonator array dimension sizes. ..............23 Figure 12. Absorption derived from raw reflection data...36 x Figure 23. Metamaterial absorber array where resonator dimensions control the detection frequencies and

  20. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  1. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Robinson, Sean W.; Marques, Igor; Félix, Vítor; Beer, Paul D.

    2014-12-01

    Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

  2. Using halogen bonds to address the protein backbone: a systematic evaluation.

    PubMed

    Wilcken, Rainer; Zimmermann, Markus O; Lange, Andreas; Zahn, Stefan; Boeckler, Frank M

    2012-08-01

    Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein-ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl-halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.

  3. White-Light-Induced Collective Heating of Gold Nanocomposite/Bombyx mori Silk Thin Films with Ultrahigh Broadband Absorbance.

    PubMed

    Tsao, Shao Hsuan; Wan, Dehui; Lai, Yu-Sheng; Chang, Ho-Ming; Yu, Chen-Chieh; Lin, Keng-Te; Chen, Hsuen-Li

    2015-12-22

    This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.

  4. Atmospheric Halogen Chemistry of Volcanic Plumes in WRF-Chem

    NASA Astrophysics Data System (ADS)

    Surl, Luke; Donohoue, Deanna; von Glasow, Roland

    2015-04-01

    Volcanic eruptions are known to be a strong and concentrated source of reactive halogen species. The chemistry that these species are known to take part in include ozone-destruction cycles. Despite the potentially large perturbation to the chemistry of the troposphere that eruptions may cause, the magnitude of such impacts on global and regional scales is largely unknown. We used WRF-Chem to investigate the influence of Mount Etna on the tropospheric chemistry of the Mediterranean region. The chemistry of bromine, chlorine and mercury has been added to the chemical mechanism CBMZ and we have coupled WRF-Chem with the emissions program PrepChem. We developed a simple parameterisation of the key multiphase reaction cycles involving halogens. Comparison with published field data shows that the model is able to reproduce the bromine explosion phenomenon seen in spectroscopic investigations of volcanic plumes. From the model results we are able to determine a detailed picture of the chemistry of a volcanic plume; results are presented which show in detail how the character of the volcanic plume evolves as it is advected downwind and we identify which parts of the chemical cycle are most likely to be the limiting factors for the speed of the processing. Additionally, these modelled results are supplemented with, and compared against, measurements of ozone depletion that we made within the plume at the summit of Mount Etna.

  5. Structure-Energy Relationships of Halogen Bonds in Proteins.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin Cecilia; Butta, Hawera; Mehl, Ryan A; Ho, Pui Shing

    2017-03-27

    The structures and stabilities of proteins are defined by a series of weak non-covalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically in order to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain towards an oxygen acceptor, at distances that are at or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wildtype tyrosine is replaced by an iodine. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent non-interacting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various non-covalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  6. Extraterrestrial halogen and sulfur contents of the stratosphere

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Flynn, G. J.

    1990-01-01

    Interplanetary dust represents a potential source of environmentally important chemical species in the earth's atmosphere. Previous studies have used computational models of atmospheric evolution of meteor debris to conclude that the steady-state stratospheric component of extraterrestrial matter is a small fraction of the total aerosol load. Observational data suggest such calculations may underestimate stratospheric residence times and, thus, concentrations. Two computational methods were employed here to obtain reasonable limits for the stratospheric contents of halogens and sulfur from extraterrestrial sources. The lower limit was based on the total stratospheric aerosol load and the relative influxes from interplanetary dust and tropospheric sources. The upper limit was obtained using a viscous settling method. These results suggest that the steady-state extraterrestrial influxes of halogens are minor compared to tropospheric sources but the sulfur input may be comparable to the present observed stratospheric content. Temporal enhancements in the meteoroid flux, such as passage through comet debris lanes or impact by large bodies, may produce significant chemical perturbations in the atmosphere.

  7. Reactions of gaseous, elemental mercury with dilute halogen solutions

    SciTech Connect

    Mendelsohn, M.H.; Livengood, C.D.

    1996-07-01

    Of the trace elements known to exist in fossil fuels, mercury (Hg) has emerged as one of the greatest concerns. Mercury has been found to be emitted from combustion in at least two different chemical forms: elemental Hg and oxidized Hg compounds. Precise identification of the oxidized compounds emitted has not been accomplished to date. However, most workers in this field assume that mercuric chloride should be the predominant oxidized species. Mercuric chloride should be readily removed in a wet scrubber system because of its relatively high solubility in water. However, it has been presumed, and we have shown, that elemental Hg will pass through a wet scrubber system with little or no removal being effected. Therefore, it is important, in order to obtain a high total Hg removal, to study methods that might result in a removal of gaseous, elemental Hg from a flue-gas stream. In this regard, we have been studying the effect of dilute halogen-containing solutions on elemental Hg in gas streams of various compositions. In particular, the results of passing Hg through bubblers containing solutions of iodine, chlorine, and chloric acid are described. Mercury found in the bubbler solutions is an indication of the extent of reaction (oxidation) of elemental Hg with the halogen species, since we have found very little Hg transferred to the liquid phase when only distilled water is used in the bubblers. Results using commercial iodine, sodium hypochlorite, and NOXSORB (sup TM) solutions are presented and discussed.

  8. Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory.

    PubMed

    Bai, Linyi; Bose, Purnandhu; Gao, Qiang; Li, Yongxin; Ganguly, Rakesh; Zhao, Yanli

    2017-01-11

    Sensory memory is capable of recording information and giving feedback based on external stimuli. Haptic memory in particular can retain the sensation of the interaction between the human body and the environment and help humans to describe the physical quantities in their environment and manipulate objects in daily activities. Although sensitive and accurate tactile sensors have been produced on optical and electronic devices, their rigorous operation and equipment requirements seriously limit their further applicability. In addition, their poor retainability after the removal of external stimuli also warrants further improvements. Thus, haptic memory materials, having simple structures and high sensitivity, are highly desired. Herein, we successfully developed two piezochromic assemblies assisted by halogen bonding for haptic memory. The halogen bond not only contributes to the fabrication of the network and enhances integrative stability but also broadens the natural piezofluorescent range, thus promoting sensory sensitivity. Moreover, the colorimetric change of the assemblies could be well-retained after the stimulus was removed. Upon mild heating treatment, the piezochromic response could be recovered to its original state, confirming the recyclability of this haptic memory material for use in practical applications. The present work enriches the library of piezochromic materials with enhanced performance for haptic memory.

  9. Long-term Studies of Marine Halogen Release

    NASA Astrophysics Data System (ADS)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  10. Impact of Halogen Species in the Troposphere on the Ozone concentration on the Regional Scale

    NASA Astrophysics Data System (ADS)

    Kraut, I.; Vogel, H.; Kottmeier, Ch.; Vogel, B.

    2012-04-01

    In order to quantify the interaction of halogen species with ozone a chemical mechanism was developed. This halogen mechanism handles the most important reactions dealing with halogen species in the gas phase. It is classified into three levels of complexity. The first one includes the basic reaction pathways of reactive halogen species including two catalytic ozone destruction cycles. The second one adds reaction paths concerning halogen species with nitrogen oxides. The last one adds the hydrolysis of halogen nitrates. This most complete mechanism was linked to the gas phase mechanism RADMKA, which already describes the ozone chemistry in the troposphere but so far did not consider halogen species. Box model runs were used to explore the sensitivity of the ozone concentration to the individual mechanisms and to quantify this impact. A difference of about 5 % in the ozone concentration due to the halogen reactions was found, the hydrolysis reactions contribute the biggest part to this difference. The halogen mechanism was also included to the model system COSMO-ART (Vogel et al., 2009). The operational weather forecast model of the Deutscher Wetterdienst was extended to treat the chemistry and physics of gases and aerosols. Parameterisations to describe directly emitted components like soot, mineral dust, sea salt and biological material are also included. A spatial and temporal constant source of molecular iodine (I2) was added along the coastlines of Europe. This iodine emission from macroalgal species was taken from the results of the Reactive Halogens in the Marine Boundary Layer Experiment (RHaMBLe), measured in September 2006 in the coastal regions around Roscoff, France (Leigh et al., 2010). Differences in the ozone concentration occur not only in coastal regions but also over the open sea and over land due to transport processes. Results of sensitivity studies with respect to the emissions and the heterogeneous reactions will be presented.

  11. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.

    2015-03-01

    With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.

  12. Ion-Pair Halogen Bonds in 2-Halo-Functionalized Imidazolium Chloride Receptors: Substituent and Solvent Effects.

    PubMed

    Nunes, Rafael; Costa, Paulo J

    2017-03-02

    The interaction of 2-halo-functionalized imidazolium derivatives (n-X(+) ; X=Cl, Br, I) with a chloride anion through ion-pair halogen bonds (n-X⋅Cl) was studied by means of DFT and ab initio calculations. A method benchmark was performed on 2-bromo-1H-imidazol-3-ium in association with chloride (1-Br⋅Cl); MP2 yielded the best results when compared with CCSD(T) calculations. The interaction energies (ΔE) in the gas phase are high and, although the electrostatic interaction is strong owing to the ion-pair nature of the system, large X⋅⋅⋅Cl(-) Wiberg bond orders and contributions from charge transfer (nCl- →σ*C-X) are obtained. These values drop considerably in chloroform and water; this shows that solvent plays a role in modulating the interaction and that gas-phase calculations are particularly unrealistic for experimental applications. The introduction of electron-withdrawing groups in the 4,5-positions of the imidazolium (e.g., -NO2 , -F) increases the halogen-bond strength in both the gas phase and solvent, including water. The effect of the substituents on the 1,3-positions (N-H groups) also depends on the solvent. The variation of ΔE can be predicted through a two-parameter linear regression that optimizes the weights of charge-transfer and electrostatic interactions, which are different in vacuum and in solvent (chloroform and water). These results could be used in the rational design of efficient chloride receptors based on halogen bonds that work in solution, in particular, in an aqueous environment.

  13. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH₃ (X = F, OH, NC, CN, and FCC) complex.

    PubMed

    Zhao, Qiang

    2014-10-01

    The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

  14. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  15. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  16. Configurable metamaterial absorber with pseudo wideband spectrum.

    PubMed

    Zhu, Weiren; Huang, Yongjun; Rukhlenko, Ivan D; Wen, Guangjun; Premaratne, Malin

    2012-03-12

    Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

  17. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  18. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  19. Reversible Capture and Release of Elemental Halogens with a Redox-Active Metal-Organic Framework.

