Abnormal synergistic effects between Lewis acid-base interaction and halogen bond in F3B···NCX···NCM
NASA Astrophysics Data System (ADS)
Tang, Qingjie; Li, Qingzhong
2015-12-01
An abnormal synergistic effect was found between the Lewis acid-base interaction and halogen bond in triads F3B···NCX···NCM (X and M are halogen atoms), where the strong Lewis acid-base interaction between F3B and NCX has a larger enhancement than the weak halogen bond between NCX and NCM. This is in contrast with the traditional cooperative effect. It is interesting that the alkali-metal substituent as well as the heavier halogen atom play a more remarkable role in the enhancement of the interaction F3B···NCX than that of NCX···NCM, particularly, the alkali-metal substituent makes the abnormal synergistic effect be the traditional cooperative one.
40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...
40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...
40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...
40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...
40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...
Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E
2009-01-01
There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691
Fine tuning of graphene properties by modification with aryl halogens
NASA Astrophysics Data System (ADS)
Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.
2016-01-01
Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k
Monte, M J S; Almeida, A R R P; Liebman, J F
2015-11-01
Halogenated benzenes form a class of pollutants with a huge number of members - 1504 distinct benzene compounds, where one or more hydrogen atoms are replaced by halogens, may exist theoretically. This study presents a user friendly method for accurate prediction of vapor pressures and enthalpies of vaporization, at 298.15 K, of any mono or poly halobenzene compound. The derived equations for the prediction of those vaporization properties depend just on the number of each constituent halogen atom. This is a consequence of the absence of intramolecular interactions between the halogen atoms, revealed after examining vaporization results of ca. 40 halogenated benzenes. In order to rationalize the estimation equations, the contribution of the halogen atoms for the referred to above properties of vaporization was decomposed into two atomic properties - the volume and electron affinity. Extension of the applicability of the estimation method to substituted benzenes containing other substituent groups beyond halogen atoms as well as to some polycyclic aromatic species was tested with success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maldonado, Alejandro F; Aucar, Gustavo A; Melo, Juan I
2014-09-01
The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.
Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.
Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif
2015-05-01
The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.
The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances
2013-01-01
Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801
Wang, Juan; Guo, Yunjie; Zhang, Xue
2018-02-01
Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca 2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK's C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5-peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide's aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5-peptide binding affinity can be improved considerably by optimizing their combination. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 63.128 - Transfer operations provisions-test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using a scrubber or other halogen reduction device to reduce the vent stream halogen atom mass emission...)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the...
40 CFR 63.128 - Transfer operations provisions-test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... using a scrubber or other halogen reduction device to reduce the vent stream halogen atom mass emission...)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the...
40 CFR 63.128 - Transfer operations provisions-test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... using a scrubber or other halogen reduction device to reduce the vent stream halogen atom mass emission...)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the...
40 CFR 63.128 - Transfer operations provisions-test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... using a scrubber or other halogen reduction device to reduce the vent stream halogen atom mass emission...)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the...
40 CFR 63.128 - Transfer operations provisions-test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... using a scrubber or other halogen reduction device to reduce the vent stream halogen atom mass emission...)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the...
Halogen bond: a long overlooked interaction.
Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo
2015-01-01
Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.
NASA Astrophysics Data System (ADS)
Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A.; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther
2016-09-01
A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process.
Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther
2016-09-01
A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu
2018-01-01
Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2014-05-21
The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.
Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field
2015-01-01
The charge distribution of halogen atoms on organochlorine compounds can be highly anisotropic and even display a so-called σ-hole, which leads to strong halogen bonds with electron donors. In this paper, we have systematically investigated a series of chloromethanes with one to four chloro substituents using a polarizable multipole-based molecular mechanics model. The atomic multipoles accurately reproduced the ab initio electrostatic potential around chloromethanes, including CCl4, which has a prominent σ-hole on the Cl atom. The van der Waals parameters for Cl were fitted to the experimental density and heat of vaporization. The calculated hydration free energy, solvent reaction fields, and interaction energies of several homo- and heterodimer of chloromethanes are in good agreement with experimental and ab initio data. This study suggests that sophisticated electrostatic models, such as polarizable atomic multipoles, are needed for accurate description of electrostatics in organochlorine compounds and halogen bonds, although further improvement is necessary for better transferability. PMID:24484473
Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.
Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel
2016-11-04
Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena
2013-04-09
(13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.
The unique role of halogen substituents in the design of modern agrochemicals.
Jeschke, Peter
2010-01-01
The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.
NASA Astrophysics Data System (ADS)
Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.
2017-03-01
A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.
40 CFR 65.83 - Performance requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45... requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in...
40 CFR 65.83 - Performance requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45... requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in...
40 CFR 65.83 - Performance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45... requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in...
40 CFR 65.83 - Performance requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45... requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in...
40 CFR 65.83 - Performance requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45... requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms contained in...
Substituent Effects on the [N-I-N](+) Halogen Bond.
Carlsson, Anna-Carin C; Mehmeti, Krenare; Uhrbom, Martin; Karim, Alavi; Bedin, Michele; Puttreddy, Rakesh; Kleinmaier, Roland; Neverov, Alexei A; Nekoueishahraki, Bijan; Gräfenstein, Jürgen; Rissanen, Kari; Erdélyi, Máté
2016-08-10
We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.
Substituent Effects on the [N–I–N]+ Halogen Bond
2016-01-01
We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247
Goodman, Mark M.; Shi, Bing Z.
2000-01-01
Compounds of the formula: ##STR1## wherein X, Y, and R, independently of one another, is each a H; halogen, wherein said halogen is selected from the group consisting of .sup.123 I, .sup.124 I, .sup.125 I, .sup.131 I, .sup.75 Br, .sup.76 Br, .sup.77 Br, .sup.82 Br, .sup.18 F, or .sup.210 At; small alkyl, small alkenyl, or small alkynyl, any of which contains from one to about six carbon atoms and optionally having a carbon atom replaced by an O or S; or halogen substituted-small alkyl, halogen substituted-small alkenyl, or halogen substituted-small alkynyl wherein said compound contains at least one radioacitve halogen. The compounds bind to the serotonin transporter. Depending upon the choice of halogen substituent, the compounds are useful for PET or SPECT imaging, diagnosis and treatment of psychiatric disorders such as depression, anxiety, obsessive-compulsive disorder, and other conditions associated with defects of serotonin transporter function.
Zhang, Yi-Le; Han, Zhao-Feng
2017-09-26
The recognition and association between the Ca 2+ /calmodulin-activated protein kinase II-α (CaMKIIα) and the multi-PDZ domain protein 1 (MUPP1) plays an important role in the sperm acrosome reaction and human fertilization. Previously, we have demonstrated that the MUPP1 PDZ11 domain is the primary binding partner of the CaMKIIα C-terminal tail, which can be targeted by a rationally designed sia peptide with nanomolar affinity. Here, we further introduced an orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the PDZ11 domain with the sia [Asn-1Phe] peptide mutant, where the halogen bond was formed by substituting the o-hydrogen atom of the benzene ring of the peptide Phe-1 residue with a halogen atom (F, Cl, Br or I). Molecular dynamics simulations and high-level theoretical calculations suggested that bromine (Br) is a good compromise between the halogen-bonding strength and steric hindrance effect due to introduction of a bulkier halogen atom into the tightly packed complex interface. Fluorescence spectroscopy assays revealed that the resulting o-Br-substituted peptide (K d = 18 nM) exhibited an ∼7.6-fold affinity increase relative to its native counterpart (K d = 137 nM). In contrast, the p-Br-substituted peptide, a negative control that is unable to establish the ONI according to structure-based analysis, has decreased affinity (K d = 210 nM) upon halogenation.
2013-04-01
DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were
Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S
2017-04-26
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 65.63 - Performance and group status change requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any... the requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms...
40 CFR 65.63 - Performance and group status change requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any... the requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms...
40 CFR 65.63 - Performance and group status change requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any... the requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms...
40 CFR 65.63 - Performance and group status change requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any... the requirements of paragraph (a)(1) or (2) of this section. The mass emission rate of halogen atoms...
Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids
NASA Astrophysics Data System (ADS)
Okuno, Yusuke; Cavagnero, Silvia
2018-01-01
Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.
40 CFR 63.11496 - What are the standards and compliance requirements for process vents?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of halogen atoms in accordance with § 63.115(d)(2)(v). Alternatively, you may elect to designate the... 20 parts per million by volume (ppmv). (2) Reduce the halogen atom mass emission rate before the...
40 CFR 63.2450 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., as defined in § 63.2550, by calculating the mass emission rate of halogen atoms in accordance with... determine the halogen atom emission rate prior to the combustion device according to the procedures in § 63...
40 CFR 63.11496 - What are the standards and compliance requirements for process vents?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of halogen atoms in accordance with § 63.115(d)(2)(v). Alternatively, you may elect to designate the... 20 parts per million by volume (ppmv). (2) Reduce the halogen atom mass emission rate before the...
NASA Astrophysics Data System (ADS)
Leenaraj, D. R.; Manimaran, D.; Joe, I. Hubert
2016-11-01
Acemetacin is a non-opioid analgesic which belongs to the class, the non-steroidal anti-inflammatory drug. The bioactive conformer was identified through potential energy surface scan studies. Spectral features of acemetacin have been probed by the techniques of Fourier transform infrared, Raman and Nuclear magnetic resonance combined with density functional theory calculations at the B3LYP level with 6-311 + G(d,p) basis set. The detailed interpretation of vibrational spectral assignments has been carried out on the basis of potential energy distribution method. Geometrical parameters reveal that the carbonyl substitution in between chlorophenyl and indole ring leads to a significant loss of planarity. The red-shifted Cdbnd O stretching wavenumber describe the conjugation between N and O atoms. The shifted Csbnd H stretching wavenumbers of Osbnd CH3 and Osbnd CH2 groups depict the back-donation and induction effects. The substitution of halogen atoms on the title molecule influences the charge distribution and the geometrical parameters. Drug activity and binding affinity of halogen substitution in title molecule with target protein were undertaken by molecular docking study. This study enlightens the effects of bioefficiency due to the halogen substitution in the molecule.
NASA Astrophysics Data System (ADS)
Kadyrov, A. A.; Rokhlin, E. M.
1988-09-01
In this review we survey the methods for the preparation of derivatives of fluoroalkenylphosphonic acid and their reactions. The main methods for obtaining these compounds are based on the reactions of fluoroolefins with phosphites and also on the elimination of halogens, hydrogen halides and alkyl halides from fluoroalkylphosphonates or fluorine-containing phosphorus ylides. The chemical properties of fluoroalkenylphosphonates are due to the combined effect of the fluorine atoms and the phosphonate group. Their reactions with different reagents leads to modifications of the phosphonate group, addition to the C=C bond, replacement of the vinyl halogen atom, and cleavage of the C-P bond. The bibliography includes 96 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang
2015-08-07
Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWsmore » is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.« less
Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.
Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L
2017-11-02
Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reduce the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour prior to a combustion control device in compliance with § 63.113(c)(2) of this subpart shall determine the halogen atom...
Code of Federal Regulations, 2011 CFR
2011-07-01
... reduce the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour prior to a combustion control device in compliance with § 63.113(c)(2) of this subpart shall determine the halogen atom...
Code of Federal Regulations, 2013 CFR
2013-07-01
... reduce the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour prior to a combustion control device in compliance with § 63.113(c)(2) of this subpart shall determine the halogen atom...
Code of Federal Regulations, 2012 CFR
2012-07-01
... reduce the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour prior to a combustion control device in compliance with § 63.113(c)(2) of this subpart shall determine the halogen atom...
Density functional IR, Raman, and VCD spectra of halogen substituted β-lactams
NASA Astrophysics Data System (ADS)
Rode, Joanna E.; Dobrowolski, Jan Cz.
2003-06-01
Halogenoazetidinones are important as synthetic intermediates for preparation of halogen β-lactam (2-azetidinone) antibiotics and as building blocks for carbohydrates and amino acids. In this paper, we consider the influence of the halogen atom, substituted at the C4 position of the 2-azetidinone ring, on the geometry, IR, Raman, and vibrational circular dichroism spectra. The vibrational spectra were calculated for the chiral 4-( R)-X-2-azetidinone (X=F, Cl or Br) molecules at the B3PW91/aug-cc-pVTZ level. It was shown that the geometry of the molecules studied do not change much upon the change of the halogen atom. In case of the vibrational spectra, the position but even more the intensities depend strongly on the kind of halogen substituent.
