Science.gov

Sample records for halogen absorbing means

  1. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    mineralogenic components derived from the erosion of fine grained sediments or soils. Assuming 50% geogenic particles with a mean Cl concentration of 103 mg/kg (as in shales and clays) the mineralogenic Cl-content could add about 50 mg/kg to the organic AOX in sewage sludge. The occurrence of insoluble and non-adsorbable PVC in sewage sludge exhibits the same problems as the mineralogenic constituents: a detection as AOX-S18 is possible when the final high temperature analytical step is applied. Plants as major sources of organohalogens have never been doubted. Only recently [Science 295 (2002) 985] based on the determination of the form of Cl with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy and extended X-ray adsorption showed the variations in the inorganic Cl(-) and organo-Cl compounds with increasing humification of plant leaves from "fresh leaves--senescent leaves on plants--senescent leaves on soil--powdered top soil--isolated soil humus". His finding of exclusively inorganic Cl(-) in the starting material (fresh leaves) is controverse to our earlier results indicating the presence of ionic inorganic Cl together with water insoluble absorbed organohalogens (AOX-S18) in eight different macrophytes of both terrestrial and marine environments. Our research on AOX in interstitial water of anaerobic limnic sediments has led to the role of bromine playing in the diagenesis of the organic matter of sediments. In sediments of Lake Constance Br(-) concentrations in lake water at the sediment water interface increased from <0.01 to 0.25 mg/l in the pore water at 77 cm sediment depth. In the Neckar River a Br concentrations of 0.02 mg/l at the water/sediment interface increasing to 0.74 mg/l in pore water in 85 cm depth was found. Here a parallel development could be found with ammonium concentration and alkalinity. The very high positive correlation ammonium:bromide and bromide:alkalinity leads to the conclusion, that bromine, originally a high molecular

  2. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    mineralogenic components derived from the erosion of fine grained sediments or soils. Assuming 50% geogenic particles with a mean Cl concentration of 103 mg/kg (as in shales and clays) the mineralogenic Cl-content could add about 50 mg/kg to the organic AOX in sewage sludge. The occurrence of insoluble and non-adsorbable PVC in sewage sludge exhibits the same problems as the mineralogenic constituents: a detection as AOX-S18 is possible when the final high temperature analytical step is applied. Plants as major sources of organohalogens have never been doubted. Only recently [Science 295 (2002) 985] based on the determination of the form of Cl with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy and extended X-ray adsorption showed the variations in the inorganic Cl(-) and organo-Cl compounds with increasing humification of plant leaves from "fresh leaves--senescent leaves on plants--senescent leaves on soil--powdered top soil--isolated soil humus". His finding of exclusively inorganic Cl(-) in the starting material (fresh leaves) is controverse to our earlier results indicating the presence of ionic inorganic Cl together with water insoluble absorbed organohalogens (AOX-S18) in eight different macrophytes of both terrestrial and marine environments. Our research on AOX in interstitial water of anaerobic limnic sediments has led to the role of bromine playing in the diagenesis of the organic matter of sediments. In sediments of Lake Constance Br(-) concentrations in lake water at the sediment water interface increased from <0.01 to 0.25 mg/l in the pore water at 77 cm sediment depth. In the Neckar River a Br concentrations of 0.02 mg/l at the water/sediment interface increasing to 0.74 mg/l in pore water in 85 cm depth was found. Here a parallel development could be found with ammonium concentration and alkalinity. The very high positive correlation ammonium:bromide and bromide:alkalinity leads to the conclusion, that bromine, originally a high molecular

  3. Destruction of halogen-containing pesticides by means of detonation combustion.

    PubMed

    Biegańska, Jolanta

    2013-02-01

    Pesticides that contain a halogen functional group have been destructed by means of detonative combustion. The following compounds were examined: (1) atrazine-2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine-herbicide; (2) bromophos-O,4-bromo-2,5-dichlorophenyl O,O-dimethyl phosphorothioate-insecticide; (3) chloridazon-5-amino-4-chloro-2-phenylopyridazin-3(2H)-one-herbicide; (4) linuron-3-(3,4-dichlorophenyl)-1-metoxy-1-methylurea-herbicide; (5) metoxychlor-1,1,1-trichloro-2,2-bis(4-metoxyphenyl)ethane-insecticide and acaricide; and (6) trichlorfon-dimethyl 2,2,2-trichloro-1-hydroxyethylphosphonate-insecticide. Explosive material has been produced on the basis of ammonium nitrate, which served as an oxidizer while the pesticides were used as fuels. Composition of the explosive was adjusted in such a way as to respect thermodynamic parameters. Detonative decomposition of the mixtures has been carried out in shot-holes pre-drilled in soil. Efficiency of the pesticide decomposition has been examined with gas chromatography in order to determine pesticides residues in the environment. It was found that for some, the amount of pesticides in some compounds in the analyzed samples after decomposition was below the determination threshold of the applied method. PMID:23128990

  4. Tropospheric Halogen Chemistry

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  5. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  6. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  7. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  8. [Source emission characteristics and impact factors of volatile halogenated organic compounds from wastewater treatment plant].

    PubMed

    He, Jie; Wang, Bo-Guang; Liu, Shu-Le; Zhao, De-Jun; Tang, Xiao-Dong; Zou, Yu

    2011-12-01

    A low enrichment method of using Tenax as absorbent and liquid nitrogen as refrigerant has been established to sample the volatile halogenated organic compounds in Guangzhou Liede municipal wastewater treatment plant as well as its ambient air. The composition and concentration of target halogenated hydrocarbons were analyzed by combined thermal desorption/GC-MS to explore its sources profile and impact factors. The result showed that 19 halogenated organic compounds were detected, including 11 halogenated alkanets, 3 halogenated alkenes, 3 halogenated aromatic hydrocarbons and 2 haloesters, with their total concentrations ranged from 34.91 microg x m(-3) to 127.74 microg x m(-3) and mean concentrations ranged from n.d. to 33.39 microg x m(-3). Main pollutants of the studied plant were CH2Cl2, CHCl3, CFC-12, C2H4Cl2, CFC-11, C2HCl3 and C2Cl4, they came from the wastewater by volatilization. Among the six processing units, the dehydration room showed the highest level of halogenated organic compounds, followed by pumping station, while the sludge thickener was the lowest. The emissions from pumping station, aeration tank and biochemical pool were significantly affected by temperature and humidity of environment.

  9. Minimization of the mean square velocity response of dynamic structures using an active-passive dynamic vibration absorber.

    PubMed

    Cheung, Y L; Wong, W O; Cheng, L

    2012-07-01

    An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.

  10. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  11. Mean Absorbed Dose to the Anal-Sphincter Region and Fecal Leakage among Irradiated Prostate Cancer Survivors

    SciTech Connect

    Alsadius, David; Hedelin, Maria; Lundstedt, Dan; Pettersson, Niclas; Wilderaeng, Ulrica; Steineck, Gunnar

    2012-10-01

    Purpose: To supplement previous findings that the absorbed dose of ionizing radiation to the anal sphincter or lower rectum affects the occurrence of fecal leakage among irradiated prostate-cancer survivors. We also wanted to determine whether anatomically defining the anal-sphincter region as the organ at risk could increase the degree of evidence underlying clinical guidelines for restriction doses to eliminate this excess risk. Methods and Materials: We identified 985 men irradiated for prostate cancer between 1993 and 2006. In 2008, we assessed long-term gastrointestinal symptoms among these men using a study-specific questionnaire. We restrict the analysis to the 414 men who had been treated with external beam radiation therapy only (no brachytherapy) to a total dose of 70 Gy in 2-Gy daily fractions to the prostate or postoperative prostatic region. On reconstructed original radiation therapy dose plans, we delineated the anal-sphincter region as an organ at risk. Results: We found that the prevalence of long-term fecal leakage at least once per month was strongly correlated with the mean dose to the anal-sphincter region. Examining different dose intervals, we found a large increase at 40 Gy; {>=}40 Gy compared with <40 Gy gave a prevalence ratio of 3.8 (95% confidence interval 1.6-8.6). Conclusions: This long-term study shows that mean absorbed dose to the anal-sphincter region is associated with the occurrence of long-term fecal leakage among irradiated prostate-cancer survivors; delineating the anal-sphincter region separately from the rectum and applying a restriction of a mean dose <40 Gy will, according to our data, reduce the risk considerably.

  12. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  13. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  14. Halogen bond involving hypervalent halogen: CSD search and theoretical study.

    PubMed

    Wang, Weizhou

    2011-08-25

    The Cambridge Structure Database search shows that there are over seventy crystal structures containing halogen bonds in which hypervalent halogens, not monovalent halogens as usual, behave as acceptors of electron density. The nature of the halogen bond involving hypervalent halogen has been investigated by using several theoretical methods with different basis sets. The HF calculations for the complexes studied cover most of their binding energies, which indicates the electrostatic nature of the halogen bond involving hypervalent halogen. The MP2 methods with medium basis sets fail to predict the relative strength of the halogen bond involving hypervalent halogen and the corresponding halogen bond involving monovalent halogen. Accurate computational results show that the halogen bond involving hypervalent halogen may be weaker than the corresponding halogen bond involving monovalent halogen even in the case that the hypervalent halogen is more positively charged than the monovalent halogen, the reasons of which were discussed in some detail. In comparison with the halogen bond involving monovalent halogen, the bonding characteristic and electron-density transfer of the halogen bond involving hypervalent halogen were also analyzed with the "atoms in molecules" theory and the natural bond orbital theory.

  15. Volatile halogenated hydrocarbons in foods

    SciTech Connect

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  16. The Halogen Bond.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-02-24

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  17. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  18. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    SciTech Connect

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria; Al-Abany, Massoud; Tucker, Susan; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  19. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  20. Halogens in the atmosphere

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.

    1981-01-01

    Atmospheric halogen measurement data are presented for: (1) inorganic and organic gaseous compounds of chlorine, fluorine, bromine and iodine; and (2) chloride, fluoride, bromide and iodine in particulate form and in precipitation. The roles that these data and other, unavailable data play in the determination of the global cycles of the halogens are discussed. It is found that the speciation of the halogen gases in the troposphere is uncertain, with the only inorganic species detected by species-specific methods being HC1 and SF6. It is shown that heterogeneous reactions, both gas-to-particle and particle-to-gas processes, precipitation removal, and sea-salt aerosol generation and fractionation processes, need quantitative investigation to allow progress in estimating halogen sources and sinks. Where practical, quantitative comparisons are made between measured and predicted concentrations.

  1. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  2. Halogens in the troposphere.

    PubMed

    Finlayson-Pitts, Barbara J

    2010-02-01

    Although inorganic halogen gases are believed to play key roles in the chemistry of the lower atmosphere, many of them have not yet been detected or measured in ambient air. This article describes some of the current techniques and future needs for inorganic halogens in air. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  3. Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber.

    PubMed

    Klevenhagen, S C

    1991-02-01

    The aim of this study was to develop a dosimetric method based on an ionization chamber which has an uncalibrated sensitive volume but which behaves as a Bragg-Gray cavity in high-energy radiation. The new type of chamber developed in the course of this study has a variable volume and is constructed from water-similar materials. It can be used in a water phantom directly in a beam of a therapy megavoltage machine under clinical conditions. The chamber allows absorbed dose to be determined from first principles, overcoming many of the problems encountered with conventional dosimetry based on calibrated chambers. The study involved an intercomparison of the performance of the new chamber in high-energy electron and photon radiation with the conventional calibrated chambers employed according to the established dosimetry protocols. Good agreement was found between these dosimetric methods and it may therefore be concluded that the method developed in this work can be successfully employed for absolute dosimetry. The new chamber is a promising device for research in various aspects of dosimetry.

  4. Occurrence of halogenated alkaloids.

    PubMed

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  5. Sources of Halogen Oxides Along the Coastline of New Zealand: A Field Measurement Study

    NASA Astrophysics Data System (ADS)

    Martínez-Avilés, Mónica; Kreher, Karin; Johnston, Paul; Thomas, Alan; Hay, Tim; Schofield, Robyn; Kenntner, Mareike

    2010-05-01

    The 2006 WMO/UNEP Scientific Assessment of Ozone Depletion identified halogenated very short-lived substances (VSLS) as contributors to the atmospheric budget of halogens. As well, it raised a question regarding the extent of the contribution of halogenated VSLS to atmospheric Bry and Iy. Traditionally, scientists have been more concerned in determining the anthropogenic budget of halogenated compounds while nature is the major producer of such species. In order to have a complete atmospheric budget of halogenated VSLS, it is important to have a better understanding of what species are biogenically produced as well as their respective degradation pathways. Oceanic emissions of halocarbons may be a new link between climate change and the composition of the global atmosphere. The rates of halocarbon emissions are sensitive to sea-surface temperatures (SSTs), nutrient supply and upwelling; all of which are to be affected by climate change. Therefore, increases in SSTs will increase emission rates. On the one hand, seaweed has been identified as a major producer of biogenic polyhalogenated VSLS. Marine macroalgae (kelp) and phytoplankton emit halogen containing gases into the marine boundary layer, constituting 90 to 95% of the total global flux of volatile halocarbons to the atmosphere. On the other hand, the possibility of industrial scale marine kelp farming as a means of carbon sequestration (i.e. marine analogy of the Kyoto Protocol forest) is being pondered by countries with long coastlines and little land suitable for forestation. Would a Kyoto Protocol forest analog be the right strategy for climate change mitigation? With the use of a portable Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) spectrometer, studies have been performed in the coast of New Zealand in order to determine the presence of BrO and IO during the spring and summer months of the Southern Hemisphere. MAX-DOAS uses scattered sunlight received from multiple viewing

  6. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  7. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  8. Cytotoxicity of halogenated graphenes

    NASA Astrophysics Data System (ADS)

    Teo, Wei Zhe; Khim Chng, Elaine Lay; Sofer, Zdeněk; Pumera, Martin

    2013-12-01

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL-1 to 200 μg mL-1) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL-1. Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  9. Cytotoxicity of halogenated graphenes.

    PubMed

    Teo, Wei Zhe; Chng, Elaine Lay Khim; Sofer, Zdeněk; Pumera, Martin

    2014-01-21

    Graphene and its family of derivatives possess unique and remarkable physicochemical properties which make them valuable materials for applications in many areas like electronics, energy storage and biomedicine. In response to the possibility of its large-scale manufacturing as commercial products in the future, an investigation was conducted to determine the cytotoxicity of one particular family of graphene derivatives, the halogenated graphenes, for the first time. Halogenated graphenes were prepared through thermal exfoliation of graphite oxide in gaseous chlorine, bromine or iodine atmospheres to yield chlorine- (TRGO-Cl), bromine- (TRGO-Br) and iodine-doped graphene (TRGO-I) respectively. 24 h exposure of human lung carcinoma epithelial cells (A549) to the three halogenated graphenes and subsequent cell viability assessments using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and water-soluble tetrazolium salt (WST-8) assays revealed that all the halogenated graphenes examined are rather cytotoxic at the concentrations tested (3.125 μg mL(-1) to 200 μg mL(-1)) and the effects are dose-dependent, with TRGO-Cl reducing the cell viability to as low as 25.7% at the maximum concentration of 200 μg mL(-1). Their levels of cytotoxicity can be arranged in the order of TRGO-Cl > TRGO-Br > TRGO-I, and it is suggested that the amount of halogen present in the graphene material is the determining factor for the observed trend. Control experiments were carried out to test for possible nanomaterial-induced interference as a consequence of reaction between the halogenated graphenes and the viability markers (MTT/WST-8 reagent) or binding of the formazan products under cell-free conditions. The data obtained eliminate the probability of significant influence by these interferents as the change in the normalized percentage of formazan formed is relatively small and thorough washings were performed prior to the viability assessments to reduce the amount of halogenated

  10. Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.

    PubMed

    Lu, Yunxiang; Wang, Yong; Zhu, Weiliang

    2010-05-14

    Halogenation is an important approach in lead optimization for drug development and about half of the molecules used in high-throughput screening are halogenated. However, there is neither a suitable theoretical algorithm for evaluating the interaction between the halogen atoms of a ligand and its target protein nor a detailed understanding of how a halogen atom interacts with electron-rich atoms or groups of the residues in the binding pocket. In this Perspective, we concentrate on nonbonding interactions of halogens from both crystallographic data and theoretical viewpoints. It is found that organic halogen atoms are favorably involved in a wide variety of noncovalent protein-ligand interactions, such as halogen bonds C-X...O and hydrogen bonds C-X...H, that show remarkable differences in terms of the geometrical and energetic features. In biological molecules, heavier halogens prefer to form linear interactions with oxygen atoms and aromatic pi systems as compared to N or S, while the mean intermolecular distances for these types of halogen bonds increase with the radius or polarizability of halogen atoms, viz., Cl < Br < I. Furthermore, F...H interactions in protein-ligand complexes exhibit disparate behavior relative to X...H (X = Cl, Br, I) counterparts. These observed tendencies of the interactions involving halogens are subsequently rationalized by means of ab initio calculations using small model systems. The results presented herein should be of great use in the rational design of halogenated ligands as inhibitors and drugs as well as in biological engineering.

  11. Halogens in CM Chondrites

    NASA Astrophysics Data System (ADS)

    Menard, J. M.; Caron, B.; Jambon, A.; Michel, A.; Villemant, B.

    2013-09-01

    We set up an extraction line of halogens (fluorine, chlorine) by pyrohydrolysis with 50 mg of rock. We analyzed 7 CM2 chondrites found in Antarctica and found that the Cl content of meteorites with an intact fusion crust is higher than those without.

  12. [Halogens: discoveries of pharmacists].

    PubMed

    Rabiant, J

    2008-01-01

    The discovery of four halogens is due to pharmacists. Chlorine was isolated by Carl Wilhem Scheele, a Swedish who was first an assistant to a pharmacist, then a pharmacist himself. Bernard Courtois, a pharmacist under the First Empire, the son of a saltpetre worker isolated iodine in I811, after a modification of the ancestral production protocol of potassium nitrate, which is the major component of the gunpowder: he replaced wood ashes by varech ashes which are less expensive. Antoine Jerôme Balard was still an assistant in chemistry and physics when he discovered bromine in the residues of the salt marshes. He became soon after a pharmacist and started a famous career as then he became Professor in the College de France and General Inspector of Higher Education. The last halogen: fluorine was isolated by Henri Moissan who received the Nobel Prize of Chemistry. The discovery will be the subject of our next communication.

  13. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  14. Double-chamber electrode for spectrochemical determination of chlorine and other halogens

    USGS Publications Warehouse

    de Paiva, Azevedo; Specht, A.W.; Harner, R.S.

    1954-01-01

    A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.

  15. Meaning

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  16. Anion transport with halogen bonds.

    PubMed

    Jentzsch, Andreas Vargas; Matile, Stefan

    2015-01-01

    This review covers the application of halogen bonds to transport anions across lipid bilayer membranes. The introduction provides a brief description of biological and synthetic transport systems. Emphasis is on examples that explore interactions beyond the coordination with lone pairs or hydrogen bonds for the recognition of cations and anions, particularly cation-π and anion-π interactions, and on structural motifs that are relevant for transport studies with halogen bonds. Section 2 summarizes the use of macrocyclic scaffolds to achieve transport with halogen bonds, focusing on cyclic arrays of halogen-bond donors of different strengths on top of calixarene scaffolds. This section also introduces methods to study anion binding in solution and anion transport in fluorogenic vesicles. In Sect. 3, transport studies with monomeric halogen bond-donors are summarized. This includes the smallest possible organic anion transporter, trifluoroiodomethane, a gas that can be bubbled through a suspension of vesicles to turn on transport. Anion transport with a gas nicely illustrates the power of halogen bonds for anion transport. Like hydrogen bonds, they are directional and strong, but compared to hydrogen-bond donors, halogen-bond donors are more lipophilic. Section 3 also offers a concise introduction to the measurement of ion selectivity in fluorogenic vesicles and conductance experiments in planar bilayer membranes. Section 4 introduces the formal unrolling of cyclic scaffolds into linear scaffolds that can span lipid bilayers. As privileged transmembrane scaffolds, the importance of hydrophobically matching fluorescent p-oligophenyl rods is fully confirmed. The first formal synthetic ion channel that operates by cooperative multiion hopping along transmembrane halogen-bonding cascades is described. Compared to homologs for anion-π interactions, transport with halogen bonds is clearly more powerful.

  17. Halogenated arsenenes as Dirac materials

    NASA Astrophysics Data System (ADS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-07-01

    Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  18. [Interaction of soda lime and halogenated anesthetics].

    PubMed

    Torri, G; Montani, C; Tommasino, C

    1997-05-01

    The increased use of soda lime for low flow anaesthesia leads to some problems related to the interaction with halogenated agents. These agents may be absorbed by soda lime or degradated according to their water content. Halothane and enflurane, in contact with soda lime, produce some metabolites, but their concentration is low when compared to their own lethal concentration. Sevoflurane degradates to four compounds. Compound A may reach a value between 13.3-42.1 ppm in the inspired fraction: these values are 50-100 times lower than the toxic concentrations. Isoflurane and desflurane are degradable at very low extent. Some case reports of unexpected high carboxyhemoglobin levels during anaesthesia indicate the possibility of CO production from soda lime and baralyme when halogenated agents are used. This reaction occurs only with anaesthetics containing CHF2-moiety (isoflurane, enflurane and desflurane) and when some specific factors make soda lime or baralyme completely dry. Low flow anaesthesia preserves the moisture content of the soda lime and protects from carbon monoxide production, by increasing water content in the circle.

  19. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1981-04-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  20. Modern halogen leak detectors /Review/

    NASA Astrophysics Data System (ADS)

    Evlampiev, A. I.; Karpov, V. I.; Levina, L. E.

    1980-09-01

    The halogen method is one of the basic techniques of leak detection for monitoring airtightness in such objects as refrigeration equipment and aerosol containers. Sensitivity has been improved by heated platinum emitters which stabilize background currents. Methods for protecting the region in which the gas is selected include placing the sensitive element in a new flow gauge and keeping the chamber at a certain distance from the tested surface. Chromatograph separating columns both increase sensitivity and distinguish test materials on a background of extraneous halogen-containing materials. Solid-state platinum diodes have been used as the sensitive elements of halogen leak detectors. Leak detectors based on electron-capture practically eliminate the effect of contamination of the surrounding atmosphere on leak detector sensitivity. A technique of vacuum testing is based on the high affinity of halogen-containing materials for electrons.

  1. Metal halogen battery construction with improved technique for producing halogen hydrate

    DOEpatents

    Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.

    1983-01-01

    An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.

  2. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  3. The Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Russell, James M., III; Gordley, Larry L.; Park, Jae H.; Drayson, S. R.; Hesketh, W. D.; Cicerone, Ralph J.; Tuck, Adrian F.; Frederick, John E.; Harries, John E.; Crutzen, Paul J.

    1993-01-01

    The Halogen Occultation Experiment (HALOE) uses solar occultation to measure vertical profiles of O3, HCl, HF, CH4, H2O, NO, NO2, aerosol extinction, and temperature versus pressure with an instantaneous vertical field of view of 1.6 km at the earth limb. Latitudinal coverage is from 80 deg S to 80 deg N over the course of 1 year and includes extensive observations of the Antarctic region during spring. The altitude range of the measurements extends from about 15 km to about 60-130 km, depending on channel. Experiment operations have been essentially flawless, and all performance criteria either meet or exceed specifications. Internal data consistency checks, comparisons with correlative measurements, and qualitative comparisons with 1985 atmospheric trace molecule spectroscopy (ATMOS) results are in good agreement. Examples of pressure versus latitude cross sections and a global orthographic projection for the September 21 to October 15, 1992, period show the utility of CH4, HF, and H2O as tracers, the occurrence of dehydration in the Antarctic lower stratosphere, the presence of the water vapor hygropause in the tropics, evidence of Antarctic air in the tropics, the influence of Hadley tropical upwelling, and the first global distribution of HCl, HF, and NO throughout the stratosphere. Nitric oxide measurements extend through the lower thermosphere.

  4. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  5. Evidence for Interfacial Halogen Bonding.

    PubMed

    Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-05-10

    A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. PMID:27060916

  6. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  7. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  8. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... is subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  9. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... is subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  10. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  11. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  12. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according...

  13. Halogen bonding in solution: thermodynamics and applications.

    PubMed

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  14. Halogen Bonding in Organic Synthesis and Organocatalysis.

    PubMed

    Bulfield, David; Huber, Stefan M

    2016-10-01

    Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen-bonding-based organocatalysis is a well-established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen-bond donors in halide abstraction reactions or in the activation of neutral organic substrates.

  15. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  16. The broadband dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Hunt, J. B.; Nissen, J.-C.

    1982-08-01

    The limited effectiveness of the linear passive dynamic vibration absorber is described. This is followed by an analysis producing the response of a primary system when a non-linear softening Belleville spring is used in the absorber. It is shown that the suppression bandwidth can be doubled by this means.

  17. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  18. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  19. The unique role of halogen substituents in the design of modern agrochemicals.

    PubMed

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  20. Effects of mercury emission control technologies using halogens on coal combustion product chemical properties.

    PubMed

    Heebink, Loreal V; Pflughoeft-Hassett, Debra F; Hassett, David J

    2010-03-01

    Fly ash and spray dryer absorber (SDA) material samples collected during mercury emission control technology tests that incorporated the use of halogens were evaluated for select chemical composition and leachability. Corresponding samples were also collected under standard operating conditions and examined using the same protocols. Included in these evaluations were pH and total and leachable concentrations of the mercury control technology (MCT) halogen of interest (Br, Cl, or I) and Hg, As, Cr, and Se. The use of a MCT using halogens decreased the pH values of coal combustion products (CCPs) collected in fabric filters compared with that of the corresponding standard CCPs. In many cases, the total As, Cr, and Se concentrations were similar between the standard and MCT test CCPs. However, at least a slight increase in total Se was noted in each sample set from the standard to the MCT test CCPs. Short-term leaching was performed on all samples, and long-term leaching was performed on most highly alkaline samples. On the basis of percentage of maximum leachability, the MCT additive halogens were more mobile than the other elements evaluated. The Hg in fly ash and SDA material samples was stable. Generally, more As and Se leached from the MCT test CCPs than the standard CCPs. Cr leachate results were more variable. The data indicate a need to further examine the effects of MCT using halogens applications on CCPs.

  1. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated pyridine (PMN P-83-1163)...

  2. 40 CFR 721.505 - Halogenated acrylonitrile.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.505 Halogenated acrylonitrile. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated acrylonitrile, (PMN P-90-299)...

  3. 40 CFR 721.505 - Halogenated acrylonitrile.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.505 Halogenated acrylonitrile. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated acrylonitrile, (PMN P-90-299)...

  4. Selective Halogenation Using an Aniline Catalyst.

    PubMed

    Samanta, Ramesh C; Yamamoto, Hisashi

    2015-08-17

    Electrophilic halogenation is used to produce a wide variety of halogenated compounds. Previously reported methods have been developed mainly using a reagent-based approach. Unfortunately, a suitable "catalytic" process for halogen transfer reactions has yet to be achieved. In this study, arylamines have been found to generate an N-halo arylamine intermediate, which acts as a highly reactive but selective catalytic electrophilic halogen source. A wide variety of heteroaromatic and aromatic compounds are halogenated using commercially available N-halosuccinimides, for example, NCS, NBS, and NIS, with good to excellent yields and with very high selectivity. In the case of unactivated double bonds, allylic chlorides are obtained under chlorination conditions, whereas bromocyclization occurs for polyolefin. The reactivity of the catalyst can be tuned by varying the electronic properties of the arene moiety of catalyst.

  5. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  6. Transepidermal water loss during halogen spotlight phototherapy in preterm infants.

    PubMed

    Grünhagen, Dirk J; de Boer, Mark G J; de Beaufort, Arnout Jan; Walther, Frans J

    2002-03-01

    Among preterm infants there is a relationship between skin blood flow and transepidermal water loss (TEWL). The aim of this study was to assess whether halogen spotlight phototherapy without significant heat stress increases TEWL and affects maintenance fluid requirements in preterm infants. TEWL was measured noninvasively before the start and after 1 h of halogen spotlight phototherapy in a group of preterm infants, nursed in double-walled incubators with moderately high relative humidity. Relative humidity and ambient temperature in the incubator were tightly controlled. Mean +/- SD birth weight of the 18 infants was 1412 +/- 256 g, gestational age 30.6 +/- 1.6 wk, and age at measurement 5 +/- 3 d. Nine infants received ventilatory assistance. Relative humidity was 40-80% (mean 52%). Average TEWL increased from 13.6 to 16.5 g/m(2)/h during phototherapy. These data show that TEWL increases by approximately 20% during phototherapy despite constant skin temperature and relative humidity. Maintenance fluids of preterm infants should be increased by 0.35 mL/kg/h during exposure to halogen spotlight phototherapy.