    PubMed

    Tulchinsky, Yuri; Hendon, Christopher H; Lomachenko, Kirill A; Borfecchia, Elisa; Melot, Brent C; Hudson, Matthew R; Tarver, Jacob D; Korzynski, Maciej D; Stubbs, Amanda W; Kagan, Jacob J; Lamberti, Carlo; Brown, Craig M; Dinca, Mircea

    2017-03-28

    Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable non-volatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here, we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce an air-stable and safe-to-handle Co(III) material featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. Remarkably, the reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, the parent cobaltous MOF retaining crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.

  20. Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications.

    PubMed

    Li, Haiying; Lu, Yunxiang; Wu, Weihong; Liu, Yingtao; Peng, Changjun; Liu, Honglai; Zhu, Weiliang

    2013-03-28

    In recent years, several specific imidazolium-based ionic liquids with halogen substituents on the imidazole ring as well as on the alkyl chains have been reported. In this work, noncovalent interactions in four halogenated ionic liquids, i.e. 2-bromo-/iodo- and 4,5-dibromo-/diiodo-1,3-dimethylimidazolium trifluoromethanesulfonates, were systematically investigated using density functional theory calculations. The structural and energetic properties of the ion pairs for such ionic liquids have been fully examined and compared with the non-halogenated ones. It was found that C-X···O halogen bonds, C-H···O hydrogen bonds, and electrostatic interactions with the anion located over the imidazole ring in the ion pairs. In addition, the structures and energetics of two ion pairs for such ionic liquids were also explored to reproduce experimental observations. The halogen-bonded ring structures and the conformers with the concurrent C-H···O and C-X···O contacts were predicted, consistent with the X-ray crystal structures of corresponding organic salts. Finally, the implications of the observed structural and energetic features of ion pairs on the design of halogen-bonding ionic liquids were discussed. The results presented herein should provide useful information in the development of novel halogenated ionic liquids used for specific tasks ranging from organic synthesis to gas absorption.

  1. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  2. [Absorbable coronary stents. New promising technology].

    PubMed

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  3. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  4. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... absorber is a device made of paper or cotton intended to absorb moisture from the oral cavity during dental... manufacturing practice requirements of the quality system regulation in part 820 of this chapter, with...

  5. Synthesis and odour thresholds of mixed halogenated anisoles in water.

    PubMed

    Díaz, A; Fabrellas, C; Galceran, M T; Ventura, F

    2004-01-01

    Earthy-musty off-flavour compounds in water samples are usually associated with the presence of geosmin and 2-methylisoborneol. However, the presence of 2,3,6- and 2,4,6-trichloroanisoles or other halogenated anisoles can impart objectionable tastes and odours to the water even at very low trace levels. This paper shows the synthesis of non-commercial 2,3,6- and 2,4,6- mixed chloro/bromoanisoles which can be present in bromide rich waters and could also be suspected of imparting earthy-musty off-flavours to the water. All the synthesized compounds were subjected to the flavour profile analysis (FPA) method and their odour threshold concentrations (OTC) in water were carried out giving values in the low ng/L range.

  6. Gas-Phase Reactions of Halogen Species of Atmospheric Importance.

    NASA Astrophysics Data System (ADS)

    Heard, Anne C.

    Available from UMI in association with The British Library. Requires signed TDF. A low-pressure discharge-flow technique, with various optical detection methods, has been used to determine bimolecular rate coefficients for a number of reactions in the gas-phase between OH radicals and organic halogen -containing molecules and between NO_3 radicals and the iodine species I_2 and I. These experiments have shown that: (i) the reaction of methyl iodide with OH accounts for approximately 2% of the removal of CH_3I from the troposphere as compared with photolysis; (ii) abstraction of I-atoms from a C-I bond by OH is probable in the gas -phase; (iii) the halogen-containing anaesthetic substances halothane CF_3CCl BrH, enflurane CF_2HOCF _2CFClH, isoflurane CF_2HOCClHCF _3 and sevoflurane (CF_3) _2CHOCFH_2 have significantly shorter tropospheric lifetimes than the fully halogenated CFCs and halons because of reaction with the OH radical and are thus unlikely to be transported up to the stratosphere where they could contribute to the depletion of ozone. Data obtained for reactions between OH and some 'CFC alternatives' along with measurements of the integrated absorption cross -sections of the compounds in the spectral region 800-1200 cm^{-1} were used to calculate ozone depletion potentials (ODP) and greenhouse warming potentials relative to CFCl_3 for each compound. The study of the reactions between OH and CF_3CFBrH and CF _2BrH was used to provide a useful first estimate of the environmental acceptability of these compounds in the context of their possible use as replacements for the conventional CFCs. A method was developed to provide a first estimate of the ODP of a halogenated alkane without use of a complicated (and expensive) computer modeling scheme. A reaction between molecular iodine and the nitrate radical in the gas-phase was discovered and the kinetics of this reaction have been studied. No temperature or pressure dependence was observed for the rate of

  7. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  8. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  9. Sun sensor boresight alignment testing for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Moore, A. S.; Laney, V. S.; Mauldin, L. E., III

    1987-01-01

    The boresight alignment testing for the sun sensor assembly on the Halogen Occultation Experiment (HALOE) is described. The sun sensor assembly consists of three sensors that provide feedback signals for controlling dual axes gimbals. Two energy balancing silicon detectors are operated as wideband sensors in the azimuth and elevation axes. The third sensor is a silicon photodiode array operated as a narrow-band sensor in the elevation axis. These sensors are mounted on a common Invar structure which is mounted to the HALOE telescope. A blackbody was used as the stimulating source to perform the initial boresight alignment and this was checked with a heliostat solar look and a direct solar look. These tests are explained with a comparison between each source used.

  10. Fluorescence Cell Imaging and Manipulation Using Conventional Halogen Lamp Microscopy

    PubMed Central

    Yamagata, Kazuo; Iwamoto, Daisaku; Terashita, Yukari; Li, Chong; Wakayama, Sayaka; Hayashi-Takanaka, Yoko; Kimura, Hiroshi; Saeki, Kazuhiro; Wakayama, Teruhiko

    2012-01-01

    Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries. PMID:22347500

  11. Measurement and numerical analysis of flammability limits of halogenated hydrocarbons.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2004-06-18

    Flammability limits measurement was made for a number of halogenated compounds by the ASHRAE method. Most of compounds measured are the ones for which discrepancy was noted between the literature values and predicted values of flammability limits. As a result, it has been found that most of the newly obtained values of flammability limits are not in accordance with the literature values. Numerical analysis was carried out for a set of flammability limits data including the newly obtained ones using a modified analytical method based on F-number scheme. In this method, fitting procedure was done directly to flammability limits themselves instead of fitting to F-number. After the fitting process, the average relative deviation between the observed and calculated values is 9.3% for the lower limits and 14.6% for the upper limits.

  12. Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding.

    PubMed

    Catalano, Luca; Pérez-Estrada, Salvador; Terraneo, Giancarlo; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Garcia-Garibay, Miguel A

    2015-12-16

    A modular molecular kit for the preparation of crystalline molecular rotors was devised from a set of stators and rotators to gain simple access to a large number of structures with different dynamic performance and physical properties. In this work, we have accomplished this with crystalline molecular rotors self-assembled by halogen bonding of diazabicyclo[2.2.2]octane, acting as a rotator, and a set of five fluorine-substituted iodobenzenes that take the role of the stator. Using variable-temperature (1)H T1 spin-lattice relaxation measurements, we have shown that all structures display ultrafast Brownian rotation with activation energies of 2.4-4.9 kcal/mol and pre-exponential factors of the order of (1-9) × 10(12) s(-1). Line shape analysis of quadrupolar echo (2)H NMR measurements in selected examples indicated rotational trajectories consistent with the 3-fold or 6-fold symmetric potential of the rotator.

  13. Homolytic halogenation of 2-alkoxy-1, s-dioxacycloalkanes

    SciTech Connect

    Rol'nik, L.Z.; Pastushenko, E.V.; Rakmankulov, D.L.; Zlot-skii, S.S.

    1984-04-10

    This article examines the free-radical reactions of 2-alkoxy-1, 3-dioxacycloalkanes in the presence of polyhalomethanes. The influence of halogenation agents on the course of the process is studied for the case of 2-(hexyloxy)-1, 3-dioxolane with the use of CBrCl/sub 3/ and CCl/sub 4/. The infrared spectra of the compounds obtained were determined with a UR-20 spectrometer in the range 700-4000 cm/sup -1/ on capillary layers between NaCl plates. The results indicate that the main products of the free-radical transformations of 2-alkoxy-1, 3-dioxacycloalkanes in a medium of CHBr/sub 3/ are alkyl bromoalkyl carbonates, bromoalkyl formates, and aldehydes. It is concluded that the free-radical transformations of cyclic ortho esters in polyhalomethane media initiated by benzoyl peroxide go by an unbranched-chain mechanism.

  14. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    PubMed

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  15. Determination of heavy metals and halogens in plastics from electric and electronic waste

    SciTech Connect

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-15

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n = 51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n = 161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  16. Selective C(sp(2))-H Halogenation of "Click" 4-Aryl-1,2,3-triazoles.

    PubMed

    Goitia, Asier; Gómez-Bengoa, Enrique; Correa, Arkaitz

    2017-02-17

    Selective bromination reactions of "click compounds" are described. Electron-neutral and electron-deficient arenes selectively undergo unprecedented Pd-catalyzed C-H ortho-halogenations assisted by simple triazoles as modular directing groups, whereas electron-rich arenes are regioselectively halogenated following an electrophilic aromatic substitution reaction pathway. These C-H halogenation procedures exhibit a wide group tolerance, complement existing bromination procedures, and represent versatile synthetic tools of utmost importance for the late-stage diversification of "click compounds". The characterization of a triazole-containing palladacycle and density functional theory studies supported the mechanism proposal.