Bani-Yaseen, Abdulilah Dawoud
2016-08-21
The effects of noncovalent interactions, namely halogen and hydrogen bonding, on the photochemical conversion of the photosensitizing drug diclofenac (DCF) in solution were investigated computationally. Both explicit and implicit solvent effects were qualitatively and quantitatively assessed employing the DFT/6-31+G(d) and SQM(PM7) levels of theory. Full geometry optimizations were performed in solution for the reactant DCF, hypothesized radical-based intermediates, and the main product at both levels of theories. Notably, in good agreement with previous experimental results concerning the intermolecular halogen bonding of DCF, the SQM(PM7) method revealed different values for d(ClO, Å) and ∠(C-ClO, °) for the two chlorine-substituents of DCF, with values of 2.63 Å/162° and 3.13 Å/142° for the trans and cis orientations, respectively. Employing the DFT/6-31+G(d) method with implicit solvent effects was not conclusive; however, explicit solvent effects confirmed the key contribution of hydrogen and halogen bonding in stabilizing/destabilizing the reactant and hypothesized intermediates. Interestingly, the obtained results revealed that a protic solvent such as water can increase the rate of photocyclization of DCF not only through hydrogen bonding effects, but also through halogen bonding. Furthermore, the atomic charges of atoms majorly involved in the photocyclization of DCF were calculated using different methods, namely Mulliken, Hirshfeld, and natural bond orbital (NBO). The obtained results revealed that in all cases there is a notable nonequivalency in the noncovalent intermolecular interactions of the two chlorine substituents of DCF and the radical intermediates with the solvent, which in turn may account for the discrepancy of their reactivity in different media. These computational results provide insight into the importance of halogen and hydrogen bonding throughout the progression of the photochemical conversion of DCF in solution.
The interaction of excited He, Ar and Ne metastable atoms with the CF2Cl2 molecule
NASA Astrophysics Data System (ADS)
Cherid, M.; Ben Arfa, M.; Driss Khodja, M.
2004-02-01
We studied Penning ionization of the CF2Cl2 molecule by neon and helium metastable atoms. In the case of the neon ionizing particle, we measured the electron kinetic energy as well as mass spectra; for helium metastable atoms, only the mass spectrum was recorded. We, therefore, obtained the branching ratios for the heavy charged particles produced in both interactions. In this report we will discuss the mechanism involved in the production of metastable halogen atoms in the dielectric barrier discharge further to the use of rare gases/CF2Cl2 mixtures. We show that this process needs a two-stage reaction. Ground state free halogen atoms are formed over the first stage by Penning ionization, charge transfer, dissociate excitation and ionization. Therefore, metastable halogen atoms can be produced by excitation transfer process in the second stage through interaction with metastable rare gas atoms. This paper is dedicated to Professor F M E Tuffin on the occasion of his retirement.
Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics.
Sun, Shi-Xin; Huo, Yong; Li, Miao-Miao; Hu, Xiaowen; Zhang, Hai-Jun; Zhang, You-Wen; Zhang, You-Dan; Chen, Xiao-Long; Shi, Zi-Fa; Gong, Xiong; Chen, Yongsheng; Zhang, Hao-Li
2015-09-16
Two molecules containing a central diketopyrrolopyrrole and two oligothiophene units have been designed and synthesized. Comparisons between the molecules containing terminal F (FDPP) and Cl (CDPP) atoms allowed us to evaluate the effects of halogenation on the photovoltaic properties of the small molecule organic solar cells (OSCs). The OSCs devices employing FDPP:PC71BM films showed power conversion efficiencies up to 4.32%, suggesting that fluorination is an efficient method for constructing small molecules for OSCs.
Maldonado, Alejandro F; Aucar, Gustavo A
2009-07-21
Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.
Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.
De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E
2017-01-18
The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-03-23
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. The influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: A Review
Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.
2018-01-01
Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical, and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter, or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article. PMID:29755967
Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review
NASA Astrophysics Data System (ADS)
Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.
2018-04-01
Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.
NASA Astrophysics Data System (ADS)
El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim
2017-11-01
The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.
Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation
NASA Astrophysics Data System (ADS)
Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas
2018-04-01
The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-04-29
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. Lastly, the influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
Halogen bonding based recognition processes: a world parallel to hydrogen bonding.
Metrangolo, Pierangelo; Neukirch, Hannes; Pilati, Tullio; Resnati, Giuseppe
2005-05-01
Halogen bonding is the noncovalent interaction between halogen atoms (Lewis acids) and neutral or anionic Lewis bases. The main features of the interaction are given, and the close similarity with the hydrogen bonding will become apparent. Some heuristic principles are presented to develop a rational crystal engineering based on halogen bonding. The focus is on halogen-bonded supramolecular architectures given by halocarbons. The potential of the interaction is shown by useful applications in the field of synthetic chemistry, material science, and bioorganic chemistry.
Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam
2018-02-21
The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.
Surface Modification of Plastic Substrates Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.
NASA Astrophysics Data System (ADS)
Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.
2004-09-01
A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.
Solar-pumped electronic-to-vibrational energy transfer lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.; Wilson, J. W.
1981-01-01
The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.
NASA Astrophysics Data System (ADS)
Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.
2003-09-01
A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.
Hydrogen bond and halogen bond inside the carbon nanotube
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-02-01
The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.
2016-01-01
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185
What’s New in Enzymatic Halogenations
Fujimori, Danica Galoniæ; Walsh, Christopher T.
2007-01-01
Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282
Sun, Mei-Ling; Sun, Li-Mei; Wang, Yong-Qing
2018-06-01
The human HtrA family of serine proteases (HtrA1, HtrA2, HtrA3, and HtrA4) are the key enzymes associated with pregnancy and closely related to the development and progression of many pathological events. Previously, it was found that halogen substitution at the indole moiety of peptide Trp-1 residue can form a geometrically satisfactory halogen bond with the Drosophila discs large, zona occludens-1 (PDZ) domain of HtrA proteases. Here, we attempt to systematically investigate the effect of substitution with 4 halogen types and 2 indole positions on the binding affinity and specificity of peptide ligands to the 4 HtrA PDZ domains. The complex structures, interaction energies, halogen-bonding strength, and binding affinity of domain-peptide systems were modeled, analyzed, and measured via computational modeling and fluorescence-based assay. It is revealed that there is a compromise between the local rearrangement of halogen bond involving different halogen atoms and the global optimization of domain-peptide interaction; the substitution position is fundamentally important for peptide-binding affinity, while the halogen type can effectively shift peptide selectivity between the 4 domains. The HtrA1-PDZ and HtrA4-PDZ as well as HtrA2-PDZ and HtrA3-PDZ respond similarly to different halogen substitutions of peptide; -Br substitution at R2-position and -I substitution at R4-position are most effective in improving peptide selectivity for HtrA1-PDZ/HtrA4-PDZ and HtrA2-PDZ/HtrA3-PDZ, respectively; -F substitution would not address substantial effect on peptide selectivity for all the 4 domains. Consequently, the binding affinities of a native peptide ligand DSRIWWV -COOH as well as its 4 R2-halogenated counterparts were determined as 1.9, 1.4, 0.5, 0.27, and 0.92 μM, which are basically consistent with computational analysis. This study would help to rationally design selective peptide inhibitors of HtrA family members by using different halogen substitutions. Copyright © 2017 John Wiley & Sons, Ltd.
Polymer useful for an ion exchange membrane
Liang, Siwei; Lynd, Nathaniel A.
2017-03-14
The present invention provides for a polymer formed by reacting a first reactant polymer, or a mixture of first reactant polymers comprising different chemical structures, comprising a substituent comprising two or more nitrogen atoms (or a functional group/sidechain comprising a two or more nitrogen atoms) with a second reactant polymer, or a mixture of second reactant polymers comprising different chemical structures, comprising a halogen substituent (or a functional group/sidechain comprising a halogen).
Jabłoński, Mirosław
2016-06-23
Using three theoretical methods, QTAIM, IQA, and NCI, we analyze an influence of halogen atoms X (X = F, Cl) substituted at various positions in the -SiH3-nXn group on the charge density distribution within the η(2)-SiH bond and on the SiH bond energies in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes and isolated HSiH3-nXn molecules. It is shown that shortening of the η(2)-SiH bond in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes should be considered as a normal inductive result of halogenation. This η(2)-SiH bond's compression may, however, be overcome by a predominant elongation resulting from a contingent presence of a halogen atom at position trans to the η(2)-SiH bond. This trans effect is particularly large for bulky and highly polarizable chlorine. Moreover, peculiar properties of the trans chlorine atom are manifested in several ways. To explain the origin of all the observed changes in both the length and the electron charge distribution of the η(2)-SiH bond in investigated Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes a new model, called the Conciliatory Inductive Model, is being proposed.
Independent Evolution of Six Families of Halogenating Enzymes.
Xu, Gangming; Wang, Bin-Gui
2016-01-01
Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.
Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.
Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar
2016-11-23
The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.
Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.
Ang, Thiau-Fu; Maiangwa, Jonathan; Salleh, Abu Bakar; Normi, Yahaya M; Leow, Thean Chor
2018-05-07
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.
Lazar, Petr; Chua, Chun Kiang; Holá, Kateřina; Zbořil, Radek; Otyepka, Michal; Pumera, Martin
2015-08-01
Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1986-01-01
The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.
Comba, Peter; Wunderlich, Steffen
2010-06-25
When the dichloroiron(II) complex of the tetradentate bispidine ligand L=3,7-dimethyl-9-oxo-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate methyl ester is oxidized with H(2)O(2), tBuOOH, or iodosylbenzene, the high-valent Fe=O complex efficiently oxidizes and halogenates cyclohexane. Kinetic D isotope effects and the preference for the abstraction of tertiary over secondary carbon-bound hydrogen atoms (quantified in the halogenation of adamantane) indicate that C-H activation is the rate-determining step. The efficiencies (yields in stoichiometric and turnover numbers in catalytic reactions), product ratios (alcohol vs. bromo- vs. chloroalkane), and kinetic isotope effects depend on the oxidant. These results suggest different pathways with different oxidants, and these may include iron(IV)- and iron(V)-oxo complexes as well as oxygen-based radicals.
Chemical Action of Halogenated Agents in Fire Extinguishing
NASA Technical Reports Server (NTRS)
Belles, Frank E.
1955-01-01
The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.
Exploring the Chemistry and Biology of Vanadium-dependent Haloperoxidases*
Winter, Jaclyn M.; Moore, Bradley S.
2009-01-01
Nature has developed an exquisite array of methods to introduce halogen atoms into organic compounds. Most of these enzymes are oxidative and require either hydrogen peroxide or molecular oxygen as a cosubstrate to generate a reactive halogen atom for catalysis. Vanadium-dependent haloperoxidases contain a vanadate prosthetic group and utilize hydrogen peroxide to oxidize a halide ion into a reactive electrophilic intermediate. These metalloenzymes have a large distribution in nature, where they are present in macroalgae, fungi, and bacteria, but have been exclusively characterized in eukaryotes. In this minireview, we highlight the chemistry and biology of vanadium-dependent haloperoxidases from fungi and marine algae and the emergence of new bacterial members that extend the biological function of these poorly understood halogenating enzymes. PMID:19363038
Es-Haghi, Ali; Ebrahim-Habibi, Azadeh; Sabbaghian, Marjan; Nemat-Gorgani, Mohsen
2016-11-01
Peptides and proteins convert from their native states to amyloid fibrillar aggregates in a number of pathological conditions. Characterizing these species could provide useful information on their pathogenicity and the key factors involved in their generation. In this study, we have observed the ability of the model protein apo-bovine carbonic anhydrase (apo-BCA) to form amyloid-like aggregates in the presence of halogenated and non-halogenated alcohols. Far-UV circular dichroism, ThT fluorescence, atomic force microscopy and dynamic light scattering were used to characterize these structures. The concentration required for effective protein aggregation varied between the solvents, with non-halogenated alcohols acting in a wider range. These aggregates show amyloid-like structures as determined by specific techniques used for characterizing amyloid structures. Oligomers were obtained with various size distributions, but fibrillar structures were not observed. Use of halogenated alcohols resulted into smaller hydrodynamic radii, and most stable oligomers were formed in hexafluoropropan-2-ol (HFIP). At optimal concentrations used to generate these structures, the non-halogenated alcohols showed higher hydrophobicity, which may be related to the lower stability of the generated oligomers. These oligomers have the potential to be used as models in the search for effective treatments in proteinopathies. Copyright © 2016 Elsevier B.V. All rights reserved.