  7. Halogen Bonding in Hypervalent Iodine Compounds.

    PubMed

    Catalano, Luca; Cavallo, Gabriella; Metrangolo, Pierangelo; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-01-01

    Halogen bonds occur when electrophilic halogens (Lewis acids) attractively interact with donors of electron density (Lewis bases). This term is commonly used for interactions undertaken by monovalent halogen derivatives. The aim of this chapter is to show that the geometric features of the bonding pattern around iodine in its hypervalent derivatives justify the understanding of some of the longer bonds as halogen bonds. We suggest that interactions directionality in ionic and neutral λ(3)-iodane derivatives is evidence that the electron density distribution around iodine atoms is anisotropic, a region of most positive electrostatic potential exists on the extensions of the covalent bonds formed by iodine, and these positive caps affect, or even determine, the crystal packing of these derivatives. For instance, the short cation-anion contacts in ionic λ(3)-iodane and λ(5)-iodane derivatives fully match the halogen bond definition and geometrical prerequisites. The same holds for the short contacts the cation of ionic λ(3)-iodanes forms with lone-pair donors or the short contacts given by neutral λ(3)-iodanes with incoming nucleophiles. The longer and weaker bonds formed by iodine in hypervalent compounds are usually called secondary bondings and we propose that the term halogen bond can also be used. Compared to the term secondary bond, halogen bond may possibly be more descriptive of some bonding features, e.g., its directionality and the relationships between structure of interacting groups and interaction strength. PMID:26809623

  8. Regioselective Halogenation of 1,4-Benzodiazepinones via CH Activation

    PubMed Central

    Abdelkafi, Hajer; Cintrat, Jean-Christophe

    2015-01-01

    This article reports an efficient CH activation process for regioselective halogenation of 1,4-benzodiazepinones. Direct halogenation with NXS (X = Br, I) affords halogenated benzodiazepinones on the central aromatic ring whereas catalyst (Pd(OAc)2) controlled CH activation furnishes regioselectively ortho halogenated benzodiazepinones on the phenyl side chain. PMID:26179245

  9. Does fluorine participate in halogen bonding?

    PubMed

    Eskandari, Kiamars; Lesani, Mina

    2015-03-16

    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond.

  10. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  11. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-01

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  12. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-01

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model. PMID:26151227

  13. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  14. Halogen Cycle Operation Test under Microgravity Conditions Using Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Yamamoto, Fumio; Mizutani, Takayuki; Yokota, Takao; Saito, Masatoshi; Kanbayashi, Akio; Nakahata, Yoshihiro; Sawaoka, Akira

    1984-02-01

    Effect of halogen cycle under microgravity conditions was determined by using halogen lamp equipment on board sounding rocket TT-500 A #12 launched by the National Space Development Agency of Japan. Results show that the halogen lamp halogen cycle under microgravity conditions behaves the same as on the ground. From this result, it is foreseeable that there will be no reduction halogen cycle effect in the lamp in the image furnace on board the Space Shuttle Spacelab.

  15. Efficiency of light-emitting diode and halogen units in reducing residual monomers

    PubMed Central

    de Assis Ribeiro Carvalho, Felipe; Almeida, Rhita C.; Almeida, Marco Antonio; Cevidanes, Lucia H. S.; Leite, Marcia C. Amorim M.

    2011-01-01

    Introduction In this in-vitro study, we aimed to compare the residual monomers in composites beneath brackets bonded to enamel, using a light-emitting diode (LED) or a halogen unit, and to compare the residual monomers in the central to the peripheral areas of the composite. Methods Twenty bovine teeth preserved in 0.1% thymol were used in this study. Ten teeth were used to standardize the thickness of the composite film, since different thicknesses would cause different absorbance of light. Brackets were bonded to 10 bovine incisors, with the halogen light (n = 5) and the LED (n = 5). The brackets were debonded, and the remaining composite on the enamel surface was sectioned in 2 regions: peripheral (0.8 mm) and central, resulting in 2 subgroups per group: central halogen (n = 5), peripheral halogen (n = 5), central LED (n = 5), and peripheral LED (n = 5). The spectrometric analysis in the infrared region was used to measure the free monomers with the attenuated total reflectance method. Results Normal distribution was tested by using the Kolmogorov-Smirnov test. Data were compared by 2-way analysis of variance (ANOVA) at P <0.05. The LED group showed fewer residual monomers than did the halogen group (P = 0.014). No differences were found among the regions (P = 0.354), and there were no interactions between light type and region (P = 0.368). Conclusions LED leaves less residual monomer than does the halogen light, even with half of the irradiation time; there were no differences between the central and peripheral regions, and no interaction between light type and region. PMID:21055603

  16. ASCORBIC ACID TREATMENT TO REDUCE RESIDUAL HALOGEN-BASED OXIDANTS PRIOR TO THE DETERMINATION OF HALOGENATED DISINFECTION BYPRODUCTS IN POTABLE WATER

    EPA Science Inventory

    Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants)i.e., HOCl, Cl2, Brw and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include...

  17. Halogen production from aqueous tropospheric particles.

    PubMed

    Herrmann, H; Majdik, Z; Ervens, B; Weise, D

    2003-07-01

    Box model studies have been performed to study the role of aqueous phase chemistry with regard to halogen activation for marine and urban clouds and the marine aerosol as well. Different chemical pathways leading to halogen activation in diluted cloud droplets and highly concentrated sea salt aerosol particles are investigated. The concentration of halides in cloud droplets is significantly smaller than in sea-salt particles, and hence different reaction sequences control the overall chemical conversions. In diluted droplets radical chemistry involving OH, NO(3), Cl/Cl(2)(-)/ClOH(-), and Br/Br(2)(-)/BrOH(-) gains in importance and pH independent pathways lead to the release of halogens from the particle phase whereas the chemistry in aerosol particles with high electrolyte concentrations is controlled by non-radical reactions at high ionic strengths and relatively low pH values. For the simulation of halogen activation in tropospheric clouds and aqueous aerosol particles in different environments a halogen module was developed including both gas and aqueous phase processes of halogen containing species. This module is coupled to a base mechanism consisting of RACM (Regional Atmospheric Chemistry Mechanism) and the Chemical Aqueous Phase Radical Mechanism CAPRAM 2.4 (MODAC-mechanism). Phase exchange is described by the resistance model by Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, 1986. It can be shown that under cloud conditions the bromine atom is mainly produced by OH initiated reactions, i.e. its concentration maximum is reached at noon. In contrast, the concentration level of chlorine atoms is linked to NO(3) radical chemistry leading to a smaller amplitude between day and night time concentrations. The contribution of radical processes to halogen atom formation in the particle phase is evident, e.g. by halogen atoms which undergo direct phase transfer. Furthermore, the application of the multiphase model for initial concentrations for sea

  18. Two-Dimensional Inorganic Cationic Network of Thorium Iodate Chloride with Unique Halogen-Halogen Bonds.

    PubMed

    Lu, Huangjie; Wang, Yaxing; Wang, Congzhi; Chen, Lanhua; Shi, Weiqun; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-09-01

    A unique two-dimensional inorganic cationic network with the formula [Th3O2(IO3)5(OH)2]Cl was synthesized hydrothermally. Its crystal structure can best be described as positively charged slabs built with hexanuclear thorium clusters connected by iodate trigonal pyramids. Additional chloride anions are present in the interlayer spaces but surprisingly are not exchangeable, as demonstrated by a series of CrO4(2-) uptake experiments. This is because all chloride anions are trapped by multiple strong halogen-halogen interactions with short Cl-I bond lengths ranging from 3.134 to 3.333 Å, forming a special Cl-centered trigonal-pyramidal polyhedron as a newly observed coordination mode for halogen bonds. Density functional theory calculations clarified that electrons transformed from central Cl atoms to I atoms, generating a halogen-halogen interaction energy with a value of about -8.3 kcal mol(-1) per Cl···I pair as well as providing a total value of -57.9 kcal mol(-1) among delocalized halogen-halogen bonds, which is a new record value reported for a single halogen atom. Additional hydrogen-bonding interaction is also present between Cl and OH, and the interaction energy is predicted to be -8.1 kcal mol(-1), confirming the strong total interaction to lock the interlayer Cl anions. PMID:27494285

  19. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the liquid to... reduce the overall emissions of hydrogen halides and halogens by 99 percent, or reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilograms per hour (0.99 pound per hour)...

  20. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the liquid to... reduce the overall emissions of hydrogen halides and halogens by 99 percent, or reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilograms per hour (0.99 pound per hour)...

  1. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  2. The Halogen's History of the Early Earth

    NASA Astrophysics Data System (ADS)

    Bureau, H.; Raepsaet, C.; Munsch, P.; Auzende, A.; Testemale, D.; Mezouar, M.; Kubsky, S.; Carriere, M.; Ricolleau, A.; Fiquet, G.

    2012-12-01

    The halogen elements are important in Earth Sciences because, thanks to their unique ability to exist as gazes, liquids and solids, they are perfect tracers and actors for geochemical processes. The cycling of halogens in the Earth is still the matter of controversy because whereas atmosphere, crust and upper mantle are more or less characterized with respect to these elements, a real miss of knowledge is observed concerning the possible role and presence of halogen elements in the deep Earth. In this study we focus on halogen element behaviors during the Earth's differentiation at the Hadean magma ocean stage. We combined synchrotron X-Ray Fluorescence analysis with diamond anvil cells (DAC) experiments at the beam lines Id27 and FAME from ESRF and DiffAbs from SOLEIL. DAC were used as reactors to simulate pressure and temperature conditions relevant for a magma ocean. Experimental monitoring of Br [Bureau et al., 2010, CGA 74, 3839-3850] and I degassing from high pressure hydrous melts was performed in situ in DAC by measuring their partitioning between aqueous fluids and melts during decompression. Results show a stronger affinity of Br and I for the aqueous phase during decompression. Both of them are degassing with water and are totally washout from the melt. Assuming that Br and I are good analogues for F and Cl, and that halogen elements cycle is linked to the Earth's water cycle, this suggests that halogen elements may have been efficiently degassed with water during the early stages of an oxidized magma ocean. We propose that degassing during the Earth's differentiation is one of the first and dominant processes that may have distributed halogen elements between the early Earth's reservoirs.

  3. A QTAIM exploration of the competition between hydrogen and halogen bonding in halogenated 1-methyluracil: Water systems

    NASA Astrophysics Data System (ADS)

    Huan, Guo; Xu, Tianlv; Momen, Roya; Wang, Lingling; Ping, Yang; Kirk, Steven R.; Jenkins, Samantha; van Mourik, Tanja

    2016-10-01

    Using QTAIM we show that the hydrogen bonding complexes of 5-halogenated-1-methyluracil (XmU; X = F, Cl, Br, I or At) with a water molecule were always stronger than the corresponding halogen bonds. The strength of the hydrogen bond decreased with increasing halogen size. The hydrogen bonds displayed an admixture of covalent character but all the halogen bonds were purely electrostatic in nature. An F---O halogen bond was found and was facilitated by an intermediate F---H bonding interaction. The metallicity ξ(rb) of the C = O bonds neighboring the hydrogen bonds and of the C-X bonds contiguous with the halogen bonds was explored.

  4. Halogen Radical Chemistry at Aqueous Interfaces.

    PubMed

    Enami, Shinichi; Hoffmann, Michael R; Colussi, A J

    2016-08-11

    Halogens play key roles in the chemical composition of marine boundary layers, the free troposphere and the stratosphere. Atmospheric halogen chemistry is dominated by reactions between gas-phase and aqueous species on the surfaces of the ocean and marine aerosol. The mechanisms of interfacial halogen radical/halide reactions, however, are not fully understood, partly due to the dearth of techniques for in situ monitoring of the products and intermediates of fast interfacial halogen radical reactions. Here, we report the online electrospray mass spectrometric identification of the species produced on the surface of aqueous Br(-) and I(-) microjets collided by I(•)(g) pulses generated from the 266 nm laser photolysis of CH3I/O2/N2 gas mixtures. Mass-specific identification of intermediates and products in D2O and H2(18)O solutions and their dependences on I(•)(g) fluxes let us outline mechanisms of formation. We found that the uptake of I(•)(g) on the surface of Br(-) and I(-) microjets (effective uptake coefficient γeff ≥ 2 × 10(-4)) yields IBr(•)(-)/I2(•)(-) radical intermediates, which rapidly react with additional I(•) to produce trihalides I2Br(-)/IBr2(-)/I3(-) plus I3On(-) (n = 1, 2) species within ∼10 μs. Our findings point to a new halogen activation pathway initiated by photogenerated I(•). PMID:27414750

  5. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  6. Biodegradation of halogenated organic compounds.

    PubMed

    Chaudhry, G R; Chapalamadugu, S

    1991-03-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  7. Halogen degassing during ascent and eruption of water-poor basaltic magma

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  8. Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.

    PubMed

    Hou, Desheng; Fan, Jingjing; Han, Lingfei; Ruan, Xiaoling; Feng, Feng; Liu, Wenyuan; Zheng, Feng

    2016-03-18

    A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392 nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives. To avoid these unwanted side reactions, a reliable derivatization method that did not use pyridine was developed. Reaction with 2-NPH·HCl using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as coupling agent in acetonitrile-water (70:30) at room temperature for 2h gave complete reaction and avoided degradation products. The derivatives were analyzed, without any pretreatment, using gradient HPLC with detection in the near visible region. Organic acids commonly found in drug substances and other impurities did not interfere with the analysis. Good linearity (r>0.999) and low limits of quantitation (0.05-0.12 μg mL(-1)) were obtained. The mean recoveries were in the range of 80-115% with RSD <5.81% except for 3-CPA in ibuprofen which was 78.5%. The intra- and inter-day precisions were expressed as RSD <1.98% and <4.39%, respectively. Finally, the proposed method was successfully used for the residue

  9. Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.

    PubMed

    Hou, Desheng; Fan, Jingjing; Han, Lingfei; Ruan, Xiaoling; Feng, Feng; Liu, Wenyuan; Zheng, Feng

    2016-03-18

    A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392 nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives. To avoid these unwanted side reactions, a reliable derivatization method that did not use pyridine was developed. Reaction with 2-NPH·HCl using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as coupling agent in acetonitrile-water (70:30) at room temperature for 2h gave complete reaction and avoided degradation products. The derivatives were analyzed, without any pretreatment, using gradient HPLC with detection in the near visible region. Organic acids commonly found in drug substances and other impurities did not interfere with the analysis. Good linearity (r>0.999) and low limits of quantitation (0.05-0.12 μg mL(-1)) were obtained. The mean recoveries were in the range of 80-115% with RSD <5.81% except for 3-CPA in ibuprofen which was 78.5%. The intra- and inter-day precisions were expressed as RSD <1.98% and <4.39%, respectively. Finally, the proposed method was successfully used for the residue

  10. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  11. Investigation of Halogenated Components Formed from Chlorination of Natural Waters: Preliminary Studies

    SciTech Connect

    Bean, R. M.; Riley, R. G.

    1980-11-01

    Chlorination of power plant cooling water is extensively used as a means of controlling biofouling. This practice presents the potential for formation of halogenated organic compounds hazardous to man and his environment. Accordingly, the organic composition resulting from the chlorination of natural waters (northern Olympic Penn1sula sea water and the Columbia River in Washington State} has been investigated. Nonpolar lipophilic organic halogens were extracted by passing large volumes of water over columns of XAD-2 macroreticular resins. Examination of ether extracts from the resin columns using capillary gas chromatography revealed the presence of halogenated methanes, as well as other electron-capturing components~ that were not found when unchlorinated water was sampled. Examination of the chlorinated water extracts using gas chromatography/mass spectrometry revealed complex mixtures which generally were not separable into individual components~ even when high efficiency WCOT capillary columns were used. The samples were separated into fractions of increasing polarity using a water-deactivated silica gel column. Fractions were thus obtained which were more amenable to GC/MS investigation. Haloforms were identified as the major halogenated product from chlorination of the waters studied. Other halogenated products were found at much lower concentrations.

  12. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  13. Evaluation of Halogenated Coumarins for Antimosquito Properties

    PubMed Central

    Narayanaswamy, Venugopala K.; Gleiser, Raquel M.; Kasumbwe, Kabange; Aldhubiab, Bandar E.; Attimarad, Mahesh V.; Odhav, Bharti

    2014-01-01

    Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate. PMID:25610898

  14. Evaluation of halogenated coumarins for antimosquito properties.

    PubMed

    Narayanaswamy, Venugopala K; Gleiser, Raquel M; Kasumbwe, Kabange; Aldhubiab, Bandar E; Attimarad, Mahesh V; Odhav, Bharti

    2014-01-01

    Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate. PMID:25610898

  15. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes. PMID:18837495

  16. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  17. Analysis of halogen-specific TOX revisited: Method improvement and application.

    PubMed

    Kristiana, Ina; McDonald, Suzanne; Tan, Jace; Joll, Cynthia; Heitz, Anna

    2015-07-01

    A method was optimised and evaluated for the analysis of total organic halogen (TOX) in drinking water samples. It involved adsorption of organic halogen onto activated carbon, followed by combustion of the activated carbon and adsorbed material, absorption of the resulting hydrogen halide gases in an absorbing solution, and analysis of halide ions in the solution using an on-line ion chromatograph. Careful optimisation and validation of the method resulted in significant improvements compared to previously reported methods. Method detection limits were 5µgL(-1) for TOCl (as Cl(-)), 2µgL(-1) for TOBr (as Br(-)), and 2µgL(-1) for TOI (as I(-)). Interferences with TOI measurement occurred when iodide or iodate was present in the sample at concentrations at or above 100µgL(-1) and 500µgL(-1), respectively. In general, excellent method recoveries were determined for a wide range of model compounds. The method was used to investigate the formation of halogen-specific TOX through a water treatment plant and in laboratory-scale disinfection experiments. Up to 70% of bromide in the water was converted to TOBr following disinfection at the plant. In the disinfection experiments, TOI was preferentially formed in chloraminated samples, and trihalomethanes only constituted a small fraction (≤20%) of TOX, highlighting the significant proportion of halogenated organic DBPs that are not measured regularly. This is the first report of a comprehensive assessment of the key parameters influencing the efficiency and reliability of the analysis of halogen-specific TOX in drinking water with demonstration of its applications.

  18. Halogen chemistry in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.

    2009-04-01

    Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.

  19. Boundary layer halogens in coastal Antarctica.

    PubMed

    Saiz-Lopez, Alfonso; Mahajan, Anoop S; Salmon, Rhian A; Bauguitte, Stephane J-B; Jones, Anna E; Roscoe, Howard K; Plane, John M C

    2007-07-20

    Halogens influence the oxidizing capacity of Earth's troposphere, and iodine oxides form ultrafine aerosols, which may have an impact on climate. We report year-round measurements of boundary layer iodine oxide and bromine oxide at the near-coastal site of Halley Station, Antarctica. Surprisingly, both species are present throughout the sunlit period and exhibit similar seasonal cycles and concentrations. The springtime peak of iodine oxide (20 parts per trillion) is the highest concentration recorded anywhere in the atmosphere. These levels of halogens cause substantial ozone depletion, as well as the rapid oxidation of dimethyl sulfide and mercury in the Antarctic boundary layer.

  20. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  1. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  2. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  3. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  4. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  5. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  6. Halogenases: A Biotechnological Alternative for the Synthesis of Halogenated Pharmaceuticals.

    PubMed

    Ayala, Marcela; Segovia, Lorenzo; Torres, Eduardo

    2016-01-01

    The role of halogen atoms in pharmaceutical compounds has been recently revised, due to the weak interaction through the so called "halogen bond" between small molecules and proteins or other biomacromolecules, which could be fundamental for binding at a particular site within the macromolecule. Moreover, thousands of natural halogenated compounds have been described to date, pointing to a functional role of halogen atoms in these compounds, as well as a diversity of halogenating enzymes involved in the synthesis of these halogenated metabolites. In this mini-review the different halogenases described to date are presented, particularly those catalyzing halogenation reactions with potential applications in the pharmaceutical field. Oxidative halogenases following an electrophilic halogenation mechanism are the oldest and best characterized halogenases; however, novel halogenases following a nucleophilic halogenation mechanism have been recently described. The catalytic properties as well as the selectivity of some of these enzymes can be modulated through protein engineering, both by single point mutations or by directed evolution; on the other hand, metabolic pathway engineering has been used to improve the production of halogenated metabolites, as well as to produce novel halogenated compounds, potentially important in the pharmaceutical field. Recent advances and prospective on the field of enzymatic halogenation are covered.

  7. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. Link to an amendment published at 79 FR 34638, June 18... identified generically as halogenated alkyl pyridine (PMN P-83-237) is subject to reporting under...

  8. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkyl pyridine. 721.8700... Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  9. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  10. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  11. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  12. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  13. 40 CFR 721.5546 - Halogen substituted oxetanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogen substituted oxetanes (generic... Substances § 721.5546 Halogen substituted oxetanes (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as halogen substituted...

  14. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  15. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  16. The halogen bond: an interim perspective.

    PubMed

    Legon, Anthony C

    2010-07-28

    There has been an upsurge of interest in the halogen bond during the last decade. This non-covalent interaction is less familiar than the hydrogen bond, but is similar to it in several respects. In this article, we first discuss the nature of the halogen bond in the gas phase, as established by systematic investigations of the rotational spectra of complexes B...XY, where B is a simple Lewis base and XY is a dihalogen molecule. The geometry of a given B...XY is found to be isomorphic with that of the corresponding hydrogen-bonded system B...HX, an observation that leads an interim definition of the halogen bond similar to that recently proposed for the hydrogen bond. Selected novel applications of the halogen bond made in the last decade in various areas of chemistry/materials (namely crystal engineering, liquid crystals, nano-materials, polymer chemistry and inorganic chemistry) are then reviewed. These applications generally involve molecules of the type XR (where R is an electron-withdrawing group) acting as the electron donor, rather than dihalogens XY.

  17. Reactions of halogen-pyridine systems

    SciTech Connect

    Coury, A.J.; Cahalan, P.T.

    1980-01-01

    The combination of halogens (acceptors) with pyridine derivatives (donors) produces, initially, charge transfer complexes with conductivities useful as depolarizers in lithium-halogen power cell cathodes. The complex most often employed in pacemaker batteries is I/sub 2//P2VP. Pyridines and halogens undergo additional reactions of consequence to cell performance. Such side reactions include: Alkyl group substitution, ring coupling, polymer molecular weight degradation, olefin addition and ring substitution. Instrumental analysis of model systems and the commercial iodine/poly-2-vinylpyridine (I/sub 2//P2VP) system provided evidence for alkyl group substitution, coupling and molecular weight degradation. The addition reaction was inferred from the presence of the needed reactants and their facile reactivity. Halogenation of the pyridine ring was not found. Side reactions cause reduced cathode capacity. Hydrogen halides generated by such side reactions may cause corrosion, but may enhance conductivity properties. Deleterious pressure buidup or dimensional changes may result from side reactions occurring within sealed battery cans. 7 refs.

  18. Retention of Halogens in Waste Glass

    SciTech Connect

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  19. High-temperature corrosion in halogen environments

    SciTech Connect

    McNallan, M. )

    1994-09-01

    Halogen contaminants, particularly chlorine and fluorine, cause accelerated corrosion in such high-temperature systems as waste incinerators and waste heat recuperators on metallurgical furnaces. The mechanisms by which these phenomena occur are reviewed and discussed with the goal of identifying appropriate corrosion control strategies for materials that operate in these environments.

  20. Halogenated Indole Alkaloids from Marine Invertebrates

    PubMed Central

    Pauletti, Patrícia Mendonça; Cintra, Lucas Silva; Braguine, Caio Guedes; da Silva Filho, Ademar Alves; Silva, Márcio Luís Andrade e; Cunha, Wilson Roberto; Januário, Ana Helena

    2010-01-01

    This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the 13C-NMR spectral data of these selected natural indole alkaloids is also provided. PMID:20559487

  1. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  2. Iron Catalyzed Halogenation Processes in Saline Soils

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Lippe, S.; Kullik, V.; Hauck, L.; Krause, T.; Keppler, F.; Schoeler, H. F.

    2014-12-01

    Within upcoming years the extent of salt deserts and salt lakes will probably increase due to climate change. It is known that volatile organic halogens (VOX) are released from saline soils and thus higher emissions from these environments are likely expected in the future. The origin of some organohalogens is not reasonably constrained by established natural halogenation processes. Therefore detailed biogeochemical investigations of these environments are necessary to identify the specific halogenation pathways. Redox-sensitive metals like iron are already known as triggers of chemical reactions via so called Fenton and Fenton-like reactions requiring H2O2 which is photochemically produced in water. In this study we collected soil samples from several salt lakes in Western Australia with pH values ranging from 2 to 8. The high pH variability was considered useful to study the impact of iron mobility and availability on halogenation processes. Iron was found to mainly occur as oxides and sulfides within the alkaline soils and acidic soils, respectively. All soil samples were lyophilised and finely ground prior to incubation at 40 °C for 24 h in aqueous solutions. Formation of volatile organic compounds (VOC) and VOX from these soils was observed using GC-FID and GC-MS. When H2O2 was added to the samples much higher concentrations of VOC and VOX were observed. Furthermore, when the pH of the soils was changed towards lower values higher emissions of VOC were also observed. Based on C-H activation processes we delineate a halide containing iron complex as a provider of anions reacting with previously generated hydrocarbon radicals. We suggest iron sulfate derivatives as those complexes which are generated if the above-mentioned natural H2O2 addition to iron sulfates and sulfides occurs. The origin of these complexes is able to explain the halogenation of chemically unreactive alkanes.

  3. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  4. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  5. Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás; Schmidt, Johan A.; Evans, Mat J.; Carpenter, Lucy J.; Großmann, Katja; Eastham, Sebastian D.; Jacob, Daniel J.; Dix, Barbara; Koenig, Theodore K.; Sinreich, Roman; Ortega, Ivan; Volkamer, Rainer; Saiz-Lopez, Alfonso; Prados-Roman, Cristina; Mahajan, Anoop S.; Ordóñez, Carlos

    2016-09-01

    We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28 × 106 molecules cm-3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (˜ 2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (˜ 15-27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.

  6. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  7. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    PubMed

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (<10mgL(-1)) and suitable pH for analysis by both IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS. PMID:27343595

  8. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    PubMed

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (<10mgL(-1)) and suitable pH for analysis by both IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS.

  9. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  10. Absorbing Outflows in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  11. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  12. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, P.; Platt, U.; Zetzsch, C.

    2012-01-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS released from simulated natural halogen sources like salt pans. Subsequently the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which result in new functional groups, changed UV/VIS absorption, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  13. Halogen bonding origin properties and applications

    SciTech Connect

    Hobza, Pavel

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  14. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  15. Halogenating activities detected in Antarctic macroalgae

    SciTech Connect

    Laturnus, F.; Adams, F.C.; Gomez, I.; Mehrtens, G.

    1997-03-01

    Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11 {+-} 0.01 U g{sup -1} wet algal weight and 0.18 U g{sup -1} wet algal weight, respectively) and Myriogramme mangini (3.62 {+-} 0.17 U g{sup -1} wet algal weight and 4.5 U g{sup -1} wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g{sup -1} wet algal weight). 30 refs., 2 figs., 1 tab.

  16. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  17. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  18. Reduction of halogenated ethanes by green rust.

    SciTech Connect

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research; Air Force Research Lab.; Integrated Science and Technology, Inc.

    2004-01-01

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanes having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.

  19. Mechanism of action of toxic halogenated aromatics.

    PubMed Central

    Vickers, A E; Sloop, T C; Lucier, G W

    1985-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons are a highly toxic class of environmental contaminants, as evidenced by numerous cases of accidental poisonings of human and animal populations and their extreme toxic potency in laboratory animals. The proposed model for the mechanism of action of TCDD and related compounds is analogous to that of the steroid hormones, which modulate gene expression through a receptor mechanism. In the steroid receptor model, the compound enters the cell cytoplasm where it acts as a specific ligand, binding selectively to a high affinity receptor protein. Bound to the appropriate ligand, the receptor concentrates in the nucleus where its increased association with chromatin leads to altered gene expression. This model has been useful in characterizing the Ah receptor; however, it does not provide a unifying hypothesis for all biochemical and toxic effects associated with exposure to halogenated aromatic hydrocarbons. Several findings suggest that a primary factor in determining TCDD toxicity might be tissue and species specific factors that control the actions of Ah receptor(s) in target tissues. Furthermore, numerous mechanisms might be involved. Clarifying the mechanism(s) for TCDD toxicity would enhance our ability to predict human health consequences to toxic halogenated aromatic hydrocarbons and would provide a more rational basis for risk analysis. PMID:2985378

  20. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  1. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  2. Performance of stabilized halogen biocides in cooling water

    SciTech Connect

    Dallmier, A.W.; Martens, J.D.; McCoy, W.F.