  17. Influence of Antimony-Halogen Additives on Flame Propagation.

    PubMed

    Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T

    2017-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

  18. Two crown-ether-coordinated caesium halogen salts.

    PubMed

    Well, Natalija van; Klein, Christian; Ritter, Franz; Assmus, Wolf; Krellner, Cornelius; Bolte, Michael

    2014-05-01

    The crystal structures of two crown-ether-coordinated caesium halogen salt hydrates, namely di-μ-bromido-bis[aqua(1,4,7,10,13,16-hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi-μ-chlorido-μ-(1,4,7,10,13,16-hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs(+) cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown-ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis. Whereas in (I), hydrogen bonds between bromide ligands and water molecules lead to one-dimensional chains running along the b axis, in (II) two-dimensional sheets of water molecules and chloride ligands are formed which combine with the polymeric caesium-crown polymer to give a three-dimensional network. Although both compounds have a similar composition, i.e. a Cs(+) cation with a halogen, an 18-crown-6 ether and a water ligand, the crystal structures are rather different. On the other hand, it is remarkable that (I) is isomorphous with the already published iodide compound.

  19. Optical poling of several halogen derivatives of pyrazoloquinoline

    NASA Astrophysics Data System (ADS)

    Koścień, E.; Sanetra, J.; Gondek, E.; Jarosz, B.; Kityk, I. V.; Ebothe, J.; Kityk, A. V.

    2004-12-01

    Paper deals with optical absorption and second-order optical poling effect in a new synthesized halogen derivatives of 1H-pyrazolo[3,4-b]quinoline. The experimental study and quantum chemical simulations are presented. In optical poling experiment (fundamental wavelength λ = 1.76 μm) we have found that the maximal output of second-order susceptibility (up to 1.53 pm/V) is observed for the chromophore possessing two methyl groups and fluor. The quantum chemical analysis reveals similarity in the absorption spectra of methyl-containing halogen derivatives which are characterized by four or five strong absorption bands in the spectral range 200-500 nm. A substitution of the methyl groups by the phenyl group causes the substantial changes of the absorption spectra mainly in the spectral range 240-370 nm. The comparison of measured and calculated absorption spectra manifests rather good agreement, namely in the part regarding the spectral positions of the first oscillator (absorption threshold). At the same time, the measured spectra reveal the considerable broadening almost of all absorption bands and even complete damping some of them in the case of phenyl derivatives. Semi-empirical PM3 method demonstrate substantially better agreement with the experimental values compared to the AM1 method. The lowest magnitude of the nonlinear optical susceptibility is revealed for Br-containing [PQ]-derivative. It is assumed that Br leads here to a suppressing of the charge transfers mechanism what is the reason for a relatively low nonlinear optical efficiency.

  20. Current halogenated flame retardant concentrations in serum from residents of Shandong Province, China, and temporal changes in the concentrations.

    PubMed

    Ma, Yulong; Li, Peng; Jin, Jun; Wang, Ying; Wang, Qinghua

    2017-02-16

    The residents of Shandong Province, China, are exposed to high concentrations of halogenated flame retardants because large amounts of halogenated flame retardants are produced in the province. We determined the concentrations of eight polybrominated diphenyl ether congeners (PBDEs), seven novel brominated flame retardants (NBFRs), and the two dechlorane plus isomers (DPs) in serum from residents of Shandong Province. The aim was to identify temporal trends in the concentrations of these pollutants. The mean total concentrations of PBDEs, NBFRs and DPs were 41, 2.2 and 2.1ng/g lipid in pooled serum samples collected in 2014, and were 32, 3.5 and 3.1ng/g lipid in pooled serum samples collected in 2015, respectively. Decabromodiphenyl ether was the dominant PBDE congener in all of the samples. The novel brominated flame retardant and dechlorane plus concentrations were between one and two orders of magnitude lower than the PBDE concentrations. The PBDE concentrations in serum decreased significantly between 2007 and 2015, but the pentabromobenzene, pentabromotoluene, and dechlorane plus concentrations were relatively stable.

  1. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  2. Halogenated indigo dyes: a likely source of 1,3,6,8-tetrabromocarbazole and some other halogenated carbazoles in the environment.

    PubMed

    Parette, Robert; McCrindle, Robert; McMahon, Katherine S; Pena-Abaurrea, Miren; Reiner, Eric; Chittim, Brock; Riddell, Nicole; Voss, Gundula; Dorman, Frank L; Pearson, Wendy N

    2015-05-01

    In recent years, a number of halogenated carbazoles have been detected in environmental samples. These emerging contaminants have been shown to be persistent and possess dioxin-like toxicological potential. The goal of this research was to examine the literature to determine likely anthropogenic origin(s) of halogenated carbazoles in the environment. The scientific literature indicated a number of pathways by which 1,3,6,8-tetrabromocarbazole could form in the manufacture of 5,5',7,7'-tetrabromoindigo. The U.S. production history of 5,5',7,7'-tetrabromoindigo correlates well with the concentration rise, decline, and disappearance of 1,3,6,8-tetrabromocarbazole in dated Lake Michigan sediments. Additionally, other halogenated carbazoles that have been found in environmental sediments can be explained by the production of other halogenated indigo dyes. 1,8-dibromo-3,6-dichlorocarbazole can be accounted for by the manufacture of 7,7'-dibromo-5,5'-dichloroindigo, while 1,3,6,8-tetrachlorocarbazole was found at relatively high concentration near the outfall of a U.S. manufacturer of 5,5',7,7'-tetrachloroindigo. Carbazoles containing an iodo-substituent can be explained by the use of iodine as a catalyst in the manufacture of halogenated indigo dyes. 3,6-Dichlorocarbazole measured in soils and dibromocarbazoles measured in more recently deposited sediments are not easily rationalized on the basis of an indigo related source and may be related to other anthropogenic sources or natural origins.

  3. Polyelectrolyte gels comprising a lipophilic, cost-effective aluminate as fluorine-free absorbents for chlorinated hydrocarbons and diesel fuel.

    PubMed

    Wrede, Michael; Ganza, Viktoria; Bucher, Janina; Straub, Bernd F

    2012-07-25

    Superabsorbent polymers comprising a lipophilic, halogen-free, and cost-effective aluminate ("altebate") anion have been synthesized. The polyelectrolytes are based on octadecyl acrylate monomers, 0.8-1 mol % ethylene dimethacrylate cross-linker, and 5 mol % N-3-acroyloxypropyl trialkylammonium altebate. At 30 °C, swelling degrees of 70 (chlorobenzene), 102 (CHCl3), 130 (THF), 163 (ClCH2CH2Cl), 171 (dichlorobenzene), and 208 (CH2Cl2) have been determined. The polyelectrolyte absorbs reversibly diesel fuel with a swelling degree of 34, even in the presence of water. Swelling times and critical swelling temperatures have also been determined. The challenges for the development of oil absorbents are discussed.

  4. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  5. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  6. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  7. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  8. Intonational meaning.

    PubMed

    Prieto, Pilar

    2015-01-01

    Traditionally, prosodic studies have focused on the study of intonational form and the study of intonational meaning has been relatively neglected. Similarly, the fields of semantics and pragmatics have paid little attention to the pragmatic uses of intonation. As a result, there is no firm agreement within the linguistic community on how to integrate the analysis of intonational meaning across languages into a unified prosodic, semantic, and pragmatic approach. This article provides an overview of the literature on intonational meaning, describing the recent advances made in the fields of prosody, semantics/pragmatics, and syntax. Several theoretical approaches to explaining the semantics and pragmatics of intonation are presented. A common feature to most frameworks is that intonation (1) should be regarded as an integral part of linguistic grammar; and (2) typically encodes meanings related to the modal aspect of propositions. However, features such as compositionality, duality of structure, and context-dependency are still hotly debated issues. These features will be discussed from different theoretical perspectives, and we will identify potential advances related to the full integration of intonational meaning into dynamic and multidimensional models of meaning.

  9. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  10. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  11. Halogenated Solvent Cleaning Compliance Assistance Memoranda for the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This page contains three documents, one from 1997, one from 1999, and one from 2001, that provide further clarification on complying with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Halogenated Solvent Cleaning.

  12. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results.

  13. Synergistic and diminutive effects between halogen bond and lithium bond in complexes involving aromatic compounds.

    PubMed

    Liu, Mingxiu; Cai, Mengyang; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo

    2015-10-01

    Quantum chemical calculations have been performed to study the interplay between halogen bond and lithium bond in the ternary systems FX-C6H5CN-LiF, FLi-C6H5CN-XF, and FLi-C6H5X-NH3 (X = Cl, Br, and I) involving aromatic compounds. This effect was studied in terms of interaction energy, electron density, charge transfer, and orbital interaction. The results showed that both FX-C6H5CN-LiF and FLi-C6H5CN-XF exhibit diminutive effects with the weakening of halogen bond and lithium bond, while FLi-C6H5X-NH3 displays synergistic effects with the strengthening of halogen bond and lithium bond. The nature of halogen bond and lithium bond in the corresponding binary complexes has been unveiled by the quantum theory of atoms in molecules methodology and energy decomposition analysis.

  14. Correction: Benchmark thermochemistry of chloramines, bromamines, and bromochloramines: halogen oxidants stabilized by electron correlation.

    PubMed

    Trogolo, Daniela; Arey, J Samuel

    2016-11-16

    Correction for 'Benchmark thermochemistry of chloramines, bromamines, and bromochloramines: halogen oxidants stabilized by electron correlation' by Daniela Trogolo et al., Phys. Chem. Chem. Phys., 2015, 17, 3584-3598.

  15. Phosphorus and Halogen Co-Doped Graphene Materials and their Electrochemistry.

    PubMed

    Wang, Lu; Sofer, Zdenek; Zboril, Radek; Cepe, Klara; Pumera, Martin

    2016-10-17

    Doping of graphene materials with heteroatoms is important as it can change their electronic and electrochemical properties. Here, graphene is co-doped with n-type dopants such as phosphorus and halogen (Cl, Br, I). Phosphorus and halogen are introduced through the treatment of graphene oxide with PX3 gas (PCl3 , PBr3 , and PI3 ). Graphene oxides are prepared through chlorate and permanganate routes. Detailed chemical and structural characterization demonstrates that the graphene sheets are covered homogeneously by phosphorus and halogen atoms. It is found that the amount of phosphorus and halogen introduced depends on the graphene oxide preparation method. The electrocatalytic effect of the resulting co-doped materials is demonstrated for industrially relevant electrochemical reactions such as the hydrogen evolution and oxygen reduction reactions.