Halogen bonds in clathrate cages: A real space perspective.
Guevara-Vela, José Manuel; Ochoa-Resendiz, David; Costales, Aurora; Hernández-Lamoneda, Ramón; Martin Pendas, Angel
2018-06-22
In this paper we present real space analyses of the nature of the dihalogen-water cage interactions in the 5^{12} and 5^{12}6^2 clathrate cages containing chlorine and bromine, respectively. Our Quantum Theory of Atoms in Molecules and Interacting Quantum Atoms results provide strong indications that halogen bonding is present even though the lone pairs of water molecules are already engaged in hydrogen bonding interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultraviolet/visible photodiode of nanostructure Sn-doped ZnO/Si heterojunction
NASA Astrophysics Data System (ADS)
Kheirandish, N.; Mortezaali, A.
2013-05-01
Sn doped ZnO nanostructures deposited on Si substrate with (100) orientation by spray pyrolysis method at temperature 450 °C. Sn/Zn atomic ratio varies from 0% to 5%. The scanning electron microscope measurements showed that size of particles reduce with increasing the doping concentration. The X-ray diffraction analysis revealed formation of the wurtzite phase of ZnO. I-V curves of Sn doped ZnO/Si were investigated in dark and shows diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of Sn/Zn = 5% is a good candidate to study photodiode properties in UV/visible range. Photoelectric effects have been observed under illumination monochromatic laser light with a wavelength of 325 nm and halogen lamp. Measurements demonstrate that the photodiode has high sensitivity and reproducibility to halogen light respect to laser light.
Independent Evolution of Six Families of Halogenating Enzymes
Xu, Gangming; Wang, Bin-Gui
2016-01-01
Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity. PMID:27153321
Kim, Ye Ji; Kim, Sun Min; Yu, Chunghyeon; Yoo, YoungMin; Cho, Eun Jin; Yang, Jung Woon; Kim, Sung Wng
2017-01-31
Halogenated organic compounds are important anthropogenic chemicals widely used in chemical industry, biology, and pharmacology; however, the persistence and inertness of organic halides cause human health problems and considerable environmental pollution. Thus, the elimination or replacement of halogen atoms with organic halides has been considered a central task in synthetic chemistry. In dehalogenation reactions, the consecutive single-electron transfer from reducing agents generates the radical and corresponding carbanion and thus removes the halogen atom as the leaving group. Herein, we report a new strategy for an efficient chemoselective hydrodehalogenation through the formation of stable carbanion intermediates, which are simply achieved by using highly mobile two-dimensional electrons of inorganic electride [Ca 2 N] + ·e - with effective electron transfer ability. The consecutive single-electron transfer from inorganic electride [Ca 2 N] + ·e - stabilized free carbanions, which is a key step in achieving the selective reaction. Furthermore, a determinant more important than leaving group ability is the stability control of free carbanions according to the s character determined by the backbone structure. We anticipate that this approach may provide new insight into selective chemical formation, including hydrodehalogenation.
Process for functionalizing alkanes
Bergman, Robert G.; Janowicz, Andrew H.; Periana, Roy A.
1988-01-01
Process for functionalizing saturated hydrocarbons comprising: (a) reacting said saturated hydrocarbons of the formula: R.sub.1 H wherein H represents a hydrogen atom; and R.sub.1 represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R.sub.2).sub.3 ]H.sub.2 wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical; Rh represents a rhodium atom; P represents a phosphorus atom; R.sub.2 represents a hydrocarbon radical; H represents a hydrogen atom, in the presence of ultraviolet radiation to form a hydridoalkyl complex of the formula: CpRh[P(R.sub.2).sub.3 ](R.sub.1)H (b) reacting said hydridoalkyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X''X'''X'''' or CHX'X''X''' wherein X', X'', X'", X"" represent halogens selected from bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e., ambient) to form a functional haloalkyl compound.
Bergman, Robert G.; Buchanan, J. Michael; Stryker, Jeffrey M.; Wax, Michael J.
1989-01-01
A process for functionalizing methane comprising: (a) reacting methane with a hydridoalkyl metal complex of the formula: CpIr[P(R.sub.1).sub.3 ]H(R.sub.2) wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical having from 1 to 5 carbon atoms; Ir represents an iridium atom; P represents a phosphorus atom; R.sub.1 represents an alkyl group; R.sub.2 represents an alkyl group having at least two carbon atoms; and H represents a hydrogen atom, in the presence of a liquid alkane R.sub.3 H having at least three carbon atoms to form a hydridomethyl complex of the formula: CpIr[P(R.sub.1).sub.3 ]HMe where Me represents a methyl radical. (b) reacting said hydridomethyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X"X'"X"" or CHX'X"X'"; wherein X', X", X"', and X"" represent halogens selected from bromine, iodine and chlorine, to halomethyl complex of step (a) having the formula: CpIr[P(R.sub.1).sub.3 ]MeX: (c) reacting said halomethyl complex with a mercuric halide of the formula HgX.sub.2 to form a methyl mercuric halide of the formula HgMeX; and (d) reacting said methyl mercuric halide with a molecular halogen of the formula X.sub.2 to form methyl halide.
Atomic selectivity in dissociative electron attachment to dihalobenzenes.
Kim, Namdoo; Sohn, Taeil; Lee, Sang Hak; Nandi, Dhananjay; Kim, Seong Keun
2013-10-21
We investigated electron attachment to three dihalobenzene molecules, bromochlorobenzene (BCB), bromoiodobenzene (BIB) and chloroiodobenzene (CIB), by molecular beam photoelectron spectroscopy. The most prominent product of electron attachment in the anion mass spectra was the atomic fragment of the less electronegative halogen of the two, i.e., Br(-) for BCB and I(-) for BIB and CIB. Photoelectron spectroscopy and ab initio calculations suggested that the approaching electron prefers to attack the less electronegative atom, a seemingly counterintuitive finding but consistent with the mass spectrometric result. For the iodine-containing species BIB and CIB, the photoelectron spectrum consists of bands from both the molecular anion and atomic I(-), the latter of which is produced by photodissociation of the former. Molecular orbital analysis revealed that a large degree of orbital energy reordering takes place upon electron attachment. These phenomena were shown to be readily explained by simple molecular orbital theory and the electronegativity of the halogen atoms.
Beauchamp, Guy
2008-10-23
This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.
Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3
NASA Astrophysics Data System (ADS)
Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.
2016-04-01
We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.
Monohalogenated maleimides as potential agents for the inhibition of Pseudomonas aeruginosa biofilm.
Carteau, David; Soum-Soutéra, Emmanuelle; Faÿ, Fabienne; Dufau, Chrystèle; Cérantola, Stéphane; Vallée-Réhel, Karine
2010-01-01
New monohalogenated maleimide derivatives (with bromine, chlorine or iodine) were synthesized to test the effect of halogen atoms in inhibiting the formation of Pseudomonas aeruginosa biofilm. The evaluation of their biological activities clearly defines a structure-activity relationship. In this study, the bactericidal action of the three compounds was observed at the concentration range 0.3-5.0 mM on Luria-Bertani agar plates. The halogen atom of these molecules was critical in modulating the antibacterial activity, with a slightly higher effectiveness for chlorine. Confocal laser scanning microscopy was used to examine P. aeruginosa biofilms cultivated in flow cells. At concentration as low as 40 microM, the bromine and iodine compounds displayed a total inhibition towards the formation of bacterial biofilm. At this concentration, the bacterial attachment to glass surfaces was strongly affected by the presence of bromine and iodine whereas the chlorine derivative behaved as a bactericidal compound. A bioluminescent reporter strain was then used to detect the effect of the chemically synthesized maleimides on quorum sensing (QS) in P. aeruginosa. At the concentration range 10-100 microM, bioluminescence assays reveal that halogenated maleimides were able to interfere with the QS of the bacterium. Although the relationship between the weak inhibition of cell-to-cell communication (15-55% of the signal) and the high inhibition of biofilm formation has not been elucidated clearly, the results demonstrate that bromo- and iodo-N-substituted maleimides bromine and iodine may be used as new potent inhibitors that control bacterial biofilms.
ERIC Educational Resources Information Center
Scala, Alfred A.
2004-01-01
The underlying ideas of the Polanyi principle and Hammond's postulate in relation to the simple free halogenation reactions and their selectivity and thermodynamics is presented. The results indicate that the chlorine atom exhibits a slightly less selectivity in the liquid phase as compared to in the gas phase.
NASA Astrophysics Data System (ADS)
Salingue, Nils; Hess, Peter
2011-09-01
The preparation of chlorine-, bromine-, and iodine-terminated silicon surfaces (Si(111):Cl, Br, and I) using atomically flat Si(111)-(1×1):H is described. The halogenated surfaces were obtained by photochemically induced radical substitution reactions with the corresponding dihalogen in a Schlenk tube by conventional inert gas chemistry. The nucleophilic substitution of the Si-Cl functionality with the Grignard reagent (CH3MgCl) resulted in the unreconstructed methylated Si(111)-(1×1):CH3 surface. The halogenated and methylated silicon surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and laser-induced desorption of monolayers (LIDOM). Calibration of the desorption temperature via analysis of time-of-flight (TOF) distributions as a function of laser fluence allowed the determination of the originally emitted neutral fragments by TOF mass spectrometry using electron-impact ionization. The halogens were desorbed atomically and as SiX n (X = Cl, Br) clusters. The methyl groups mainly desorbed as methyl and ethyl fragments and a small amount of +SiCH3.
Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers.
Bura, Thomas; Beaupré, Serge; Légaré, Marc-André; Quinn, Jesse; Rochette, Etienne; Blaskovits, J Terence; Fontaine, Frédéric-Georges; Pron, Agnieszka; Li, Yuning; Leclerc, Mario
2017-05-01
Direct (hetero)arylation polymerization (DHAP) has emerged as a valuable and atom-economical alternative to traditional cross-coupling methods for the synthesis of low-cost and efficient conjugated polymers for organic electronics. However, when applied to the synthesis of certain (hetero)arene-based materials, a lack of C-H bond selectivity has been observed. To prevent such undesirable side-reactions, we report the design and synthesis of new, bulky, phosphine-based ligands that significantly enhance selectivity of the DHAP process for both halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. To better understand the selectivity issues, density functional theory (DFT) calculations have been performed on various halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. Calculations showed that the presence of bromine atoms decreases the energy of activation ( E a ) of the adjacent C-H bonds, allowing undesirable β-defects for some brominated aromatic units. Both calculations and the new ligands should lead to the rational design of monomers and methods for the preparation of defect-free conjugated polymers from DHAP.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z.; Zhen, J; Karpowich, N
2009-01-01
Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP)more » in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.« less
NASA Astrophysics Data System (ADS)
Cozan, Vasile; Ardeleanu, Rodinel; Airinei, Anton; Timpu, Daniel
2018-03-01
Three symmetric azomethine dimers having dibenzo-18-crown-6-ether as internal moiety and halogens (F, Cl, Br) as terminal functional groups were synthesized and characterized by FTIR and 1H NMR spectroscopy. Their thermal behavior was investigated by polarized optical microscopy (POM) and DSC techniques. Interesting textures have been observed at cooling by POM as being representative for a soft crystalline smectic phase. X-ray diffraction measurements in powder at room temperature exhibited a map of reflections corresponding to crystal E phase. The influence of molecular parameters (interdigitation parameter γ, dipole moment, molecular polarizability, halogen radius) on thermal behavior was discussed. The UV-Vis investigations allowed evaluation of photostability and a bathochromic effect was noticed with the increasing of halogen atom radius. Also the values of optical band gap (Eg) are higher than those corresponding to conjugated Schiff bases.
On the physical nature of halogen bonds: a QTAIM study.