    1997-12-01

    Halogen-based biocides have been used for many years in cooling water to control microbial fouling. Potential problems associated with the misapplication of halogen-based biocides in cooling water are increased corrosion, degradation of scale and corrosion inhibitors, and poor storage stability. Advances and innovations in this field have led to products in which the oxidizing effects and degradative properties of the halogen are stabilized. This provides much more effective control of the microbial fouling process in cooling water shile being less aggressive towards other system components. Methods used to measure increased effectiveness of stabilized halogen biocides are presented and discussed in this paper. Laboratory and field experiments of a stabilized halogen antimicrobial control program are detailed. Performance of this stabilized halogen program for Legionella pneumophila control is also discussed.

  3. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    PubMed

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  4. Infrared Spectroscopy of Halogenated Species for Atmospheric Remote Sensing

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2014-06-01

    Fluorine- and chlorine-containing molecules in the atmosphere are very strong greenhouse gases, meaning that even small amounts of these gases contribute significantly to the radiative forcing of climate. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are regulated by the 1987 Montreal Protocol because they deplete the ozone layer. Hydrofluorocarbons (HFCs), which do not deplete the ozone layer and are not regulated by the Montreal Protocol, have been introduced as replacements for CFCs and HCFCs. HFCs have global-warming potentials many times greater than carbon dioxide, and are increasing in the atmosphere at a very fast rate. Various satellite instruments monitor many of these molecules by detecting infrared radiation that has passed through the Earth's atmosphere. However, the quantification of their atmospheric abundances crucially requires accurate quantitative infrared spectroscopy. This talk will focus on new and improved laboratory spectroscopic measurements for a number of important halogenated species.

  5. Supramolecular chemistry of halogens: complementary features of inorganic (M-X) and organic (C-X') halogens applied to M-X...X'-C halogen bond formation.

    PubMed

    Zordan, Fiorenzo; Brammer, Lee; Sherwood, Paul

    2005-04-27

    Electronic differences between inorganic (M-X) and organic (C-X) halogens in conjunction with the anisotropic charge distribution associated with terminal halogens have been exploited in supramolecular synthesis based upon intermolecular M-X...X'-C halogen bonds. The synthesis and crystal structures of a family of compounds trans-[MCl(2)(NC(5)H(4)X-3)(2)] (M = Pd(II), Pt(II); X = F, Cl, Br, I; NC(5)H(4)X-3 = 3-halopyridine) are reported. With the exception of the fluoropyridine compounds, network structures propagated by M-Cl...X-C halogen bonds are adopted and involve all M-Cl and all C-X groups. M-Cl...X-C interactions show Cl...X separations shorter than van der Waals values, shorter distances being observed for heavier halogens (X). Geometries with near linear Cl...X-C angles (155-172 degrees ) and markedly bent M-Cl...X angles (92-137 degrees ) are consistently observed. DFT calculations on the model dimers {trans-[MCl(2)(NH(3))(NC(5)H(4)X-3)]}(2) show association through M-Cl...X-C (X not equal F) interactions with geometries similar to experimental values. DFT calculations of the electrostatic potential distributions for the compounds trans-[PdCl(2)(NC(5)H(4)X-3)(2)] (X = F, Cl, Br, I) demonstrate the effectiveness of the strategy to activate C-X groups toward halogen bond formation by enhancing their electrophilicity, and explain the absence of M-Cl...F-C interactions. The M-Cl...X-C halogen bonds described here can be viewed unambiguously as nucleophile-electrophile interactions that involve an attractive electrostatic contribution. This contrasts with some types of halogen-halogen interactions previously described and suggests that M-Cl...X-C halogen bonds could provide a valuable new synthon for supramolecular chemists.

  6. Direct conversion of halogen-containing wastes to borosilicate glass

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Rudolph, J.C.

    1996-12-09

    Glass has become a preferred waste form worldwide for radioactive wastes: however, there are limitations. Halogen-containing wastes can not be converted to glass because halogens form poor-quality waste glasses. Furthermore, halides in glass melters often form second phases that create operating problems. A new waste vitrification process, the Glass Material Oxidation and dissolution System (GMODS), removes these limitations by converting halogen-containing wastes into borosilicate glass and a secondary, clean, sodium-halide stream.

  7. Hexahalogenated and their mixed benzene derivatives as prototypes for the understanding of halogen···halogen intramolecular interactions: New insights from combined DFT, QTAIM-, and RDG-based NCI analyses.

    PubMed

    Varadwaj, Pradeep R; Varadwaj, Arpita; Jin, Bih-Yaw

    2015-12-01

    A large number of fully halogenated benzene derivatives containing the fluorine, chlorine, bromine, and iodine atoms have been experimentally synthesized both as single- and co-crystals (e.g., Desiraju et al., Chem. Eur. J. 2006, 12, 2222), yet the natures of the halogen ··· halogen interactions between the vicinal halogens in these compounds within the intramolecular domain are undisclosed. Given a fundamental understanding of these interactions is incredibly important in many areas of chemical, biological, supramolecular, and material sciences, we present here our newly discovered theoretical results that delineate whilst the nature of an F···F interaction in a pair of two adjacent fluorine atoms in either of the hexafluorobenzene and 1,4-dibromotetrafluorobenzene compounds examined is almost unclear, each of the latter three hexahalogenated benzene derivatives (viz., C6 Cl6 , C6 Br6 , and C6 I6 ), and each of the seven of their fully mixed hexahalogenated benzene analogues, are found to be stabilized by means of a number of halogen···halogen interactions, each a form of long-range attraction within the intramolecular domain. The Molecular Electrostatic Surface Potential model was found to be unsurprisingly unsuitable in unraveling any of the aforesaid attractions between the halogen atoms. However, such interactions successfully enunciated by a set of noncovalent interaction descriptors of geometrical, topological, and electrostatic origins. These latter properties were extracted combining the results of the Density Functional Theory electronic structure calculations with those revealed from Atoms in Molecules, and Reduced Density Gradient charge density-based topological calculations, and are expounded in detail to formalize the conclusions. © 2015 Wiley Periodicals, Inc.

  8. Source of Cooperativity in Halogen-Bonded Haloamine Tetramers.

    PubMed

    Dominikowska, Justyna; Bickelhaupt, F Matthias; Palusiak, Marcin; Fonseca Guerra, Célia

    2016-02-16

    Inspired by the isostructural motif in α-bromoacetophenone oxime crystals, we investigated halogen-halogen bonding in haloamine quartets. Our Kohn-Sham molecular orbital and energy decomposition analysis reveal a synergy that can be traced to a charge-transfer interaction in the halogen-bonded tetramers. The halogen lone-pair orbital on one monomer donates electrons into the unoccupied σ*N-X orbital on the perpendicular N-X bond of the neighboring monomer. This interaction has local σ symmetry. Interestingly, we discovered a second, somewhat weaker donor-acceptor interaction of local π symmetry, which partially counteracts the aforementioned regular σ-symmetric halogen-bonding orbital interaction. The halogen-halogen interaction in haloamines is the first known example of a halogen bond in which back donation takes place. We also find that this cooperativity in halogen bonds results from the reduction of the donor-acceptor orbital-energy gap that occurs every time a monomer is added to the aggregate. PMID:26732989

  9. Liquid chromatography enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases: role of halogen substituents in molecular recognition.

    PubMed

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2015-10-01

    Halogenated chiral molecules have become important in several fields of science, industry, and society as drugs, natural compounds, agrochemicals, environmental pollutants, synthetic products, and chiral supports. Meanwhile, the perception of the halogen moiety in organic compounds and its role in recognition processes changed. Indeed, the recognition of the halogen bond as an intermolecular interaction occurring when the halogen acts as a Lewis acid had a strong impact, particularly in crystal engineering and medicinal chemistry. Due to this renewed interest in the potentialities of chiral organohalogens, here we focus on selected recent applications dealing with enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases (CSPs), widely used in liquid chromatography (LC). In particular, recently the first case of halogen bonding-driven high-performance LC (HPLC) enantioseparation was reported on a cellulose-based CSP. Along with enantioseparations performed under conventional HPLC, representative applications using supercritical fluid chromatography (SFC) are reported.

  10. Predictive Models for Halogen-bond Basicity of Binding Sites of Polyfunctional Molecules.

    PubMed

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Graton, Jérôme; Le Questel, Jean-Yves; Varnek, Alexandre

    2016-02-01

    Halogen bonding (XB) strength assesses the ability of an electron-enriched group to be involved in complexes with polarizable electrophilic halogenated or diatomic halogen molecules. Here, we report QSPR models of XB of particular relevance for an efficient screening of large sets of compounds. The basicity is described by pKBI2 , the decimal logarithm of the experimental 1 : 1 (B : I2 ) complexation constant K of organic compounds (B) with diiodine (I2 ) as a reference halogen-bond donor in alkanes at 298 K. Modeling involved ISIDA fragment descriptors, using SVM and MLR methods on a set of 598 organic compounds. Developed models were then challenged to make predictions for an external test set of 11 polyfunctional compounds for which unambiguous assignment of the measured effective complexation constant to specific groups out of the putative acceptor sites is not granted. At this stage, developed models were used to predict pKBI2 of all putative acceptor sites, followed by an estimation of the predicted effective complexation constant using the ChemEqui program. The best consensus models perform well both in cross-validation (root mean squared error RMSE=0.39-0.47 logKBI2 units) and external predictions (RMSE=0.49). The SVM models are implemented on our website (http://infochim.u-strasbg.fr/webserv/VSEngine.html) together with the estimation of their applicability domain and an automatic detection of potential halogen-bond acceptor atoms. PMID:27491792

  11. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    PubMed

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  12. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  13. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the liquid to... which it is part, as specified in 40 CFR 63.100(k) (if the referencing subpart is 40 CFR part 63... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Halogen scrubbers and other...

  14. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the liquid to... which it is part, as specified in 40 CFR 63.100(k) (if the referencing subpart is 40 CFR part 63... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Halogen scrubbers and other...

  15. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subject to regulations in 40 CFR parts 264 through 266 that have required a determination of the liquid to... which it is part, as specified in 40 CFR 63.100(k) (if the referencing subpart is 40 CFR part 63... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Halogen scrubbers and other...

  16. Dehalogenation of halogenated fumigants by polysulfide salts.

    PubMed

    Bondarenko, S; Zheng, W; Yates, S R; Gan, J

    2006-07-26

    Halogenated fumigants are among the most heavily used pesticides in agriculture. Because of their high mobility and toxicological characteristics, the contamination of air or groundwater by these compounds has been a great environmental concern. In this study, we investigated dehalogenation of several halogenated fumigants by polysulfides. The reaction of polysulfides and methyl iodide (MeI), 1,3-dichloropropene (1,3-D), and chloropicrin (CP) was very rapid. When the initial fumigant and polysulfide concentrations were both 0.2 mM, the observed 50% disappearance time values (DT50) of MeI, cis-1,3-D, and trans-1,3-D were 27.2, 29.6, and 102 h, respectively. When the initial polysulfide concentration was 1.0 mM, the corresponding DT50 values were only 2.2, 1.6, and 3.8 h. Under similar conditions, the reaction with CP was even more rapid than with the other fumigants. In 0.2 mM polysulfide solution, more than 90% of the spiked CP disappeared in 1 h after the initiation of the reaction. The reaction between fumigants and polysulfides also progressed at enhanced rates when the polysulfide solution was initially purged with nitrogen. Analysis of reaction kinetics and initial products suggests that the reaction is SN2 nucleophilic substitution for MeI and 1,3-D but likely reductive dehalogenation for CP. Given the high reactivity of polysulfide salts toward halogenated fumigants, this reaction may be used as a pollution mitigation strategy, such as for disposal of fumigant wastes, treatment of fumigant-containing wastewater, and cleanup of fumigant residues in environmental media.

  17. Review of Rate Constants and Exploration of Correlations of the Halogen Transfer Reaction of Tri-substituted Carbon-centered Radicals with Molecular Halogens

    SciTech Connect

    Poutsma, Marvin L

    2012-01-01

    Rate constants for the reaction (R 3C + X2 R 3CX + X ; X = F, Cl, Br, and I) are reviewed. Because of curved Arrhenius plots and negative EX values, empirical structure-reactivity correlations are sought for log kX,298 rather than EX. The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R 3C is p, the sum of the Hammett p constants for the three substituents, R . Electronegative substituents with lone pairs, such as halogen or oxygen, thus appear to destabilize the formation of a polarized pre-reaction complex and/or TS ( +R---X---X -) by -inductive/field electron withdrawal while simultaneously stabilizing them by -resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I2 > Br2 >> Cl2 F2, is the polarizability of the halogen, (X-X). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log kX,298 is achieved with only two parameters, p and (X-X), with a mean unsigned deviation of 0.59 log units. How much of this residual variance is the result of inaccuracies in the data compared with over-simplification of the correlation approach remains to be seen.

  18. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  19. Retrieval Algorithms for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.; Gordley, Larry L.

    2009-01-01

    The Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) provided high quality measurements of key middle atmosphere constituents, aerosol characteristics, and temperature for 14 years (1991-2005). This report is an outline of the Level 2 retrieval algorithms, and it also describes the great care that was taken in characterizing the instrument prior to launch and throughout its mission life. It represents an historical record of the techniques used to analyze the data and of the steps that must be considered for the development of a similar experiment for future satellite missions.

  20. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  1. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  2. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  3. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Schmitt-Kopplin, Ph.; Platt, U.; Zetzsch, C.

    2012-07-01

    Reactive halogen species (RHS), such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA) and organic aerosol derived from biomass-burning (BBOA) has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols. Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy), changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS)), or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  4. Unidirectional perfect absorber

    PubMed Central

    Jin, L.; Wang, P.; Song, Z.

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  5. Unidirectional perfect absorber

    NASA Astrophysics Data System (ADS)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  6. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  7. Mechanical energy absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1993-01-01

    An energy absorbing system for controlling the force where a moving object engages a stationary stop and where the system utilized telescopic tubular members, energy absorbing diaphragm elements, force regulating disc springs, and a return spring to return the telescoping member to its start position after stroking is presented. The energy absorbing system has frusto-conical diaphragm elements frictionally engaging the shaft and are opposed by a force regulating set of disc springs. In principle, this force feedback mechanism serves to keep the stroking load at a reasonable level even if the friction coefficient increases greatly. This force feedback device also serves to desensitize the singular and combined effects of manufacturing tolerances, sliding surface wear, temperature changes, dynamic effects, and lubricity.

  8. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-09-12

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  9. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Substances § 721.4484 Halogenated indane (generic name). (a) Chemical substance and significant new...

  10. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Substances § 721.4484 Halogenated indane (generic name). (a) Chemical substance and significant new...

  11. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkyl pyridine (PMN P-83-237)...

  12. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated...

  13. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  14. Field-Reversal Source for Negative Halogen Ions

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Orient, O. J.; Aladzhadzhyan, S. H.

    1987-01-01

    Large zero-energy electron-attachment cross sections result in intense ion beams. Concept for producing negative halogen ions takes advantage of large cross sections at zero kinetic energy for dissociative attachment of electrons to such halogen-containing gases as SF6, CFCI3, and CCI4.

  15. Parametrization of the SCC-DFTB Method for Halogens.

    PubMed

    Kubař, Tomáš; Bodrog, Zoltán; Gaus, Michael; Köhler, Christof; Aradi, Bálint; Frauenheim, Thomas; Elstner, Marcus

    2013-07-01

    Parametrization of the approximative DFT method SCC-DFTB for halogen elements is presented. The new parameter set is intended to describe halogenated organic as well as inorganic molecules, and it is compatible with the established parametrization of SCC-DFTB for carbon, hydrogen, oxygen, and nitrogen. The performance of the parameter set is tested on a representative set of molecules and discussed.

  16. 40 CFR 721.10015 - Halogenated benzimidazole (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzimidazole (generic... Specific Chemical Substances § 721.10015 Halogenated benzimidazole (generic). (a) Chemical substance and... benzimidazole (PMN P-01-110) is subject to reporting under this section for the significant new uses...

  17. 40 CFR 721.3480 - Halogenated biphenyl glycidyl ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated biphenyl glycidyl ethers... Substances § 721.3480 Halogenated biphenyl glycidyl ethers. (a) Chemical substance and significant new uses... ethers (PMNs P-90-1844, P-90-1845, and P-90-1846) are subject to reporting under this section for...

  18. 40 CFR 721.3480 - Halogenated biphenyl glycidyl ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated biphenyl glycidyl ethers... Substances § 721.3480 Halogenated biphenyl glycidyl ethers. (a) Chemical substance and significant new uses... ethers (PMNs P-90-1844, P-90-1845, and P-90-1846) are subject to reporting under this section for...

  19. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4484 Halogenated...

  20. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated phenyl alkane. 721.536 Section 721.536 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane....

  1. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  2. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  3. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  4. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  5. Scientific conferences: A big hello to halogen bonding

    NASA Astrophysics Data System (ADS)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  6. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  7. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  8. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  9. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  10. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

    PubMed Central

    Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B

    1985-01-01

    A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371

  11. Electrogenerative cell for the oxidation or halogenation of hydrocarbons

    SciTech Connect

    McIntyre, J.M.

    1988-03-15

    A process for producing electric power by the electrogenerative halogenation or oxidation of at least one unsaturated hydrocarbon in an electrochemical cell having an anode and cathode separated by a permselective membrane or electrolyte permeable diaphragm is described comprising: (A) flowing a first liquid electrolyte and the unsaturated hydrocarbon to an anolyte compartment of the cell containing a porous anode; (B) flowing a second liquid electrolyte and a halogen or oxygen gas to a catholyte compartment of the cell containing a porous cathode; (C) reacting the unsaturated hydrocarbon with the halogen or the oxygen at ambient or elevated temperatures and pressures; (D) recovering a halogenated or oxygenated hydrocarbon; (E) recycling the electrolytes, unsaturated hydrocarbon, and halogen or oxygen gas to the cell.

  12. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  13. The halogen analogs of thiolated gold nanoclusters

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2012-01-01

    Is it possible to replace all the thiolates in a thiolated gold nanocluster with halogens while still maintaining the geometry and the electronic structure? In this work, we show from density functional theory that such halogen analogs of thiolated gold nanoclusters are highly likely. Using Au{sub 25}X{sub 18}{sup -} as an example, where X = F, Cl, Br, or I replaces -SR, we find that Au{sub 25}Cl{sub 18}{sup -} demonstrates a high similarity to Au{sub 25}(SR){sub 18}{sup -} by showing Au-Cl distances, Cl-Au-Cl angles, band gap, and frontier orbitals similar to those in Au{sub 25}(SR){sub 18}{sup -}. DFT-based global minimization also indicates the energetic preference of staple formation for the Au{sub 25}Cl{sub 18}{sup -} cluster. The similarity between Au{sub m}(SR){sub n} and Au{sub m}X{sub n} could be exploited to make viable Au{sub m}X{sub n} clusters and to predict structures for Au{sub m}(SR){sub n}.

  14. On The Nature of the Halogen Bond.

    PubMed

    Wang, Changwei; Danovich, David; Mo, Yirong; Shaik, Sason

    2014-09-01

    The wide-ranging applications of the halogen bond (X-bond), notably in self-assembling materials and medicinal chemistry, have placed this weak intermolecular interaction in a center of great deal of attention. There is a need to elucidate the physical nature of the halogen bond for better understanding of its similarity and differences vis-à-vis other weak intermolecular interactions, for example, hydrogen bond, as well as for developing improved force-fields to simulate nano- and biomaterials involving X-bonds. This understanding is the focus of the present study that combines the insights of a bottom-up approach based on ab initio valence bond (VB) theory and the block-localized wave function (BLW) theory that uses monomers to reconstruct the wave function of a complex. To this end and with an aim of unification, we studied the nature of X-bonds in 55 complexes using the combination of VB and BLW theories. Our conclusion is clear-cut; most of the X-bonds are held by charge transfer interactions (i.e., intermolecular hyperconjugation) as envisioned more than 60 years ago by Mulliken. This is consistent with the experimental and computational findings that X-bonds are more directional than H-bonds. Furthermore, the good linear correlation between charge transfer energies and total interaction energies partially accounts for the success of simple force fields in the simulation of large systems involving X-bonds. PMID:26588518

  15. Study on the volatility of halogenated fluorenes.

    PubMed

    Oliveira, Juliana A S A; Oliveira, Tânia S M; Gaspar, Alexandra; Borges, Fernanda; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-08-01

    This work reports the experimental determination of relevant thermophysical properties of five halogenated fluorenes. The vapor pressures of the compounds studied were measured at different temperatures using two different experimental techniques. The static method was used for studying 2-fluorofluorene (liquid and crystal vapor pressures between 321.04 K and 411.88 K), 2-iodofluorene (liquid and crystal vapor pressures between 362.63 K and 413.86 K), and 2,7-dichlorofluorene (crystal vapor pressures between 364.64 K and 394.22 K). The Knudsen effusion method was employed to determine the vapor pressures of 2,7-difluorofluorene (crystal vapor pressures between 299.17 K and 321.19 K), 2,7-diiodofluorene (crystal vapor pressures between 393.19 K and 415.14 K), and (again) 2-iodofluorene (crystal vapor pressures between 341.16 K and 361.12 K). The temperatures and the molar enthalpies of fusion of the five compounds were determined using differential scanning calorimetry. The application to halogenated fluorenes of recently developed methods for predicting vapor pressures and enthalpies of sublimation and vaporization of substituted benzenes is also discussed. PMID:27206270

  16. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  17. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  18. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  19. Solar concentrator/absorber

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  20. Independent Evolution of Six Families of Halogenating Enzymes

    PubMed Central

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity. PMID:27153321

  1. Potential halogenated industrial carcinogenic and mutagenic chemicals. IV. Halogenated aryl derivatives.

    PubMed

    Fishbein, L

    1979-04-01

    A variety of halogenated aryl derivatives possess significant activity as solvents for pesticides, heat transfer agents, pesticide intermediates, additives for rubber products, intermediates in organic synthesis and as insect repellants and deodorants. Ortho- and para-dichlorobenzenes; 1,2,4-trichloro- and hexachlorobenzene, as well as bromobenzenes and benzylchloride were reviewed principally in terms of their synthesis, areas of utility, stability, distribution, reactivity, levels of exposure, populations at risk, metabolism, carcinogenicity and mutagenicity.

  2. Molecular halogen elimination from halogen-containing compounds in the atmosphere.

    PubMed

    Lin, King-Chuen; Tsai, Po-Yu

    2014-04-28

    Atmospheric halogen chemistry has drawn much attention, because the halogen atom (X) playing a catalytic role may cause severe stratospheric ozone depletion. Atomic X elimination from X-containing hydrocarbons is recognized as the major primary dissociation process upon UV-light irradiation, whereas direct elimination of the X2 product has been seldom discussed or remained a controversial issue. This account is intended to review the detection of X2 primary products using cavity ring-down absorption spectroscopy in the photolysis at 248 nm of a variety of X-containing compounds, focusing on bromomethanes (CH2Br2, CF2Br2, CHBr2Cl, and CHBr3), dibromoethanes (1,1-C2H4Br2 and 1,2-C2H4Br2) and dibromoethylenes (1,1-C2H2Br2 and 1,2-C2H2Br2), diiodomethane (CH2I2), thionyl chloride (SOCl2), and sulfuryl chloride (SO2Cl2), along with a brief discussion on acyl bromides (BrCOCOBr and CH2BrCOBr). The optical spectra, quantum yields, and vibrational population distributions of the X2 fragments have been characterized, especially for Br2 and I2. With the aid of ab initio calculations of potential energies and rate constants, the detailed photodissociation mechanisms may be comprehended. Such studies are fundamentally important to gain insight into the dissociation dynamics and may also practically help to assess the halogen-related environmental variation. PMID:24622955

  3. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  4. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  5. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  6. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  7. Absorbed dose water calorimeter

    SciTech Connect

    Domen, S.R.

    1982-01-26

    An absorbed dose water calorimeter that takes advantage of the low thermal diffusivity of water and the water-imperviousness of polyethylene film. An ultra-small bead thermistor is sandwiched between two thin polyethylene films stretched between insulative supports in a water bath. The polyethylene films insulate the thermistor and its leads, the leads being run out from between the films in insulated sleeving and then to junctions to form a wheatstone bridge circuit. Convection barriers may be provided to reduce the effects of convection from the point of measurement. Controlled heating of different levels in the water bath is accomplished by electrical heater circuits provided for controlling temperature drift and providing adiabatic operation of the calorimeter. The absorbed dose is determined from the known specific heat of water and the measured temperature change.

  8. Halogenated DOPA in a Marine Adhesive Protein

    PubMed Central

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R.; Waite, J. Herbert

    2009-01-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and 1H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered. PMID:20126508

  9. Insights into enzymatic halogenation from computational studies

    PubMed Central

    Senn, Hans M.

    2014-01-01

    The halogenases are a group of enzymes that have only come to the fore over the last 10 years thanks to the discovery and characterization of several novel representatives. They have revealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate halogens and introduce them into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these studies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein serve to illustrate some of the limitations of the current computational approaches and the challenges encountered in computational mechanistic enzymology. PMID:25426489

  10. Halogen occultation experiment intergrated test plan

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Butterfield, A. J.

    1986-01-01

    The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2.

  11. Insights into enzymatic halogenation from computational studies

    NASA Astrophysics Data System (ADS)

    Senn, Hans

    2014-11-01

    The halogenases are a group of enzymes that have only come to the fore over the last ten years thanks to the discovery and characterization of several of novel representatives. They have re-vealed the fascinating variety of distinct chemical mechanisms that nature utilizes to activate and introduce halogens into organic substrates. Computational studies using a range of approaches have already elucidated many details of the mechanisms of these enzymes, often in synergistic combination with experiment. This Review summarizes the main insights gained from these stud-ies. It also seeks to identify open questions that are amenable to computational investigations. The studies discussed herein also serve to illustrate some of the limitations of the current computa-tional approaches and the challenges encountered in computational mechanistic enzymology.

  12. Halogenated DOPA in a Marine Adhesive Protein.

    PubMed

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R; Waite, J Herbert

    2009-02-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and (1)H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered.

  13. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  14. Chalcogen bond: a sister noncovalent bond to halogen bond.

    PubMed

    Wang, Weizhou; Ji, Baoming; Zhang, Yu

    2009-07-16

    A sister noncovalent bond to halogen bond, termed chalcogen bond, is defined in this article. By selecting the complexes H(2)CS...Cl(-), F(2)CS...Cl(-), OCS...Cl(-), and SCS...Cl(-) as models, the bond-length change, interaction energy, topological property of the electron charge density and its Laplacian, and the charge transfer of the chalcogen bond have been investigated in detail theoretically. It was found that the similar misshaped electron clouds of the chalcogen atom and the halogen atom result in the similar properties of the chalcogen bond and the halogen bond. Experimental results are in good agreement with the theoretical predictions.

  15. Halogenated coumarin derivatives as novel seed protectants.

    PubMed

    Brooker, N; Windorski, J; Bluml, E

    2008-01-01

    Development of new and improved antifungal compounds that are target-specific is backed by a strong Federal, public and commercial mandate. Many plant-derived chemicals have proven fungicidal properties, including the coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Preliminary research has shown the coumarins to be a highly active group of molecules with a wide range of antimicrobial activity against both fungi and bacteria. It is believed that these cyclic compounds behave as natural pesticidal defence molecules for plants and they represent a starting point for the exploration of new derivative compounds possessing a range of improved antifungal activity. Within this study, derivatives of coumarin that were modified with halogenated side groups were screened for their antifungal activity against a range of soil-borne plant pathogenic fungi. Fungi included in this in vitro screen included Macrophomina phaseolina (charcoal rot), Phytophthora spp. (damping off and seedling rot), Rhizoctonia spp. (damping off and root rot) and Pythium spp. (seedling blight), four phylogenetically diverse and economically important plant pathogens. Studies indicate that these halogenated coumarin derivatives work very effectively in vitro to inhibit fungal growth and some coumarin derivatives have higher antifungal activity and stability as compared to the original coumarin compound alone. The highly active coumarin derivatives are brominated, iodinated and chlorinated compounds and results suggest that besides being highly active, very small amounts can be used to achieve LD100 rates. In addition to the in vitro fungal inhibition assays, results of polymer seed coating compatibility and phytotoxicity testing using these compounds as seed treatments will also be reported. These results support additional research in this area of natural pesticide development.