  16. A new turn in codon-anticodon selection through halogen bonds.

    PubMed

    Vijay Solomon, Rajadurai; Angeline Vedha, Swaminathan; Venuvanalingam, Ponnambalam

    2014-04-28

    The halogen bond is relatively a less characterized intermolecular interaction compared to the hydrogen bond and the structure, stability and electronic structures of halogenated base pairs, particularly at the wobble junction have been investigated using DFT. Three halogens, namely Cl, Br and I, have been tested for their role in such situations with uracil as the anticodon base. Computed results reveal that when halogen atoms replace protons in the hydrogen bonding positions they induce lot of geometric changes that flip some of the observed base pairs into unobserved base pairs and vice versa. NCI, NBO and AIM analyses explain these changes at the electronic level. The new codons will have lot of impact in future applications, particularly in self assembly of biomaterials and t-RNA synthetic strategies.

  17. Effect of halogens on the formation and properties of the porous silicon layers

    SciTech Connect

    Bolotov, V. V.; Sten'kin, Yu. A. Davletkil'deev, N. A.; Krivozubov, O. V.; Ponomareva, I. V.

    2009-01-15

    The method of atomic-force microscopy is used to study the morphology of the surface of porous silicon layers formed on the p-Si substrate and obtained by anodic etching in an electrolyte with addition of free halogens (bromine, iodine) and potassium halogenides (KCl, KI). It is established that the presence of halogens in the electrolyte is conducive to formation of large pores with the diameter as large as 150 nm. The mechanism of an increase in the pore sizes with involvement of halogens is related to an increase in the concentration of free holes due to formation of donor-acceptor pairs in the case of adsorption of halogens on the silicon surface.

  18. (CH3Br⋯NH3)@C60: The effect of nanoconfinement on halogen bonding

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Sarvesh Kumar; Misra, Neeraj

    2016-10-01

    Halogen bonds resemble hydrogen bonds in many aspects. How do the properties of halogen bonds change when confined to nanoregion? In order to explore this, we have encapsulated a halogen bonded complex, CH3Br⋯NH3 inside C60 fullerene and studied their properties using density functional theory and quantum theory of atoms in molecule. Our findings show that the geometry of CH3Br⋯NH3 complex is appreciably bent inside C60, interaction becomes covalent with larger interaction energy, unlike free CH3Br⋯NH3 complex, which is linear with closed shell interaction. Thus, the halogen bonded complexes show quite different properties at nanoscale.

  19. Viscosity and chemical diffusion of halogens in silicate melts: implications for volcanic degassing

    NASA Astrophysics Data System (ADS)

    Wasik, A.; Dingwell, D. B.; Courtial, P.; Hess, K.

    2005-12-01

    The efficiency of degassing processes in subduction zone volcanism may be affected by the magmato-hydrothermal geochemistry of halogens. In addition halogens may act as potential monitors of degassing efficiency and provide answers to the question of the role of disequilibrium during partitioning. Too little is known quantitatively about the transport properties of halogens in silicate melts. In particular, an accurate study of the transport properties of halogens should help to unlock the information contained in halogen concentrations of eruptive products and volcanic gases. For these reasons the chemical diffusivities of the halogens (fluorine, bromine, chlorine and iodine) have been measured in the synthetic Fe-bearing sodium disilicate melts, within a wide range of temperature (650-1400° C). The experiments were performed using diffusion couple technique. Halogens were added to the starting material in the form of FeF3, FeBr3, FeCl3 and FeI2 and stirred in concentric cylinder viscometer. The temperature was restricted to 1000-1100° C to avoid volatilization of halogens. After synthesis the samples were drilled, cut into 2mm disks and then doubly polished. Prepared disks were putted into platinum tubes (5mm diameter) and sealed by welding. The halogen rich sample was located at the bottom. During the experiments the temperature was monitored with a thermocouple located at the vicinity of the capsule. Run durations were between 30 minutes and 1 hour. The recovered samples were analyzed using an electron microprobe in order to determine the diffusion profiles of the halogens. The results were obtained by using Boltzmann-Matano method and they suggest at least 3 orders of magnitude range at 1000° C between the diffusion coefficients for F, Br, Cl and I. The fastest diffusing species was found to be fluorine, the slowest - iodine. In order to place the diffusivity measurements in the context of their extrinsic versus intrinsic nature, viscosity measurements were

  20. Infrared Spectroscopy of Ionic Liquids Consisting of Imidazolium Cations with Different Alkyl Chain Lengths and Various Halogen or Molecular Anions with and Without a Small Amount of Water.

    PubMed

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya

    2017-03-27

    Infrared spectroscopy was performed on ionic liquids (ILs) that had imidazolium cations with different alkyl chain lengths and various halogen or molecular anions with and without a small amount of water. The molar concentration normalized absorbance due to +C-H vibrational modes in the range of 3000 to 3200 cm-1 was nearly identical for ILs that had imidazolium cations with different alkyl chain lengths and the same anions. A close correlation was found between the red-shifted +C-H vibrational modes, the chemical shift of +C(2)-H proton, and the energy stabilization of hydrogen-bonding interaction. The vibrational modes of the water molecules interacting with anions in the range between 3300 and 3800 cm-1 was examined. The correlation between the vibrational frequencies of water, the frequencies of +C-H vibrational modes, and the center frequency of intermolecular vibrational modes due to ion pairs was discussed.

  1. Halogen behaviours during andesitic magma degassing: from magma chamber to volcanic plume

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Villemant, B.; Boudon, G.; Michel, A.

    2009-04-01

    Halogen (F, Cl, Br and I) behaviours during degassing of H2O-rich silicic magmas are investigated using volatile content analysis in glass (matrix glass and melt inclusions) of volcanic clasts (pumice and lava-dome fragments) in a series of plinian, vulcanian and lava dome-forming eruptions. Examples are taken from andesitic systems in subduction zones: Montagne Pelée and Soufrière Hills of Montserrat (Lesser Antilles) and Santa Maria-Santiaguito (Guatemala). Halogens behaviour during shallow degassing primarily depends on their incompatible character in melts and on H2O solubility. But variations in pre-eruptive conditions, degassing kinetics and syn-eruptive melt crystallisation, induce large variations in halogen extraction efficiency during H2O degassing, up to prevent halogen loss. In all studied systems, Cl, Br and I are not fractionated neither by differentiation nor by degassing processes: thus Cl/Br/I ratios remain well preserved in melts from reservoirs to eruption. These ratios measured in erupted clasts are characteristic of pre-eruptive magma compositions and may be used to trace deep magmatic processes. Moreover, during plinian eruptions, Cl, Br and I are extracted by H2O degassing but less efficiently than predicted by available experimental fluid-melt partition coefficients, by a factor as high as 5. F behaves as an incompatible element and, contrary to other halogens, is never significantly extracted by degassing. Degassing during lava dome-forming eruptions of andesitic magmas occurs mainly at equilibrium and is more efficient at extracting halogens and H2O than explosive degassing. The mobility of H2O and halogens depends on their speciation in both silicate melts and exsolved fluids which strongly varies with pressure. We suggest that the rapid pressure decrease during highly explosive eruptions prevents complete volatile speciation at equilibrium and consequently strongly limits halogen degassing.

  2. Intramolecular Halogen Transfer via Halonium Ion Intermediates in the Gas Phase.

    PubMed

    Chai, Yunfeng; Xiong, Xingchuang; Yue, Lei; Jiang, You; Pan, Yuanjiang; Fang, Xiang

    2016-01-01

    The fragmentation of halogen-substituted protonated amines and quaternary ammonium ions (R(1)R(2)R(3)N(+)CH2(CH2)nX, where X = F, Cl, Br, I, n = 1, 2, 3, 4) was studied by electrospray ionization tandem mass spectrometry. A characteristic fragment ion (R(1)R(2)R(3)N(+)X) resulting from halogen transfer was observed in collision-induced dissociation. A new mechanism for the intramolecular halogen transfer was proposed that involves a reactive intermediate, [amine/halonium ion]. A potential energy surface scan using DFT calculation for CH2-N bond cleavage process of protonated 2-bromo-N,N-dimethylethanamine supports the formation of this intermediate. The bromonium ion intermediate-involved halogen transfer mechanism is supported by an examination of the ion/molecule reaction between isolated ethylenebromonium ion and triethylamine, which generates the N-bromo-N,N,N-triethylammonium cation. For other halogens, Cl and I also can be involved in similar intramolecular halogen transfer, but F cannot be involved. With the elongation of the carbon chain between the halogen (bromine as a representative example) and amine, the migration ability of halogen decreases. When the carbon chain contains two or three CH2 units (n = 1, 2), formal bromine cation transfer can take place, and the transfer is easier when n = 1. When the carbon chain contains four or five CH2 units (n = 3, 4), formal bromine cation transfer does not occur, probably because the five- and six-membered cyclic bromonium ions are very stable and do not donate the bromine to the amine.

  3. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths.

    PubMed

    Siiskonen, Antti; Priimagi, Arri

    2017-02-01

    In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.

  4. Anion receptors based on halogen bonding with halo-1,2,3-triazoliums.

    PubMed

    Tepper, Ronny; Schulze, Benjamin; Jäger, Michael; Friebe, Christian; Scharf, Daniel H; Görls, Helmar; Schubert, Ulrich S

    2015-03-20

    A systematic series of anion receptors based on bidentate halogen bonding by halo-triazoles and -triazoliums is presented. The influence of the halogen bond donor atom, the electron-withdrawing group, and the linker group that bridges the two donor moieties is investigated. Additionally, a comparison with hydrogen bond-based analogues is provided. A new, efficient synthetic approach to introduce different halogens into the heterocycles is established using silver(I)-triazolylidenes, which are converted to the corresponding halo-1,2,3-triazoliums with different halogens. Comprehensive nuclear magnetic resonance binding studies supported by isothermal titration calorimetry studies were performed with different halides and oxo-anions to evaluate the influence of key parameters of the halogen bond donor, namely, polarization of the halogen and the bond angle to the anion. The results show a larger anion affinity in the case of more charge-dense halides as well as a general preference of the receptors to bind oxo-anions, in particular sulfate, over halides.

  5. Investigation of reactive halogens in the Arctic using a mobile instrumental laboratory

    NASA Astrophysics Data System (ADS)

    Custard, K.; Shepson, P. B.; Stephens, C. R.