Syzgantseva, Olga A; Tognetti, Vincent; Joubert, Laurent
2013-09-12
In this article, we report a detailed study on halogen bonds in complexes of CHCBr, CHCCl, CH2CHBr, FBr, FCl, and ClBr with a set of Lewis bases (NH3, OH2, SH2, OCH2, OH(-), Br(-)). To obtain insight into the physical nature of these bonds, we extensively used Bader's Quantum Theory of Atoms-in-Molecules (QTAIM). With this aim, in addition to the examination of the bond critical points properties, we apply Pendás' Interacting Quantum Atoms (IQA) scheme, which enables rigorous and physical study of each interaction at work in the formation of the halogen-bonded complexes. In particular, the influence of primary and secondary interactions on the stability of the complexes is analyzed, and the roles of electrostatics and exchange are notably discussed and compared. Finally, relationships between QTAIM descriptors and binding energies are inspected.
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2011-02-22
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2012-02-14
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Nitrated metalloporphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1992-01-01
Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.
Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1992-01-01
Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.
Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles
NASA Astrophysics Data System (ADS)
Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick
2017-06-01
The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.
Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.
1966-01-01
The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.
USDA-ARS?s Scientific Manuscript database
Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...
A refined method for calculating equivalent effective stratospheric chlorine
NASA Astrophysics Data System (ADS)
Engel, Andreas; Bönisch, Harald; Ostermöller, Jennifer; Chipperfield, Martyn P.; Dhomse, Sandip; Jöckel, Patrick
2018-01-01
Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the release time distribution
. We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that - under otherwise unchanged conditions - the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level.
Halogenation effects on electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, T. C., E-mail: tcf03@fisica.ufpr.br; Lopes, A. R.; Bettega, M. H. F.
2016-04-28
We report differential and integral elastic cross sections for low-energy electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3} molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)]more » and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ{sup ∗} resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.« less
Halocarbon ozone depletion and global warming potentials
NASA Technical Reports Server (NTRS)
Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.
1990-01-01
Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).
Theoretical studies of weak interactions of formamide with methanol and its derivates
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Wen; Wang, Lu; Han, Shu-Min; Cui, Xiang-Yang; Du, Chong-Yang; Liu, Tao
2015-08-01
Theoretical calculations have been performed for the complexes of formamide (FA) with methanol and its derivates (MAX, X = F, Cl, Br, NO2, H, OH, CH3, and NH2) to study their structures and properties. Substituent effects on the hydrogen bond (H-bond) strength and cooperative effect by using water and its derivatives (HOZ, Z = H, NH2, and Br) as weak interaction probe were also explored. The calculation results show that electron-donating groups strengthen the weak interaction between formamide with methanol whereas electron-withdrawing groups weaken it. The cooperativity is present for the N-HïO H-bond in MAX-FA-HOZ and the cooperative effect increases in a series HONH2, HOH, and HOBr. In addition, we investigated the interaction between FA with hypohalous acids HOY (Y = F, Cl, and Br). It was found that the weak interaction between FA and HOY became stronger with the increase of the size of halogen atom. The nature of the halogen atom has negligible impact on the strength of the H-bond in MAX-FA (X = F, Cl, and Br), whereas it has an obvious influence on the strength of the H-bond in HOY-FA (Y = F, Cl, and Br).
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Müller, Marco; Schmidt, Friedemann; Clark, Timothy
2012-09-24
Current 3D-QSAR methods such as CoMFA or CoMSIA make use of classical force-field approaches for calculating molecular fields. Thus, they can not adequately account for noncovalent interactions involving halogen atoms like halogen bonds or halogen-π interactions. These deficiencies in the underlying force fields result from the lack of treatment of the anisotropy of the electron density distribution of those atoms, known as the "σ-hole", although recent developments have begun to take specific interactions such as halogen bonding into account. We have now replaced classical force field derived molecular fields by local properties such as the local ionization energy, local electron affinity, or local polarizability, calculated using quantum-mechanical (QM) techniques that do not suffer from the above limitation for 3D-QSAR. We first investigate the characteristics of QM-based local property fields to show that they are suitable for statistical analyses after suitable pretreatment. We then analyze these property fields with partial least-squares (PLS) regression to predict biological affinities of two data sets comprising factor Xa and GABA-A/benzodiazepine receptor ligands. While the resulting models perform equally well or even slightly better in terms of consistency and predictivity than the classical CoMFA fields, the most important aspect of these augmented field-types is that the chemical interpretation of resulting QM-based property field models reveals unique SAR trends driven by electrostatic and polarizability effects, which cannot be extracted directly from CoMFA electrostatic maps. Within the factor Xa set, the interaction of chlorine and bromine atoms with a tyrosine side chain in the protease S1 pocket are correctly predicted. Within the GABA-A/benzodiazepine ligand data set, PLS models of high predictivity resulted for our QM-based property fields, providing novel insights into key features of the SAR for two receptor subtypes and cross-receptor selectivity of the ligands. The detailed interpretation of regression models derived using improved QM-derived property fields thus provides a significant advantage by revealing chemically meaningful correlations with biological activity and helps in understanding novel structure-activity relationship features. This will allow such knowledge to be used to design novel molecules on the basis of interactions additional to steric and hydrogen-bonding features.
NASA Astrophysics Data System (ADS)
Shukla, Rahul; Panini, Piyush; McAdam, C. John; Robinson, Brian H.; Simpson, Jim; Tagg, Tei; Chopra, Deepak
2017-03-01
Amongst the halogens, the involvement of bromine atoms in various types of intermolecular interactions is comparatively the least studied. In this manuscript, we report the formation of Csbnd Br⋯π interactions, with the π-rings being the cyclopentadienyl (Cp) rings of a ferrocene molecule in a newly synthesized compound (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene. We have also performed a detailed quantitative analysis on Csbnd Br⋯π interactions observed in the synthesized molecule and in several related molecules found in the Cambridge Structure Database (CSD) showing the presence of these interactions. A topological analysis based upon QTAIM theory and electrostatic potential ESP mapped on the Hirshfeld surface of these molecules confirm that these interactions are better described as "halogen bonds" wherein the electropositive region (σ-hole) on the Br-atom interacts with the electronegative region over the Cp-ring of the ferrocene. Further, the electronegative region on the bromine atom (perpendicular to the Csbnd Br bond) was observed to be involved in the formation of highly directional Csbnd H⋯Br interactions with the ∠Csbnd Br⋯H close to 90°. Thus the bromine atom is acting as both a "halogen bond donor" and "hydrogen bond acceptor" in the crystal packing with the two interactions being mutually orthogonal.
Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman
2017-10-13
Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.
NASA Astrophysics Data System (ADS)
Guo, Jixi; Yuan, Hui; Jia, Dianzeng; Guo, Mingxi; Li, Yinhua
2017-01-01
Four novel photochromic pyrazolones have been prepared by introducing halogen atoms as substituents on the benzene ring. All as-synthesized compounds exhibited excellent reversible photochromic performances in the solid state. Upon UV light irradiation, the as-synthesized compounds can change their structures from E-form to K-form with yellow coloration. Further processed by heating, they rapidly reverted to their initial states at 120 °С. Their photo-response and thermal bleaching kinetics were detailed investigated by UV absorption spectra. The results showed that the time constants were higher than that of our previously reported compounds at least one order of magnitude and the rate constants of the as-synthesized compounds were significantly influenced by the size and electronegativity of different halogen atoms. The fluorescence emission were modulated in a high degree via photoisomerization of pyrazolones, which might be due to the efficient energy transfer from E-form to K-form isomers for their partly overlaps between their E-form absorption spectra and K-form fluorescence spectra.
Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank
2013-01-07
Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
George, Janine; Deringer, Volker L; Dronskowski, Richard
2014-05-01
Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.
Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S
2016-04-01
The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.
Mild, Pd-catalyzed stannylation of radioiodination targets
Pickett, Julie E.; Váradi, András; Palmer, Travis C.; Grinnell, Steven G.; Schrock, Joel M.; Pasternak, Gavril W.; Karimov, Rashad R.; Majumdar, Susruta
2015-01-01
Trialkylstannanes are versatile precursors for chemical transformations, including radiolabeling with a variety of halogens, particularly iodine. In the present work a convenient, Pd-mediated stannylation method is presented that can be performed in an open flask. The method is selective for aryl iodides allowing selective stannylations in the presence of other halogen atoms. The reaction conditions are mild, making the method compatible with chemically sensitive bioactive compounds. PMID:25777268
Bauzá, Antonio; Alkorta, Ibon; Frontera, Antonio; Elguero, José
2013-11-12
In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.
NASA Astrophysics Data System (ADS)
Banáš, Pavel; Otyepka, Michal; Jeřábek, Petr; Petřek, Martin; Damborský, Jiří
2006-06-01
1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency ( k cat/ K m = 36 s-1 M-1). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been previously obtained by error-prone PCR. We have used molecular simulations and quantum mechanical calculations to elucidate the molecular mechanisms involved in the improved catalysis of the mutant, and enantioselectivity of DhaA toward TCP. The Cys176Tyr mutation modifies the protein access and export routes. Substitution of the Cys residue by the bulkier Tyr narrows the upper tunnel, making the second tunnel "slot" the preferred route. TCP can adopt two major orientations in the DhaA enzyme, in one of which the halide-stabilizing residue Asn41 forms a hydrogen bond with the terminal halogen atom of the TCP molecule, while in the other it bonds with the central halogen atom. The differences in these binding patterns explain the preferential formation of the ( R)- over the ( S)-enantiomer of 2,3-dichloropropane-1-ol in the reaction catalyzed by the enzyme.
Bura, Thomas; Beaupré, Serge; Légaré, Marc-André; Quinn, Jesse; Rochette, Etienne; Blaskovits, J. Terence; Fontaine, Frédéric-Georges; Pron, Agnieszka; Li, Yuning
2017-01-01
Direct (hetero)arylation polymerization (DHAP) has emerged as a valuable and atom-economical alternative to traditional cross-coupling methods for the synthesis of low-cost and efficient conjugated polymers for organic electronics. However, when applied to the synthesis of certain (hetero)arene-based materials, a lack of C–H bond selectivity has been observed. To prevent such undesirable side-reactions, we report the design and synthesis of new, bulky, phosphine-based ligands that significantly enhance selectivity of the DHAP process for both halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. To better understand the selectivity issues, density functional theory (DFT) calculations have been performed on various halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. Calculations showed that the presence of bromine atoms decreases the energy of activation (E a) of the adjacent C–H bonds, allowing undesirable β-defects for some brominated aromatic units. Both calculations and the new ligands should lead to the rational design of monomers and methods for the preparation of defect-free conjugated polymers from DHAP. PMID:28966781
Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji
2008-05-01
Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.
Investigation of reactive halogens in the Arctic using a mobile instrumental laboratory
NASA Astrophysics Data System (ADS)
Custard, K.; Shepson, P. B.; Stephens, C. R.
2011-12-01
Custard, K kcustard@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Shepson, P pshepson@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Stephens, C thompscr@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Investigation of the chemistry of reactive halogens in ice-covered regions is important because of its significant impact on atmospheric composition. Halogens in the Arctic react with ozone and gaseous elemental mercury to sometimes completely deplete them from the ambient atmosphere, at least during polar springtime. There is much uncertainty about the sources and concentrations of these atmospheric halogens in the Arctic, particularly with respect to chlorine. To gain a better understanding of them, we have developed a method to simultaneously measure the concentrations of BrOx and ClOx radicals using a flowtube method. The method involves reaction of the halogen atom with a halogenated alkene, to produce a multiply halogenated characteristic ketone product, which is then detected via GC/ECD. The system was deployed at Barrow, AK, using a mobile instrumental laboratory so that measurements could be made from multiple locations along the sea ice. In this paper we will discuss laboratory evaluation of the flowtube method, and present preliminary data from Barrow, AK, during the spring 2011 deployment.
Method of selective reduction of polyhalosilanes with alkyltin hydrides
Sharp, Kenneth G.; D'Errico, John J.
1989-01-01
The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.