  16. Determination of total organic halogen (TOX) in humic acids after microwave-induced combustion.

    PubMed

    Pereira, Juliana S F; Moreira, Clarissa M; Albers, Christian N; Jacobsen, Ole S; Flores, Erico M M

    2011-04-01

    Chemically chlorinated organic matter as well as natural background humic acids contain significant amounts of organically bound halogens that must be determined for assessment of environmental pollution. In this work the use of ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) is proposed for the determination of total organic Cl, Br and I concentration in humic acids extracted from various forest soil horizons after a single digestion by microwave-induced combustion (MIC). Samples were pressed as pellets and combusted using 20 bar of oxygen and ammonium nitrate solution as igniter. Analytes were absorbed in diluted alkaline solution (50mM (NH(4))(2)CO(3)) and a reflux step was applied after combustion to improve analyte recoveries (5 min, microwave power of 1400W). The accuracy was evaluated using certified reference materials (CRM) and spiked samples. Using MIC the agreement with CRM values and spike recoveries was higher than 97% for all analytes. As an advantage over conventional procedures, using MIC it was possible to digest up to eight samples in only 25 min, obtaining a single solution suitable for all halogens determination in humic acids samples by different techniques (IC and ICP-MS). The limit of detection (3σ) for Cl, Br and I obtained by IC was 1.2, 2.5 and 4.3μgg(-1) and by ICP-MS it was 1.4, 0.03 and 0.002μgg(-1), respectively.

  17. Parameterization of Halogens for the Density-Functional Tight-Binding Description of Halide Hydration.

    PubMed

    Jahangiri, Soran; Dolgonos, Grygoriy; Frauenheim, Thomas; Peslherbe, Gilles H

    2013-08-13

    Parameter sets of the self-consistent-charge density-functional tight-binding model with and without its third-order extension have been developed to describe the interatomic interactions of halogen elements (X = Cl, Br, I) with hydrogen and oxygen, with the ultimate goal of investigating halide hydration with this approach. The reliability and accuracy of the model with these newly developed parameters has been evaluated by comparing the structural, energetic, and vibrational properties of small molecules containing halogen atoms with those obtained by means of standard density-functional theory. Furthermore, the newly parametrized model is found to predict equilibrium geometries, binding energies, and vibrational frequencies for small aqueous clusters containing halogen anions, X(-)(H2O)n (n = 1-4), in good agreement with those calculated with density-functional theory and high-level ab initio quantum chemistry and with available experimental data. This demonstrates that the newly parametrized models might be a method of choice for investigating halide hydration in larger clusters.

  18. Removal of halogenated anaesthetics from a closed circle system with a charcoal filter.

    PubMed

    Højkjaer Larsen, V; Severinsen, I; Waaben, J

    1989-07-01

    Halogenated anaesthetics may be removed from a closed circle system by means of a charcoal filter. With this technique dispersion to the atmosphere and a possibly destructive effect of the halogenated volatiles on the protective layer of ozone is avoided. Removal of halothane or isoflurane with a charcoal filter was studied in a closed circle system connected to an artificial lung. The concentration of anaesthetic (Ct) was recorded in relation to time by an anaesthetic gas monitor interposed between the system and the lung at ventilations of 3, 5, 7 or 9 l/min (v). Based on theoretical considerations, it was expected that Ct = Co.exp (-v/V.t), (V: volume of the system). Analysis of regression demonstrated that the results fitted well to an exponential decrease (R2 greater than 0.94) and the downslope increased with increasing rate of ventilation. However, the slopes deviated significantly from the theoretically predicted slopes, possibly because of adsorption to hoses and bags and unequal distribution of the volatiles in the system. Halothane was eliminated more slowly than isoflurane. This study demonstrates that halogenated volatiles are eliminated in an exponential way following charcoal filtration and the rate depends on the ventilation and type of volatile.

  19. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    PubMed

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  20. Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory.

    PubMed

    George, Janine; Deringer, Volker L; Dronskowski, Richard

    2014-05-01

    Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.

  1. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  2. Determination of halogens in coal after digestion using the microwave-induced combustion technique

    SciTech Connect

    Flores, E.M.M.; Mesko, M.F.; Moraes, D.P.; Pereira, J.S.F.; Mello, P.A.; Barin, J.S.; Knapp, G.

    2008-03-15

    The microwave-induced combustion (MIC) technique was applied for coal digestion and further determination of bromide, chloride, fluoride, and iodide by ion chromatography (IC). Samples (up to 500 mg) were combusted at 2 MPa of oxygen. Combustion was complete in less than 50 s, and analytes were absorbed in water or (NH{sub 4}){sub 2}CO{sub 3} solution. A reflux step was applied to improve analyte absorption. Accuracy was evaluated for Br, Cl, and F using certified reference coal and spiked samples for I. For Br, Cl, and F, the agreement was between 96 and 103% using 50 mmol L{sup -1} (NH{sub 4}){sub 2}CO{sub 3} as the absorbing solution and 5 min of reflux. With the use of the same conditions, the recoveries for I were better than 97%. Br, Cl, and I were also determined in MIC digests by inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, and F was determined by an ion-selective electrode with agreement better than 95% to the values obtained using IC. Temperature during combustion was higher than 1350 {sup o}C, and the residual carbon content was lower than 1%. With the use of the MIC technique, up to eight samples could be processed simultaneously, and a single absorbing solution was suitable for all analytes and determination techniques (limit of detection by IC was better than 3 {mu} g g{sup -1} for all halogens).

  3. Formation of halogenated organic byproducts during medium-pressure UV and chlorine coexposure of model compounds, NOM and bromide.

    PubMed

    Zhao, Quan; Shang, Chii; Zhang, Xiangru; Ding, Guoyu; Yang, Xin

    2011-12-01

    When chlorine is applied before or during UV disinfection of bromide-containing water, interactions between chlorine, bromide and UV light are inevitable. Formation of halogenated organic byproducts was studied during medium-pressure UV (MPUV) and chlorine coexposure of phenol, nitrobenzene and benzoic acid and maleic acid, chosen to represent electron-donating aromatics, electron-withdrawing aromatics, and aliphatic structures in natural organic matter (NOM), respectively. All were evaluated in the presence and absence of bromide. MPUV and chlorine coexposure of phenol produced less total organic halogen (TOX, a collective parameter for halogenated organic byproducts) than chlorination in the dark, and more haloacetic acids instead of halophenols. Increases in TOX were found in the coexposure of nitrobenzene and benzoic acid, but maleic acid was rather inert during coexposure. The presence of bromide increased the formation of brominated TOX but did not significantly affect total TOX formation, in spite of the fact that it reduced hydroxyl radical levels. MPUV and chlorine coexposure of NOM gave a higher differential UV absorbance of NOM and a larger shift to lower molecular weight compounds than chlorination in the dark. However, TOX formation with NOM remained similar to that observed from dark chlorination.

  4. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  5. Two-dimensional Supramolecular Structures by Hydrogen and Halogen Interactions

    NASA Astrophysics Data System (ADS)

    Keon Yoon, Jong; Kim, Howon; Huem Jeon, Jeong; Kahng, Se-Jong

    2010-03-01

    Supramolecualr ordering has been actively studied due to it's possible applications to the fabrication processes of nano-electronic devices. Van der Waals interaction and hydrogen bonding are frequently studied mechanisms for various molecular structures based on non-uniform charge distributions. Halogen atoms in molecules can have electrostatic interactions with similar strength. Big halogen atoms have strong non-uniform charge distributions. To study molecular orderings formed by hydrogen and halogen interactions, we chose a molecular system containing oxygen, hydrogen, and bromine atoms, a bromo-quinone. A two-dimensional molecular network was studied on Au(111) using a low-temperature scanning tunneling microscope. Bromo-quinone molecules form self-assembled square grids having windmill structures. Their molecular orderings, chiral structures, and defects are explained in terms of hydrogen and halogen interactions.

  6. A Halogen-Bond-Induced Triple Helicate Encapsulates Iodide.

    PubMed

    Massena, Casey J; Wageling, Nicholas B; Decato, Daniel A; Martin Rodriguez, Enrique; Rose, Ariana M; Berryman, Orion B

    2016-09-26

    The self-assembly of higher-order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self-assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine⋅⋅⋅iodide halogen bonds and numerous buried π-surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single-strand helix renders its linear halogen-bond donors non-convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi-strand anion helicates. PMID:27411932

  7. Experimental measurement of noncovalent interactions between halogens and aromatic rings.

    PubMed

    Adams, Harry; Cockroft, Scott L; Guardigli, Claudio; Hunter, Christopher A; Lawson, Kevin R; Perkins, Julie; Spey, Sharon E; Urch, Christopher J; Ford, Rhonan

    2004-05-01

    Chemical double mutant cycles have been used to quantify the interactions of halogens with the faces of aromatic rings in chloroform. The halogens are forced over the face of an aromatic ring by an array of hydrogen-bonding interactions that lock the complexes in a single, well-defined conformation. These interactions can also be engineered into the crystal structures of simpler model compounds, but experiments in solution show that the halogen-aromatic interactions observed in the solid state are all unfavourable, regardless of whether the aromatic rings contain electron-withdrawing or electron-donating substituents. The halogen-aromatic interactions are repulsive by 1-3 kJ mol(-1). The interactions with fluorine are slightly less favourable than with chlorine and bromine.

  8. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  9. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Corrosion resistant neutron absorbing coatings

    DOEpatents

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  12. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  13. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  14. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  15. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  16. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  17. Data for fire hazard assessment of selected non-halogenated and halogenated fire retardants: Report of Test FR 3983

    NASA Astrophysics Data System (ADS)

    Harris, R. H.; Babrauskas, V.; Levin, B. C.; Paabo, M.

    1991-10-01

    Five plastic materials, with and without fire retardants, were studied to compare the fire hazards of non-halogenated fire retardant additives with halogenated flame retardents. The plastic materials were identified by the sponsors as unsaturated polyesters, thermoplastic high density, low density and cross-linked low density polyethylenes, polypropylene, flexible and rigid poly(vinyl chlorides), and cross-linked and thermoplastic ethylene-vinyl acetate copolymers. The non-halogenated fire retardants tested were aluminum hydroxide, also known as alumina trihydrate, sodium alumino-carbonate, and magnesium hydroxide. The halogenated flame retardants were chlorine or bromine/antimony oxides. The plastics were studied using the Cone Calorimeter and the cup furnace smoke toxicity method (high density polyethylene only). The Cone Calorimeter provided data on mass consumed; time to ignition; peak rate and peak time of heat release; total heat release; effective heat of combustion; average yields of CO, CO2, HCl, and HBr; and average smoke obscuration. The concentrations of toxic gases generated in the cup furnace smoke toxicity method were used to predict the toxic potency of the mixed thermal decomposition products. The data from the Cone Calorimeter indicate that the non-halogenated fire retardants were, in most of the tested plastic formulations, more effective than the halogenated flame retardants in increasing the time to ignition. The non-halogenated fire retardants were also more effective in reducing the mass consumed, peak rate of heat release, total heat released, and effective smoke produced. The use of halogenated flame retardants increased smoke production and CO yields and, additionally, produced the known acid gases and toxic irritants, HCl and HBr, in measureable quantities.

  18. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  19. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  20. Review of rate constants and exploration of correlations of the halogen transfer reaction of trisubstituted carbon-centered radicals with molecular halogens.

    PubMed

    Poutsma, Marvin L

    2012-03-16

    Rate constants for the reaction (R'(3)C(•) + X(2) → R'(3)CX + X(•); X = F, Cl, Br, I) are reviewed. Because of curved Arrhenius plots and negative E(X) values, empirical structure-reactivity correlations are sought for log k(X,298) rather than E(X). The well-known poor correlation with measures of reaction enthalpy is demonstrated. The best quantitative predictor for R'(3)C(•) is Σσ(p), the sum of the Hammett σ(p) constants for the three substituents, R'. Electronegative substituents with lone pairs, such as halogen and oxygen, thus appear to destabilize the formation of a polarized prereaction complex and/or TS ((δ+)R- - -X- - -X(δ-)) by σ inductive/field electron withdrawal while simultaneously stabilizing them by π resonance electron donation. The best quantitative predictor of the reactivity order of the halogens, I(2) > Br(2) ≫ Cl(2) ≈ F(2), is the polarizability of the halogen, α(X(2)). For the data set of 60 rate constants which span 6.5 orders of magnitude, a modestly successful correlation of log k(X,298) is achieved with only two parameters, Σσ(p) and α(X(2)), with a mean unsigned deviation of 0.59 log unit. How much of this residual variance is the result of inaccuracies in the data in comparison with oversimplification of the correlation approach remains to be seen.

  1. The relative roles of electrostatics and dispersion in the stabilization of halogen bonds.

    PubMed

    Riley, Kevin E; Hobza, Pavel

    2013-11-01

    In this work we highlight recent work aimed at the characterization of halogen bonds. Here we discuss the origins of the σ-hole, the modulation of halogen bond strength by changing of neighboring chemical groups (i.e. halogen bond tuning), the performance of various computational methods in treating halogen bonds, and the strength and character of the halogen bond, the dihalogen bond, and two hydrogen bonds in bromomethanol dimers (which serve as model complexes) are compared. Symmetry adapted perturbation theory analysis of halogen bonding complexes indicates that halogen bonds strongly depend on both dispersion and electrostatics. The electrostatic interaction that occurs between the halogen σ-hole and the electronegative halogen bond donor is responsible for the high degree of directionality exhibited by halogen bonds. Because these noncovalent interactions have a strong dispersion component, it is important that the computational method used to treat a halogen bonding system be chosen very carefully, with correlated methods (such as CCSD(T)) being optimal. It is also noted here that most forcefield-based molecular mechanics methods do not describe the halogen σ-hole, and thus are not suitable for treating systems with halogen bonds. Recent attempts to improve the molecular mechanics description of halogen bonds are also discussed.

  2. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  3. Halogen Occultation Experiment (HALOE) optical filter characterization

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1989-01-01

    The Halogen Occultation Experiment (HALOE) is a solar occultation experiment that will fly on the Upper Atmosphere Research Satellite to measure mixing ratio profiles of O3, H2O, NO2, NO, CH4, HCl, and HF. The inversion of the HALOE data will be critically dependent on a detailed knowledge of eight optical filters. A filter characterization program was undertaken to measure in-band transmissions, out-of-band transmissions, in-band transmission shifts with temperature, reflectivities, and age stability. Fourier Transform Infrared Spectrometers were used to perform measurements over the spectral interval 400/cm to 6300/cm (25 micrometers to 1.6 micrometers). Very high precision (0.1 percent T) in-band measurements and very high resolution (0.0001 percent T) out-of-band measurements have been made. The measurements revealed several conventional leaks at 0.01 percent transmission and greatly enhanced (1,000) leaks to the 2-element filters when placed in a Fabry-Perot cavity. Filter throughput changes by 5 percent for a 25 C change in filter temperature.

  4. Comparative ecotoxicology of halogenated hydrocarbon residues.

    PubMed

    Winteringham, F P

    1977-12-01

    The term ecotoxicology is adopted in the sense of a comparative and integrated study of the undesirable effects of trace contaminants on the range of fauna and flora of an "ecosystem" or of a defined part or unit thereof. The importance of population changes over long periods of time is stressed. Sources, usage, and global trends of representative halogenated hydrocarbon (HHC) residues which appear as trace contaminants of environment, food, and living organisms are briefly compared: industrial solvents and intermediates, chlorofluoromethanes as an atmospheric pollutant, methyl bromide as a food and soil residue, HCH (hexachlorobenzene) as a fungicide residue, DDT, lindane (gamma-hexachlorocyclohexane), and dieldrin as insecticide residues, and polychlorinated biphenyls (PCBs) as industrial contaminants. A simple mathematical approach to the problem of relating inputs, persistence, and steady-state residue levels is explained. Persistence and biodegradation of representative compounds are compared. Attention is drawn to the persistence of hexachlorobenzene, the p,p'-dichlorodiphenyl- and hexachlorocyclopentadiene-derived moities of HHC residues. Ecotoxicological effects and their implications are discussed comparatively under the indirect effects of atmospheric pollutants and direct and indirect effects of trace contaminants of soil and aquatic ecosystems. Some conclusions related to research and "impact monitoring" are drawn.

  5. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  6. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  7. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I

  8. Extensive halogen-induced mercury oxidations in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Peleg, M.; Matveev, V.; Luria, M.

    2009-12-01

    Reactive halogen species not only influence ozone (O3) budgets of the troposphere and its oxidation capacity, but also play a major role in oxidation of atmospheric mercury (Hg) leading to so-called Atmospheric Mercury Depletion Events (AMDEs) in the polar boundary layer. During AMDEs, the dominant (>95%), relatively inert Hg0 is converted to highly reactive oxidized Hg2+ which subsequently is removed from the atmosphere by deposition. We report data from a four week measurement campaign at the Dead Sea in Israel, in summer 2009 where we concurrently measured all major atmospheric mercury forms—Hg0 and two operationally defined oxidized Hg2+ species—and bromine oxide (BrO) by means of active long-path differential absorption optical spectroscopy (LP-DOAS). Our results show massive (up to 90%) daytime conversions of Hg0 to oxidized Hg2+ in the presence of high BrO levels under temperatures as high as 45 deg C. Some of the highest oxidized Hg2+ concentrations observed in the Earth’s atmosphere, up to 136 ppqv, were accompanied by strong depletions of Hg0, down to 22 ppqv or 10 % of the global tropospheric background Hg0 concentration. Anti-correlations of Hg0 to Hg2+ show that only ~75% of converted Hg is recovered, indicating substantial deposition of the underlying surface. Hg0 depletions and Hg2+ enhancements temporally coincided well with BrO production and near-complete ozone destruction, with no apparent time lags between any of these processes. The observed O3 and BrO patterns are consistent with almost daily catalytic destruction of ozone by halogens (BrO and/or Br) well described in the Dead Sea Basin. The corresponding destruction of Hg0 and production of Hg2+ strongly indicates that these halogens are also responsible for observed temperate AMDE. Substantial Hg2+ production occurring at BrO levels well below 10 pptv suggests that halogen-driven Hg oxidation may be widespread under across the marine boundary layer where low levels of halogens have

  9. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-01

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.

  10. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-01

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended. PMID:26148182

  11. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  12. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  13. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  14. Comparative study of halogen- and hydrogen-bond interactions between benzene derivatives and dimethyl sulfoxide.

    PubMed

    Zheng, Yan-Zhen; Deng, Geng; Zhou, Yu; Sun, Hai-Yuan; Yu, Zhi-Wu

    2015-08-24

    The halogen bond, similar to the hydrogen bond, is an important noncovalent interaction and plays important roles in diverse chemistry-related fields. Herein, bromine- and iodine-based halogen-bonding interactions between two benzene derivatives (C6 F5 Br and C6 F5 I) and dimethyl sulfoxide (DMSO) are investigated by using IR and NMR spectroscopy and ab initio calculations. The results are compared with those of interactions between C6 F5 Cl/C6 F5 H and DMSO. First, the interaction energy of the hydrogen bond is stronger than those of bromine- and chlorine-based halogen bonds, but weaker than iodine-based halogen bond. Second, attractive energies depend on 1/r(n) , in which n is between three and four for both hydrogen and halogen bonds, whereas all repulsive energies are found to depend on 1/r(8.5) . Third, the directionality of halogen bonds is greater than that of the hydrogen bond. The bromine- and iodine-based halogen bonds are strict in this regard and the chlorine-based halogen bond only slightly deviates from 180°. The directional order is iodine-based halogen bond>bromine-based halogen bond>chlorine-based halogen bond>hydrogen bond. Fourth, upon the formation of hydrogen and halogen bonds, charge transfers from DMSO to the hydrogen- and halogen-bond donors. The CH3 group contributes positively to stabilization of the complexes.

  15. On the railway track dynamics with rail vibration absorber for noise reduction

    NASA Astrophysics Data System (ADS)

    Wu, T. X.

    2008-01-01

    A promising means to increase the decay rate of vibration along the rail is using a rail absorber for noise reduction. Compound track models with the tuned rail absorber are developed for investigation of the performance of the absorber on vibration reduction. Through analysis of the track dynamics with the rail absorber some guidelines are given on selection of the types and parameters for the rail absorber. It is found that a large active mass used in the absorber is beneficial to increase the decay rate of rail vibration. The effectiveness of the piecewise continuous absorber is moderate compared with the discrete absorber installed in the middle of sleeper span or at a sleeper. The most effective installation position for the discrete absorber is in the middle of sleeper span. Over high or over low loss factor of the damping material used in the absorber may degrade the performance on vibration reduction.

  16. Thermochemical Properties and Phase Behavior of Halogenated Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Suuberg, Eric M.

    2013-01-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), i.e. 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius–Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared to parent compounds, but does not necessarily increase the enthalpy of sublimation. Moreover, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared to single halogen substituted polycyclic aromatic hydrocarbons. Additionally, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis. PMID:22139714

  17. Multiphase halogen chemistry in the tropical Atlantic Ocean.

    PubMed

    Sommariva, Roberto; von Glasow, Roland

    2012-10-01

    We used a one-dimensional model to simulate the chemical evolution of air masses in the tropical Atlantic Ocean, with a focus on halogen chemistry. The model results were compared to the observations of inorganic halogen species made in this region. The model could largely reproduce the measurements of most chlorine species, especially under unpolluted conditions, but overestimated sea salt chloride, BrCl, and bromine species. Agreement with the measurements could be improved by taking into account the reactivity with aldehydes and the effects of dimethyl sulfide (DMS) and Saharan dust on aerosol pH; a hypothetical HOX → X(-) aqueous-phase reaction could also improve the agreement with measured Cl(2) and HOCl, especially under semipolluted conditions. The results also showed that halogens speciation and concentrations are very sensitive to cloud processing. The model was used to calculate the impact of the observed levels of halogens: Cl atoms accounted for 5.4-11.6% of total methane sinks and halogens (mostly bromine and iodine) accounted for 35-40% of total ozone destruction.

  18. Fractionation of halogenated organic matter present in rain and snow

    PubMed

    Laniewski; Boren; Grimvall

    1999-01-01

    Organic matter in samples of rain and snow from Sweden, Poland, Germany and the Republic of Ireland was fractionated by employing a series of filtration, purging, evaporation and extraction steps. Determinations of the group parameter AOX (adsorbable organic halogens) in aqueous phases and EOX (extractable organic halogens) in organic phases showed that halogenated organic matter present in bulk precipitation is composed of several different groups of compounds. The largest amounts of organically bound halogens were found in fractions of relatively polar and non-volatile to semivolatile compounds. In particular, a significant part of the AOX could be attributed to alkaline-labile organic bases. Gas chromatographic analysis of different organic extracts in the chlorine channel of an atomic emission detector (AED) resulted in chromatograms with few distinct peaks, and analysis in the bromine channel did not produce any distinct peaks. Chlorinated acetic acids were the most abundant halogenated organic acids, and chlorinated alkyl phosphates were normally responsible for the largest peaks in the chlorine chromatogram of neutral, hexane-extractable compounds. When analysing volatiles, 1,4-dichlorobenzene and a thus far unidentified chloroorganic compound often caused the largest response in the chlorine channel of the AED system.

  19. A polarizable ellipsoidal force field for halogen bonds.

    PubMed

    Du, Likai; Gao, Jun; Bi, Fuzhen; Wang, Lili; Liu, Chengbu

    2013-09-01

    The anisotropic effects and short-range quantum effects are essential characters in the formation of halogen bonds. Since there are an array of applications of halogen bonds and much difficulty in modeling them in classical force fields, the current research reports solely the polarizable ellipsoidal force field (PEff) for halogen bonds. The anisotropic charge distribution was represented with the combination of a negative charged sphere and a positively charged ellipsoid. The polarization energy was incorporated by the induced dipole model. The resulting force field is "physically motivated," which includes separate, explicit terms to account for the electrostatic, repulsion/dispersion, and polarization interaction. Furthermore, it is largely compatible with existing, standard simulation packages. The fitted parameters are transferable and compatible with the general AMBER force field. This PEff model could correctly reproduces the potential energy surface of halogen bonds at MP2 level. Finally, the prediction of the halogen bond properties of human Cathepsin L (hcatL) has been found to be in excellent qualitative agreement with the cocrystal structures.

  20. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  1. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGESBeta

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  2. Down hole shock absorber

    SciTech Connect

    Coston, H.A.

    1990-03-05

    This patent describes a well pump system. It comprises: a sucker rod string; a pump reciprocable in response to the string; a cylinder; a piston disposed for vertical reciprocal motion within the cylinder; means for biasing the cylinder and the piston against compressive motion; means for pneumatically relieving pressure in the cylinder during compressive motion; and means for preventing relative rotational motion and for limiting relative expansive motion between the cylinder and the piston; the cylinder and the piston being coaxially mounted in the sucker rod string proximate and above the pump to buffer forces transmitted through the string.

  3. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    EPA Science Inventory

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  4. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  5. Mechanochemical destruction of halogenated organic pollutants: A critical review.

    PubMed

    Cagnetta, Giovanni; Robertson, John; Huang, Jun; Zhang, Kunlun; Yu, Gang

    2016-08-01

    Many tons of intentionally produced obsolete halogenated persistent organic pollutants (POPs), are stored worldwide in stockpiles, often in an unsafe manner. These are a serious threat to the environment and to human health due to their ability to migrate and accumulate in the biosphere. New technologies, alternatives to combustion, are required to destroy these substances, hopefully to their complete mineralization. In the last 20 years mechanochemical destruction has shown potential to achieve pollutant degradation, both of the pure substances and in contaminated soils. This capability has been tested for many halogenated pollutants, with various reagents, and under different milling conditions. In the present paper, a review of the published work in this field is followed by a critique of the state of the art of POPs mechanochemical destruction and its applicability to full-scale halogenated waste treatment.

  6. Fine tuning of graphene properties by modification with aryl halogens.

    PubMed

    Bouša, D; Pumera, M; Sedmidubský, D; Šturala, J; Luxa, J; Mazánek, V; Sofer, Z

    2016-01-21

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.

  7. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  8. Halogenated graphenes: rapidly growing family of graphene derivatives.

    PubMed

    Karlický, František; Kumara Ramanatha Datta, Kasibhatta; Otyepka, Michal; Zbořil, Radek

    2013-08-27

    Graphene derivatives containing covalently bound halogens (graphene halides) represent promising two-dimensional systems having interesting physical and chemical properties. The attachment of halogen atoms to sp(2) carbons changes the hybridization state to sp(3), which has a principal impact on electronic properties and local structure of the material. The fully fluorinated graphene derivative, fluorographene (graphene fluoride, C1F1), is the thinnest insulator and the only stable stoichiometric graphene halide (C1X1). In this review, we discuss structural properties, syntheses, chemistry, stabilities, and electronic properties of fluorographene and other partially fluorinated, chlorinated, and brominated graphenes. Remarkable optical, mechanical, vibrational, thermodynamic, and conductivity properties of graphene halides are also explored as well as the properties of rare structures including multilayered fluorinated graphenes, iodine-doped graphene, and mixed graphene halides. Finally, patterned halogenation is presented as an interesting approach for generating materials with applications in the field of graphene-based electronic devices.

  9. Distribution of halogens during fluid-mediated apatite replacement

    NASA Astrophysics Data System (ADS)

    Kusebauch, Christof; John, Timm; Whitehouse, Martin J.

    2016-04-01

    Apatite (Ca5(PO4)3(F,Cl,OH)) is one the most abundant halogen containing minerals in the crust. It is present in many different rock types and stable up to P-T conditions of the mantle. Although probably not relevant for the halogen budget of the mantle, apatite is potentially a carrier phase of halogens into the mantle via subduction processes and therefore important for the global halogen cycle. Different partitioning behavior of the halogens between apatite and melt/fluids causes fractionation of these elements. In hydrothermal environments apatite reacts via a coupled dissolution-reprecipitation process that leads to apatite halogen compositions which are in (local) equilibrium with the hydrothermal fluid. This behavior enables apatite to be used as fluid probe and as a tool for tracking fluid evolution during fluid-rock interaction. Here, we present a combined experimental and field related study focused on replacement of apatite under hydrothermal conditions, to investigate the partitioning of halogens between apatite and fluids. Experiments were conducted in a cold seal pressure apparatus at 0.2 GPa and temperatures ranging from 400-700°C using halogen bearing solutions of different composition (KOH, NaF, NaCl, NaBr, NaI) to promote the replacement of Cl-apatite. The halogen composition of reacted apatite was analyzed by electron microprobe (EMPA) and secondary ion mass spectrometry (SIMS). The data was used to calculate partition coefficients of halogens between fluid and apatite. Our new partitioning data show that fluorine is the most compatible halogen followed by chlorine, bromine and iodine. Comparison between partition coefficients of the apatite-fluid system and coefficients derived in the apatite-melt system reveals values for F that are one to two orders of magnitude higher. In contrast, Cl and Br show a similar partition behavior in fluid and melt systems. Consequently, apatite that formed by fluid-rock interaction will fractionate F from Cl more

  10. Estimating the radiation absorbed by a human

    NASA Astrophysics Data System (ADS)

    Kenny, Natasha A.; Warland, Jon S.; Brown, Robert D.; Gillespie, Terry G.

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed ( R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos ( α h ) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light ( α h = 0.57), medium ( α h = 0.37), and dark ( α h = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m - 2 over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment.

  11. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl‑ and Br‑ by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  12. The role of halogen species in the troposphere.