    2011-12-01

    Custard, K kcustard@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Shepson, P pshepson@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Stephens, C thompscr@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Investigation of the chemistry of reactive halogens in ice-covered regions is important because of its significant impact on atmospheric composition. Halogens in the Arctic react with ozone and gaseous elemental mercury to sometimes completely deplete them from the ambient atmosphere, at least during polar springtime. There is much uncertainty about the sources and concentrations of these atmospheric halogens in the Arctic, particularly with respect to chlorine. To gain a better understanding of them, we have developed a method to simultaneously measure the concentrations of BrOx and ClOx radicals using a flowtube method. The method involves reaction of the halogen atom with a halogenated alkene, to produce a multiply halogenated characteristic ketone product, which is then detected via GC/ECD. The system was deployed at Barrow, AK, using a mobile instrumental laboratory so that measurements could be made from multiple locations along the sea ice. In this paper we will discuss laboratory evaluation of the flowtube method, and present preliminary data from Barrow, AK, during the spring 2011 deployment.

  6. The relation between molecular structure and biological activity among mononitrophenols containing halogens

    USGS Publications Warehouse

    Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.

    1966-01-01

    The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.

  7. Long-Term Radiometric Performance of the SCIAMACHY Quartz Tungsten Halogen Lamp

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Bovensmann, H.; Burrows, J. P.; Gottwald, M.; Krieg, E.

    2009-04-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is part of the atmospheric chemistry payload of ESAś Environmental Satellite ENVISAT. Since 2002, SCIAMACHY provides the amount and global distribution of various atmospheric constituents relevant in the contexts of ozone chemistry, air pollution and climate change. Originally designed for a 5-year mission, the SCIAMACHY instrument is still working well and ready for the planned mission extension until 2010 or even further. Calibration and monitoring of the instrument performance are a pre-requisite for a continuously high data product quality. Here, results from the monitoring of the optical performance of the SCIAMACHY instrument are presented. Emphasis is placed on the investigation of the performance of the SCIAMACHY internal Quartz Tungsten Halogen (QTH) lamp. This type of lamp has been used for monitoring the radiometric performance of an UV-VIS-SWIR Earth observation sensor over mission lifetime for the first time. The analysis of regular in-flight measurements has shown the radiometric stability of the SCIAMACHY QTH lamp over time especially in the visible/NIR spectral range. Lamps of this type are therefore considered as useful components for further space-borne spectroscopic missions, as they provide a relatively cheap and reliable mean for (at least relative) radiometric calibration and monitoring.

  8. Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio).

    PubMed

    Song, Maoyong; Liang, Dong; Liang, Yong; Chen, Minjie; Wang, Fengbang; Wang, Hailin; Jiang, Guibin

    2014-10-01

    Halogenated bisphenol A (H-BPAs), widely used in industrial production, have been identified in various environmental matrices and detected in human serum and breast milk. The persistence and prevalence of H-BPAs in the environment underscore the need to in-depth understand their adverse effects to humans and other organisms. In the present study, zebrafish embryos/larvae were used as models to investigate the developmental toxicities of three H-BPAs, namely tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA), and bisphenol AF (BPAF). The half lethal concentration (LC50) values indicated that the rank order of toxicities of the chemicals were TCBPA>TBBPA>BPAF. Three H-BPAs exposure resulted in a variety of developmental lesions in the embryos/larvae, such as a delay in time to hatch, edema, and hemorrhage. The estrogenic activities of H-BPAs were determined by means of in vivo vitellogenin (vtg) assay and in vitro MVLN assay. Here only BPAF specifically shows a stronger estrogenic activity than BPA both in in vivo and in vitro. These data suggest that TCBPA, TBBPA, and BPAF are more potent toxicants than BPA, and indicate that further research of the mechanisms on their toxicities is required.

  9. Genotoxic evaluation of the non-halogenated disinfection by-products nitrosodimethylamine and nitrosodiethylamine.

    PubMed

    Liviac, D; Creus, A; Marcos, R

    2011-01-30

    Disinfection by-products (DBPs) are chemicals that are produced as a result of chlorine being added to water for disinfection. As well as the halogenated DBPs, N-nitrosamines have recently been identified as DBPs, especially when amines and ammonia ions are present in raw water. In this work, the genotoxicity of two nitrosamines, namely nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA), has been studied in cultured human cells. To evaluate their genotoxic potential two assays were used, the comet assay and the micronucleus test. The comet assay measures the induction of single and double-strand breaks, and also reveals the induced oxidative DNA damage by using endoIII and FPG enzymes. Chromosomal damage was evaluated by means of the cytokinesis-blocked micronucleus test. The results of the comet assay show that both compounds are slightly genotoxic but only at high concentrations, NDEA being more effective than NDMA. Enzyme treatments revealed that only NDEA was able to produce increased levels of oxidized bases, mainly in purine sites. The results obtained in the micronucleus assay, which measures the capacity of the tested agents to induce clastogenic and/or aneugenic effects, are negative for both of the nitrosamines evaluated, either using TK6 cells or human peripheral blood lymphocytes. Taking into account the very high concentrations needed to produce DNA damage, our data suggest a low, if existent, genotoxic risk associated with the presence of these compounds in drinking water.

  10. Effectiveness of light emitting diode and halogen light curing units for curing microhybrid and nanocomposites

    PubMed Central

    Choudhary, Shwetha; Suprabha, BS

    2013-01-01

    Aim: To compare the polymerization efficacy of micro-hybrid and nanocomposites cured with Quartz-tungsten halogen (QTH) and light emitting diode (LED) light curing units (LCUs). The effectiveness of pulse cure mode in LED LCU was also investigated. Materials and Methods: Both micro-hybrid and nanocomposite specimens were cured using four different curing protocols giving a total of eight experimental groups. Ten cylindrical specimens were prepared for each group, and light cured for 40 s on the top surface, thus giving a total of eighty specimens. Vicker hardness measurements were carried out on the top and bottom surfaces after 24 h and hardness ratio was calculated. Results: For both micro-hybrid and nanocomposites, highest mean VHN was observed for the group cured with QTH LCU, and the lowest was observed for the group cured with second LED LCU in standard mode but the difference was significant only in case of nanocomposite. Conclusion: Curing nanocomposites with QTH LCU results in better micro hardness. Pulse cure mode does not effectively increase polymerization efficacy than the standard mode of curing. PMID:23833457

  11. Efficient Light-Induced Phase Transitions in Halogen-Bonded Liquid Crystals

    PubMed Central

    2016-01-01

    Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators. PMID:27917024

  12. Photolytic dehalogenation of the marine halogenated natural product Q1.

    PubMed

    Gaul, Simon; Vetter, Walter

    2008-02-01

    The marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) has been detected in high-trophic level biota throughout the world. In this study we UV-irradiated Q1 in order to produce hexahalogenated 1'-methylbipyrroles (Cl(6)-MBPs). Q1 was transformed with half-lives of <5 min. Already after 5 min, all of the five existing Cl(6)-MBPs (H1-H5) were detected in the irradiated sample. Only one Cl(6)-MBP (2,3,3',4',5,5'-hexachloro-1'-methyl-1,2'-bipyrrole (MBP-77, H2) has been previously described in the literature. H5 was identified as 2,3,3',4,4',5'-hexachloro-1'-methyl-1,2'-bipyrrole (MBP-75) by a specific fragment ion detected by GC/ECNI-MS. Fractionations of the irradiation mixture by reversed-phase HPLC followed by (1)H NMR analysis led to the structure of H4, i.e. 2,3,3',4,4',5-hexachloro-1'-methyl-1,2'-bipyrrole (MBP-74). H1 and H3 showed virtually identical (1)H NMR data. Therefore, it could not determined which of either isomers is 2,3,3',4,5,5'-hexachloro-1'-methyl-1,2'-bipyrrole (MBP-76) and which is 2,3,4,4',5,5'-hexachloro-1'-methyl-1,2'-bipyrrole (MBP-78). In addition, two pentachloro-MBPs (P1 and P3) could be traced back to MBP-62 and MBP-69. Cl(6)-MBPs were analyzed in whale blubber from Australia and skua adipose tissue from Antarctica. The marine mammals contained all Cl(6)-MBPs except for the most abundant in the irradiation experiment. The concentrations of the Cl(6)-MBPs amounted to 0.04-1.76% of the concentration of Q1. The highest concentrations of Cl(6)-MBP isomers in the biota samples were found for MBP-76, MBP-77, and MBP-78. These congeners appeared to be the most lipophilic ones owing to the highest retention time in RP-HPLC. Nevertheless, it remained unclear whether the Cl(6)-MBPs were actual halogenated natural products or environmental metabolites of Q1.

  13. Halogen bonds in some dihalogenated phenols: applications to crystal engineering

    PubMed Central

    Mukherjee, Arijit; Desiraju, Gautam R.

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C—Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O—H⋯O hydrogen bonds, the tetramer O—H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic

  14. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  15. Oxalate: Effect on calcium absorbability

    SciTech Connect

    Heaney, R.P.; Weaver, C.M. )

    1989-10-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species.

  16. The prominent enhancing effect of the cation-π interaction on the halogen-hydride halogen bond in M1⋅⋅⋅C6H5X⋅⋅⋅HM2.

    PubMed

    Li, Ran; Li, Qingzhong; Cheng, Jianbo; Liu, Zhenbo; Li, Wenzuo

    2011-08-22

    We designed M(1)⋅⋅⋅C(6)H(5)X⋅⋅⋅HM(2) (M(1) =Li(+), Na(+); X=Cl, Br; M(2) =Li, Na, BeH, MgH) complexes to enhance halogen-hydride halogen bonding with a cation-π interaction. The interaction strength has been estimated mainly in terms of the binding distance and the interaction energy. The results show that halogen-hydride halogen bonding is strengthened greatly by a cation-π interaction. The interaction energy in the triads is two to six times as much as that in the dyads. The largest interaction energy is -8.31 kcal mol(-1) for the halogen bond in the Li(+)⋅⋅⋅C(6)H(5)Br⋅⋅⋅HNa complex. The nature of the cation, the halogen donor, and the metal hydride influence the nature of the halogen bond. The enhancement effect of Li(+) on the halogen bond is larger than that of Na(+). The halogen bond in the Cl donor has a greater enhancement than that in the Br one. The metal hydride imposes its effect in the order HBeHhalogen-hydride halogen bonding and the cation-π interaction. Natural bond orbital and energy decomposition analyses indicate that the electrostatic interaction plays a dominate role in enhancing halogen bonding by a cation-π interaction.