Tailoring topological states in silicene using different halogen-passivated Si(111) substrates
NASA Astrophysics Data System (ADS)
Derakhshan, Vahid; Moghaddam, Ali G.; Ceresoli, Davide
2018-03-01
We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface using density functional theory calculations. Our results show that the Dirac character of low-energy excitations in silicene is almost preserved in the presence of a silicon substrate passivated by various halogens. Nevertheless, the combined effects of symmetry breaking due to both direct and van der Waals interactions between silicene and the substrate, charge transfer from suspended silicene into the substrate, and, finally, the hybridization which leads to the charge redistribution result in a gap in the spectrum of the embedded silicene. We further take the spin-orbit interaction into account and obtain the resulting modification in the gap. The energy gaps with and without spin-orbit coupling vary significantly when different halogen atoms are used for the passivation of the Si surface, and for the case of iodine, they become on the order of 100 meV. To examine the topological properties, we calculate the projected band structure of silicene from which the Berry curvature and Z2 invariant based on the evolution of Wannier charge centers are obtained. As a key finding, it is shown that silicene on halogenated Si substrates has a topological insulating state which can survive even at room temperature for the substrates with iodine and bromine at the surface. Therefore, these results suggest that we can have a reliable, stable, and robust silicene-based two-dimensional topological insulator using the considered substrates.
Exploring hydride-π interactions and their tuning by σ-hole bonds: an ab initio study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Asadollahi, Soheila; Mousavian, Parisasadat
2018-01-01
In the present work, ab initio calculations are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CH3) and a series of π-acidic heteroaromatic rings. In all the resulting complexes, the heteroaromatic ring acts as a Lewis acid (electron acceptor), while the H atom of the HMX molecule acts as a Lewis base (electron donor). The nature of this interaction, called 'hydride-π' interaction, is explored in terms of molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. The results show that the interaction energies of these hydride-π interactions are between -1.24 and -2.72 kcal/mol. Furthermore, mutual influence between the hydride-π and halogen- or pnicogen-bonding interactions is studied in complexes in which these interactions coexist. For a given π-acidic ring, the formation of the pnicogen-bonding induces a larger enhancing effect on the strength of hydride-π bond than the halogen-bonding.
Bromine speciation in hydrous haplogranitic melts up to 7 GPa
NASA Astrophysics Data System (ADS)
Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.
2013-12-01
Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.
Force Field Model of Periodic Trends in Biomolecular Halogen Bonds
Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.
2016-01-01
The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128
Liu, Wenjun; Sharp, Ian D; Tilley, T Don
2014-01-14
Insertion of dichlorocarbene (:CCl2), generated by decomposition of the Seyferth reagent PhHgCCl2Br, into the Si-H bond of a tertiary silane to form a Si-CCl2H group is an efficient homogeneous, molecular transformation. A heterogeneous version of this reaction, between PhHgCCl2Br and a silicon (111) surface terminated by tertiary Si-H bonds, was studied using a combination of surface-sensitive infrared and X-ray photoelectron spectroscopies. The insertion of dichlorocarbene into surface Si-H bonds parallels the corresponding reaction of silanes in solution, to produce surface-bound dichloromethyl groups (Si-CCl2H) covering ∼25% of the silicon surface sites. A significant fraction of the remaining Si-H bonds on the surface was converted to Si-Cl/Br groups during the same reaction, with PhHgCCl2Br serving as a halogen atom source. The presence of two distinct environments for the chlorine atoms (Si-CCl2H and Si-Cl) and one type of bromine atom (Si-Br) was confirmed by Cl 2p, Br 3d, and C 1s X-ray photoelectron spectroscopy. The formation of reactive, halogen-terminated atop silicon sites was also verified by reaction with sodium azide or the Grignard reagent (CH3MgBr), to produce Si-N3 or Si-Me functionalities, respectively. Thus, reaction of a hydrogen-terminated silicon (111) surface with PhHgCCl2Br provides a facile route to multifunctional surfaces possessing both stable silicon-carbon and labile silicon-halogen sites, in a single pot synthesis. The reactive silicon-halogen groups can be utilized for subsequent transformations and, potentially, the construction of more complex organic-silicon hybrid systems.
NASA Astrophysics Data System (ADS)
Walker, H.; Ingham, T.; Heard, D. E.
2012-12-01
Halogenated short-lived substances (VSLS) are emitted from the oceans by marine species such as macroalgae and phytoplankton and contribute to halogen loading in the troposphere and lower stratosphere. Transport of halogenated VSLS into the stratosphere occurs mainly in the tropics, where ascending warm air carries them aloft, and leads to catalytic depletion of stratospheric ozone on a global scale and formation of the Antarctic ozone hole. The tropical marine environment is therefore an important region in which to study the effects of these short-lived halogen species on ozone depletion. The SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project combines ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo, to reduce uncertainties in the amount of halogenated VSLS reaching the stratosphere, the associated ozone depletion, and the effects of a changing climate on these processes. In this work we present measurements of IO radicals made onboard the German research vessel Sonne during SHIVA, between Singapore and Manila. IO is formed via photolysis of iodine-containing source gases (e.g. I2, CH3I) to produce I atoms, which react with ozone. It is therefore an important species to consider when assessing the impacts of halogen chemistry on ozone depletion. Measurements of IO were made over a two-week period by the University of Leeds Laser-Induced Fluorescence (LIF) instrument, which excites IO radicals at λ ~ 445 nm and detects the resultant fluorescence at λ ~ 512 nm. A suite of supporting gas- and aqueous-phase measurements were also made, including concentrations of halocarbons (e.g. CHBr3, CH3I), trace pollutant gases (e.g. CO, O3, NOx), and biological parameters (e.g. abundance and speciation of phytoplankton). Preliminary data analysis indicates that IO was detected above the instrumental limit of detection (0.3 pptv for a 30 minute averaging period) on 9 days during the cruise, with a maximum mixing ratio of ~ 2.5 pptv. The results are analysed with a photochemical box model using concurrent measurements of source gases (I2, CH3I).
Spray Behavior and Atomization Characteristics of Biodiesel
NASA Astrophysics Data System (ADS)
Choi, Seung-Hun; Oh, Young-Taig
Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.
Kinetics and mechanisms of some atomic oxygen reactions
NASA Technical Reports Server (NTRS)
Cvetanovic, R. J.
1987-01-01
Mechanisms and kinetics of some reactions of the ground state of oxygen atoms, O(3P), are briefly summarized. Attention is given to reactions of oxygen atoms with several different types of organic and inorganic compounds such as alkanes, alkenes, alkynes, aromatics, and some oxygen, nitrogen, halogen and sulfur derivatives of these compounds. References to some recent compilations and critical evaluations of reaction rate constants are given.
Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.
Wang, Weizhou; Hobza, Pavel
2008-05-01
The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.
Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István
2014-03-28
The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.
Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.
Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael
2010-11-01
Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.
NASA Astrophysics Data System (ADS)
Veres, P. R.; Neuman, J. A.
2017-12-01
The Atmospheric Tomography Mission (ATom) is a NASA field program that investigates the impact of human emissions on air quality and climate in remote regions of the atmosphere. NASA DC-8 flights during the ATom sampled the atmosphere over the Pacific and Atlantic Oceans, up to 12 km altitude and nearly from pole to pole. New observations of key species (e.g. N2O5, reactive halogens, nitrous acid) in these regions are provided during the third deployment of the NASA DC-8 research aircraft (October, 2017) by the NOAA iodide ion time-of-flight chemical ionization mass spectrometer (iCIMS). In this study, we will present the first observations of inorganic gas-phase species using iCIMS from the ATom 3 deployment. Laboratory results detailing the instrument performance including inlet response times, background characterization and sensitivity will be presented. We will show vertical profiles of newly measured trace gases derived from in-situ observations, and discuss the potential impact on the NOx, NOy and reactive halogen budgets.
Srivastava, Bhartendu K; Manheri, Muraleedharan K
2017-04-18
A simple replacement of a H atom by Br transformed non-gelating aryl triazolyl amino acid benzyl ester into a versatile gelator, which formed shape-persistent, self-healing and mouldable gels. The 'bromo-aryl benzyl ester' fragment was then transplanted into another framework, which resulted in similar solvent preference and gelation efficiency.
Passivation and alloying element retention in gas atomized powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
Sun, Bin; Voznyy, Oleksandr; Tan, Hairen; Stadler, Philipp; Liu, Mengxia; Walters, Grant; Proppe, Andrew H; Liu, Min; Fan, James; Zhuang, Taotao; Li, Jie; Wei, Mingyang; Xu, Jixian; Kim, Younghoon; Hoogland, Sjoerd; Sargent, Edward H
2017-07-01
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energetics of halogen impurities in thorium dioxide
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.
2017-11-01
Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.
Watley, Ryan L; Awuah, Samuel G; Bio, Moses; Cantu, Robert; Gobeze, Habtom B; Nesterov, Vladimir N; Das, Sushanta K; D'Souza, Francis; You, Youngjae
2015-06-01
We discovered a rare phenomenon wherein a thieno-pyrrole fused BODIPY dye (SBDPiR690) generates singlet oxygen without heavy halogen atom substituents. SBDPiR690 generates both singlet oxygen and fluorescence. To our knowledge, this is the first example of such a finding. To establish a structure-photophysical property relationship, we prepared SBDPiR analogs with electron-withdrawing groups at the para-position of the phenyl groups. The electron-withdrawing groups increased the HOMO-LUMO energy gap and singlet oxygen generation. Among the analogs, SBDPiR688, a CF3 analog, had an excellent dual functionality of brightness (82290 m(-1) cm(-1) ) and phototoxic power (99170 m(-1) cm(-1) ) comparable to those of Pc 4, due to a high extinction coefficient (211 000 m(-1) cm(-1) ) and balanced decay (Φflu =0.39 and ΦΔ =0.47). The dual functionality of the lead compound SBDPiR690 was successfully applied to preclinical optical imaging and for PDT to effectively control a subcutaneous tumor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Halogen Chemistry at North American Coastal Sites
NASA Astrophysics Data System (ADS)
Stutz, J.; Pikelnaya, O.; Laskin, A.; Sumner, A.; Jobson, B. T.; Finley, B.; Lawler, M.; Saltzman, E. S.; Pszenny, A. A.; Deegan, B.
2007-12-01
In recent years observational evidence has emerged that reactive halogen species (RHS), such as chlorine atoms, and bromine and iodine oxides, are present in coastal areas. Their chemistry can be significant as they catalytically destroy O3; oxidize hydrocarbons, dimethylsulfide, and S(IV); and modify NOx and HOx cycling. Despite their potential importance our observational database on RHS is still very limited. Most observations of RHS thus far have been made in clean areas and very few observations along the North American coast have been made. Here we will review our current understanding of RHS chemistry in both clean and polluted environments. Recent observations at coastal areas around the world will be discussed. We will also give an overview of an experiment performed by our group in Malibu, CA in October 2006 and present initial results. A suite of trace gases and environmental parameters, including halogen molecules, halogen oxides, Cl + VOC reaction products, aerosol composition, O3, NOx, CO, VOCs, meteorology, and radiation, were measured during a three week period. In addition, Cl + VOC reaction products were measured at two locations in urban Los Angeles. Clear evidence for the presence of various halogen species on the California coast was found. Observations during periods with relatively clean marine air and during times where our site was in the outflow of Los Angeles show the impact of pollution on coastal atmospheric chemistry. Our observations will be compared to earlier studies of halogen chemistry at coastal areas to further advance our understanding of halogen chemistry.
2008-02-28
were found to be open-ion (A or E), unsymmetrical (B or D), or symmetrical C depending on the halogen electrophile and on the position and number of...Rearranged products 4 (Structures A-E) 1 Z = Cl 2 Z = Br 3 Z = I XY = Cl2, Br2, BrCl ICl, IBr Scheme 1 Y on the fluorine atoms of 5 shield the carbon nucleus...and 3) WITH HALOGEN ELECTROPHILES IN METHYLENE CHLORIDE F F F Z XY CH2Cl2 CF2CFZ Y X CF2CFZ X Y CF2CFY X Z + + M aM Rearranged Run Alkene (Z
ERIC Educational Resources Information Center
Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.
2015-01-01
Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…
Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F
2010-12-23
A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.
Strong Rashba effect in the localized impurity states of halogen-doped monolayer PtSe2
NASA Astrophysics Data System (ADS)
Absor, Moh. Adhib Ulil; Santoso, Iman; Harsojo, Abraha, Kamsul; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo
2018-05-01
The recent epitaxial growth of the 1 T phase of the PtSe2 monolayer (ML) has opened the possibility for novel applications, in particular for a spintronics device. However, in contrast to the 2 H phase of transition-metal dichalcogenides (TMDs), the absence of spin splitting in the PtSe2 ML may limit the functionality for spintronics application. Through fully relativistic density-functional theory calculations, we show that large spin splitting can be induced in the PtSe2 ML by introducing a substitutional halogen impurity. Depending on the atomic number Z of the halogen dopants, we observe an enhancement of the spin splitting in the localized impurity states (LIS), which is due to the increased contribution of the p -d orbital coupling. More importantly, we identify very large Rashba splitting in the LIS near the Fermi level around the Γ point characterized by hexagonal warping of the Fermi surface. We show that the Rashba splitting can be controlled by adjusting the doping concentration. Therefore, this work provides a possible way to induce significant Rashba splitting in the two-dimensional TMDs, which is useful for spintronic devices operating at room temperature.