    PubMed

    Platt, U; Hönninger, G

    2003-07-01

    While the role of reactive halogen species (e.g. Cl, Br) in the destruction of the stratospheric ozone layer is well known, their role in the troposphere was investigated only since their destructive effect on boundary layer ozone after polar sunrise became obvious. During these 'Polar Tropospheric Ozone Hole' events O(3) is completely destroyed in the lowest approximately 1000 m of the atmosphere on areas of several million square kilometres. Up to now it was assumed that these events were confined to the polar regions during springtime. However, during the last few years significant amounts of BrO and Cl-atoms were also found outside the Arctic and Antarctic boundary layer. Recently even higher BrO mixing ratios (up to 176 ppt) were detected by optical absorption spectroscopy (DOAS) in the Dead Sea basin during summer. In addition, evidence is accumulating that BrO (at levels around 1-2 ppt) is also occurring in the free troposphere at all latitudes. In contrast to the stratosphere, where halogens are released from species, which are very long lived in the troposphere, likely sources of boundary layer Br and Cl are autocatalytic oxidation of sea salt halides (the 'Bromine Explosion'), while precursors of free tropospheric BrO and coastal IO probably are short-lived organo-halogen species. At the levels suggested by the available measurements reactive halogen species have a profound effect on tropospheric chemistry: In the polar boundary layer during 'halogen events' ozone is usually completely lost within hours or days. In the free troposphere the effective O(3)-losses due to halogens could be comparable to the known photochemical O(3) destruction. Further interesting consequences include the increase of OH levels and (at low NO(X)) the decrease of the HO(2)/OH ratio in the free troposphere. PMID:12738256

  13. Halogen radicals contribute to photooxidation in coastal and estuarine waters.

    PubMed

    Parker, Kimberly M; Mitch, William A

    2016-05-24

    Although halogen radicals are recognized to form as products of hydroxyl radical ((•)OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM ((3)DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater (•)OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark (•)OH generation by gamma radiolysis demonstrates that halogen radical production via (•)OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl(-) and Br(-) by (3)DOM*, an (•)OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  14. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  15. The role of halogen species in the troposphere.

    PubMed

    Platt, U; Hönninger, G

    2003-07-01

    While the role of reactive halogen species (e.g. Cl, Br) in the destruction of the stratospheric ozone layer is well known, their role in the troposphere was investigated only since their destructive effect on boundary layer ozone after polar sunrise became obvious. During these 'Polar Tropospheric Ozone Hole' events O(3) is completely destroyed in the lowest approximately 1000 m of the atmosphere on areas of several million square kilometres. Up to now it was assumed that these events were confined to the polar regions during springtime. However, during the last few years significant amounts of BrO and Cl-atoms were also found outside the Arctic and Antarctic boundary layer. Recently even higher BrO mixing ratios (up to 176 ppt) were detected by optical absorption spectroscopy (DOAS) in the Dead Sea basin during summer. In addition, evidence is accumulating that BrO (at levels around 1-2 ppt) is also occurring in the free troposphere at all latitudes. In contrast to the stratosphere, where halogens are released from species, which are very long lived in the troposphere, likely sources of boundary layer Br and Cl are autocatalytic oxidation of sea salt halides (the 'Bromine Explosion'), while precursors of free tropospheric BrO and coastal IO probably are short-lived organo-halogen species. At the levels suggested by the available measurements reactive halogen species have a profound effect on tropospheric chemistry: In the polar boundary layer during 'halogen events' ozone is usually completely lost within hours or days. In the free troposphere the effective O(3)-losses due to halogens could be comparable to the known photochemical O(3) destruction. Further interesting consequences include the increase of OH levels and (at low NO(X)) the decrease of the HO(2)/OH ratio in the free troposphere.

  16. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl- and Br- by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  17. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  18. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  19. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  20. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  1. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  2. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  3. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  4. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  5. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  6. 40 CFR 721.10037 - Complex halogenated salt of tris(ethylatedaminocarbocyclic)methane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Complex halogenated salt of tris... New Uses for Specific Chemical Substances § 721.10037 Complex halogenated salt of tris... chemical substance identified generically as complex halogenated salt of...

  7. 40 CFR 721.10037 - Complex halogenated salt of tris(ethylatedaminocarbocyclic)methane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Complex halogenated salt of tris... New Uses for Specific Chemical Substances § 721.10037 Complex halogenated salt of tris... chemical substance identified generically as complex halogenated salt of...

  8. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  9. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is...

  10. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  11. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  12. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  13. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  14. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  15. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  16. Analysis on source features of halogenated gases at Shangdianzi regional atmospheric background station

    NASA Astrophysics Data System (ADS)

    An, Xingqin; Zhou, Lingxi; Yao, Bo; Xu, Lin; Ma, Lin

    2012-09-01

    In the study, the five-day back-trajectories collected by Shangdianzi Station were categorized by season, calculated four times a day during the period of 2008-2010, based on the Lagrangian particle integrated trajectory model HYSPLIT, and using the back-trajectory cluster analysis method. Efforts were made to understand the impacts of different trajectories on the concentration of halogenated gases over the site of Shangdianzi (SDZ) in different seasons, in line with the in-site concentration measurements of halogenated gases, including the 8 species of CFC-11, CFC-12, CCL4, CHCL3, CH3Br, SF6, H-1301, and HCFC-22. Meanwhile, the wind data collected by the same station and the concentration observed during the same period were employed to calculate the loadings of CFC-11, CFC-12, CCL4, CHCL3, CH3Br, SF6, H-1301, and HCFC-22, respectively. The result of back-trajectory cluster analysis suggests that air masses from southeast and southwest accounting for a large proportion of local air masses at SDZ always move slowly within the bottom boundary layer, which is beneficial for the accumulation of pollutants within the boundary layer and leads to the highest mean concentrations of halocarbons among all the clusters. Conversely, the mean concentration of halocarbons corresponding to the fast-moving northwest air masses at high altitude is found to have unanimously low values. The analysis of the concentration loadings proves that WSW and SW are the directions for the maximum concentration loading of all halogenated species, whereas NNW, NNE, NE and ENE are the directions for the minimum concentration loading. We also find that the sector in SW-S-SE is the high concentration loading part, while the sector in NW-N-NE is the low concentration part. The trajectory cluster analysis and concentration loading results indicate that the SE-S-SW towards SDZ is the high pollution source direction for the halogenated species mentioned above, which reflects the influence of human

  17. Evaluation of sample preparation methods for elastomer digestion for further halogens determination.

    PubMed

    Moraes, Diogo P; Pereira, Juliana S F; Diehl, Liange O; Mesko, Márcia F; Dressler, Valderi L; Paniz, José Neri G; Knapp, Guenter; Flores, Erico M M

    2010-05-01

    In this work, three sample preparation methods were evaluated for further halogen determination in elastomers containing high concentrations of carbon black. Samples of nitrile-butadiene rubber, styrene-butadiene rubber, and ethylene-propylene-diene monomer elastomers were decomposed using oxygen flask combustion and microwave-induced combustion (MIC) for further Br and Cl determination by ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma mass spectrometry (ICP-MS). Extraction assisted by microwave radiation in closed vessels was also evaluated using water or alkaline solution. Digestion by MIC was carried out using 50 mmol l(-1) (NH(4))(2)CO(3) as the absorbing solution. The effect of the reflux step was also evaluated. Accuracy was evaluated using certified reference materials with polymeric matrix composition and by comparison of results using neutron activation analysis. Agreement for Br and Cl was better than 95% by MIC using 5 min of reflux, and no statistical difference was found using IC, ICP OES, and ICP-MS for determination of both analytes. For MIC, the relative standard deviation (RSD) was lower than 5%. Using extraction in closed vessels, a high amount of residues was observed, and recoveries were lower than 45% for both analytes. For oxygen flask combustion, the agreement was similar using MIC but RSD was higher (20%). The residual carbon content, an important parameter used to evaluate the digestion efficiency, was always below 1% for MIC. Using MIC, it was possible to digest elastomers with high efficiency, resulting in a single solution suitable for halogen determination by different techniques. PMID:20135306

  18. Evaluation of sample preparation methods for elastomer digestion for further halogens determination.

    PubMed

    Moraes, Diogo P; Pereira, Juliana S F; Diehl, Liange O; Mesko, Márcia F; Dressler, Valderi L; Paniz, José Neri G; Knapp, Guenter; Flores, Erico M M

    2010-05-01

    In this work, three sample preparation methods were evaluated for further halogen determination in elastomers containing high concentrations of carbon black. Samples of nitrile-butadiene rubber, styrene-butadiene rubber, and ethylene-propylene-diene monomer elastomers were decomposed using oxygen flask combustion and microwave-induced combustion (MIC) for further Br and Cl determination by ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma mass spectrometry (ICP-MS). Extraction assisted by microwave radiation in closed vessels was also evaluated using water or alkaline solution. Digestion by MIC was carried out using 50 mmol l(-1) (NH(4))(2)CO(3) as the absorbing solution. The effect of the reflux step was also evaluated. Accuracy was evaluated using certified reference materials with polymeric matrix composition and by comparison of results using neutron activation analysis. Agreement for Br and Cl was better than 95% by MIC using 5 min of reflux, and no statistical difference was found using IC, ICP OES, and ICP-MS for determination of both analytes. For MIC, the relative standard deviation (RSD) was lower than 5%. Using extraction in closed vessels, a high amount of residues was observed, and recoveries were lower than 45% for both analytes. For oxygen flask combustion, the agreement was similar using MIC but RSD was higher (20%). The residual carbon content, an important parameter used to evaluate the digestion efficiency, was always below 1% for MIC. Using MIC, it was possible to digest elastomers with high efficiency, resulting in a single solution suitable for halogen determination by different techniques.

  19. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  20. A simple model for calculating the performance of a lithium-bromide/water coil absorber

    SciTech Connect

    Seewald, J.S.; Perez-Blanco, H.

    1994-12-31

    The performance of an absorber is of paramount importance when considering the overall performance of an absorption-cycle heat pump. Thus, a thorough understanding of the absorption process and a means of predicting the performance of an absorber are useful. For these reasons, a model of the absorption process in a simple absorber, using lithium-bromide and water as the working fluids, was developed. Subsequently, the model was applied to a particular absorber through the use of a computer program. Using this program, the effect on absorber performance due to the variance of several parameters was analyzed. The results of the absorber performance simulations are also presented.

  1. Performance evaluation of CFRP-rubber shock absorbers

    SciTech Connect

    Lamanna, Giuseppe Sepe, Raffaele

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  2. Theory of patch-antenna metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  3. Performance evaluation of CFRP-rubber shock absorbers

    NASA Astrophysics Data System (ADS)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  4. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  5. Self-Regulating Shock Absorber

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1995-01-01

    Mechanical shock absorber keeps frictional damping force within tolerable limit. Its damping force does not increase with coefficient of friction between energy-absorbing components; rather, frictional damping force varies only slightly. Relatively insensitive to manufacturing variations and environmental conditions altering friction. Does not exhibit high breakaway friction and consequent sharp increase followed by sharp decrease in damping force at beginning of stroking. Damping force in absorber does not vary appreciably with speed of stroking. In addition, not vulnerable to leakage of hydraulic fluid.

  6. Imaging highly absorbing nanoparticles using photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  7. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOEpatents

    Farcasiu, Malvina; Petrosius, Steven C.

    1994-01-01

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  8. Alternative control technology document: Halogenated solvent cleaners. Final report

    SciTech Connect

    Not Available

    1989-08-01

    The document contains information on the use and control of halogenated solvents in solvent-cleaning applications. Described are the types of solvent cleaners manufactured, sources of solvent emissions, methods of controlling solvent emissions, and the costs associated with installation of control devices.

  9. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted...

  10. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted...

  11. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified...

  12. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated benzyl ester acrylate (generic). 721.329 Section 721.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  13. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated benzyl ester acrylate (generic). 721.329 Section 721.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  14. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated benzyl ester acrylate (generic). 721.329 Section 721.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  15. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate (generic). 721.329 Section 721.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  16. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated benzyl ester acrylate (generic). 721.329 Section 721.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  17. Primary cells utilize halogen-organic charge transfer complex

    NASA Technical Reports Server (NTRS)

    Gutmann, F.; Hermann, A. M.; Rembaum, A.

    1966-01-01

    Electrochemical cells with solid state components employ charge transfer complexes or donor-acceptor complexes in which the donor component is an organic compound and the acceptor component is a halogen. A minor proportion of graphite added to these composition helps reduce the resistivity.

  18. The halogens in Luna 16 and Luna 20 soils.

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1973-01-01

    The halogens, uranium, and lithium contents found in Luna 16, Luna 20, and some Apollo lunar soil samples are discussed. Chlorine and phosphorus pentoxide do not appear to exhibit the same correlation in soils from the Luna 20 and possibly the Luna 16 sites as they do in samples from the Apollo 11-15 sites.

  19. Photoproduction of halogens using platinized TiO2

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E.

    1981-01-01

    Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.

  20. Regioselective control of aromatic halogenation reactions in carbon nanotube nanoreactors.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2013-06-21

    The use of single-walled carbon nanotubes as effective nanoreactors for preparative chemical reactions has been demonstrated for the first time. Extreme spatial confinement of reactant molecules inside nanotubes has been shown to drastically affect both the regioselectivity and kinetics of aromatic halogenation reactions.

  1. HALOGEN: a tool for fast generation of mock halo catalogues

    NASA Astrophysics Data System (ADS)

    Avila, Santiago; Murray, Steven G.; Knebe, Alexander; Power, Chris; Robotham, Aaron S. G.; Garcia-Bellido, Juan

    2015-06-01

    We present a simple method of generating approximate synthetic halo catalogues: HALOGEN. This method uses a combination of second-order Lagrangian Perturbation Theory (2LPT) in order to generate the large-scale matter distribution, analytical mass functions to generate halo masses, and a single-parameter stochastic model for halo bias to position haloes. HALOGEN represents a simplification of similar recently published methods. Our method is constrained to recover the two-point function at intermediate (10 h-1 Mpc < r < 50 h-1 Mpc) scales, which we show is successful to within 2 per cent. Larger scales (˜100 h-1 Mpc) are reproduced to within 15 per cent. We compare several other statistics (e.g. power spectrum, point distribution function, redshift space distortions) with results from N-body simulations to determine the validity of our method for different purposes. One of the benefits of HALOGEN is its flexibility, and we demonstrate this by showing how it can be adapted to varying cosmologies and simulation specifications. A driving motivation for the development of such approximate schemes is the need to compute covariance matrices and study the systematic errors for large galaxy surveys, which requires thousands of simulated realizations. We discuss the applicability of our method in this context, and conclude that it is well suited to mass production of appropriate halo catalogues. The code is publicly available at https://github.com/savila/halogen.

  2. Electrochemical controlling and monitoring of halogen bond formation in solution.

    PubMed

    Groni, Sihem; Maby-Raud, Tanguy; Fave, Claire; Branca, Mathieu; Schöllhorn, Bernd

    2014-12-01

    Cyclic voltammetry has been used for the first time to probe and to control the formation of non-covalent halogen bonding (XB) via redox switching. These results strongly encourage the use of electrochemistry as an economical and precisely controllable tool for the investigation of XB in solution. PMID:25313384

  3. Double Hole-Lump Interaction between Halogen Atoms.

    PubMed

    Duarte, Darío J R; Peruchena, Nélida M; Alkorta, Ibon

    2015-04-23

    In this paper a theoretical study has been carried out to investigate the nature of the unusual halogen-halogen contacts in the complexes R-X···X-R (with R = -H, -Cl, -F and X = Cl, Br, I). AIM, NBO, and MEP analyses have been used to characterize X···X interactions. Formation of the unusual X···X interactions leads to a significant increase of electron charge density in the bonding region between the two halogen atoms. The geometry and stability of these complexes is mainly due to electrostatic interactions lump(X1) → hole(X2) and lump(X2) → hole(X1) [or equivalently [VS,min(X1) → VS,max(X2) and VS,min(X2) → VS,max(X1)] and the charge transfers LP(X1) → σ*(R-X2) and LP(X2) → σ*(R-X1). In other words, these findings suggest that the electrostatic interactions and the charge transfer play a substantial role in determining the optimal geometry of these complexes, as in conventional halogen bonds, even though the dispersion term is the most important attractive term for all the complexes studied here, save one.

  4. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  5. Electrochemical controlling and monitoring of halogen bond formation in solution.

    PubMed

    Groni, Sihem; Maby-Raud, Tanguy; Fave, Claire; Branca, Mathieu; Schöllhorn, Bernd

    2014-12-01

    Cyclic voltammetry has been used for the first time to probe and to control the formation of non-covalent halogen bonding (XB) via redox switching. These results strongly encourage the use of electrochemistry as an economical and precisely controllable tool for the investigation of XB in solution.

  6. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al.

    PubMed

    Lien, Hsing-Lung; Zhang, Weixian

    2002-10-01

    A low-cost and high effective copper/aluminum (Cu/Al) bimetal has been developed for treatments of halogenated methanes, including dichloromethane, in near neutral and high pH aqueous systems. Bimetallic Cu/Al was prepared by a simple two-step synthetic method where Cu was deposited onto the Al surface. The presence of Cu on Al significantly enhanced rates of degradation of halogenated methanes and reduced toxic halogenated intermediates. The stability of Cu/Al was preliminarily studied by a multi-spiking batch experiment where complete degradation of carbon tetrachloride was achieved for seven times although the Cu/Al aging was found. Roles of Cu may involve protecting Al against an undesirable oxidation with water, enhancing reaction rates through the galvanic corrosion, and increasing the selectivity to a benign compound (i.e., methane). Kinetic analyses indicated that the activity of bimetallic Cu/Al was comparable to that of iron-based bimetals (e.g., palladized iron) and zero-valent metals. Bimetallic Cu/Al could be a promising reactive reagent for remediation of halogenated solvents-contaminated groundwater associated with high pH problems.

  7. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    PubMed Central

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-01-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis. PMID:27708371

  8. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-10-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.

  9. Interplay between non-covalent interactions in complexes and crystals with halogen bonds

    NASA Astrophysics Data System (ADS)

    Bartashevich, E. V.; Tsirelson, V. G.

    2014-12-01

    Studies on the structure and properties of complexes and crystals with halogen bonding accompanied by different secondary non-covalent interactions are summarized. The signs of halogen bonding are systematized and modern methods and approaches used to provide clear and reproducible estimates of the strength of halogen bonds are analyzed. The halogen bond strength values are compared with the strength of the other non-covalent interactions. The contradictions in the interpretation of the results from different studies of the strength of halogen bond are discussed. The bibliography includes 249 references.

  10. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  11. Formation of dioxin-like compounds from the pyrolysis of some halogenated flame retardants

    SciTech Connect

    Alsabbagh, A.M.

    1990-01-01

    Polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans as well as polyhalogenated phenazines have been shown to form from the pyrolysis of some flame retardants. In addition, chlorine-bromine exchange was shown to occur in the formation of halogenated dibenzo-p-dioxins and halogenated phenazines when both chlorine and bromine sources are present in the pyrolysis mixture. There was no chlorine-hydrogen exchange observed in the formation of chloro-bromo-dibenzo-dioxins, chloro-bromo-dibenzofurans and chloro-bromophenazines. At high temperatures, the amino-group of the halogenated anilines may be replaced by oxygen and yield halogenated dibenzo-pdioxins and halogenated dibenzofurans, in addition to the halogenated phenazines. The complete substitution of bromine with chlorine was demonstrated to occur, which is probably why chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans are more widely spread than the brominated analogs, since chlorinated compounds are used in much larger quantities than the brominated compounds. The addition of antimony (III) oxide to the flame-retardant formulations showed initial increase in the formation of the halogenated dibenzo-p-dioxins and the halogenated phenazines. The mass spectra of bromo-phenazines, chloro-phenazines and chloro-bromo-phenazines have been presented. The similarity in the structure of the halogenated phenazines and the halogenated dibenzo-p-dioxins may be of interest to be used in the search of compounds with breast cancer therapeutic use, although the toxicity of the halogenated phenazines should be thoroughly investigated.

  12. Halogens on Semiconductor Surfaces: Adsorption, Oxidation, and Etching.

    NASA Astrophysics Data System (ADS)

    Stepniak, Frank

    This dissertation presents studies of Si, GaAs, and InP surfaces following exposure to the halogens Cl _2 and Br_2. Synchrotron radiation photoemission is used to investigate the oxidation states of Si near the Si/SiO_2 interface as a function of Cl_2 exposure. Oxidation of highly ordered surfaces shows no dependence of the oxidation state concentration on Cl_2 inclusion in the gas mixture. For less-than-ideal Si surfaces, oxidation with O_2 -only results in a broader transition region, and presumably, inferior electrical properties. The addition of Cl_2 in the oxidizing gas reduced the concentration of intermediate oxides by a factor of two for these disordered starting Si surfaces. A new feature is also measured from Cl-Si bonds that we associate with passivation of Si defects at the oxide interface. The adsorption and reactivity of Br_2 and Cl_2 on GaAs(110) and InP(110) was studied in the temperature range of 25 K < T < 625 K with photoemission spectroscopy and scanning tunneling microscopy. Initial halogen adsorption was dissociative at all temperatures and we find that a simple model where the halogen atoms bond to a single Ga or As surface site can not account for the complex surface chemistry and morphology. Thermally-activated etching was observed after warming a surface with chemisorbed Br or Cl. Etching resulted from the formation and eventual temperature dependent desorption of the trihalides of Ga and As. For halogen exposures where T < 650 K, monohalide-like surface bonding persist during the etching process and the etched surface is rough. For T > 700 K, the surface is essentially free of halogen and etching occurs in a nearly layer-by-layer fashion.

  13. A quantum mechanics-based halogen bonding scoring function for protein-ligand interactions.

    PubMed

    Yang, Zhuo; Liu, Yingtao; Chen, Zhaoqiang; Xu, Zhijian; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang

    2015-06-01

    A quantum mechanics-based scoring function for halogen bonding interaction, namely XBScore(QM), is developed based on 18,135 sets of geometrical and energetical parameters optimized at M06-2X/aug-cc-pVDZ level. Applying the function on typical halogen bonding systems from Protein Data Bank demonstrates its strong ability of predicting halogen bonding as attractive interaction with strength up to -4 kcal mol(-1). With a diverse set of proteins complexed with halogenated ligands, a systematic evaluation demonstrates the integrative advantage of XBScore(QM) over 12 other scoring functions on halogen bonding in four aspects, viz. pseudo docking power, ranking power, scoring power, and genuine docking power. Thus, this study not only provides a practicable scoring function of halogen bonding for high throughput virtual screening, but also serves as a benchmark for evaluating the performance of current scoring functions on characterizing halogen bonding.

  14. On the formation of tropical rings of atomic halogens: Causes and implications

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Fernandez, Rafael P.

    2016-03-01

    Halogens produced by ocean biological and photochemical processes reach the tropical tropopause layer (TTL), where cold temperatures and the prevailing low ozone abundances favor the diurnal photochemical enhancement of halogen atoms. Under these conditions atomic bromine and iodine are modeled to be the dominant inorganic halogen species in the sunlit TTL, surpassing the abundance of the commonly targeted IO and BrO radicals. We suggest that due to the rapid photochemical equilibrium between halogen oxides and halogen atoms a natural atmospheric phenomenon evolves, which we have collectively termed "tropical rings of atomic halogens." We describe the main causes controlling the modeled appearance and variability of these superposed rings of bare bromine and iodine atoms that circle the tropics following the Sun. Some potential implications for atmospheric oxidizing capacity are also explored. Our model results suggest that if experimentally confirmed, the extent and intensity of the halogen rings would directly respond to changes in oceanic halocarbon emissions, their atmospheric transport, and photochemistry.

  15. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  16. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  17. A Pronounced Halogen Effect on the Organogelation Properties of Peripherally Halogen Functionalized Poly(benzyl ether) Dendrons.

    PubMed

    Feng, Yu; Chen, Hui; Liu, Zhi-Xiong; He, Yan-Mei; Fan, Qing-Hua

    2016-03-24

    An interesting halogen-substituent effect on the organogelation properties of poly(benzyl ether) dendrons is reported. A new class of poly(benzyl ether) dendrons with halo substituents decorating their periphery was synthesized and fully characterized. A systematic study on the gelation abilities, thermotropic behaviors, aggregated microstructures, and mechanical properties of self-assembled organogels was performed to elucidate the halogen-substituent effects on their organogelation propensity. It was found that the exact halogen substitutions on the periphery of dendrons exert a profound effect on the organogelation propensity, and dendrons Gn -Cl (n=2, 3) and G2 -I proved to be highly efficient organogelators. The cooperation of multiple π-π, dispersive halogen, CH-π, and weak C-H⋅⋅⋅X hydrogen-bonding interactions were found to be the key contributor to forming the self-assembled gels. Dendritic organogels formed from Gn -Cl (n=2, 3) in 1,2-dichloroethane exhibited thixotropic-responsive properties, and such thixotropic organogels are promising materials for future research and applications. PMID:26916094

  18. Core Halogenation as a Construction Principle in Tuning the Material Properties of Tetraazaperopyrenes.

    PubMed

    Hahn, Lena; Maass, Friedrich; Bleith, Tim; Zschieschang, Ute; Wadepohl, Hubert; Klauk, Hagen; Tegeder, Petra; Gade, Lutz H

    2015-12-01

    A detailed study on the effects of core halogenation of tetraazaperopyrene (TAPP) derivatives is presented. Its impact on the solid structure, as well as the photophysical and electrochemical properties, has been probed by the means of X-ray crystallography, UV/Vis and fluorescence spectroscopy, high-resolution electron energy loss spectroscopy (HREELS), cyclic voltammetry (CV), and DFT modeling. The aim was to assess the potential of this approach as a construction principle for organic electron-conducting materials of the type studied in this work. Although halogenation leads to a stabilization of the LUMOs compared to the unsubstituted parent compound, the nature of the halide barely affects the LUMO energy while strongly influencing the HOMO energies. In terms of band-gap engineering, it was demonstrated that the HOMO-LUMO gap is decreased by substitution of the TAPP core with halides, the effect being found to be most pronounced for the iodinated derivative. The performance of the recently reported core-fluorinated and core-iodinated TAPP derivatives in organic thin-film transistors (TFTs) was investigated on both a glass substrate, as well as on a flexible plastic substrate (PEN). Field-effect mobilities of up to 0.17 cm(2)  Vs(-1) and on/off current ratio of >10(6) were established. PMID:26507207

  19. Optical modulation in nematic phase of halogen substituted hydrogen bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    A series of halogen-substituted hydrogen-bonded liquid crystalline complexes have been designed and synthesised. A successful attempt has been made to form complementary hydrogen bonding between the dodecyloxy benzoic acid (12BAO) and halogen-substituted benzoic acids and the physical properties exhibited by the individual complexes are studied. The complexes obtained are analysed by polarising optical microscope (POM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and dielectric studies. The formation of complementary hydrogen bond is confirmed through FTIR spectra. An interesting feature of this series is the observation of a field-induced transition (FiT) in nematic phase. Another interesting phenomenon is the observation of a new smectic X phase (worm-like texture) in all the synthesised complexes. Dielectric relaxation studies in the smectic C phase of these hydrogen bonded complexes along with the Arrhenius and the Cole-Cole plots are discussed. Optical tilt angle in smectic C phase and the corresponding fitted data analysis concur with the Mean field theory prediction.

  20. Curing depth of composite resin light cured by LED and halogen light-curing units

    NASA Astrophysics Data System (ADS)

    Calixto, L. R.; Lima, D. M.; Queiroz, R. S.; Rastelli, A. N. S.; Bagnato, V. S.; Andrade, M. F.

    2008-11-01

    The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37°C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA’s test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.

  1. All-metal clusters that mimic the chemistry of halogens.

    PubMed

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-01

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.

  2. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  3. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  4. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  5. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  6. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  7. Halogens and the Chemistry of the Free Troposphere

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    The role of halogens in both the marine boundary layer and the stratosphere has long been recognized, while their role in the free troposphere is often not considered in global chemical models. However, a careful examination of free-tropospheric chemistry constrained by observations using a full chemical data assimilation system shows that halogens do play a significant role in the free troposphere. In particular, the chlorine initiation of methane oxidation in the free troposphere can contribute more than 10%, and in some regions up to 50%, of the total rate of initiation. The initiation of methane oxidation by chlorine is particularly important below the polar vortex and in northern mid-latitudes. Likewise, the hydrolysis of BrONO2 alone can contribute more than 35% of the HNO3 production rate in the free-troposphere.

  8. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  9. Biocidal properties of metal oxide nanoparticles and their halogen adducts

    NASA Astrophysics Data System (ADS)

    Haggstrom, Johanna A.; Klabunde, Kenneth J.; Marchin, George L.