  17. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes

    NASA Astrophysics Data System (ADS)

    Meister, H.; Willmeroth, M.; Zhang, D.; Gottwald, A.; Krumrey, M.; Scholze, F.

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  18. CONTROL MEANS FOR NEUTRONIC REACTORS

    DOEpatents

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  19. How Mean is the Mean?

    PubMed Central

    Speelman, Craig P.; McGann, Marek

    2013-01-01

    In this paper we voice concerns about the uncritical manner in which the mean is often used as a summary statistic in psychological research. We identify a number of implicit assumptions underlying the use of the mean and argue that the fragility of these assumptions should be more carefully considered. We examine some of the ways in which the potential violation of these assumptions can lead us into significant theoretical and methodological error. Illustrations of alternative models of research already extant within Psychology are used to explore methods of research less mean-dependent and suggest that a critical assessment of the assumptions underlying its use in research play a more explicit role in the process of study design and review. PMID:23888147

  20. Characteristics and nature of the halogen-bonding interactions between CCl3F and ozone: a supermolecular and SAPT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Yourdkhani, Sirous; Bahrami, Aidin

    2013-12-01

    The strength and nature of the halogen-bond interactions in CCl3F...O3 complexes were examined by means of ab initio quantum-chemical calculations and symmetry-adapted perturbation theory (SAPT). Our calculations predict a trifurcated C-Cl...O interaction for the global minimum of CCl3F...O3 complex and several local minima, differing slightly in energy, separated by very low barriers. The calculations, which include a rigorous decomposition of the interaction energies, also indicate that the interaction of CCl3F molecule with O3 is characterised by contributions from both electrostatic and dispersion energies, with the contribution of the latter being dominant. The evaluated SAPT interaction energies for the CCl3F...O3 complexes are generally in good agreement with those obtained using the supermolecule CCSD(T) method, suggesting that SAPT is a proper method to study the intermolecular interactions in these complexes.

  1. Nature of the warm absorber outflow in NGC 4051

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Ebisawa, Ken

    2017-04-01

    The narrow-line Seyfert 1 galaxy NGC 4051 is known to exhibit significant X-ray spectral/flux variations and have a number of emission/absorption features. X-ray observations have revealed that these absorption features are blueshifted, which indicates that NGC 4051 has warm absorber outflow. In order to constrain physical parameters of the warm absorber outflow, we analyse the archival data with the longest exposure taken by XMM-Newton in 2009. We calculate the root-mean-square (rms) spectra with the grating spectral resolution for the first time. The rms spectra have a sharp peak and several dips, which can be explained by variable absorption features and non-variable emission lines; a lower ionized warm absorber (WA1: log ξ = 1.5, v = -650 km s-1) shows large variability, whereas higher ionized warm absorbers (WA2: log ξ = 2.5, v = -4100 km s-1, WA3: log ξ = 3.4, v = -6100 km s-1) show little variability. WA1 shows the maximum variability at a time-scale of ∼104 s, suggesting that the absorber locates at ∼103 times of the Schwarzschild radius. The depth of the absorption features due to WA1 and the observed soft X-ray flux are anticorrelated in several observational sequences, which can be explained by variation of partial covering fraction of the double-layer blobs that are composed of the Compton-thick core and the ionized layer (=WA1). WA2 and WA3 show little variability and presumably extend uniformly in the line of sight. The present result shows that NGC 4051 has two types of the warm absorber outflows; the static, high-ionized and extended line-driven disc winds and the variable, low-ionized and clumpy double-layer blobs.

  2. Cross-reactivity of Halogenated Platinum Salts | Science ...

    EPA Pesticide Factsheets

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitization to one Pt compound may result in hypersensitivity reactions to other Pt compounds. We investigated the potential for this type of cross-reactivity using a mouse model of Pt hypersensitivity. Mice were sensitized through application of 100 µL 1% ammonium hexachloroplatinate (AHCP) in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by intratracheal aspiration (IA) with saline or 100 µg AHCP or 100 g ammonium tetrachloroplatinate (ATCP) in saline. Before and immediately after dosing, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP. All mice dosed with AHCP demonstrated significant increases in total serum IgE, suggesting the animals were sensitized. An immediate airway response (IAR) was observed in mice sensitized and challenged with AHCP. Dose-dependent increases in Mch responsiveness occurred in mice sensitized and challenged with AHCP. Bronchoalveolar lavage fluid (BALF) harvested from mice sensitized and challenged with AHCP contained an avera

  3. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; ...

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  4. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    SciTech Connect

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.

  5. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  6. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  7. Rotational Spectra of Halogenated Ethers Used as Volatile Anaesthetics

    NASA Astrophysics Data System (ADS)

    Vega-Toribio, Alicia; Lesarri, Alberto; Suenram, Richard D.; Grabow, Jens-Uwe

    2009-06-01

    Following previous microwave investigations by Suenram et al., we will report on the rotational spectrum of several halogenated ethers used as volatile anaesthetics, including sevoflurane ((CF_3)_2CH-O-CH_2F), isoflurane (CF_3CHCl-O-CHF_2), enflurane (CHFClCF_2-O-CHF_2) and methoxyflurane (CHCl_2CF_2-O-CH_3). This study has been conducted in the 6-18 GHz centimetre-wave region using Balle-Flygare-type FT-microwave spectroscopy. The results will include the analysis of the rotational spectra of minor species in natural abundance (^{13}C and ^{18}O in some cases), structural calculations and auxiliary ab initio modelling. The conformational and structural conclusions will be compared with previous gas-phase electron diffraction and solid-state X-ray diffraction analysis. R. D. Suenram, D. J. Brugh, F. J. Lovas and C. Chu, 51st OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 1999, RB07

  8. Nephrotoxicity of halogenated alkenyl cysteine-S-conjugates.

    PubMed

    Nagelkerke, J F; Boogaard, P J

    1991-01-01

    In 1916 a relationship was postulated between the occurrence of aplastic anaemia in cattle and the soy bean meal that they had been fed, which had been extracted with trichloroethylene. The toxic compound was later identified as S-(1,2-dichlorovinyl)-L-cysteine (DCV-Cys). In addition to effects on the hemopoietic system it also produced nephrotoxicity in calves. In rats only renal tubular necrosis was found. Further research demonstrated that other halogenated hydrocarbons produced similar nephrotoxicity. The haloalkenyl cysteine-S-conjugates (Cys-S-conjugates) have extensively been studied; this has provided new insight into the biochemical processes that lead to nephrotoxicity. It has been shown that a combination of transport processes and specific metabolic pathways, resulting in reactive intermediates that bind to cellular macromolecules, makes the kidney vulnerable to the noxious effects of the haloalkenyl Cys-S-conjugates. The first part of this review gives a brief overview of the bioactivation of the haloalkenes; in the second part the present knowledge of the underlying mechanisms of cytotoxicity will be outlined.

  9. Observations of stratospheric hydrogen fluoride by halogen occultation experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Luo, M.; Cicerone, R. J.; Russel, J. M., III; Huang, T. Y. W.

    1994-01-01

    The Halogen Occultation Experiment (HALOE) Hydrogen Fluoride (HF) channel on the Upper Atmospheric Research Satellite (UARS) is providing the first global measurements of stratospheric HF, the dominant flourine reservoir in the atmosphere. This paper describes the latitudinal and seasonal variations of HALOE-observed HF in terms of vertical profiles, altitude/latitude cross sections, and column abundances. The HF global distribution shows a 'tracerlike' structure and its column amount increases with latitude, in agreement with previous aircraft measurements of the HF column amount. A comparison between the HALOE HF column above 20 km and the ATMOS 1985 measurements is used to estimate the annual rate of increase of stratospheric HF. Exponential rates of 4.9-6.6%/yr and linear growth rates of 6-8.6%/yr in 1985 and 4.3-5.5%/yr in 1992-1993 are found. HALOE HF measurements during the 1993 Antarctic spring are briefly described. This species behaves like a conserved tracer and its distribution shows an area of enhanced mixing ratios correlated with the polar vortex that has a clear latitude boundary. Finally, simulated HF distributions by the National Center for Atmospheric Research (NCAR) two-dimensional model are used to compare with HALOE observations of HF. Reasonable agreements in the global structure and the absolute amount of HF are found. The differences between the model and the observed results indicate the need for improving treatment of atmospheric dynamics and fluorine-related chemical parameters in the model simulations.

  10. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III

    1986-01-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  11. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  12. Nephrotoxicity of halogenated alkenyl cysteine-S-conjugates

    SciTech Connect

    Nagelkerke, J.F.; Boogaard, P.J. )

    1991-01-01

    In 1916 a relationship was postulated between the occurrence of aplastic anemia in cattle and the soy bean meal that they had been fed, which had been extracted with trichloroethylene. The toxic compound was later identified as S-(1,2-dichlorovinyl)-L-cysteine (DCV-Cys). In addition to effects on the hemopoietic system it also produced nephrotoxicity in calves. In rats only renal tubular necrosis was found. Further research demonstrated that other halogenated hydrocarbons produced similar nephrotoxicity. The haloalkenyl cysteine-S-conjugates (Cys-D-conjugates) have extensively been studied; this has provided new insight into the biochemical processes that lead to nephrotoxicity. It has been shown that a combination of transport processes and specific metabolic pathways, resulting in reactive intermediates that bind to cellular macromolecules, makes the kidney vulnerable to the noxious effects of the haloakenyl Cys-S-conjugates. The first part of this review gives a brief overview of the bioactivation of the haloalkenes; in the second part the present knowledge of the underlying mechanisms of cytotoxicity is outlined.

  13. Scientific Studies in Association with the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mickley, Lorretta J.; Frederick, John E.

    1996-01-01

    This work examines measurements of ozone, NO, NO2, and HCl made by the Halogen Occultation Experiment (HALOE) to track chemical change in the stratosphere. In addition, HALOE observations of two long-lived species, HF and CH4, are used as tracers to distinguish between change due to transport processes and change due to chemistry. The first study investigates the response of NO(x), (NO and NO2) and ozone to the presence of large amounts of sulfate aerosol in the stratosphere following the 1991 eruption of Mount Pinatubo. As the Pinatubo aerosol cleared the atmosphere at 17 mb (about 27-28 km), the partitioning of total reactive nitrogen shifted more toward NO(x), and ozone amounts declined. This trend is opposite that observed at lower altitudes. The second study examines the chemical aftermath of severe ozone depletion over Antarctica in spring. When ozone levels drop to a threshold amount (about 1 ppm near 20 km), the partitioning of the total chlorine family shifts rapidly from reactive species to the reservoir molecule HCl. This sudden repartitioning shuts down further ozone loss and may be significant as filaments of air peel off the polar vortex and mix with mid-latitude air.