NASA Astrophysics Data System (ADS)
Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa
2009-02-01
In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.
NASA Astrophysics Data System (ADS)
Salunke, Deepak B.; Hazra, Braja G.; Gonnade, Rajesh G.; Pore, Vandana S.; Bhadbhade, Mohan M.
2008-12-01
Methyl 3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 2, methyl 11α-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 3, methyl 11β-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 4 and methyl 11,11-dibromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 5 were synthesized. The crystal structures of these molecules were resolved to study the effect of bulky bromine atom in the steroid skeleton of cholic acid with different stereo-chemical orientations at C-11 on the two-dimensional arrangement of molecules and solid-state properties. All the molecules associate only via weak intermolecular interactions in their crystal structures, notable one being the Halogen Bonded assembly (C-Br…O) in 5.
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
NASA Astrophysics Data System (ADS)
Marshall, Mark D.; Leung, Helen O.; Wronkovich, Miles A.; Tracy, Megan E.; Hoque, Laboni; Randy-Cofie, Allison M.; Dao, Alina K.
2017-06-01
The determination of the structures of heterodimers of haloethylenes with protic acids has provided a wealth of information and a few surprises concerning intermolecular forces and the sometimes cooperative and sometimes competing effects of electrostatic, steric, and dispersion forces. In seeking to apply this knowledge to larger systems with a wider variety of possible interactions and binding sites, we extend the carbon chain by one atom via the addition of a trifluoromethyl moeity. As a first step the microwave rotational spectra of the halopropene monomers, 2,3,3,3-tetrafluoropropene, 2-chloro-3,3,3-trifluoropropene, (E)-1-chloro-3,3,3-trifluoropropene, and (Z)-1-chloro-3,3,3-trifluoropropene, and their complexes with the argon atom are obtained and analyzed to obtain molecular structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yourshaw, Ivan
1998-07-09
The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less
Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1985-01-01
The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.
Structures and anti-inflammatory properties of 4-halogenated -mofebutazones
NASA Astrophysics Data System (ADS)
Reichelt, Hendrik; Paradies, Henrich H.
2018-02-01
The crystal structures of the 4-halogenated (hal: F, Cl, Br)-4-butyl-1-phenyl-1,3-pyrolidine-dione (mofebutazone) are determined, and compared with their solution structures. The racemic 4-halogenated mofebutazone approximants crystallize in a monoclinic space group with four molecules in the unit cell. The 4-hal-mofebutazone molecules reveal strong hydrogen bonding between the hydrogen atom located at the N-2 nitrogen atom and a carbonyl oxygen atom of an adjacent 4-hal-mofebutazone molecule. The hydrogen bond angle for 4-Br-mifebutazone N (2)sbnd H (1)⋯O (1) is 173(3) °, so that the hydrogen bond is essentially linear indicating an infinite chain hydrogen bond network. The 3d and 2d structures are stabilized by π-π and σ-π interactions, short intermolecular distances, and apolar forces between adjacently stacked phenyl rings. Small-angle-X-ray scattering (SAXS) experiments and osmometric measurements reveal the presence of dimers for the 4-hal-mofebutazone molecules. Molecular simulations indicate similar solution structure factors for the 4-hal-mofebutazones solutions, S(Q), and in the solid state. There is a strong indication that the [1,1,0], [1,0,0], and [1,0,0] periodicities of the 4-Brsbnd , 4-Clsbnd and 4-F-mofebutazone in the crystalline solid state were also present in the solution phase. The biochemical and cellular activities of the different 4-hal-mofebutazones were monitored by the magnitude of their inhibition of the PGE2 biosynthesis through the cyclo-oxygenase (COX-1) in macrophages, and on the inhibition of LTD4 (5-lipoxygenase) in polymorphonuclear leukocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.
1986-10-20
The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.
Porphyrins and their synthesis from dipyrromethanes and aldehydes
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.
1998-01-01
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided.
Porphyrins and their synthesis from dipyrromethanes and aldehydes
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.
1998-06-02
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided.
Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich
2008-12-11
The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.
da Silva, Marcos Aurélio Bomfim; de Oliveira, Guilherme José Pimentel Lopes; Tonholo, Josealdo; Júnior, José Ginaldo da Silva; Santos, Lucineide de Melo; Dos Reis, José Ivo Limeira
2010-12-01
This in vitro study evaluated the marginal gap at the composite tooth/resin interface in class V cavities under the influence of two insertion techniques and a curing system by means of atomic force microscopy (AFM). Forty enamel and dentin cavities were prepared on the buccal surface in bovine teeth with quadratic forms measuring 2 mm × 2 mm and depth of 1.5 mm. The teeth were then divided into four groups: group A, 10 cavities were restored in one increment, light cured by halogen light; group B, 10 cavities filled with bulk filling, light cured by the light emitting diodes (LED); group C, 10 cavities were restored by the incremental technique, light cured by halogen light; group D, 10 cavities were restored by the incremental technique, light cured by the LED. The teeth underwent the polishing procedure and were analyzed by AFM for tooth/restoration interface evaluation. The data were compared between groups using the nonparametric Kruskall-Wallis and Mann-Whitney tests (p < 0.05). The results showed a statistically significant difference between groups A and B and groups A and C. It was concluded that no insertion and polymerization technique was able to completely seal the cavity.
Photonics and application of dipyrrinates in the optical devices
NASA Astrophysics Data System (ADS)
Aksenova, Iu; Bashkirtsev, D.; Prokopenko, A.; Kuznetsova, R.; Dudina, N.; Berezin, M.
2016-08-01
In this paper spectral-luminescent, lasing, photochemical, and sensory characteristics of a number of Zn(II) and B(III) coordination complexes with dipyrrinates with different structures are presented. We have discussed relations of the structure of investigated compounds and formed solvates with their optical characteristics. The results showed that alkyl substituted dipyrrinates derivatives have excellent luminescent characteristics and demonstrated effective lasing upon excitation of Nd:YAG-laser. They can be used as active media for liquid tunable lasers. Zinc and boron fluoride complexes of dipyrrinates with heavy atoms in structure don't have fluorescence but have long-lived emission due to increased nonradiative intersystem processes in the excited state by the mechanism of a heavy atom. For solid samples based on halogenated complexes was found dependency of the long-lived emission intensity of the oxygen concentration in gas flow. The presence of line segment indicates the possibility of the use of these complexes as a basis for creation of optical sensors for oxygen. Moreover, results of a study of halogen-substituted aza-complexes under irradiation are presented. Such complexes are promising for the creating media for generation of singlet oxygen (1O2), which is important for photodynamic therapy in medicine and photocatalytic reactions in the industry.
Study of clusters using negative ion photodetachment spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yuexing
1995-12-01
The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs -. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.
Reactivity of some halogenated alkanes of 13X molecular sieve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fevrier, D.; Vernet, J.L.; Mignon, P.
1977-12-01
The decomposition and transhalogenation products of trichlorofluoromethane (F 11), dichlorodifluoromethane (F-12), dichlorofluoromethane (F-21), chlorodifluoromethane (F-22), trichlorotrifluoroethane (F-113), and bromotrifluoromethane (F-13B1) in air on 13X molecular sieve at 150/sup o/ and 320/sup o/C were analyzed. All compounds decomposed to some extent except F-13B1 and F-113 at 150/sup o/C. The decomposition product was carbon dioxide except from F-21 and F-22, which decomposed more readily than the other Freons because of their hydrogen atoms and which yielded carbon monoxide. The sieves were not regenerated by sweeping with water in nitrogen, although adsorbed halogens were displaced and formed strong acids. Halogenated hydracids formed alongmore » with carbon dioxide by reaction with constitutional water of the sieves are probably responsible for the destruction of the sieve. Diagram, graphs, tables, and 17 references.« less
Sun, Lipeng; Park, Kyoyeon; Song, Kihyung; Setser, Donald W; Hase, William L
2006-02-14
A single trajectory (ST) direct dynamics approach is compared with quasiclassical trajectory (QCT) direct dynamics calculations for determining product energy partitioning in unimolecular dissociation. Three comparisons are made by simulating C(2)H(5)F-->HF + C(2)H(4) product energy partitioning for the MP26-31G(*) and MP26-311 + + G(**) potential energy surfaces (PESs) and using the MP26-31G(*) PES for C(2)H(5)F dissociation as a model to simulate CHCl(2)CCl(3)-->HCl + C(2)Cl(4) dissociation and its product energy partitioning. The trajectories are initiated at the transition state with fixed energy in reaction-coordinate translation E(t) (double dagger). The QCT simulations have zero-point energy (ZPE) in the vibrational modes orthogonal to the reaction coordinate, while there is no ZPE for the STs. A semiquantitative agreement is obtained between the ST and QCT average percent product energy partitionings. The ST approach is used to study mass effects for product energy partitioning in HX(X = F or Cl) elimination from halogenated alkanes by using the MP26-31G(*) PES for C(2)H(5)F dissociation and varying the masses of the C, H, and F atoms. There is, at most, only a small mass effect for partitioning of energy to HX vibration and rotation. In contrast, there are substantial mass effects for partitioning to relative translation and the polyatomic product's vibration and rotation. If the center of mass of the polyatomic product is located away from the C atom from which HX recoils, the polyatomic has substantial rotation energy. Polyatomic products, with heavy atoms such as Cl atoms replacing the H atoms, receive substantial vibration energy that is primarily transferred to the wag-bend motions. For E(t) (double dagger) of 1.0 kcalmol, the ST calculations give average percent partitionings to relative translation, polyatomic vibration, polyatomic rotation, HX vibration, and HX rotation of 74.9%, 6.8%, 1.5%, 14.4%, and 2.4% for C(2)H(5)F dissociation and 39.7%, 38.1%, 0.2%, 16.1%, and 5.9% for a model of CHCl(2)CCl(3) dissociation.
Ab initio study of weakly bound halogen complexes: RX⋯PH3.
Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana
2013-01-01
Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).
Composition and method for removing photoresist materials from electronic components
Davenhall, Leisa B.; Rubin, James B.
2002-01-01
The invention is a combination of at least one dense phase fluid and at least one dense phase fluid modifier which can be used to contact substrates for electronic parts such as semiconductor wafers or chips to remove photoresist materials which are applied to the substrates during manufacture of the electronic parts. The dense phase fluid modifier is one selected from the group of cyclic, aliphatic or alicyclic compounds having the functional group: ##STR1## wherein Y is a carbon, oxygen, nitrogen, phosphorus or sulfur atom or a hydrocarbon group having from 1 to 10 carbon atoms, a halogen or halogenated hydrocarbon group having from 1 to 10 carbon atoms, silicon or a fluorinated silicon group; and wherein R.sub.1 and R.sub.2 can be the same or different substituents; and wherein, as in the case where X is nitrogen, R.sub.1 or R.sub.2 may not be present. The invention compositions generally are applied to the substrates in a pulsed fashion in order to remove the hard baked photoresist material remaining on the surface of the substrate after removal of soft baked photoresist material and etching of the barrier layer.
NASA Astrophysics Data System (ADS)
Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing
2015-06-01
The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.
Experimental investigation of halogen-bond hard-soft acid-base complementarity.
Riel, Asia Marie S; Jessop, Morly J; Decato, Daniel A; Massena, Casey J; Nascimento, Vinicius R; Berryman, Orion B
2017-04-01
The halogen bond (XB) is a topical noncovalent interaction of rapidly increasing importance. The XB employs a `soft' donor atom in comparison to the `hard' proton of the hydrogen bond (HB). This difference has led to the hypothesis that XBs can form more favorable interactions with `soft' bases than HBs. While computational studies have supported this suggestion, solution and solid-state data are lacking. Here, XB soft-soft complementarity is investigated with a bidentate receptor that shows similar associations with neutral carbonyls and heavy chalcogen analogs. The solution speciation and XB soft-soft complementarity is supported by four crystal structures containing neutral and anionic soft Lewis bases.