    2010-03-01

    Nanosized metal oxide halogen adducts possess high surface reactivities due to their unique surface morphologies. These adducts have been used as reactive materials against vegetative cells, such as Escherichia coli as well as bacterial endospores, including Bacillus subtilis and Bacillus anthracis (Δ Sterne strain). Here we report high biocidal activities against gram-positive bacteria, gram-negative bacteria, and endospores. The procedure consists of a membrane method. Transmission electron micrographs are used to compare nanoparticle-treated and untreated cells and spores. It is proposed that the abrasive character of the particles, the oxidative power of the halogens/interhalogens, and the electrostatic attraction between the metal oxides and the biological material are responsible for high biocidal activities. While some activity was demonstrated, bacterial endospores were more resistant to nanoparticle treatment than the vegetative bacteria.

  10. Damage tolerant light absorbing material

    DOEpatents

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Seals, Roland D.

    1993-01-01

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  11. Damage tolerant light absorbing material

    DOEpatents

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  12. Waveform-Dependent Absorbing Metasurfaces

    NASA Astrophysics Data System (ADS)

    Wakatsuchi, Hiroki; Kim, Sanghoon; Rushton, Jeremiah J.; Sievenpiper, Daniel F.

    2013-12-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high-power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high-power pulses but not for high-power continuous waves (CW’s), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e., CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  13. Halogenated C,N-diarylacetamides: molecular conformations and supramolecular assembly.

    PubMed

    Nayak, Prakash S; Jasinski, Jerry P; Golen, James A; Narayana, Badiadka; Kaur, Manpreet; Yathirajan, Hemmige S; Glidewell, Christopher

    2014-09-01

    The structures of four halogenated N,2-diarylacetamides are reported and compared with a range of analogues. N-(4-Chloro-3-methylphenyl)-2-phenylacetamide, C(15)H(14)ClNO, (I), and N-(4-bromo-3-methylphenyl)-2-phenylacetamide, C(15)H(14)BrNO, (II), are isostructural in the space group P-1. The molecules of (I) and (II) are linked into chains of rings by a combination of N-H...O and C-H...π(arene) hydrogen bonds. The molecules of N-(4-chloro-3-methylphenyl)-2-(2,4-dichlorophenyl)acetamide, C(15)H(12)Cl(3)NO, (III), and N-(4-bromo-3-methylphenyl)-2-(2-chlorophenyl)acetamide, C(15)H(13)BrClNO, (IV), are linked into simple C(4) chains by N-H...O hydrogen bonds, but significant C-H...π(arene) interactions are absent. The N-aryl groups in compounds (III) and (IV) adopt a different orientation, by ca 180°, from that of the corresponding groups in compounds (I) and (II), but otherwise the conformations of (I)-(IV) are very similar. Comparisons are drawn between compounds (I) and (IV) and a range of analogues of the type R(1)CH(2)CONHR(2), where R(2) represents a halogenated aryl ring and R(1) represents either another halogenated aryl ring or a naphthalen-1-yl unit.

  14. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    PubMed

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIhalogen impregnated AC for Hg elimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  15. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Vander Zanden, Crystal M; Billman, M Marie; Ho, P Shing; Rappé, Anthony K

    2015-07-23

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry--its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as an accurate computational tool that can be applied, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular-based materials.

  16. Chemical Action of Halogenated Agents in Fire Extinguishing

    NASA Technical Reports Server (NTRS)

    Belles, Frank E.

    1955-01-01

    The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.

  17. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  18. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada

    USGS Publications Warehouse

    Leiker, T.J.; Abney, S.R.; Goodbred, S.L.; Rosen, Michael R.

    2009-01-01

    Methyl triclosan and four halogenated analogues have been identified in extracts of individual whole-body male carp (Cyprinus carpio) tissue that were collected from Las Vegas Bay, Nevada, and Semipermeable Membrane Devices (SPMD) that were deployed in Las Vegas Wash, Nevada. Methyl triclosan is believed to be the microbially methylated product of the antibacterial agent triclosan (2, 4, 4'-trichloro-4-hydroxydiphenyl ether, Chemical Abstract Service Registry Number 3380-34-5, Irgasan DP300). The presence of methyl triclosan and four halogenated analogues was confirmed in SPMD extracts by comparing low- and high-resolution mass spectral data and Kovats retention indices of methyl triclosan with commercially obtained triclosan that was derivatized to the methyl ether with ethereal diazomethane. The four halogenated analogues of methyl triclosan detected in both whole-body tissue and SPMD extracts were tentatively identified by high resolution mass spectrometry. Methyl triclosan was detected in all 29 male common carp from Las Vegas Bay with a mean concentration of 596????g kg- 1 wet weight (ww) which is more than an order of magnitude higher than previously reported concentrations in the literature. The halogenated analogs were detected less frequently (21%-76%) and at much lower concentrations (< 51????g kg- 1 ww). None of these compounds were detected in common carp from a Lake Mead reference site in Overton Arm, Nevada.

  19. Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling

    NASA Astrophysics Data System (ADS)

    Thierry, Pauline; Villemant, Benoit; Caron, Benoit

    2016-04-01

    Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to

  20. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  1. An investigation of halogens in Izmit hazardous and clinical waste incinerator.

    PubMed

    Cetin, Senay; Veli, Sevil; Ayberk, Savaş

    2004-01-01

    In the combustion facilities, halogens (Cl, F, Br, I) should be considered with regard to the control of the compounds such as polychlorinated dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), halogenated polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and volatile heavy metals formed as a result of incomplete combustion and caused adverse environmental effects. In this study halogens were observed in Izmit Hazardous and Clinical Waste Incinerator (IZAYDAS). Halogen contents of the combustion menu, flue gas, fly ash, bottom ash and filter cake were measured and their distributions in these exit streams were determined. Results showed that the major part of the halogens was partitioned to solid residues, i.e., bottom ash and filter cake which represents the removal by wet scrubbers. Fly ash and flue gas fractions of halogens were much lower due to the reduced formation of volatile compounds.

  2. The effectiveness of cure of LED and halogen curing lights at varying cavity depths.

    PubMed

    Soh, M S; Yap, Adrian U J; Siow, K S

    2003-01-01

    This study compared the effectiveness of cure of two LED (light-emitting diodes) lights (Elipar FreeLight [FL], 3M-ESPE and GC e-Light [EL], GC) to conventional (Max [MX] (control), Dentsply-Caulk), high intensity (Elipar TriLight [TL], 3M-ESPE) and very high intensity (Astralis 10 [AS], Ivoclar Vivadent) halogen lights at varying cavity depths. Ten light curing regimens were investigated. They include: FL1-400 mW/cm2 [40 seconds], FL2-0-400 mW/cm2 [12 seconds] --> 400 mW/cm2 [28 seconds], EL1-750 mW/cm2 [10 pulses x 2 seconds], EL2-350 mW/cm2 [40 seconds], EL3-600 mW/cm2 [20 seconds], EL4-0-600 mW/cm2 [20 seconds] --> 600 mW/cm2 [20 seconds], TL1-800 mW/cm2 [40 seconds], TL2-100-800 mW/cm2 [15 seconds] --> 800 mW/cm2 [25 seconds], AS1-1200 mW/cm2 [10 seconds], MX-400 mW/cm2 [40 seconds]. The effectiveness of cure of the different modes was determined by measuring the top and bottom surface hardness (KHN) of 2-mm, 3-mm and 4-mm thick composite (Z100, [3M-ESPE]) specimens using a digital microhardness tester (n = 5, load = 500 g; dwell time = 15 seconds). Results were analyzed using ANOVA/Scheffe's post-hoc test and Independent Samples t-Test (p < 0.05). For all lights, effectiveness of cure was found to decrease with increased cavity depths. The mean hardness ratio for all curing lights at a depth of 2 mm was found to be greater than 0.80 (the accepted minimum standard). At 3 mm, all halogen lights produced a hardness ratio greater than 0.80 but some LED light regimens did not; and at a depth of 4 mm, the mean hardness ratio observed with all curing lights was less than 0.80. Significant differences in top and bottom KHN values were observed among different curing regimens for the same light and between LED and halogen lights. While curing with most modes of EL resulted in significantly lower top and bottom KHN values than the control (MX) at all depths, the standard mode of FL resulted in significantly higher top and bottom KHN at a depth of 3 mm and 4 mm. The

  3. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  4. Oil and fat absorbing polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  5. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  6. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  7. Halogens in diamonds and the origin of their variability

    NASA Astrophysics Data System (ADS)

    Burgess, R.; Cartigny, P.; Harris, J. W.

    2005-12-01

    Micro-inclusions in fibrous diamonds provide unique samples of deep fluids from the sub-continental lithospheric mantle. Investigation of the isotopic and chemical composition of these fluids in diamonds that have formed at different epochs and from different geographical regions has the potential to trace the time-resolved, global evolution of volatiles in the mantle. Previous studies have shown that the isotopic composition of volatiles such as C and N and noble gases in micro-inclusion-bearing diamonds from Africa, Siberia and Canada record a clear upper mantle signature. However the fluids show strong chemical fractionations that include the halogens, a group of elements not normally considered to be fractionated by mantle processes, and yet showing Br/Cl and I/Cl that exceed crustal values. The extreme enrichment of halogens in the fluids, up to four orders of magnitude higher than present -day upper mantle values suggests that the fluids have accumulated from large volumes of the mantle and therefore unlikely to represent local heterogeneities. The formation of carbonatitic-hydrous silicic fluid mixtures is associated with major K/Cl fractionation and minor Br/Cl and I/Cl fractionation from the MORB ratios typified by diamonds from Africa, Siberia and a few Canadian diamonds. In contrast, carbonatitic-brine mixtures are typified by relatively constant K/Cl with major Br/Cl and I/Cl variations and are predominant in Canadian diamonds. The variations in K/Br/I/Cl between diamonds from Canada, Africa and Siberia can not be explained by crystallisation of a single Cl-bearing mineral phase, and the upper mantle He, Ar, C and N isotope ratios appear to rule-out the presence of recycled seawater or crustal halogens in the mantle fluids. In Siberian and African diamonds minor halogen fractionation may occur during partitioning controlled by halide ion radius between a hydrous silicic and carbonatitic melts. Much larger halogen fractionation is present in most

  8. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  9. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development.

    PubMed

    Xu, Zhijian; Yang, Zhuo; Liu, Yingtao; Lu, Yunxiang; Chen, Kaixian; Zhu, Weiliang

    2014-01-27

    Halogen bond has attracted a great deal of attention in the past years for hit-to-lead-to-candidate optimization aiming at improving drug-target binding affinity. In general, heavy organohalogens (i.e., organochlorines, organobromines, and organoiodines) are capable of forming halogen bonds while organofluorines are not. In order to explore the possible roles that halogen bonds could play beyond improving binding affinity, we performed a detailed database survey and quantum chemistry calculation with close attention paid to (1) the change of the ratio of heavy organohalogens to organofluorines along the drug discovery and development process and (2) the halogen bonds between organohalogens and nonbiopolymers or nontarget biopolymers. Our database survey revealed that (1) an obviously increasing trend of the ratio of heavy organohalogens to organofluorines was observed along the drug discovery and development process, illustrating that more organofluorines are worn and eliminated than heavy organohalogens during the process, suggesting that heavy halogens with the capability of forming halogen bonds should have priority for lead optimization; and (2) more than 16% of the halogen bonds in PDB are formed between organohalogens and water, and nearly 20% of the halogen bonds are formed with the proteins that are involved in the ADME/T process. Our QM/MM calculations validated the contribution of the halogen bond to the binding between organohalogens and plasma transport proteins. Thus, halogen bonds could play roles not only in improving drug-target binding affinity but also in tuning ADME/T property. Therefore, we suggest that albeit halogenation is a valuable approach for improving ligand bioactivity, more attention should be paid in the future to the application of the halogen bond for ligand ADME/T property optimization.

  10. Theoretical study of the complementarity in halogen-bonded complexes involving nitrogen and halogen as negative sites.

    PubMed

    Esrafili, Mehdi D; Vakili, Mahshad; Solimannejad, Mohammad

    2014-02-01

    This article analyzes the interplay between X···N and X···X halogen bonds interactions in NCX···NCX···XCH3 complexes, where X=Cl and Br. To better understand the properties of these systems, the corresponding dyads were also studied. These effects are studied theoretically in terms of geometric and energetic features of the complexes, which are computed by ab initio methods. The estimated values of cooperative energy (E coop) are all negative with much larger E coop in absolute value for the NCBr···NCBr···BrCH3 system. The effect of X···N on the properties of X···X is larger than that of X···X bonding on the properties of X···N. These results can be understood in terms of the electrostatic potentials of the negative sites with which the positive regions on the halogens are interacting. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the energy decomposition analysis. PMID:24522380

  11. Theoretical study of the complementarity in halogen-bonded complexes involving nitrogen and halogen as negative sites.

    PubMed

    Esrafili, Mehdi D; Vakili, Mahshad; Solimannejad, Mohammad

    2014-02-01

    This article analyzes the interplay between X···N and X···X halogen bonds interactions in NCX···NCX···XCH3 complexes, where X=Cl and Br. To better understand the properties of these systems, the corresponding dyads were also studied. These effects are studied theoretically in terms of geometric and energetic features of the complexes, which are computed by ab initio methods. The estimated values of cooperative energy (E coop) are all negative with much larger E coop in absolute value for the NCBr···NCBr···BrCH3 system. The effect of X···N on the properties of X···X is larger than that of X···X bonding on the properties of X···N. These results can be understood in terms of the electrostatic potentials of the negative sites with which the positive regions on the halogens are interacting. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the energy decomposition analysis.

  12. Radical and Atom Transfer Halogenation (RATH): A Facile Route for Chemical and Polymer Functionalization.

    PubMed

    Han, Yi-Jen; Lin, Chia-Yu; Liang, Mong; Liu, Ying-Ling

    2016-05-01

    This work demonstrates a new halogenation reaction through sequential radical and halogen transfer reactions, named as "radical and atom transfer halogenation" (RATH). Both benzoxazine compounds and poly(2,6-dimethyl-1,4-phenylene oxide) have been demonstrated as active species for RATH. Consequently, the halogenated compound becomes an active initiator of atom transfer radical polymerization. Combination of RATH and sequential ATRP provides an convenient and effective approach to prepare reactive and crosslinkable polymers. The RATH reaction opens a new window both to chemical synthesis and molecular design and preparation of polymeric materials.

  13. Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples.

    PubMed

    Nakamoto, Tomoshi; Oura, Yasuji; Ebihara, Mitsuru

    2007-09-01

    Halogens (fluorine, chlorine, bromine and iodine) were determined by activation analyses (neutron activation analysis (NAA), photon activation analysis (PAA) and prompt gamma-ray analysis (PGA)) for geological and cosmochemical solid samples. We studied how each analytical method was for the determination of trace amounts of halogens in rock samples. Radiochemical NAA (RNAA) showed the highest analytical reliability for three halogens (chlorine, bromine and iodine), whereas a set of four halogens (fluorine, chlorine, bromine and iodine) could be determined in principle by radiochemical PAA (RPAA) from a single specimen. Although it is a non-destructive method, PGA showed an analytical sensitivity for chlorine comparable to those of RNAA and RPAA.

  14. Evaluation of forcefields for molecular mechanics/dynamics calculations involving halogenated anesthetics.

    PubMed

    Trudell, J R; Bertaccini, E

    1998-11-23

    (1) Successful application of molecular mechanics and molecular dynamics calculations to the binding of halogenated anesthetics requires forcefields with correct parameters for halocarbons. (2) Unfortunately, our survey of six popular forcefields revealed that some of them provide a very poor representation of electrostatic interactions for the halogens. (3) This problem is due to poor or missing assignments of partial atomic charges to the halogen atoms. (4) We describe the forcefields most appropriate for use with halogenated anesthetics and suggest a general method for editing the assignment of partial atomic charges by performing an initial quantum mechanics calculation. PMID:10049174

  15. Vibration and thermal vacuum qualification test results for a low-voltage tungsten-halogen light

    NASA Technical Reports Server (NTRS)

    Sexton, J. Andrew

    1991-01-01

    The results of a space flight qualification test program for a low-voltage, quartz tungsten-halogen light are presented. The test program was designed to qualify a halogen light for use in the Pool Boiling Experiment, a Get Away Special (GAS) payload that will be flown in the space shuttle payload bay. Vibration and thermal vacuum tests were performed. The test results indicated that the halogen light will survive the launch and ascent loads, and that the convection-free environment associated with the GAS payload system will not detrimentally affect the operation of the halogen light.

  16. Oil well sucker rod shock absorber

    SciTech Connect

    Knox, F.B.

    1986-02-18

    An oil well sucker rod shock absorber is described which consists of: an outer cylindrical casing defined by a cylindrical wall and having a removable upper plug and lower plug disposed respectively at upper and lower extremities of the casing. The upper plug has an axial bore and the lower plug defines a closed lower end and has an upwardly facing top surface. The plunger rod is connected to the sucker rod and is slidably disposed in the bore of the upper plug. A piston within the cylindrical casing is coupled to the plunger rod and has a downwardly facing bottom surface. Biasing means have a maximum vertical length disposed vertically within the casing and extending between the downwardly facing surface of the piston and the upwardly facing surface of the lower plug means at all times. This allows vertical reciprocal translation of the plunger rod and the piston within the cylindrical casing downwardly against the biasing means. Apertures are disposed through the cylindrical casing along the entire length thereof opposite the length of the biasing means, allowing downhole fluid pressure to be applied to the piston within the cylindrical casing via the apertures to be added to the force of the biasing means, without causing a fluid lock within the cylinder. Slap and wear of the sucker rod resulting therefrom are reduced and damage prevented.

  17. Spatial Gradients in Halogen Oxides Across the North Slope of Alaska Indicate That Halogen Activated Airmasses are Spatially Large

    NASA Astrophysics Data System (ADS)

    Simpson, W. R.; Hoenninger, G. S.; Platt, U.

    2005-12-01

    Reactive halogens are important oxidizers in the polar atmosphere during springtime. They deplete tropospheric ozone, oxidize hydrocarbons, and oxidize gas-phase mercury, causing it to deposit to the snow pack. We want to understand the mechanism by which halides in on snow/ice crystals and/or in aerosol particles are converted to reactive halogen species. This understanding can assist in prediction of mercury deposition and how that deposition depends on environmental variables like sea-ice extent and temperature. This mechanistic knowledge is particularly important in the context of a changing Arctic system. To study halogen activation, we are working in the Studies of the Northern Alaskan Coastal System (SNACS) project and here show results from 2005 including the LEADX experiment. A number of studies have implicated leads (cracks in the sea ice) as a source of halogen activation, but it is unclear if halogens are directly activated on ice surfaces at the lead (e.g. frost flowers) or if the lead is less directly involved. To address the role of leads in halogen activation, we measured bromine monoxide (BrO) using Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) at Barrow and Atqasuk, Alaska over a four-month period. The locations of these sites, either on the coast near a recurring lead in the case of Barrow, or 100km inland in the case of Atqasuk provides an ability to measure spatial gradients on the 100km length scale. In addition, the Barrow instrument was the first implementation of fully automated two dimensional MAX-DOAS where both elevation and azimuth were scanned. Because the MAX-DOAS method typically detects path-averaged BrO amounts between the instrument and a range of approximately 10km, differences in BrO between viewing azimuths allows us to determine short-length scale BrO gradients. From the 2-D MAX-DOAS observations at Barrow, we find that there are very small if any spatial gradients on the 10km length scale. From the

  18. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  19. Design principle of a nonlinear robust dynamic vibration absorber

    NASA Astrophysics Data System (ADS)

    Koga, Yuki; Masuda, Arata

    2016-04-01

    This study aims to develop a design principle of a nonlinear dynamic vibration absorber focusing on its robustness against the alteration of the natural frequency of the primary system. To this end, a 2-DOF coupled system consisting of the primary and absorber systems is analytically solved to evaluate the maximally possible level of the displacement response of the primary system by means of averaging method. In this approach, the equation of motion of the vibration absorber is first solved in the steady-state by the averaging method for a given amplitude of the primary system assuming that the whole responses of the coupled system have the same frequency as the excitation force. Then, the equivalent dynamic stiffness of the dynamic absorber is derived which represents how the absorber acts on the primary system in reaction of the displacement of the primary system. Because the maximally possible displacement amplitude of the primary system is enveloped by the reciprocal of the imaginary part of the equivalent dynamic stiffness, the benefit of introducing a softening effect into the design of the dynamic absorber is theoretically suggested, and validated through numerical simulations.

  20. Digital Alloy Absorber for Photodetectors

    NASA Technical Reports Server (NTRS)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  1. White-Light-Induced Collective Heating of Gold Nanocomposite/Bombyx mori Silk Thin Films with Ultrahigh Broadband Absorbance.

    PubMed

    Tsao, Shao Hsuan; Wan, Dehui; Lai, Yu-Sheng; Chang, Ho-Ming; Yu, Chen-Chieh; Lin, Keng-Te; Chen, Hsuen-Li

    2015-12-22

    This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.

  2. Energy-Absorbing, Lightweight Wheels

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.

  3. The Meaning of Meaning, Etc.

    ERIC Educational Resources Information Center

    Nilsen, Don L. F.

    This paper attempts to dispel a number of misconceptions about the nature of meaning, namely that: (1) synonyms are words that have the same meanings, (2) antonyms are words that have opposite meanings, (3) homonyms are words that sound the same but have different spellings and meanings, (4) converses are antonyms rather than synonyms, (5)…

  4. Measurements of halogen oxides in the Western Pacific

    NASA Astrophysics Data System (ADS)

    Wittrock, Folkard; Walker, Hannah; Heard, Dwayne; Ingham, Trevor; Lampel, Johannes; Horbanski, Martin; Großmann, Katja; Bracher, Astrid; Sentian, Justin; Vrekoussis, Mihalis; Huang, Ru-Jin; Peters, Enno; Schönhardt, Anja; Richter, Andreas; Burrows, John P.

    2013-04-01

    Reactive halogens such as iodine, bromine and their oxides have received growing attention in the past years owing to their strong impact on tropospheric composition. In particular, reactive halogens deplete ozone and alter the HOx and NOx ratios, consequently changing the oxidizing capacity of the troposphere. The halogen oxides iodine monoxide (IO) and bromine monoxide (BrO), generated from the reaction of atomic I and Br with ozone, play a central role in these processes. Iodine atoms may be released by photolysis of precursor substances such as I2 or volatile iodocarbons emitted from the marine biosphere. Inorganic release processes are also being considered, but they are so far uncertain. Bromine precursors include organic as well as inorganic sources. Here we report on measurements of IO and BrO during and related to the SHIVA field campaign, which has been carried out in November 2011 in the Western Pacific around Borneo. Different techniques have been applied in order to detect the trace gases: cavity-enhanced differential optical absorption spectroscopy (CE-DOAS), multi axis (MAX)-DOAS, airborne multi axis (AMAX)-DOAS and laser induced fluorescence (LIF, discussed in detail in Heard et al.). While for BrO no clear signal above the detection limit was found, IO levels up to 2.5 ppt were found in the open Sulu Sea and similar levels up to 2 ppt close to seaweed farms around Semporna, Malaysia. In this area both MAX-DOAS and AMAX-DOAS observations gave indication for the presence of uplifted layers of IO. These results are discussed and interpreted by using complementary observations of the main precursor substances. In addition correlation studies taking into account meteorological and oceanic parameters have been carried out to identify possible source processes. Finally the ground-based IO observations have been compared to satellite observations and a reasonable agreement was found.

  5. THE CHEMISTRY OF INTERSTELLAR MOLECULES CONTAINING THE HALOGEN ELEMENTS

    SciTech Connect

    Neufeld, David A.; Wolfire, Mark G. E-mail: mwolfire@astro.umd.ed

    2009-12-01

    Although they are only minor constituents of the interstellar medium, halogen-containing molecules are of special interest because of their unique thermochemistry. Here, we present a theoretical study of the chemistry of interstellar molecules containing the halogen elements chlorine and fluorine. We have modeled both diffuse and dense molecular clouds, making use of updated estimates for the rates of several key chemical processes. We present predictions for the abundances of the three halogen molecules that have been detected to date in the interstellar medium: HF, CF{sup +}, and HCl. As in our previous study of fluorine-bearing interstellar molecules, we predict HF to be the dominant gas-phase reservoir of fluorine within both diffuse and dense molecular clouds; we expect the Herschel Space Observatory to detect widespread absorption in the HF J = 1 - 0 transition. Our updated model now overpredicts the CF{sup +} abundance by a factor approx>10 relative to observations of the Orion Bar; this discrepancy has widened because we now adopt a laboratory measurement of the CF{sup +} dissociative recombination rate that is smaller than the estimate we adopted previously. This disagreement suggests that the reaction of C{sup +} with HF proceeds more slowly than the capture rate assumed in our model; a laboratory measurement of this reaction rate would be very desirable. Our model predicts diffuse cloud HCl abundances that are similar to those predicted previously and detected tentatively toward zeta Oph. Two additional species are potentially detectable from photodissociation regions: the H{sub 2}Cl{sup +}, and HCl{sup +} molecular ions. Ortho-H{sub 2}Cl{sup +} has its lowest-lying transition in the millimeter spectral region observable from the ground, and the lowest rotational transition of HCl{sup +} is observable with Herschel's HIFI instrument.

  6. Configurable metamaterial absorber with pseudo wideband spectrum.

    PubMed

    Zhu, Weiren; Huang, Yongjun; Rukhlenko, Ivan D; Wen, Guangjun; Premaratne, Malin

    2012-03-12

    Metamaterials attain their behavior due to resonant interactions among their subwavelength components and thus show specific designer features only in a very narrow frequency band. There is no simple way to dynamically increase the operating bandwidth of a narrowband metamaterial, but it may be possible to change its central frequency, shifting the spectral response to a new frequency range. In this paper, we propose and experimentally demonstrate a metamaterial absorber that can shift its central operating frequency by using mechanical means. The shift is achieved by varying the gap between the metamaterial and an auxiliary dielectric slab parallel to its surface. We also show that it is possible to create multiple absorption peaks by adjusting the size and/or shape of the dielectric slab, and to shift them by moving the slab relative to the metamaterial. Specifically, using numerical simulations we design a microwave metamaterial absorber and experimentally demonstrate that its central frequency can be set anywhere in a 1.6 GHz frequency range. The proposed configuration is simple and easy to make, and may be readily extended to THz frequencies.

  7. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect

    Sazali, E. S. Rohani, M. S. Sahar, M. R. Arifin, R. Ghoshal, S. K. Hamzah, K.

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  8. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  9. A General Copper-Catalyzed Vinylic Halogen Exchange Reaction.

    PubMed

    Nitelet, Antoine; Evano, Gwilherm

    2016-04-15

    An efficient and general system for the halogen exchange reaction in alkenyl halides has been developed. Upon reaction with catalytic amounts of copper iodide and trans-N,N'-dimethylcyclohexane-1,2-diamine in the presence of tetramethylammonium chloride or bromide, a wide range of easily accessible alkenyl iodides can be smoothly transformed to their far less available chlorinated and brominated derivatives in excellent yields and with full retention of the double bond geometry. This reaction also enables the chlorination of bromoalkenes and could be extended to the use of gem-dibromoalkenes. PMID:27031868

  10. Halogen Occultation Experiment (HALOE) gas cell life test program

    NASA Technical Reports Server (NTRS)

    Sullivan, E. M.; Thompson, R. E.; Harvey, G. A.; Park, J. H.; Richardson, D. J.

    1983-01-01

    The Halogen Occultation Experiment (HALOE) will use gas filter correlation radiometry to measure the atmospheric concentration profiles of HCl, HF, NO, and CH4 from the Upper Atmosphere Research Satellite. The need to contain the gases for the gas filter measurements has resulted in the development of gas cells and the need for a life test program to demonstrate that the gas cells will perform their functions for extended periods (several years) of time. This report describes the tests in the life test program, the test apparatus used, and the analysis techniques developed. The report also presents data obtained during the first 14 months of the test program.

  11. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  12. Polar flattening and the strength of halogen bonding.

    PubMed

    Sedlak, Robert; Kolář, Michal H; Hobza, Pavel

    2015-10-13

    The effect of polar flattening on the stability of 32 halogen-bonded complexes was investigated by utilizing CCSD(T)/CBS, DFT, and DFT-SAPT/CBS methods. It is shown that the value of polar flattening increases with the decreasing value of studied isodensity. For the complexes investigated, the polar flattening based on the isodensity of 0.001 au reaches 0.2-0.3 Å and 10-15% in absolute and relative values, respectively. These geometrical changes induce differences in the stabilization energy up to 20%.

  13. Thermal design, analysis and testing of the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Foss, Richard A.; Smith, Dewey M.

    1987-01-01

    This paper briefly introduces the Halogen Occultation Experiment (HALOE) and describes the thermal requirements in some detail. The thermal design of the HALOE is described, together with the design process and the analytical techniques used to arrive at this design. The flight hardware has undergone environmental testing in a thermal vacuum chamber to validate the thermal design. The HALOE is a unique problem in thermal control due to its variable solar loading, its extremely sensitive optical components and the high degree of pointing accuracy required. This paper describes the flight hardware, the design process and its verification.