  14. Metal hydrides form halogen bonds: measurement of energetics of binding.

    PubMed

    Smith, Dan A; Brammer, Lee; Hunter, Christopher A; Perutz, Robin N

    2014-01-29

    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η(5)-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η(5)-cyclopentadienyl) is demonstrated by (1)H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = -10.9 ± 0.4 and -11.8 ± 0.3 kJ/mol; ΔS° = -38 ± 2 and -34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = -7.3 ± 0.1 kJ/mol, ΔS° = -24 ± 1 J/(mol·K)). For the more reactive complexes 2-5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M(-1), respectively.

  15. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  16. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  17. Gas chromatography mass spectrometry computer analysis of volatile halogenated hydrocarbons in man and his environment--A multimedia environmental study.

    PubMed

    Barkley, J; Bunch, J; Bursey, J T; Castillo, N; Cooper, S D; Davis, J M; Erickson, M D; Harris, B S; Kirkpatrick, M; Michael, L C; Parks, S P; Pellizzari, E D; Ray, M; Smith, D; Tomer, K B; Wagner, R; Zweidinger, R A

    1980-04-01

    As part of a study to make a comparative analysis of selected halogenated compounds in man and the environmental media, a quantitative gas chromatography mass spectrometric analysis of the levels of the halogenated compounds found in the breath, blood and urine of an exposed population (Old Love Canal area, Niagara, New York) and their immediate environment (air and water) was undertaken. In addition, levels of halogenated hydrocarbons in air samples taken in the general Buffalo, Niagara Falls area were determined.

  18. Modulation of the Interaction between a Peptide Ligand and a G Protein-Coupled Receptor by Halogen Atoms.

    PubMed

    Rosa, Mònica; Caltabiano, Gianluigi; Barreto-Valer, Katy; Gonzalez-Nunez, Verónica; Gómez-Tamayo, José C; Ardá, Ana; Jiménez-Barbero, Jesús; Pardo, Leonardo; Rodríguez, Raquel E; Arsequell, Gemma; Valencia, Gregorio

    2015-08-13

    Systematic halogenation of two native opioid peptides has shown that halogen atoms can modulate peptide-receptor interactions in different manners. First, halogens may produce a steric hindrance that reduces the binding of the peptide to the receptor. Second, chlorine, bromine, or iodine may improve peptide binding if their positive σ-hole forms a halogen bond interaction with negatively charged atoms of the protein. Lastly, the negative electrostatic potential of fluorine can interact with positively charged atoms of the protein to improve peptide binding.

  19. Modulation of the Interaction between a Peptide Ligand and a G Protein-Coupled Receptor by Halogen Atoms

    PubMed Central

    2015-01-01

    Systematic halogenation of two native opioid peptides has shown that halogen atoms can modulate peptide–receptor interactions in different manners. First, halogens may produce a steric hindrance that reduces the binding of the peptide to the receptor. Second, chlorine, bromine, or iodine may improve peptide binding if their positive σ-hole forms a halogen bond interaction with negatively charged atoms of the protein. Lastly, the negative electrostatic potential of fluorine can interact with positively charged atoms of the protein to improve peptide binding. PMID:26288687

  20. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  1. Nonlinear dynamic vibration absorbers with a saturation

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.

    2013-03-01

    The behavior of a new type of nonlinear dynamic vibration absorber is studied. A distinctive characteristic of the proposed absorber is the impossibility to extend the system to infinity. The mathematical formulation is based on a finite extensibility nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached to a single degree-of-freedom linear/nonlinear oscillator subjected to a periodic external excitation. In order to solve the equations of motion and to analyze the frequency-response curves, the method of averaging is used. The performance of the FENE absorber is evaluated considering a variation of the nonlinearity of the primary system, the damping and the linearized frequency of the absorber and the mass ratio. The numerical results show that the proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. When compared with a cubic nonlinear absorber, for a large nonlinearity of the primary system, the FENE absorber shows a better effectiveness for the whole studied frequency range. A complete absence of quasi-periodic oscillations is also found for an appropriate selection of the parameters of the absorber. Finally, direct integrations of the equations of motion are performed to verify the accuracy of the proposed method.

  2. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  3. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products.

    PubMed

    Odabasi, Mustafa

    2008-03-01

    Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and

  4. Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity.

    PubMed

    Pan, Yang; Zhang, Xiangru; Wagner, Elizabeth D; Osiol, Jennifer; Plewa, Michael J

    2014-01-01

    Tap water typically contains numerous halogenated disinfection byproducts (DBPs) as a result of disinfection, especially of chlorination. Among halogenated DBPs, brominated ones are generally significantly more toxic than their chlorinated analogues. In this study, with the aid of ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry by setting precursor ion scans of m/z 79/81, whole spectra of polar brominated DBPs in simulated tap water samples without and with boiling were revealed. Most polar brominated DBPs were thermally unstable and their levels were substantially reduced after boiling via decarboxylation or hydrolysis; the levels of a few aromatic brominated DBPs increased after boiling through decarboxylation of their precursors. A novel adsorption unit for volatile total organic halogen was designed, which enabled the evaluation of halogen speciation and mass balances in the simulated tap water samples during boiling. After boiling for 5 min, the overall level of brominated DBPs was reduced by 62.8%, of which 39.8% was volatilized and 23.0% was converted to bromide; the overall level of chlorinated DBPs was reduced by 61.1%, of which 44.4% was volatilized and 16.7% was converted to chloride; the overall level of halogenated DBPs was reduced by 62.3%. The simulated tap water sample without boiling was cytotoxic in a chronic (72 h) exposure to mammalian cells; this cytotoxicity was reduced by 76.9% after boiling for 5 min. The reduction in cytotoxicity corresponded with the reduction in overall halogenated DBPs. Thus, boiling of tap water can be regarded as a "detoxification" process and may reduce human exposure to halogenated DBPs through tap water ingestion.

  5. Absorbed radiation by various tissues during simulated endodontic radiography

    SciTech Connect

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  6. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  7. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  8. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    SciTech Connect

    Aydogan, B.; Miller, L.F.; Sparks, R.B.; Stubbs, J.B.

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  9. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  10. Application of the CAPRAM Halogen Module 2.0 in mixed urban and maritime coastal areas

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut

    2013-04-01

    Approximately 20% of the earth's surface is covered with coastal regions. About one half of the world's population live in these areas (Gelpke and Visbeck, 2010). Therefore, there is a great interest to understand interactions of marine and continental air masses in coastal areas. A comprehensive halogen multiphase chemical mechanism, the CAPRAM Halogen Module 2.0 (HM2), together with the multiphase chemical mechanism RACM-MIM2ext/CAPRAM 3.0n has been used to investigate the tropospheric multiphase chemistry in coastal areas, where clean marine air masses mix with urban air masses. While marine air masses are strongly influenced by halogen chemistry expressed in the HM2, urban air masses are affected by organic chemistry (implemented in CAPRAM 3.0). An innovation of the HM2 is the linkage of organic and halogen chemistry in an explicit chemical mechanism. Two different scenarios have been used to investigate the interactions of halogens with organic and inorganic systems. In the first scenario, a maritime air mass moves over an urban area while in the second scenario, a polluted air mass passes the coastal ocean. Both scenarios include non-permanent clouds with 8 cloud passages of the air parcel, which allows the investigation of the influence of clouds on the halogen multiphase chemistry. As an advantage of this scenario not only the chemistry under non- and in-cloud conditions can be investigated, but under cloud formation and evaporation conditions as well. Furthermore, modifications of the air parcel after cloud passages are noticeable. Besides investigations of the concentration-time profiles of important halogen and non-halogen species, detailed time-resolved flux analyses have been performed to determine the most important chemical cycles and to understand the time evolution of the concentration profiles. The simulations have shown that the influence of the origin of the air mass is significant only on the first day. Thereafter, the emissions of the new

  11. Oceanic contributions from tropical upwelling systems to atmospheric halogens

    NASA Astrophysics Data System (ADS)

    Ziska, Franziska; Hepach, Helmke; Stemmler, Irene; Quack, Birgit; Atlas, Elliot; Fuhlbrügge, Steffen; Bracher, Astrid; Tegtmeier, Susann; Krüger, Kirstin

    2014-05-01

    Short lived halogenated substances (halocarbons) from the oceans contribute to atmospheric halogens, where they are involved in ozone depletion and aerosol formation. Oceanic regions that are characterized by high biological activity are often associated with increased halocarbon abundance of e.g. bromoform (CHBr3) and dibromomethane (CH2Br2), representing the main contributors to atmospheric organic bromine. Apart from biological production, photochemical pathways play an important role in the formation of methyl iodide (CH3I), the most abundant organoiodine in the marine atmosphere. Recently, the contribution of biogenic diiodomethane (CH2I2) and chloroiodomethane (CH2ClI) to atmospheric organic iodine has been estimated to be similarly significant as CH3I. In the tropics, rapid uplift of surface air can transport these short-lived compounds into the upper troposphere and into the stratosphere. Oceanic upwelling systems off Mauritania, Peru and in the equatorial Atlantic might therefore potentially contribute large amounts of halocarbons to the stratosphere. Concentrations and emissions of iodo- and bromocarbons from several SOPRAN campaigns in different tropical upwelling systems, the Mauritanian and the equatorial upwelling in the Atlantic, as well as the Peruvian upwelling in the Pacific, will be presented. Processes contributing to halocarbon occurrence in the water column, as well as biological and physical factors influencing their emission into the atmosphere are investigated (Fuhlbrügge, et al. 2013; Hepach et al., 2013). We will present the relative contribution of the upwelling systems to global air-sea fluxes from different modelling studies. The data based bottom-up emissions from Ziska et al. (2013) will be compared to model simulated halocarbons. The model is a global three-dimensional ocean general circulation model with an ecosystem model and halocarbon module embedded (MPIOM/HAMOCC). It resolves CH3I and CHBr3 production, degradation, and

  12. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  13. Seaonal Sea Ice as a source of organo-halogens during Polar night

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Katarina; Granfors, Anna; Ahnoff, Martin

    2016-04-01

    The release of bromine from snow and sea ice surfaces has mainly been attributed to the reaction of hypobromous acid with bromide at acidic conditions to form Br2. Little attention has been given to the role of volatile halogenated organic compounds (organo-halogens) in the formation of reactive halogen species in the atmosphere during bromine explosion events. The load of organo-halogens was studied during a winter expedition to the Weddell Sea in June to August 2013. These compounds are emitted from the different compartments of the cryosphere to the atmosphere where they are photolysed to BrO and IO, which are involved in the degradation of ozone. We will present results that show the importance of organo-halogens formed during polar winter. In newly formed ice, in contrast to summer sea ice, the concentration of organo-bromine was found at levels as high as nM. These high concentrations were reflected both in frost flowers and in the sea-snow interface. Moreover, air measurements revealed high loads of organo-bromine over the sea ice. The situation was similar for iodinated compounds. Interestingly, the precursers of IO, mainly diiodomethane, could be measured in sea ice and snow, most probably due to the low light levels.