Furmick, Julie K.; Kaneko, Ichiro; Walsh, Angela N.; Yang, Joanna; Bhogal, Jaskaran S.; Gray, Geoffrey M.; Baso, Juan C.; Browder, Drew O.; Prentice, Jessica L.S.; Montano, Luis A.; Huynh, Chanh C.; Marcus, Lisa M.; Tsosie, Dorian G.; Kwon, Jungeun S.; Quezada, Alexis; Reyes, Nicole M.; Lemming, Brittney; Saini, Puneet; van der Vaart, Arjan; Groy, Thomas L.; Marshall, Pamela A.; Jurutka, Peter W.; Wagner, Carl E.
2012-01-01
The synthesis of halogenated analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), known commonly as bexarotene, and their evaluation for retinoid-X-receptor (RXR)-specific agonist performance is described. Compound 1 is FDA approved to treat cutaneous T-cell lymphoma (CTCL); however, bexarotene treatment can induce hypothyroidism and elevated triglyceride levels, presumably by disrupting RXR heterodimer pathways for other nuclear receptors. The novel halogenated analogs in this study were modeled and assessed for their ability to bind to RXR and stimulate RXR homodimerization in an RXRE-mediated transcriptional assay as well as an RXR mammalian-2-hybrid assay. In an array of 8 novel compounds, 4 analogs were discovered to promote RXR-mediated transcription with comparable EC50 values as 1 and are selective RXR agonists. Our approach also uncovered a periodic trend of increased binding and homodimerization of RXR when substituting a halogen atom for a proton ortho to the carboxylic acid on 1. PMID:22927238
Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan
2012-02-01
The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca; Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca
Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formationmore » of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.« less
Method and apparatus for vapor detection
NASA Technical Reports Server (NTRS)
Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)
1980-01-01
The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.
Vacuum-based surface modification of organic and metallic substrates
NASA Astrophysics Data System (ADS)
Torres, Jessica
Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).
Yang, Xianhai; Lyakurwa, Felichesmi; Xie, Hongbin; Chen, Jingwen; Li, Xuehua; Qiao, Xianliang; Cai, Xiyun
2017-09-01
Chemical forms-dependent binding interactions between phenolic compounds and human transthyretin (hTTR) have been elaborated previously. However, it is not known whether the binding interactions between ionizable halogenated alphatic compounds and hTTR also have the same manner. In this study, poly-/perfluorinated chemicals (PFCs) were selected as model compounds and molecular dynamic simulation was performed to investigate the binding mechanisms between PFCs and hTTR. Results show the binding interactions between the halogenated aliphatic compounds and hTTR are related to the chemical forms. The ionized groups of PFCs can form electrostatic interactions with the -NH + 3 groups of Lys 15 residues in hTTR and form hydrogen bonds with the residues of hTTR. By analyzing the molecular orbital energies of PFCs, we also found that the anionic groups (nucleophile) in PFCs could form electron donor - acceptor interactions with the -NH + 3 groups (electrophile) in Lys 15. The aforementioned orientational interactions make the ionized groups of the PFCs point toward the entry port of the binding site. The roles of fluorine atoms in the binding interactions were also explored. The fluorine atoms can influence the binding interactions via inductive effects. Appropriate molecular descriptors were selected to characterize these interactions, and two quantitative structure-activity relationship models were developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rapid brain scanning radiopharmaceutical
Sargent, T.W. III; Shulgin, A.T.; Mathis, C.A.
1987-03-03
A method for detecting the blood flow in animals, particularly in the brain, is provided wherein a detectable amount of a novel radioactive compound of the formula 1 is administered to one animal: as given in figure in patent wherein R[sub 1] and R[sub 2] are independently alkyl of 1 to 6 carbon atoms or benzyl; R[sub 3] is alkyl of 1 to 6 carbon atoms, benzyl, cyclopropylalkyl of 4 to 6 carbon atoms, or cyanoalkyl of 2 to 6 carbon atoms; R[sub 4] is hydrogen, benzyl or alkyl of 1 to 6 carbon atoms; with the provisos that R[sub 4] is not isopropyl and when R[sub 4] is methyl, R[sub 3] is not benzyl; and X is a radioactive halogen. 2 figs.
Rapid brain scanning radiopharmaceutical
Sargent, III, Thornton W.; Shulgin, Alexander T.; Mathis, Chester A.
1987-01-01
A method for detecting the blood flow in animals, particularly in the brain, is provided wherein a detectable amount of a novel radioactive compound of the formula I is administered to one animal: ##STR1## wherein R.sub.1 and R.sub.2 are independently alkyl of 1 to 6 carbon atoms or benzyl; R.sub.3 is alkyl of 1 to 6 carbon atoms, benzyl, cyclopropylalkyl of 4 to 6 carbon atoms, or cyanoalkyl of 2 to 6 carbon atoms; R.sub.4 is hydrogen, benzyl or alkyl of 1 to 6 carbon atoms; with the provisos that R.sub.4 is not isopropyl and when R.sub.4 is methyl, R.sub.3 is not benzyl; and X is a radioactive halogen.
Method for oxidizing alkanes using novel porphyrins synthesized from dipyrromethanes and aldehydes
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.
1999-01-01
The invention comprises a method for the oxidation of alkanes to alcohols and for decomposition of hydroperoxides to alcohols utilizing new compositions of matter, which are metal complexes of porphyrins. Preferred complexes have hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. Other preferred complexes are ones in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also disclosed.
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.
1998-03-03
The invention comprises a method for the oxidation of alkanes to alcohols and for decomposition of hydroperoxides to alcohols utilizing new compositions of matter, which are metal complexes of porphyrins. Preferred complexes have hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. Other preferred complexes are ones in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also disclosed.
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.
1998-01-01
The invention comprises a method for the oxidation of alkanes to alcohols and for decomposition of hydroperoxides to alcohols utilizing new compositions of matter, which are metal complexes of porphyrins. Preferred complexes have hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. Other preferred complexes are ones in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also disclosed.
Discovery and characterization of a marine bacterial SAM-dependent chlorinase
Eustáquio, Alessandra S; Pojer, Florence; Noel, Joseph P; Moore, Bradley S
2009-01-01
Halogen atom incorporation into a scaffold of bioactive compounds often amplifies biological activity, as is the case for the anticancer agent salinosporamide A (1), a chlorinated natural product from the marine bacterium Salinispora tropica. Significant effort in understanding enzymatic chlorination shows that oxidative routes predominate to form reactive electrophilic or radical chlorine species. Here we report the genetic, biochemical and structural characterization of the chlorinase SalL, which halogenates S-adenosyl-l-methionine (2) with chloride to generate 5′-chloro-5′-deoxyadenosine (3) and l-methionine (4) in a rarely observed nucleophilic substitution strategy analogous to that of Streptomyces cattleya fluorinase. Further metabolic tailoring produces a halogenated polyketide synthase substrate specific for salinosporamide A biosynthesis. SalL also accepts bromide and iodide as substrates, but not fluoride. High-resolution crystal structures of SalL and active site mutants complexed with substrates and products support the SN2 nucleophilic substitution mechanism and further illuminate halide specificity in this newly discovered halogenase family. PMID:18059261
Transformation of bisphenol A in water distribution systems: a pilot-scale study.
Li, Cong; Wang, Zilong; Yang, Y Jeffrey; Liu, Jingqing; Mao, Xinwei; Zhang, Yan
2015-04-01
Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of a cement-lined ductile cast iron pipe were investigated. The water in the pilot-scale WDS was chlorinated with a free chlorine concentration of 0.7 mg L(-1) using sodium hypochlorite, and with an initial BPA concentration of 100 μg L(-1) was spiked in the WDS. Halogenated compounds in the BPA experiments were identified using EI/GC/MS and GC. Several BPA congeners, including 2-chlorobisphenol A (MCBPA), dichlorobisphenol A (D2-CBPA), 2,2',6-trichlorobisphenol A (T3CBPA), 2,2',6,6'-tetrachlorobisphenol A (T4CBPA), 2-bromobisphenol A (MBBPA), and bromochlorobisphenol A (MBMCBPA) were found. Moreover, further halogenation yielded other reaction intermediates, including 2,4,6-trichlorophenol (T3CP), dichlorobisphenol A, bromodichlorophenol, and dibromochlorophenol. After halogenation for 120min, most of the abovementioned reaction intermediates disappeared and were replaced by trihalomethanes (THMs). Based on these experimental findings, the halogenation process of BPA oxidation in a WDS includes three stages: (1) halogenation on the aromatic ring; (2) chlorine or bromine substitution followed by cleavage of the α-C bond on the isopropyl moiety with a positive partial charge and a β'-C bond on the benzene moiety with a negative partial charge; and (3) THMs and a minor HAA formation from phenolic intermediates through the benzene ring opening with a chlorine and bromine substitution of the hydrogen on the carbon atoms. The oxidation mechanisms of the entire transformation from BPA to THM/HAA in the WDS were proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extending Halogen-based Medicinal Chemistry to Proteins
El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B.; Smith, Brian J.; Menting, John G.; Whittaker, Jonathan; Lawrence, Michael C.; Meuwly, Markus; Weiss, Michael A.
2016-01-01
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24–B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a “micro-receptor” complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such “halogen engineering” promises to extend principles of medicinal chemistry to proteins. PMID:27875310
HYDROLYSIS OF HALOACETONITRILES: LINEAR FREE ENERGY RELATIONSHIP, KINETICS AND PRODUCTS. (R825362)
The hydrolysis rates of mono-, di- and trihaloacetonitriles were studied in aqueous buffer solutions at different pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule:...
Long term impact of anthropogenic emissions of halogenated hydrocarbons on stratospheric ozone level
NASA Technical Reports Server (NTRS)
1977-01-01
Reaction kinetics are studied for stratospheric chlorine atoms, OH initiated degradation of carbon-chlorine compounds, the chemical decomposition of stratospheric HCl and ClONO2. A photochemical study is made of the decomposition of O3 over the wavelength range 2935 to 3165 deg A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao
2015-06-15
The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M{sub 2}(CN){sub 5}]{sup −1} (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca{sub 2}(CN){sub 5}]{sup −1} which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimatesmore » or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.« less
Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee
2017-04-06
Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao
2018-01-09
Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.
Recognition of a novel type X═N-Hal···Hal (X = C, S, P; Hal = F, Cl, Br, I) halogen bonding.
Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu
2013-04-04
The chlorination of the eight-membered platinum(II) chelates [PtCl2{NH═C(NR2)N(Ph)C(═NH)N(Ph)C(NR2)═NH}] (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the ═N-Cl moiety [PtCl4{NH═C(NR2)N(Ph)C(═NCl)N(Ph)C(NR2)═NH}] (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding ═N-Cl···Cl(-), formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having X═N-Hal moieties (X = C, P, S, V, W; Hal = Cl, Br, I), but this weak ═N-Hal···Hal(-) bonding was totally neglected in the previous works. The presence of the halogen bonding in 3 was confirmed by theoretical calculations at the density functional theory (DFT, M06-2X) level, and its nature was analyzed.
NASA Astrophysics Data System (ADS)
Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland
2016-04-01
Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present an evaluation of the relevant tropospheric gas-phase chemistry (O3, H2O), inorganic halogen species (BrO, IO), aldehydes (CH3CHO, CHOCHO) and Very Short Lived Halocarbons (VSLH).
Structures and electronic states of halogen-terminated graphene nano-flakes
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto; Iyama, Tetsuji
2015-12-01
Halogen-functionalized graphenes are utilized as electronic devices and energy materials. In the present paper, the effects of halogen-termination of graphene edge on the structures and electronic states of graphene flakes have been investigated by means of density functional theory (DFT) method. It was found that the ionization potential (Ip) and electron affinity of graphene (EA) are blue-shifted by the halogen termination, while the excitation energy is red-shifted. The drastic change showed a possibility as electronic devices such as field-effect transistors. The change of electronic states caused by the halogen termination of graphene edge was discussed on the basis of the theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Alan K; Brown, Victoria L.; Rugg, Brandon K.