  14. Halogen occultation experiment (HALOE) optical witness-plate program

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Raper, James L.

    1989-01-01

    An optical witness plate program was implemented to monitor buildup of molecular contamination in the clean room during the assembly and testing of the Halogen Occulation Experiment (HALOE) instrument. Travel plates to monitor molecular contamination when the instrument is not in the clean room are also measured. The instrument technique is high-resolution transmission spectroscopy in the 3 micron spectral region using a Fourier transform spectrometer. Witness specimens of low index of refraction, infrared transmitting material are used for contaminant monitoring and for spectral signature analysis. Spectral signatures of possible molecular contamination are presented. No condensible volatile material contamination of HALOE optical witness specimens have yet been found.

  15. Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons

    NASA Astrophysics Data System (ADS)

    Nemnes, G. A.; Visan, Camelia; Anghel, D. V.; Manolescu, A.

    2016-08-01

    The hybrid graphene - hexagonal boron nitride (G-hBN) systems offer new routes in the design of nanoscale electronic devices. Using ab initio density functional theory calculations we investigate the dynamics of zig-zag nanoribbons a few interatomic distances wide. Several structures are analyzed, namely pristine graphene, hBN and G-hBN systems. By passivating the nanoribbon edges with hydrogen and different halogen atoms, one may tune the electronic and mechanical properties, like the band gap energies and the natural frequencies of vibration.

  16. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    SciTech Connect

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  17. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan

    2016-08-16

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  18. Likelihood of atom–atom contacts in crystal structures of halogenated organic compounds

    PubMed Central

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-01-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C—H⋯Cl and O—H⋯O are the preferred interactions in compounds containing both O and Cl. PMID:25995842

  19. Anaerobic microbial transformation of halogenated aromatics and fate prediction using electron density modeling.

    PubMed

    Cooper, Myriel; Wagner, Anke; Wondrousch, Dominik; Sonntag, Frank; Sonnabend, Andrei; Brehm, Martin; Schüürmann, Gerrit; Adrian, Lorenz

    2015-05-19

    Halogenated homo- and heterocyclic aromatics including disinfectants, pesticides and pharmaceuticals raise concern as persistent and toxic contaminants with often unknown fate. Remediation strategies and natural attenuation in anaerobic environments often build on microbial reductive dehalogenation. Here we describe the transformation of halogenated anilines, benzonitriles, phenols, methoxylated, or hydroxylated benzoic acids, pyridines, thiophenes, furoic acids, and benzenes by Dehalococcoides mccartyi strain CBDB1 and environmental fate modeling of the dehalogenation pathways. The compounds were chosen based on structural considerations to investigate the influence of functional groups present in a multitude of commercially used halogenated aromatics. Experimentally obtained growth yields were 0.1 to 5 × 10(14) cells mol(-1) of halogen released (corresponding to 0.3-15.3 g protein mol(-1) halogen), and specific enzyme activities ranged from 4.5 to 87.4 nkat mg(-1) protein. Chlorinated electron-poor pyridines were not dechlorinated in contrast to electron-rich thiophenes. Three different partial charge models demonstrated that the regioselective removal of halogens is governed by the least negative partial charge of the halogen. Microbial reaction pathways combined with computational chemistry and pertinent literature findings on Co(I) chemistry suggest that halide expulsion during reductive dehalogenation is initiated through single electron transfer from B12Co(I) to the apical halogen site.

  20. Halogen-free benzoxazine based curable compositions for high TG applications

    SciTech Connect

    Tietze, Roger; Nguyen, Yen-Loan

    2015-03-10

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  1. Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.

    PubMed

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-05-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.

  2. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    EPA Science Inventory

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  3. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media.

  4. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media. PMID:26289779

  5. Toxicity of gaseous halogenated organic compounds. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-02-01

    The bibliography contains citations concerning the toxicology of halogenated hydrocarbons and their health effects. Topics cover halogenated gases used as industrial chemicals, fire extinguishers, anesthetics, solvents, pesticides, and aerosol propellants. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Quasiperiodicity in lasers with saturable absorbers

    SciTech Connect

    Erneux, T.; Mandel, P.; Magnan, J.F.

    1984-05-01

    In this paper, we consider the mean-field equations for the laser with a saturable absorber (LSA) and concentrate on the low-intensity solutions. We show that the LSA equations may admit two successive bifurcations. The first bifurcation corresponds to the transition from the zero-intensity state to time-periodic intensities and is a Hopf bifurcation. The second bifurcation corresponds to the transition from these time-periodic intensities to quasiperiodic intensities which are characterized by two incommensurable frequencies. In order to describe these transitions, we investigate a particular limit of the parameters and propose a new perturbation method for solving the LSA equations. We give analytical conditions for the existence of both the primary and secondary bifurcations.

  7. Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature.

    PubMed

    Walter, Sebastian M; Kniep, Florian; Rout, Laxmidhar; Schmidtchen, Franz P; Herdtweck, Eberhardt; Huber, Stefan M

    2012-05-23

    We have conducted isothermal calorimetric titrations to investigate the halogen-bond strength of cationic bidentate halogen-bond donors toward halides, using bis(iodoimidazolium) compounds as probes. These data are intended to aid the rational design of halogen-bond donors as well as the development of halogen-bond-based applications in solution. In all cases examined, the entropic contribution to the overall free energy of binding was found to be very important. The binding affinities showed little dependency on the weakly coordinating counteranions of the halogen-bond donors but became slightly stronger with higher temperatures. We also found a marked influence of different solvents on the interaction strength. The highest binding constant detected in this study was 3.3 × 10(6) M(-1).

  8. Halogen derivatives of benzo- and dibenzocrown ethers: synthesis, structure, properties and application

    NASA Astrophysics Data System (ADS)

    Pluzhnik-Gladyr, S. M.

    2016-02-01

    Methods of synthesis of halogenated benzo- and dibenzocrown ether derivatives are surveyed: halogenation of benzo- and dibenzocrown ethers with molecular halogens, N-halosuccinimides in the solid phase and different media (water, ethanol, halohydrocarbons) and hypohalites in water, as well as the 'assembly' method. Reactions of these compounds are considered: synthesis of phosphorus-containing crown ethers, organometallic synthesis, the Heck and Sonogashira reactions, synthesis of acetylene derivatives and other reactions. Special attention is focused on the complexing properties of halogenated benzocrown ethers with respect to ionic guests and neutral organic molecules. The possibility of synthesis of complexes of such compounds in the solid phase is demonstrated. The extraction and sorption properties of halogenated benzo- and dibenzocrown ethers are considered. Examples of practical use of these compounds are presented. The bibliography includes 203 references.

  9. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Robinson, Sean W.; Marques, Igor; Félix, Vítor; Beer, Paul D.

    2014-12-01

    Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

  10. Using halogen bonds to address the protein backbone: a systematic evaluation.

    PubMed

    Wilcken, Rainer; Zimmermann, Markus O; Lange, Andreas; Zahn, Stefan; Boeckler, Frank M

    2012-08-01

    Halogen bonds are specific embodiments of the sigma hole bonding paradigm. They represent directional interactions between the halogens chlorine, bromine, or iodine and an electron donor as binding partner. Using quantum chemical calculations at the MP2 level, we systematically explore how they can be used in molecular design to address the omnipresent carbonyls of the protein backbone. We characterize energetics and directionality and elucidate their spatial variability in sub-optimal geometries that are expected to occur in protein-ligand complexes featuring a multitude of concomitant interactions. By deriving simple rules, we aid medicinal chemists and chemical biologists in easily exploiting them for scaffold decoration and design. Our work shows that carbonyl-halogen bonds may be used to expand the patentable medicinal chemistry space, redefining halogens as key features. Furthermore, this data will be useful for implementing halogen bonds into pharmacophore models or scoring functions making the QM information available for automatic molecular recognition in virtual high throughput screening.

  11. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  12. 40 CFR Appendix III to Part 268 - List of Halogenated Organic Compounds Regulated Under § 268.32

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false List of Halogenated Organic Compounds... Part 268—List of Halogenated Organic Compounds Regulated Under § 268.32 In determining the... defined the HOCs that must be included in a calculation as any compounds having a carbon-halogen...

  13. Improving the laboratory monitoring of absorbent oil

    SciTech Connect

    V.S. Shved; S.S. Sychev; I.V. Safina; S.A. Klykov

    2009-05-15

    The performance of absorbent coal tar oil is analyzed as a function of the constituent and group composition. The qualitative and quantitative composition of the oil that ensures the required absorbent properties is determined. Operative monitoring may be based on absorbent characteristics that permit regulation of the beginning and end of regeneration.

  14. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-01-01

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  15. Porcelain enamel neutron absorbing material

    SciTech Connect

    Iverson, Daniel C.

    1990-02-06

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  16. Porcelain enamel neutron absorbing material

    DOEpatents

    Iverson, D.C.

    1987-11-20

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  17. Hemolytic potential of structurally related aniline halogenated hydroxylamines.

    PubMed

    Singh, Harpal; Purnell, Elissa T

    2005-01-01

    This study was undertaken to investigate the hemolytic potential of several structurally related aniline halogenated phenylhydroxylamines based on their decreasing electro negativity. The compounds compared are phenylhydroxylamine (PHA) and para-fluoro-, para-bromo-, and para-iodo-phenylhydroxylamines. Red blood cells of male Sprague-Dawley rats were labeled with radioactive chromium-51 and exposed to the test agent before being infused into the tail vein of isologous rats. The time course of blood radioactivity was monitored. The stability of some selected halogenated aniline analogs was also determined in blood. All four tested hydroxylamines produced dose-dependent reduction in the circulating labeled red blood cells indicating their destruction and loss. The most pronounced reduction was observed at doses from 175 to 250 microM. The dose of 100 microM appeared to be the threshold limit. The para-iodo-PHA was two times more toxic than para-fluoro-PHA in the destruction of red blood cells in rats.

  18. Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems.

    PubMed

    Parker, Kimberly M; Reichwaldt, Elke S; Ghadouani, Anas; Mitch, William A

    2016-08-16

    The transport of microcystin, a hepatotoxin produced by cyanobacteria (e.g., Microcystis aeruginosa), to estuaries can adversely affect estuarine and coastal ecosystems. We evaluated whether halogen radicals (i.e., reactive halogen species (RHS)) could significantly contribute to microcystin photodegradation during transport within estuaries. Experiments in synthetic and natural water samples demonstrated that the presence of seawater halides increased quantum yields for microcystin indirect photodegradation by factors of 3-6. Additional experiments indicated that photoproduced RHS were responsible for this effect. Despite the fact that dissolved organic matter (DOM) concentrations decreased in more saline waters, the calculated photochemical half-life of microcystin decreased 6-fold with increasing salinity along a freshwater-estuarine transect due to the halide-associated increase in quantum yield. Modeling of microcystin photodegradation along this transect indicated that the time scale for RHS-mediated microcystin photodegradation is comparable to the time scale of transport. Microcystin concentrations decline by ∼98% along the transect when considering photodegradation by RHS, but only by ∼54% if this pathway were ignored. These results suggest the importance of considering RHS-mediated photodegradation in future models of microcystin fate in freshwater-estuarine systems. PMID:27447196

  19. Reactions of halogens with surfaces stimulated by VUV light

    NASA Astrophysics Data System (ADS)

    Ney, Verena; Schwentner, Nikolaus

    2006-08-01

    Reactions of halogens (Cl2,XeF2) with metals (Cu) and semiconductors (Si, GaAs) are investigated. The main focus is put on light induced reactions, stimulated by synchrotron radiation in the spectral range from 200 to 50 nm, in comparison with the dark reaction. Growth of reaction products on the surface and the desorption of volatile compounds are studied. A set-up with a quartz microbalance was adopted to determine reaction rates in situ. The rates are very sensitive to sample preparation. In the system Cu/Cl2, oxygen was found to especially slow down the reaction and much higher reaction rates than reported previously were observed for pure samples. Measurements with masks show the possibility of using desorption (also called light induced dry etching) to microstructure materials. Analysis of the irradiations with different wavelengths reveals a high spectral dependence of the reactions, which can therefore be controlled. The efficiency of the light induced non-selective reaction follows the gas phase absorption of the etching gases, whereas selective reactions, which are used to structure the materials, are induced in adsorbed halogens at different wavelengths. High efficiencies of single-photon events, due to chain reactions, with multiplication factors of the order of 105, are observed. The resulting pit size has to be contrasted with the intended spatial resolution.

  20. Extraterrestrial halogen and sulfur contents of the stratosphere

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Flynn, G. J.

    1990-01-01

    Interplanetary dust represents a potential source of environmentally important chemical species in the earth's atmosphere. Previous studies have used computational models of atmospheric evolution of meteor debris to conclude that the steady-state stratospheric component of extraterrestrial matter is a small fraction of the total aerosol load. Observational data suggest such calculations may underestimate stratospheric residence times and, thus, concentrations. Two computational methods were employed here to obtain reasonable limits for the stratospheric contents of halogens and sulfur from extraterrestrial sources. The lower limit was based on the total stratospheric aerosol load and the relative influxes from interplanetary dust and tropospheric sources. The upper limit was obtained using a viscous settling method. These results suggest that the steady-state extraterrestrial influxes of halogens are minor compared to tropospheric sources but the sulfur input may be comparable to the present observed stratospheric content. Temporal enhancements in the meteoroid flux, such as passage through comet debris lanes or impact by large bodies, may produce significant chemical perturbations in the atmosphere.

  1. Autocatalytic halogen release from salt droplets and saltpans

    NASA Astrophysics Data System (ADS)

    Bleicher, S.; Buxmann, J.; Balzer, N.; Riedel, T.; Thornton, J.; Platt, U.; Zetzsch, C.

    2012-04-01

    Reactive bromine and chlorine species are known to have an impact on the ozone concentration, to change the chemical balance of nitrogen oxides and to have an influence on human health: through their reactions with hydrocarbons (HCs) among other trace gases and increased deposition of toxic compounds (like mercury). Especially the formation of higher halogen oxides (OIO, OBrO) and the role of chlorine in tropospheric chemistry are not clear yet. We present experiments on halogen activation from salt mixtures of NaCl/NaBr and salt droplet aerosols, simulating saltpans and sea spray in an illuminated Teflon chamber. The starting conditions influence the total amount of released halogens, so we varied the amounts of aerosol surface, NOx and HCs, monitoring the time profiles of the HCs by gas chromatography in order to determine the time profiles of OH and Cl. The chemical ionization mass spectrometer (CIMS) of the University of Washington was used to observe stable halogen species in a short campaign, and a multi-reflection cell (White-type) of the University of Heidelberg, coupled with Differential Optical Absorption Spectroscopy (DOAS), was employed to measure BrO, ClO and OClO. We observe a qualitative difference in Br2 release between the saltpan and the sea salt aerosol experiments: While BrO increases immediately to very high levels up to 6 ppb in the saltpan experiments (Buxmann et al., 2011), formation of BrO is delayed in the aerosol studies. This delay varies from about five to ten minutes after switching the solar simulator on, depending on HCs and NOxconcentrations. Furthermore, we observe a "chlorine explosion" with Cl2 mixing ratios of up to 12 ppb (by CIMS) as a function of the initial HC and NOx conditions. More than 3 ppb ClO, 3.5 ppb OClO and 650 ppt BrO were observed at initial levels of 150 ppb NO2 and of 770 ppb O3, leading to an ozone depletion rate of 0.6 ppb/s. The influence of NOx was tested on simulated sea spray alone. Due to the

  2. Schlieren photography to study sound interaction with highly absorbing materials.

    PubMed

    Declercq, Nico F; Degrieck, Joris; Leroy, Oswald

    2005-06-01

    Strong absorption of sound is often caused by the conversion of sound energy into heat. When this happens, it is not possible to study the interaction of sound with the absorbing material by means of reflected sound characteristics, because there is no reflected sound. Detecting for example the distance that sound travels in a strongly absorbing material, can be done by heat detection systems. However, the presence of temperature detectors in such materials interferes with the sound field and is therefore not really suitable. Infrared measurements are a possible option. Another option is the use of Schlieren photography for simultaneous visualization of sound and heat. This technique is briefly outlined with a 3 MHz sound beam incident on a highly absorbing sponge. PMID:15950023

  3. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  4. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH₃ (X = F, OH, NC, CN, and FCC) complex.

    PubMed

    Zhao, Qiang

    2014-10-01

    The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

  5. A polarization-independent broadband terahertz absorber

    SciTech Connect

    Shi, Cheng; Zang, XiaoFei E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing E-mail: ymzhu@usst.edu.cn

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.

  6. Improving the electrical conductivity sensitivity of polydiphenylamine and Y zeolite towards halogenated solvents by the dealumination process towards halogenated solvents

    NASA Astrophysics Data System (ADS)

    Permpool, Tharaporn; Sirivat, Anuvat; Aussawasathien, Darunee; Conductive and Electroactive Polymers Research Unit Team; National Metal and Materials Technology center Collaboration

    2013-03-01

    In order to improve the electrical conductivity selectivity of polydiphenylamine based sensors towards halogenated solvent vapors (dichloromethane, 1,2-dichloroethane, chloroform), polydiphenylamine doped with hydrochloric acid is fabricated with the dealuminatedY zeolite (Si/Al = 80). The structure and composition are investigated by Fourier transform spectroscopy and X-ray fluorescence spectrometer, respectively. The effects of acid treatment time of the dealumination process and the Y zeolite content are investigated. The sensitivity of the composites with the dealuminated Y zeolite exhibites a higher sensitivity value when exposed to the solvents relative to the pristine Y zeolite. The optimum acid treatment time which provides the highest sensitivity is 12 hr. The selectivity of the composites towards the halogenated solvents is in this order: dhicloromethane > 1,2-dichloroethane > chloroform, respectively. The optimum dealuminated Y zeolite content in the composites is 30% v/v. The Petroleum and Petrochemical College, The Thailand Graduate Institute of Science and Technology (TGIST) (TGIST-01-54-011)

  7. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  8. Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.

    PubMed

    Vargas Jentzsch, Andreas; Hennig, Andreas; Mareda, Jiri; Matile, Stefan

    2013-12-17

    these elusive interactions in action, we synthesized naphthalenediimide transporters of increasing π-acidity up to an unprecedented quadrupole moment of +39 Buckinghams and characterized these systems in comparison with tandem mass spectrometry and computational simulations. With π-acidic calixarenes and calixpyrroles, we have validated our results on anion-π interactions and initiated our studies of halogen bonds. Halogen bonds originate from the σ-hole that appears on top of electron-deficient iodines, bromines, and chlorines. Halogen-bond donors are ideal for anion transport because they are as strong and at least as directional as hydrogen-bond donors, but also hydrophobic. The discovery of the smallest possible organic anion transporter, trifluoroiodomethane, illustrates the power of halogen-bond donors. This molecule contains a single carbon atom and is a gas with a boiling point of -22 °C. Anion-macrodipole interactions, finally, differ significantly from anion-π interactions and halogen bonds because they are important in nature and cannot be studied with small molecules. We have used anion-transporting peptide/urea nanotubes to examine these interactions in synthetic transport systems. To facilitate the understanding of the described results, we also include an in-depth discussion of the meaning of Hill coefficients. The use of synthetic transport systems to catch less common noncovalent interactions at work is important because it helps to expand the collection of interactions available to create functional systems. Progress in this direction furthers fundamental knowledge and invites many different applications. For illustration, we briefly discuss how this knowledge could apply to the development of new catalysts. PMID:23547885

  9. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  10. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil.

    PubMed

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  11. How Do Distance and Solvent Affect Halogen Bonding Involving Negatively Charged Donors?

    PubMed

    Chen, Zhaoqiang; Wang, Guimin; Xu, Zhijian; Wang, Jinan; Yu, Yuqi; Cai, Tingting; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2016-09-01

    It was reported that negatively charged donors can form halogen bonding, which is stable, especially, in a polar environment. On the basis of a survey of the Protein Data Bank, we noticed that the distance between the negative charge center and the halogen atom of an organohalogen may vary greatly. Therefore, a series of model systems, composed of 4-halophenyl-conjugated polyene acids and ammonia, were designed to explore the potential effect of distance on halogen bonding in different solvents. Quantum mechanics (QM) calculations demonstrated that the longer the distance, the stronger the bonding. The energy decomposition analysis on all of the model systems demonstrated that electrostatic interaction contributes the most (44-56%) to the overall binding, followed by orbital interaction (42-36%). Natural bond orbital calculations showed that electron transfer takes place from the acceptor to the donor, whereas the halogen atom becomes more positive during the bonding, which is in agreement with the result of neutral halogen bonding. QM/molecular mechanics calculations demonstrated that the polarity of binding pockets makes all of the interactions attractive in a protein system. Hence, the strength of halogen bonding involving negatively charged donors could be adjusted by changing the distance between the negative charge center and halogen atom and the environment in which the bonding exists, which may be applied in material and drug design for tuning their function and activity. PMID:27504672

  12. Noncovalent interactions in halogenated ionic liquids: theoretical study and crystallographic implications.

    PubMed

    Li, Haiying; Lu, Yunxiang; Wu, Weihong; Liu, Yingtao; Peng, Changjun; Liu, Honglai; Zhu, Weiliang

    2013-03-28

    In recent years, several specific imidazolium-based ionic liquids with halogen substituents on the imidazole ring as well as on the alkyl chains have been reported. In this work, noncovalent interactions in four halogenated ionic liquids, i.e. 2-bromo-/iodo- and 4,5-dibromo-/diiodo-1,3-dimethylimidazolium trifluoromethanesulfonates, were systematically investigated using density functional theory calculations. The structural and energetic properties of the ion pairs for such ionic liquids have been fully examined and compared with the non-halogenated ones. It was found that C-X···O halogen bonds, C-H···O hydrogen bonds, and electrostatic interactions with the anion located over the imidazole ring in the ion pairs. In addition, the structures and energetics of two ion pairs for such ionic liquids were also explored to reproduce experimental observations. The halogen-bonded ring structures and the conformers with the concurrent C-H···O and C-X···O contacts were predicted, consistent with the X-ray crystal structures of corresponding organic salts. Finally, the implications of the observed structural and energetic features of ion pairs on the design of halogen-bonding ionic liquids were discussed. The results presented herein should provide useful information in the development of novel halogenated ionic liquids used for specific tasks ranging from organic synthesis to gas absorption.

  13. Halogen-hydride interaction between Z-X (Z = CN, NC; X = F, Cl, Br) and H-Mg-Y (Y = H, F, Cl, Br, CH3).

    PubMed

    Mohajeri, Afshan; Alipour, Mojtaba; Mousaee, Mahboubeh

    2011-05-01

    Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been

  14. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  15. [Study on structure, charge and spectrum for para-halogenated diphenyl ethers through density functional theory].

    PubMed

    Jiang, Long; Cai, Xiao-Yu; Zhang, Chen; Zou, Qiao; Li, Yu

    2013-11-01

    The present paper mainly researched the molecular geometry, charge distribution and spectrum vibration of diphenyl ether and its 3 kinds of para-halogenated diphenyl ethers based on density functional theory (DFT). The infrared and Raman spectrum vibration frequency for para-halogenated diphenyl ethers was calculated based on respective optimal molecular geometry with the same method which was carried out at the B3LYP/6-31(d) level, then spectrum vibration of para-halogenated diphenyl ethers was assigned in detail for the first time. Combined with charge distribution of diphenyl ether and by the nuclear magnetic resonance and Milliken charge distribution, the authors also analyzed the effect of different para-halogenated substituent on charge distribution, at last the vibration mechanism and change rule of of para-halogenated diphenyl ethers' characteristic vibrations were analyzed in the view of charge distribution innovatively. From the research we can see that the more the electronegativity of para-halogenated substituent, the bigger the atomic radius, and the longer the C-X bond, the easier they are degraded in the environment; para-halogenated substituent affected the charge distribution greatly especially to para-carbon relative to ether bond, and meta-carbon was controlled by the combination electronic effect of para-halogenated substituent and oxygen atom, meanwhile ortho-carbon didn't have distinct change; charge gap between bond atoms played significant role in the stability of bonds and vibration frequency of characteristic vibration, and the larger the electronegativity of para-halogenated substituent, the larger the vibration frequency. PMID:24555401

  16. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    PubMed

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  17. Determination of heavy metals and halogens in plastics from electric and electronic waste

    SciTech Connect

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-15

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n = 51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n = 161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  18. Intonational meaning.

    PubMed

    Prieto, Pilar

    2015-01-01

    Traditionally, prosodic studies have focused on the study of intonational form and the study of intonational meaning has been relatively neglected. Similarly, the fields of semantics and pragmatics have paid little attention to the pragmatic uses of intonation. As a result, there is no firm agreement within the linguistic community on how to integrate the analysis of intonational meaning across languages into a unified prosodic, semantic, and pragmatic approach. This article provides an overview of the literature on intonational meaning, describing the recent advances made in the fields of prosody, semantics/pragmatics, and syntax. Several theoretical approaches to explaining the semantics and pragmatics of intonation are presented. A common feature to most frameworks is that intonation (1) should be regarded as an integral part of linguistic grammar; and (2) typically encodes meanings related to the modal aspect of propositions. However, features such as compositionality, duality of structure, and context-dependency are still hotly debated issues. These features will be discussed from different theoretical perspectives, and we will identify potential advances related to the full integration of intonational meaning into dynamic and multidimensional models of meaning.

  19. Intonational meaning.

    PubMed

    Prieto, Pilar

    2015-01-01

    Traditionally, prosodic studies have focused on the study of intonational form and the study of intonational meaning has been relatively neglected. Similarly, the fields of semantics and pragmatics have paid little attention to the pragmatic uses of intonation. As a result, there is no firm agreement within the linguistic community on how to integrate the analysis of intonational meaning across languages into a unified prosodic, semantic, and pragmatic approach. This article provides an overview of the literature on intonational meaning, describing the recent advances made in the fields of prosody, semantics/pragmatics, and syntax. Several theoretical approaches to explaining the semantics and pragmatics of intonation are presented. A common feature to most frameworks is that intonation (1) should be regarded as an integral part of linguistic grammar; and (2) typically encodes meanings related to the modal aspect of propositions. However, features such as compositionality, duality of structure, and context-dependency are still hotly debated issues. These features will be discussed from different theoretical perspectives, and we will identify potential advances related to the full integration of intonational meaning into dynamic and multidimensional models of meaning. PMID:26263426

  20. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  1. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  2. Fluorogenic sequencing using halogen-fluorescein-labeled nucleotides.

    PubMed

    Chen, Zitian; Duan, Haifeng; Qiao, Shuo; Zhou, Wenxiong; Qiu, Haiwei; Kang, Li; Xie, X Sunney; Huang, Yanyi

    2015-05-26

    Fluorogenic sequencing is a sequencing-by-synthesis technology that combines the advantages of pyrosequencing and fluorescence detection. With native duplex DNA as the major product, we employ polymerase to incorporate the complement- arily matched terminal phosphate-labeled fluorogenic nucleotides into the DNA template and release halogen-fluorescein as the reporter. This red-emitting fluorophore successfully avoids spectral overlap with the autofluorescence background of the flow chip. We fully characterized the enzymatic reaction kinetics of the new substrates, and performed a 35-base sequencing experiment with 60 reaction cycles. Our achievement expands the substrate repertoire for fluorogenic sequencing, and extends the spectral range to obtain better signal-to-background performance.

  3. Sun sensor boresight alignment testing for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Moore, A. S.; Laney, V. S.; Mauldin, L. E., III

    1987-01-01

    The boresight alignment testing for the sun sensor assembly on the Halogen Occultation Experiment (HALOE) is described. The sun sensor assembly consists of three sensors that provide feedback signals for controlling dual axes gimbals. Two energy balancing silicon detectors are operated as wideband sensors in the azimuth and elevation axes. The third sensor is a silicon photodiode array operated as a narrow-band sensor in the elevation axis. These sensors are mounted on a common Invar structure which is mounted to the HALOE telescope. A blackbody was used as the stimulating source to perform the initial boresight alignment and this was checked with a heliostat solar look and a direct solar look. These tests are explained with a comparison between each source used.

  4. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    PubMed

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  5. Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding.

    PubMed

    Catalano, Luca; Pérez-Estrada, Salvador; Terraneo, Giancarlo; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Garcia-Garibay, Miguel A

    2015-12-16

    A modular molecular kit for the preparation of crystalline molecular rotors was devised from a set of stators and rotators to gain simple access to a large number of structures with different dynamic performance and physical properties. In this work, we have accomplished this with crystalline molecular rotors self-assembled by halogen bonding of diazabicyclo[2.2.2]octane, acting as a rotator, and a set of five fluorine-substituted iodobenzenes that take the role of the stator. Using variable-temperature (1)H T1 spin-lattice relaxation measurements, we have shown that all structures display ultrafast Brownian rotation with activation energies of 2.4-4.9 kcal/mol and pre-exponential factors of the order of (1-9) × 10(12) s(-1). Line shape analysis of quadrupolar echo (2)H NMR measurements in selected examples indicated rotational trajectories consistent with the 3-fold or 6-fold symmetric potential of the rotator.