  14. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Montzka, S. A.; Rap, A.; Dhomse, S.; Feng, W.

    2015-03-01

    Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas. Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens. Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m-2 to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes or continued anthropogenic emissions, could be important for future climate.

  15. [Concentration and emission fluxes of halogenated flame retardants in sewage from sewage outlet in Dongjiang River].

    PubMed

    Zeng, Yan-Hong; Luo, Xiao-Jun; Sun, Yu-Xin; Yu, Le-Huan; Chen, She-Jun; Mai, Bi-Xian

    2011-10-01

    Fourteen sewage samples from sewage outlets in Dongjiang River were collected. Halogented flame retardants were extracted and purified using dichloromethane and alumina/silica-gel column, respectively. The concentrations of halogenated flame retardants were measured utilizing GC/MS, and the emission fluxes were estimated. Decabromodiphenyl ethane (DBDPE) was the predominant halogenated pollutant (accounting for 64%) in sewage with the concentration ranging from 9.1 ng/L to 990 ng/L. The concentrations of polybrominated biphenyl ether (PBDEs), dominated by BDE209, in the sewage ranged from 6.9 ng/L to 470 ng/L, accounting for 30% of total halogenated flame retardants. The concentrations of other flame retardants, such as dechlorane plus (DP), 1, 2-bis(2, 4, 6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), and pentabromotoluene (PBT), were ranged within 0.17-23.6, nd-26.3, nd-1.45 and nd-0.45 ng/L, respectively. The concentrations of PBDEs in sewage of Dongjiang River were comparable to those in influent wastewater of sewage treatment plants of Guangzhou, suggesting that the wastewater was discharged directly into Dongjiang River without any treatment. The emission flux of halogenated flame retardants from sewage was 191 kg. Emission from industrial wastewater, contributed to 48%-91% of total emission, was the main source of halogenated flame retardants.

  16. Halogens, OVOC and H2O Distributions over the Eastern Pacific Ocean during TORERO

    NASA Astrophysics Data System (ADS)

    Dix, B. K.; Apel, E. C.; Baidar, S.; Zondlo, M. A.; Volkamer, R.

    2013-12-01

    As part of the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field project 17 research flights were conducted with the NSF/NCAR GV aircraft over the Eastern Tropical Pacific Ocean (42S to 14N Lat.; 70W to 105W Long). Equipped with a combination of chemical in-situ sensors and remote sensing instruments, a broad spectrum of reactive halogen species, oxygenated hydrocarbons, and aerosols were measured over different ocean environments. Using optical remote sensing (airborne Multi Axis DOAS), we measured iodine monoxide (IO), bromine monoxide (BrO), glyoxal (CHOCHO) and water vapor among others. A newly developed parameterization method allowed us to directly convert the measured slant column densities into mixing ratios along the whole flight track. Atmospheric reactive halogen species and organic carbon are important, because they modify HOx radical abundances, influence the reactive chemistry and lifetime of climate active gases (e.g., ozone, methane, dimethyl sulfide), modify aerosol-cloud interactions and halogen radicals can also oxidize atmospheric mercury. Here we summarize and evaluate the spatial distribution of IO, BrO and glyoxal over the TORERO study area. For select case studies we present comparisons to halogen precursors and OVOCs measured in-situ by on-line mass spectrometry (trace organic gas analyzer). The correlation of remotely observed water vapor to in-situ measurements further allows us to conclude on the homogeneity of spatial scales covered by both remote and in-situ sensors.

  17. Barcoll hardness of different resin-based composites cured by halogen or light emitting diode (LED).

    PubMed

    Bala, Oya; Uçtasli, Mine Betül; Tüz, M Atilla

    2005-01-01

    The clinical performance of light curing resin composites is greatly influenced by the quality of the light-curing unit (LCU). Halogen LCUs are commonly used for curing composite materials. However, they have some drawbacks. The development of new, blue, super bright light emitting diodes (LED LCU) of 470-nm wavelength with high light irradiance comes as an alternative to standard halogen LCUs of 450-470-nm wavelengths. This study evaluated the surface hardness of the different resin-based composites (flowable, hybrid and packable resin composites) cured by LED LCU or halogen LCU. A Teflon mold 10-mm in diameter and 2-mm in depth was made to obtain five disk-shaped specimens for each experimental group. Then, the specimens were cured by an LED LCU or halogen LCU for 40 seconds. The hardness of the upper and lower surfaces was measured with a Barcoll hardness-measuring instrument. The statistical analysis was performed using one-way analysis of variance (ANOVA) and Duncan test at a p=0.05 significance level. The results of the hardness test indicated that the hardness of resin composites cured by an LED LCU were greater than those cured by a halogen LCU. Additionally, for all resin-based composites, the hardness values for the upper surfaces were higher than the lower surfaces. However, for both results no statistically significant differences were observed (p>0.05).

  18. How to Twist, Split and Warp a σ-Hole with Hypervalent Halogens.

    PubMed

    Kirshenboim, Omer; Kozuch, Sebastian

    2016-12-01

    Halogen bonds (XB) are no longer newcomers in the chemistry family. However, XB in hypervalent halogens has not been thoroughly studied. We provide a molecular orbital explanation of the shape and strength of XBs in hypervalent halogens and other species, focusing on the charge transfer and electrostatic aspects of these bonds. Our results show that σ-holes (and subsequently the XBs associated with them) can be easily divided and bent by the influence of equatorial substituents. The inductive effect of both the equatorial and axial groups can affect these distortions, but also the angle between the equatorial ligands has a large influence on the shape of the σ-holes and the molecular orbitals acting as electron acceptor. Although the observation of these warped XB can be hindered by other noncovalent interactions, they may be ubiquitous in crystal structures of hypervalent species, where multiple XB can appear as secondary interactions on each halogen. We propose what can be considered the archetypal hypervalent halogen donor (a pincer type iodosodilactone) and a Lewis dot structure that includes the σ-holes.

  19. Absorbencies of six different rodent beddings: commercially advertised absorbencies are potentially misleading.

    PubMed

    Burn, C C; Mason, G J

    2005-01-01

    Moisture absorbency is one of the most important characteristics of rodent beddings for controlling bacterial growth and ammonia production. However, bedding manufacturers rarely provide information on the absorbencies of available materials, and even when they do, absorption values are usually expressed per unit mass of bedding. Since beddings are usually placed into cages to reach a required depth rather than a particular mass, their volumetric absorbencies are far more relevant. This study therefore compared the saline absorbencies of sawdust, aspen woodchips, two virgin loose pulp beddings (Alpha-Dri and Omega-Dri), reclaimed wood pulp (Tek-Fresh), and corncob, calculated both by volume and by mass. Absorbency per unit volume correlated positively with bedding density, while absorbency per unit mass correlated negatively. Therefore, the relative absorbencies of the beddings were almost completely reversed depending on how absorbency was calculated. By volume, corncob was the most absorbent bedding, absorbing about twice as much saline as Tek-Fresh, the least absorbent bedding. Conversely, when calculated by mass, Tek-Fresh appeared to absorb almost three times as much saline as the corncob. Thus, in practical terms the most absorbent bedding here was corncob, followed by the loose pulp beddings; and this is generally supported by their relatively low ammonia production as seen in previous studies. Many factors other than absorbency determine whether a material is suitable as a rodent bedding, and they are briefly mentioned here. However, manufacturers should provide details of bedding absorbencies in terms of volume, in order to help predict the relative absorbencies of the beddings in practical situations.

  20. Photochemical Distribution of Venusian Sulfur and Halogen Species

    NASA Astrophysics Data System (ADS)

    Parkinson, Chris; Atreya, S.; Mills, F.; Yung, Y.; Wong, A.

    2008-09-01

    The photochemistry of Venus’ atmosphere from 40 to 100 km has been modeled using an updated/expanded chemical scheme, with the view to improving our understanding of the vertical distributions of sulfur and halogen species. We mainly follow Yung and DeMore (1982), Mills (1998), and Pernice et al. (2004) in our choice of chemical reactions, chemical rate constants, and boundary conditions for 38 species. We examine two models, with HCl mixing ratios of 10-7 and 4 x 10-7, respectively. The former corresponds to Venus Express observations made at high northern latitudes and the latter to the mid- to low-latitude value Young (1972) determined based on infrared measurements by Connes et al (1967). Both models agree satisfactorily with stratospheric observations of key species such as CO, O2 and SO2, but we hope to better quantify the implications of the different HCl mixing ratios observed. Additionally, we perform sensitivity tests where water is set to 31 ppm at 40 km, but vary the SO2 mixing ratio at the lower boundary about a nominal value of 25 ppm. We also consider a range of eddy diffusion profiles and other sensitivity studies. For most cases, K = Ko (n(z)/n_ref)-a, where Ko is the eddy diffusion coefficient at some reference altitude, n is the number density, z is altitude, and a is the variable parameter (<1). Our modeling suggests lower HCl abundances result in greater abundances of SO2, SO, and SO3 generally lower O2 abundances, and greater ClO abundances. Also, the effects on sulfur compounds seems more evident/pronounced for lower mixing ratios of SO2 at the lower boundary as well as higher up in the atmosphere i.e. above 58 km. We will use some of this 1-D chemistry in the Venus Thermospheric General Circulation Model (VTGCM) (Bougher et al, 1997) for comparison to VEX datasets.