  6. Photochemical properties of some Cl-containing halogenated alkanes.

    PubMed

    Orkin, V L; Khamaganov, V G; Kasimovskaya, E E; Guschin, A G

    2013-07-01

    Rate constants for the gas-phase reactions of OH radicals with three partially halogenated alkanes, CH3Cl (kMC), CHFClCFCl2 (k122a), and CH2FCFCl2 (k132c), were measured using a discharge flow-electron paramagnetic resonance technique over the temperature range from 298 to 460 K. The temperature dependences of the rate constants can be represented by the expressions kMC(298-460 K) = (3.09 ± 0.94) × 10(-12) exp[-(1411 ± 85)/T] cm(3) molecule(-1) s(-1), k122a(298-460 K) = (1.26 ± 0.24) × 10(-12) exp[-(1298 ± 66)/T] cm(3) molecule(-1) s(-1), and k132c(298-370 K) = (8.1 ± 2.2) × 10(-13) exp[-(1247 ± 89)/T] cm(3) molecule(-1) s(-1). The atmospheric lifetimes of CH3Cl, CHFClCFCl2, and CH2FCFCl2 due to their reaction with OH were estimated to be 1.6, 3.5, and 4.5 years, respectively. The UV absorption cross sections of halogenated ethanes, CHFClCFCl2, and CH2FCFCl2, were measured at T = 295 K between 190 and 240 nm, as were those for CHCl2CF2Cl (HCFC-122), CHCl2CF3 (HCFC-123), CHFClCF2Cl (HCFC-123a), and CH3CFCl2 (HCFC-141b). The atmospheric lifetimes due to stratospheric photolysis were also estimated. PMID:23725515

  7. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  8. The Brenner Moor - A saline bog as a source for halogenated and non-halogenated volatile compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Furchner, M.; Hoffman, A.; Lippe, S.; Kotte, K.; Schöler, H. F.

    2012-04-01

    The Brenner Moor is a small bog in the catchment area of the river Trave located in Schleswig-Holstein, North Germany, between Baltic and North Sea. The bog is fed by several saline springs with chloride concentrations up to 15 g/L. The high chloride concentrations and the high organic content of the peat make the Brenner Moor an ideal source for the abiotic formation of volatile organic halogenated compounds (VOX). VOX play an important role in the photochemical processes of the lower atmosphere and information on the atmospheric input from saline soils like the Brenner Moor will help to understand the global fluxes of VOX. Soil samples were taken in spring 2011 from several locations and depths in the vicinity of the Brenner Moor. The samples were freeze-dried, ground and incubated in water emphasising an abiotic character for the formation of volatile organic compounds. 1,2-dichloroethane and trichloromethane are the main halogenated compounds emitted from soils of the Brenner Moor. The abiotic formation of trichloromethane as well as other trihalomethanes has been part of intensive studies. A well known source is the decarboxylation of trichloroacetic acid and trichloroacetyl-containing compounds to trichloromethane [1]. Huber et al. discovered another pathway in which catechol, as a model compound for organic substances, is oxidised under Fenton-like conditions with iron(III), hydrogen peroxide and halides to form trihalomethanes [2]. Besides the halogenated compounds, the formation of sulphur compounds such as dimethyl sulfide and dimethyl disulfide and several furan derivatives could be detected which also have an impact on atmospheric chemistry, especially particle formation of clouds. Furan, methylfuran and dimethylfuran are compounds that can be obtained under Fenton-like oxidation from catechol, methyl- and dimethylcatechol and are known to be produced in natural soils [3]. A novel class of furan derivatives that are formed under abiotic conditions from

  9. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  10. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  11. Absorbent product and articles made therefrom

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multilayer absorbent product for use in contact with the skin to absorb fluids is described. The product has a water pervious facing layer for contacting the skin, and a first fibrous wicking layer overlaying the water pervious layer. A first container section is defined by inner and outer layers of a water pervious wicking material in between a first absorbent mass and a second container section defined by inner and outer layers of a water pervious wicking material between what is disposed a second absorbent mass, and a liquid impermeable/gas permeable layer overlaying the second fibrous wicking layer.

  12. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  13. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    PubMed

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  14. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes

    NASA Astrophysics Data System (ADS)

    Meister, H.; Willmeroth, M.; Zhang, D.; Gottwald, A.; Krumrey, M.; Scholze, F.

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  15. Device for absorbing mechanical shock

    DOEpatents

    Newlon, Charles E.

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  16. Device for absorbing mechanical shock

    DOEpatents

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  17. Absorbed radiation by various tissues during simulated endodontic radiography

    SciTech Connect

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  18. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-01

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results.

  19. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    EPA Science Inventory

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  20. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-01

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. PMID:27436297

  1. (CH3Br⋯NH3)@C60: The effect of nanoconfinement on halogen bonding

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Sarvesh Kumar; Misra, Neeraj

    2016-10-01

    Halogen bonds resemble hydrogen bonds in many aspects. How do the properties of halogen bonds change when confined to nanoregion? In order to explore this, we have encapsulated a halogen bonded complex, CH3Br⋯NH3 inside C60 fullerene and studied their properties using density functional theory and quantum theory of atoms in molecule. Our findings show that the geometry of CH3Br⋯NH3 complex is appreciably bent inside C60, interaction becomes covalent with larger interaction energy, unlike free CH3Br⋯NH3 complex, which is linear with closed shell interaction. Thus, the halogen bonded complexes show quite different properties at nanoscale.

  2. Effect of halogens on the formation and properties of the porous silicon layers

    SciTech Connect

    Bolotov, V. V.; Sten'kin, Yu. A. Davletkil'deev, N. A.; Krivozubov, O. V.; Ponomareva, I. V.

    2009-01-15

    The method of atomic-force microscopy is used to study the morphology of the surface of porous silicon layers formed on the p-Si substrate and obtained by anodic etching in an electrolyte with addition of free halogens (bromine, iodine) and potassium halogenides (KCl, KI). It is established that the presence of halogens in the electrolyte is conducive to formation of large pores with the diameter as large as 150 nm. The mechanism of an increase in the pore sizes with involvement of halogens is related to an increase in the concentration of free holes due to formation of donor-acceptor pairs in the case of adsorption of halogens on the silicon surface.

  3. A new turn in codon-anticodon selection through halogen bonds.

    PubMed

    Vijay Solomon, Rajadurai; Angeline Vedha, Swaminathan; Venuvanalingam, Ponnambalam

    2014-04-28

    The halogen bond is relatively a less characterized intermolecular interaction compared to the hydrogen bond and the structure, stability and electronic structures of halogenated base pairs, particularly at the wobble junction have been investigated using DFT. Three halogens, namely Cl, Br and I, have been tested for their role in such situations with uracil as the anticodon base. Computed results reveal that when halogen atoms replace protons in the hydrogen bonding positions they induce lot of geometric changes that flip some of the observed base pairs into unobserved base pairs and vice versa. NCI, NBO and AIM analyses explain these changes at the electronic level. The new codons will have lot of impact in future applications, particularly in self assembly of biomaterials and t-RNA synthetic strategies.

  4. Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale

    PubMed Central

    Houbenov, Nikolay; Milani, Roberto; Poutanen, Mikko; Haataja, Johannes; Dichiarante, Valentina; Sainio, Jani; Ruokolainen, Janne; Resnati, Giuseppe; Metrangolo, Pierangelo; Ikkala, Olli

    2014-01-01

    Aligning polymeric nanostructures up to macroscale in facile ways remains a challenge in materials science and technology. Here we show polymeric self-assemblies where nanoscale organization guides the macroscopic alignment up to millimetre scale. The concept is shown by halogen bonding mesogenic 1-iodoperfluoroalkanes to a star-shaped ethyleneglycol-based polymer, having chloride end-groups. The mesogens segregate and stack parallel into aligned domains. This leads to layers at ~10 nm periodicity. Combination of directionality of halogen bonding, mesogen parallel stacking and minimization of interfacial curvature translates into an overall alignment in bulk and films up to millimetre scale. Upon heating, novel supramolecular halogen-bonded polymeric liquid crystallinity is also shown. As many polymers present sites capable of receiving halogen bonding, we suggest generic potential of this strategy for aligning polymer self-assemblies. PMID:24893843

  5. Iodide Recognition and Sensing in Water by a Halogen-Bonding Ruthenium(II)-Based Rotaxane.

    PubMed

    Langton, Matthew J; Marques, Igor; Robinson, Sean W; Félix, Vítor; Beer, Paul D

    2016-01-01

    The synthesis and anion-recognition properties of the first halogen-bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen-bonding axle component, which is stoppered with water-solubilizing permethylated β-cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)-based macrocycle component. (1) H NMR anion-binding titrations in D2 O reveal the halogen-bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free-energy calculations. Photo-physical investigations demonstrate the ability of the interlocked halogen-bonding host to sense iodide in water, through enhancement of the macrocycle component's Ru(II) metal-ligand charge transfer (MLCT) emission. PMID:26626866

  6. Synergistic and diminutive effects between halogen bond and lithium bond in complexes involving aromatic compounds.

    PubMed

    Liu, Mingxiu; Cai, Mengyang; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo

    2015-10-01

    Quantum chemical calculations have been performed to study the interplay between halogen bond and lithium bond in the ternary systems FX-C6H5CN-LiF, FLi-C6H5CN-XF, and FLi-C6H5X-NH3 (X = Cl, Br, and I) involving aromatic compounds. This effect was studied in terms of interaction energy, electron density, charge transfer, and orbital interaction. The results showed that both FX-C6H5CN-LiF and FLi-C6H5CN-XF exhibit diminutive effects with the weakening of halogen bond and lithium bond, while FLi-C6H5X-NH3 displays synergistic effects with the strengthening of halogen bond and lithium bond. The nature of halogen bond and lithium bond in the corresponding binary complexes has been unveiled by the quantum theory of atoms in molecules methodology and energy decomposition analysis.

  7. Scalable Anisotropic Shape and Electrostatic Models for Biological Bromine Halogen Bonds.

    PubMed

    Carter, Megan; Rappé, Anthony K; Ho, P Shing

    2012-07-10

    Halogens are important substituents of many drugs and secondary metabolites, but the structural and thermodynamic properties of their interactions are not properly treated by current molecular modeling and docking methods that assign simple isotropic point charges to atoms. Halogen bonds, for example, are becoming widely recognized as important for conferring specificity in protein-ligand complexes but, to this point, are most accurately described quantum mechanically. Thus, there is a need to develop methods to both accurately and efficiently model the energies and geometries of halogen interactions in biomolecular complexes. We present here a set of potential energy functions that, based on fundamental physical properties of halogens, properly model the anisotropic structure-energy relationships observed for halogen interactions from crystallographic and calorimetric data, and from ab initio calculations for bromine halogen bonds in a biological context. These energy functions indicate that electrostatics alone cannot account for the very short-range distances of bromine halogen bonds but require a flattening of the effective van der Waals radius that can be modeled through an angular dependence of the steric repulsion term of the standard Lennard-Jones type potential. This same function that describes the aspherical shape of the bromine is subsequently applied to model the charge distribution across the surface of the halogen, resulting in a force field that uniquely treats both the shape and electrostatic charge parameters of halogens anisotropically. Finally, the electrostatic potential was shown to have a distance dependence that is consistent with a charge-dipole rather than a simple Coulombic type interaction. The resulting force field for biological halogen bonds (ffBXB) is shown to accurately model the geometry-energy relationships of bromine interactions to both anionic and neutral oxygen acceptors and is shown to be tunable by simply scaling the

  8. How Mean is the Mean?

    PubMed Central

    Speelman, Craig P.; McGann, Marek

    2013-01-01

    In this paper we voice concerns about the uncritical manner in which the mean is often used as a summary statistic in psychological research. We identify a number of implicit assumptions underlying the use of the mean and argue that the fragility of these assumptions should be more carefully considered. We examine some of the ways in which the potential violation of these assumptions can lead us into significant theoretical and methodological error. Illustrations of alternative models of research already extant within Psychology are used to explore methods of research less mean-dependent and suggest that a critical assessment of the assumptions underlying its use in research play a more explicit role in the process of study design and review. PMID:23888147

  9. Advances in metal-catalyzed cross-coupling reactions of halogenated quinazolinones and their quinazoline derivatives.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria

    2014-10-29

    Halogenated quinazolinones and quinazolines are versatile synthetic intermediates for the metal-catalyzed carbon-carbon bond formation reactions such as the Kumada, Stille, Negishi, Sonogashira, Suzuki-Miyaura and Heck cross-coupling reactions or carbon-heteroatom bond formation via the Buchwald-Hartwig cross-coupling to yield novel polysubstituted derivatives. This review presents an overview of the application of these methods on halogenated quinazolin-4-ones and their quinazolines to generate novel polysubstituted derivatives.

  10. Para-Selective Halogenation of Nitrosoarenes with Copper(II) Halides.

    PubMed

    van der Werf, Angela; Selander, Nicklas

    2015-12-18

    The para-selective direct bromination and chlorination of nitrosoarenes with copper(II) bromide and chloride is reported. Under mild reaction conditions, a range of halogenated arylnitroso compounds are obtained in moderate to good yields with high regioselectivity. Additionally, the versatility of the method is demonstrated by the development of a one-pot procedure to obtain the corresponding para-halogenated aniline- and nitrobenzene derivatives. PMID:26606695

  11. Intramolecular Halogen Transfer via Halonium Ion Intermediates in the Gas Phase.

    PubMed

    Chai, Yunfeng; Xiong, Xingchuang; Yue, Lei; Jiang, You; Pan, Yuanjiang; Fang, Xiang

    2016-01-01

    The fragmentation of halogen-substituted protonated amines and quaternary ammonium ions (R(1)R(2)R(3)N(+)CH2(CH2)nX, where X = F, Cl, Br, I, n = 1, 2, 3, 4) was studied by electrospray ionization tandem mass spectrometry. A characteristic fragment ion (R(1)R(2)R(3)N(+)X) resulting from halogen transfer was observed in collision-induced dissociation. A new mechanism for the intramolecular halogen transfer was proposed that involves a reactive intermediate, [amine/halonium ion]. A potential energy surface scan using DFT calculation for CH2-N bond cleavage process of protonated 2-bromo-N,N-dimethylethanamine supports the formation of this intermediate. The bromonium ion intermediate-involved halogen transfer mechanism is supported by an examination of the ion/molecule reaction between isolated ethylenebromonium ion and triethylamine, which generates the N-bromo-N,N,N-triethylammonium cation. For other halogens, Cl and I also can be involved in similar intramolecular halogen transfer, but F cannot be involved. With the elongation of the carbon chain between the halogen (bromine as a representative example) and amine, the migration ability of halogen decreases. When the carbon chain contains two or three CH2 units (n = 1, 2), formal bromine cation transfer can take place, and the transfer is easier when n = 1. When the carbon chain contains four or five CH2 units (n = 3, 4), formal bromine cation transfer does not occur, probably because the five- and six-membered cyclic bromonium ions are very stable and do not donate the bromine to the amine.

  12. QSAR for predicting joint toxicity of halogenated benzenes to Dicrateria zhanjiangensis.

    PubMed

    Zeng, Ming; Lin, ZhiFen; Yin, DaQiang; Yin, KeDong

    2008-12-01

    In this study, the toxicity of 49 mixed halogenated benzenes to Dicrateria zhanjiangensis was determined and the partition coefficient of these mixtures was described by using the C(18)-Empore disks/water partition coefficient (K(mix)). According to these data, a simple K(mix)-based QSAR model was successfully used to correlate the toxicity of the mixed halogenated benzenes to D. zhanjiangensis.

  13. Anion receptors based on halogen bonding with halo-1,2,3-triazoliums.

    PubMed

    Tepper, Ronny; Schulze, Benjamin; Jäger, Michael; Friebe, Christian; Scharf, Daniel H; Görls, Helmar; Schubert, Ulrich S

    2015-03-20

    A systematic series of anion receptors based on bidentate halogen bonding by halo-triazoles and -triazoliums is presented. The influence of the halogen bond donor atom, the electron-withdrawing group, and the linker group that bridges the two donor moieties is investigated. Additionally, a comparison with hydrogen bond-based analogues is provided. A new, efficient synthetic approach to introduce different halogens into the heterocycles is established using silver(I)-triazolylidenes, which are converted to the corresponding halo-1,2,3-triazoliums with different halogens. Comprehensive nuclear magnetic resonance binding studies supported by isothermal titration calorimetry studies were performed with different halides and oxo-anions to evaluate the influence of key parameters of the halogen bond donor, namely, polarization of the halogen and the bond angle to the anion. The results show a larger anion affinity in the case of more charge-dense halides as well as a general preference of the receptors to bind oxo-anions, in particular sulfate, over halides.

  14. The relation between molecular structure and biological activity among mononitrophenols containing halogens

    USGS Publications Warehouse

    Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.

    1966-01-01

    The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.

  15. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  16. Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials

    PubMed Central

    Borchardt, S. A.; Allain, E. J.; Michels, J. J.; Stearns, G. W.; Kelly, R. F.; McCoy, W. F.

    2001-01-01

    Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling. PMID:11425738

  17. Corrosion control in alkanolamine gas treating: Absorber corrosion

    SciTech Connect

    Helle, H.P.E.

    1995-12-01

    Even in 1980, when corrosion in alkanolamine units was rampant, over 50% of all acid gas purification systems was based on alkanolamine absorbents. Over the years the control of corrosion has gradually become firmer. This paper examines the reasons for corrosion and provides insight in one particular aspect of corrosion in alkanolamine units, absorber corrosion. Three factors are identified, solvent degradation, local stagnancy and exceeding the units capacity. Solvent degradation increases the corrosivity of the solvent proper by the formation of complexing compounds such as diamines. Local stagnancy allows the solvent loading level to approach equilibrium which creates a corrosive environment. Exceeding the unit`s capacity will achieve essentially the same but on a larger scale. The corrosion enhancement by interaction of a total of 12 factors is made visual and clarified. The paper examines step by step the means to prevent a number of the factors arising. Guidelines are given for design of the absorber and absorber internals, the molarity of the solvent, inhibition and the benefits and handicaps of filming inhibitors.

  18. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    SciTech Connect

    Aydogan, B.; Miller, L.F.; Sparks, R.B.; Stubbs, J.B.

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  19. Effectiveness of light emitting diode and halogen light curing units for curing microhybrid and nanocomposites

    PubMed Central

    Choudhary, Shwetha; Suprabha, BS

    2013-01-01

    Aim: To compare the polymerization efficacy of micro-hybrid and nanocomposites cured with Quartz-tungsten halogen (QTH) and light emitting diode (LED) light curing units (LCUs). The effectiveness of pulse cure mode in LED LCU was also investigated. Materials and Methods: Both micro-hybrid and nanocomposite specimens were cured using four different curing protocols giving a total of eight experimental groups. Ten cylindrical specimens were prepared for each group, and light cured for 40 s on the top surface, thus giving a total of eighty specimens. Vicker hardness measurements were carried out on the top and bottom surfaces after 24 h and hardness ratio was calculated. Results: For both micro-hybrid and nanocomposites, highest mean VHN was observed for the group cured with QTH LCU, and the lowest was observed for the group cured with second LED LCU in standard mode but the difference was significant only in case of nanocomposite. Conclusion: Curing nanocomposites with QTH LCU results in better micro hardness. Pulse cure mode does not effectively increase polymerization efficacy than the standard mode of curing. PMID:23833457

  20. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  1. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  2. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  3. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  4. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  5. 21 CFR 872.6050 - Saliva absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  6. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  7. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants.

    PubMed

    Waaijers, Susanne L; Kong, Deguo; Hendriks, Hester S; de Wit, Cynthia A; Cousins, Ian T; Westerink, Remco H S; Leonards, Pim E G; Kraak, Michiel H S; Admiraal, Wim; de Voogt, Pim; Parsons, John R

    2013-01-01

    Polymers are synthetic organic materials having a high carbon and hydrogen content, which make them readily combustible. Polymers have many indoor uses and their flammability makes them a fire hazard. Therefore, flame retardants (FRs) are incorporated into these materials as a safety measure. Brominated flame retardants (BFRs), which accounted for about 21% of the total world market of FRs, have several unintended negative effects on the environment and human health. Hence, there is growing interest in finding appropriate alternative halogen-free flame retardants (HFFRs). Many of these HFFRs are marketed already, although their environ- mental behavior and toxicological properties are often only known to a limited extent, and their potential impact on the environment cannot yet be properly assessed. Therefore, we undertook this review to make an inventory of the available data that exists (up to September 2011) on the physical-chemical properties, pro- duction volumes, persistence, bioaccumulation, and toxicity (PBT) of a selection of HFFRs that are potential replacements for BFRs in polymers. Large data gaps were identified for the physical-chemical and the PBT properties of the reviewed HFFRs. Because these HFFRs are currently on the market, there is an urgent need to fill these data gaps. Enhanced transparency of methodology and data are needed to reevaluate certain test results that appear contradictory, and, if this does not provide new insights, further research should be performed. TPP has been studied quite extensively and it is clearly persistent, bioaccumulative, and toxic. So far, RDP and BDP have demonstrated low to high ecotoxicity and persistence. The compounds ATH and ZB exerted high toxicity to some species and ALPI appeared to be persistent and has low to moderate reported ecotoxicity. DOPO and MPP may be persistent, but this view is based merely on one or two studies, clearly indicating a lack of information. Many degradation studies have been

  8. Halogen bonds in some dihalogenated phenols: applications to crystal engineering.

    PubMed

    Mukherjee, Arijit; Desiraju, Gautam R

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending

  9. Structured Metal Film as Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  10. Characteristics and nature of the halogen-bonding interactions between CCl3F and ozone: a supermolecular and SAPT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Yourdkhani, Sirous; Bahrami, Aidin

    2013-12-01

    The strength and nature of the halogen-bond interactions in CCl3F...O3 complexes were examined by means of ab initio quantum-chemical calculations and symmetry-adapted perturbation theory (SAPT). Our calculations predict a trifurcated C-Cl...O interaction for the global minimum of CCl3F...O3 complex and several local minima, differing slightly in energy, separated by very low barriers. The calculations, which include a rigorous decomposition of the interaction energies, also indicate that the interaction of CCl3F molecule with O3 is characterised by contributions from both electrostatic and dispersion energies, with the contribution of the latter being dominant. The evaluated SAPT interaction energies for the CCl3F...O3 complexes are generally in good agreement with those obtained using the supermolecule CCSD(T) method, suggesting that SAPT is a proper method to study the intermolecular interactions in these complexes.

  11. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  12. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGESBeta

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  13. Preparation, characterization, and activity of fluorinated aluminas for halogen exchange

    SciTech Connect

    Hegde, R.I.; Barteau, M.A. )

    1989-12-01

    Fluorinated aluminas with {alpha}-AlF{sub 3} contents up to 90+% were prepared by treatment with the fluoroalkanes CHF{sub 3} or C{sub 2}HF{sub 5} at 773 K. XPS results suggest that nearly complete fluorination of the surface occurs even at low extents of bulk fluorination. Neither {gamma}-Al{sub 2}O{sub 3} nor {alpha}-AlF{sub 3} exhibits significant activity for reaction of CHF{sub 3} following adsorption at 300 K and subsequent temperature-programmed desorption. In contrast, partially fluorinated aluminas strongly adsorb CHF{sub 3}, CHClF{sub 2}, and CHCl{sub 2}F. TPD experiments indicate that all three C{sub 1}-HCFCs desorb from partially fluorinated alumina above 500 K; all react to liberate HF and CO{sub 2}, and the chlorine-containing species undergo fluorine-for-chlorine exchange to produce CHF{sub 3}. These results suggest that halogen-exchange reactions of HCFCs can be carried out with materials resembling conventional fluorination catalysts.

  14. Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding.

    PubMed

    Catalano, Luca; Pérez-Estrada, Salvador; Terraneo, Giancarlo; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Garcia-Garibay, Miguel A

    2015-12-16

    A modular molecular kit for the preparation of crystalline molecular rotors was devised from a set of stators and rotators to gain simple access to a large number of structures with different dynamic performance and physical properties. In this work, we have accomplished this with crystalline molecular rotors self-assembled by halogen bonding of diazabicyclo[2.2.2]octane, acting as a rotator, and a set of five fluorine-substituted iodobenzenes that take the role of the stator. Using variable-temperature (1)H T1 spin-lattice relaxation measurements, we have shown that all structures display ultrafast Brownian rotation with activation energies of 2.4-4.9 kcal/mol and pre-exponential factors of the order of (1-9) × 10(12) s(-1). Line shape analysis of quadrupolar echo (2)H NMR measurements in selected examples indicated rotational trajectories consistent with the 3-fold or 6-fold symmetric potential of the rotator. PMID:26583701

  15. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  16. Sorption Properties of Halogen Containing Graphene Oxide Frameworks

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Baker, Elizabeth; Bethea, Donald; Frangos, Katherine

    Physisorption of gases has applications in gas storage (e.g. methane, hydrogen for vehicles) and gas separation (carbon dioxide from flue gas). The van der Waals force in narrow pores is strong enough to condense even supercritical gases to much higher densities. Additionally, differences in the binding energy between different gases and the sorbent surface are sufficient to for gas separations. Beyond adsorption interactions, simple steric (size, shape) effects also play a role in gas separations. One class of materials currently being investigated for numerous gas storage/separation applications is graphene oxide frameworks (GOFs). GOFs consist of layers of graphene/graphene oxide separated by chemical linkers covalently bonded on both sides. This presentation will give results from boronic acid-based GOFs that contain halogen group elements. Effects of different linkers on pore shape will be presented. Physical behavior of the gases investigated (hydrogen, methane, carbon dioxide, nitrogen), including binding energies and steric effects for gas separation will also be presented. The physics mechanism behind pore breathing (expansion and contraction of pore volume) in these materials will be discussed.

  17. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  18. Halogen occultation experiment (HALOE) performance verification test procedure

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III

    1986-01-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  19. Observations of stratospheric hydrogen fluoride by halogen occultation experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Luo, M.; Cicerone, R. J.; Russel, J. M., III; Huang, T. Y. W.

    1994-01-01

    The Halogen Occultation Experiment (HALOE) Hydrogen Fluoride (HF) channel on the Upper Atmospheric Research Satellite (UARS) is providing the first global measurements of stratospheric HF, the dominant flourine reservoir in the atmosphere. This paper describes the latitudinal and seasonal variations of HALOE-observed HF in terms of vertical profiles, altitude/latitude cross sections, and column abundances. The HF global distribution shows a 'tracerlike' structure and its column amount increases with latitude, in agreement with previous aircraft measurements of the HF column amount. A comparison between the HALOE HF column above 20 km and the ATMOS 1985 measurements is used to estimate the annual rate of increase of stratospheric HF. Exponential rates of 4.9-6.6%/yr and linear growth rates of 6-8.6%/yr in 1985 and 4.3-5.5%/yr in 1992-1993 are found. HALOE HF measurements during the 1993 Antarctic spring are briefly described. This species behaves like a conserved tracer and its distribution shows an area of enhanced mixing ratios correlated with the polar vortex that has a clear latitude boundary. Finally, simulated HF distributions by the National Center for Atmospheric Research (NCAR) two-dimensional model are used to compare with HALOE observations of HF. Reasonable agreements in the global structure and the absolute amount of HF are found. The differences between the model and the observed results indicate the need for improving treatment of atmospheric dynamics and fluorine-related chemical parameters in the model simulations.

  20. PBPK modeling of canine inhalation exposures to halogenated hydrocarbons.

    PubMed

    Vinegar, A

    2001-03-01

    Human exposure guidelines for halogenated hydrocarbons (halons) and halon replacement chemicals have been established using dose-response data obtained from canine cardiac sensitization studies. In order to provide a tool for decision makers and regulators tasked with setting guidelines for egress from exposure to halon replacement chemicals, a quantitative approach, using a physiologically based pharmacokinetic model, was established that allowed exposures to be assessed in terms of the chemical concentrations in blood during the exposure. This model, which includes a respiratory tract compartment containing a dead-space region, a pulmonary exchange area, and a breath-by-breath description of respiratory tract uptake, allows successful simulation of exhaled breath concentrations of humans during the first minute of exposure to the anesthetics halothane, isoflurane, and desflurane. In the current study, the human model was modified with canine parameters and validated with data obtained from dog studies with halothane, isoflurane, desflurane, and CFC-11. With consideration of appropriate values for ventilation and cardiac output, the model successfully simulated data collected under a variety of exposure scenarios. The canine model can be used for simulating blood concentrations associated with the potential for cardiac sensitization. These target blood concentrations can then be used with the human model for establishing safe human exposure duration. Development of the canine model stresses the need for appropriate data collection for model validation. PMID:11222869