The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film andmore » the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form the M-X bond. Supporting this model, a negative control of vapor phase exposure to fluoroform (CHF3) is shown to have no effect on noble metal adhesion due to the higher bond dissociation energy of the C-F bond compared to the C-Cl and C-Br bond energy. The surface activation of vapor-phase exposed PMMA surfaces is technologically significant for the fabrication of polymer microdevices requiring Au or Pt metallization.« less
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pairmore » (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.« less
Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D
2011-05-01
This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (<0.1). General indices such as the BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2007-06-01
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.
Structural Perspective on Enzymatic Halogenation
2008-01-01
Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity and chemistry of these enzymes. In particular, the latest crystallographic snapshots of active site architecture and halide binding sites have provided key insights into enzyme catalysis. Herein is a summary of the five classes of halogenases, focusing on the three most recently discovered: flavin-dependent halogenases, non-heme iron-dependent halogenases, and nucleophilic halogenases. Further, the potential roles of halide-binding sites in determining halide selectivity are discussed, as well as whether or not binding-site composition is always a seminal factor for selectivity. Expanding our understanding of the basic chemical principles that dictate the activity of the halogenases will advance both biology and chemistry. A thorough mechanistic analysis will elucidate the biological principles that dictate specificity, and the application of those principles to new synthetic techniques will expand the utility of halogenations in small-molecule development. PMID:18774824
Shin, Sung-Ho; Bae, Young Eun; Moon, Hyun Kyung; Kim, Jungkil; Choi, Suk-Ho; Kim, Yongho; Yoon, Hyo Jae; Lee, Min Hyung; Nah, Junghyo
2017-06-27
Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.
NASA Astrophysics Data System (ADS)
Hellberg, Lars; Kasemo, Bengt
Some strongly exothermic and non-adiabatic surface adsorption events, especially those where electronegative molecules adsorb on very electropositive (low work function) surfaces, are accompanied by emission of (exo)electrons, photons, excited atoms and negative ions. The reaction of halogen molecules with halogen surfaces constitute an efficient model system for such studies. We have previously reported data for the emission of negative particles and photons in the zero coverage limit for a range of velocities of Cl2 molecules impinging on cold potassium surfaces as well as the mechanism behind these emission processes. In the present work, we focus on measurements of the kinetics, i.e. the exposure/coverage dependence, of these processes for the same system. Specifically, we present data for, (i) the separated contributions from electrons and Cl- ions of the emitted negative particles, (ii) the photon emission stemming both from excited Potassium atoms and from the equivalent process causing electron emission, (iii) the change of the work function during the initial exposure and, finally, (iv) the sticking coefficient for different Cl2 velocities and exposures.
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.
1996-11-05
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.
1996-01-01
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.
Novel Fischer-Tropsch catalysts
Vollhardt, Kurt P. C.; Perkins, Patrick
1981-01-01
Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.
Novel Fischer-Tropsch catalysts
Vollhardt, Kurt P. C.; Perkins, Patrick
1980-01-01
Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.
Novel Fischer-Tropsch catalysts
Vollhardt, Kurt P. C.; Perkins, Patrick
1981-01-01
Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.
NASA Astrophysics Data System (ADS)
Read, Katie A.; Lewis, Alastair C.; Salmon, Rhian A.; Jones, Anna E.; Bauguitte, Stéphane
2007-02-01
Measurements of C2-C8 non-methane hydrocarbons (NMHCs) have been made in situ at Halley Base, Antarctica (75°35'S, 26°19'W) from February 2004 to February 2005 as part of the Chemistry of the Antarctic Boundary Layer and the Interface with Snow (CHABLIS) experiment. The data show long- and short-term variabilities in NMHCs controlled by the seasonal and geographic dependence of emissions and variation in atmospheric removal rates and pathways. Ethane, propane, iso-butane, n-butane and acetylene abundances followed a general OH-dependent sinusoidal seasonal cycle. The yearly averages were 186, 31, 3.2, 4.9 and 19 pptV, respectively, lower than those which were reported in some previous studies. Superimposed on a seasonal cycle was shorter-term variability that could be attributed to both synoptic airmass variability and localized loss processes due to other radical species. Hydrocarbon variability during periods of hour-to-day-long surface O3 depletion in late winter/early spring indicated active halogen atom chemistry estimated to be in the range 1.7 × 103-3.4 × 104 atom cm-3 for Cl and 4.8 × 106-9.6 × 107 atom cm-3 for Br. Longer-term negative deviations from sinusoidal behaviour in the late August were indicative of NMHC reaction with a persistent [Cl] of 2.3 × 103 atom cm-3. Maximum ethene and propene of 157 and 179 pptV, respectively, were observed in the late February/early March, consistent with increased oceanic biogenic emissions; however, their presence was significant year-round (June-August concentrations of 17.1 +/- 18.3 and 7.9 +/- 20.0 pptV, respectively).
Zhang, Weihong; Qi, Yuehan; Qin, Deyuan; Liu, Jixin; Mao, Xuefei; Chen, Guoying; Wei, Chao; Qian, Yongzhong
2017-08-01
Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br - for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr 3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H 2 O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg -1 . The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg -1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu
2017-03-21
During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.
Semiconductor etching by hyperthermal neutral beams
NASA Technical Reports Server (NTRS)
Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)
1999-01-01
An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.
Catalysts For Hydrogenation And Hydrosilylation Methods Of Making And Using The Same
Dioumaev, Vladimir K.; Bullock, R. Morris
2004-05-18
A compound is provided including an organometallic complex represented by the formula I: wherein M is an atom of molybdenum or tangsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5 Q.sup.1 Q.sup.2 Q.sup.3 Q.sup.4 Q.sup.5 ], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2 R', --SiR'.sub.3 and --NR'R", wherein R' and R" are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complex as catalyst for hydrogenation of aldehydes and ketones are provided. Processes using the organometallic complex as catalyst for the hydrosilylation of aldehydes, ketones and esters are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R D; Natarajan, A; Lau, E Y
2010-02-08
The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homologymore » models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.« less
Unexpected autumnal halogen activity in the lower troposphere at Neumayer III/Antarctica
NASA Astrophysics Data System (ADS)
Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Schmitt, Stefan; Weller, Rolf; Schaefer, Thomas; Platt, Ulrich
2017-04-01
The influence of Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) on the lower polar troposphere has been subject of intense research for several decades. Ozone Depletion Events (ODEs) caused by the catalytic reaction of tropospheric ozone with inorganic halogen species or the oxidation of gaseous elemental mercury are well observed phenomena that occur during the respective springtime in both Arctic and Antarctica. Chlorine atoms also react more efficiently with hydrocarbons than e.g. OH radicals and all reactive halogen species can furthermore influence the atmospheric sulphur or nitrate cycles. While an autocatalytic release mechanism from salty surfaces, the so called bromine explosion, has been identified to rapidly increase inorganic bromine mixing ratios many aspects of atmospheric halogen chemistry in polar regions remains unclear. Since January 2016, we are operating an active Long Path DOAS instrument at Neumayer III on the Antarctic Ekström shelf ice designed for autonomous measurements. This instrument is able to detect a wide range of trace gases absorbing in the UV/Vis including ClO, BrO, OClO, IO, I2, OIO, ozone, NO2, H2O, O4, and SO2 at a temporal resolution of 5-30 minutes. The analysis of the first year of observations shows several surprising findings which give new insights into polar halogen chemistry. E.g. we observe surprisingly strong bromine activity in late summer and autumn (in addition to well-known springtime events) with mixing ratios often higher than 20 pptv. We could even observe peak mixing ratios of 110 pptv. The observed BrO levels could be the result of local/regional chemistry rather than long-range transport and modulated by the stability of the boundary layer. Also, there are hints for NOx - driven halogen activation. Furthermore, chlorine monoxide (ClO) and OClO mixing ratios of several ten pptv could be detected on a number of days, however the source mechanism for reactive chlorine remains unclear. We will give an overview of the entire time series and discuss interesting case studies with regard to chemistry, atmospheric conditions and transport.
Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.
El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A
2016-12-30
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Experimental and computational evidence of halogen bonds involving astatine
NASA Astrophysics Data System (ADS)
Guo, Ning; Maurice, Rémi; Teze, David; Graton, Jérôme; Champion, Julie; Montavon, Gilles; Galland, Nicolas
2018-03-01
The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartocci, Alessio; Cappelletti, David; Pirani, Fernando
2015-05-14
The systems studied in this work are gas-phase weakly bound adducts of the noble-gas (Ng) atoms with CCl{sub 4} and CF{sub 4}. Their investigation was motivated by the widespread current interest for the intermolecular halogen bonding (XB), a structural motif recognized to play a role in fields ranging from elementary processes to biochemistry. The simulation of the static and dynamic behaviors of complex systems featuring XB requires the formulation of reliable and accurate model potentials, whose development relies on the detailed characterization of strength and nature of the interactions occurring in simple exemplary halogenated systems. We thus selected the prototypicalmore » Ng-CCl{sub 4} and Ng-CF{sub 4} and performed high-resolution molecular beam scattering experiments to measure the absolute scale of their intermolecular potentials, with high sensitivity. In general, we expected to probe typical van der Waals interactions, consisting of a combination of size (exchange) repulsion with dispersion/induction attraction. For the He/Ne-CF{sub 4}, the analysis of the glory quantum interference pattern, observable in the velocity dependence of the integral cross section, confirmed indeed this expectation. On the other hand, for the He/Ne/Ar-CCl{sub 4}, the scattering data unravelled much deeper potential wells, particularly for certain configurations of the interacting partners. The experimental data can be properly reproduced only including a shifting of the repulsive wall at shorter distances, accompanied by an increased role of the dispersion attraction, and an additional short-range stabilization component. To put these findings on a firmer ground, we performed, for selected geometries of the interacting complexes, accurate theoretical calculations aimed to evaluate the intermolecular interaction and the effects of the complex formation on the electron charge density of the constituting moieties. It was thus ascertained that the adjustments of the potential suggested by the analysis of the experiments actually reflect two chemically meaningful contributions, namely, a stabilizing interaction arising from the anisotropy of the charge distribution around the Cl atom in CCl{sub 4} and a stereospecific electron transfer that occurs at the intermolecular distances mainly probed by the experiments. Our model calculations suggest that the largest effect is for the vertex geometry of CCl{sub 4} while other geometries appear to play a minor to negligible role.« less
NASA Astrophysics Data System (ADS)
Kardynal, Beata; Xi, Lifei; Salim, Teddy; Borghardt, Sven; Stoica, Toma; Lam, Yeng Ming
2015-03-01
Mixed organic-inorganic hybrid perovskites MAX-PbY2(X,Y =I, Br,Cl) have been demonstrated as very attractive materials for absorbers of solar cells and active layers of light emitting diodes and optically driven lasers. The bandgap of the perovskites can be tuned by mixing halogen atoms in different ratios. In this presentation we study mixed MAX-PbY2(X,Y =I, Br, Cl) particles synthesized directly in protective polymer matrices as light emitters. Both, time integrated and time resolved photoluminescence have been used to study the materials. So synthesized MAX-PbX2 are very stable when measured at room temperature and in air with radiative recombination of photogenerated carriers as the main decay path. In contrast, MAX-PbY2 with mixed halogen atoms display luminescence from sub-bandgap states which saturate at higher excitation levels. The density of these states depends on the used polymer matrix and increases upon illumination. We further compare the MAX-PbY2 synthesized in polymers and as films and show that these states are inherent to the material rather than its microstructure. This works has been supported by EU NWs4LIGHT grant.
El Gamal, Abrahim; Agarwal, Vinayak; Diethelm, Stefan; Rahman, Imran; Schorn, Michelle A.; Sneed, Jennifer M.; Louie, Gordon V.; Whalen, Kristen E.; Mincer, Tracy J.; Noel, Joseph P.; Paul, Valerie J.; Moore, Bradley S.
2016-01-01
Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes. PMID:27001835
Scientific Assessment of Stratospheric Ozone: 1989, volume 2. Appendix: AFEAS Report
NASA Technical Reports Server (NTRS)
1990-01-01
The results are presented of the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), which was organized to evaluate the potential effects on the environment of alternate compounds targeted to replace fully halogenated chlorofluorocarbons (CFCs). All relevant current scientific information to determine the environmental acceptability of the alternative fluorocarbons. Special emphasis was placed on: the potential of the compounds to affect stratospheric ozone; their potential to affect tropospheric ozone; their potential to contribute to model calculated global warming; the atmospheric degradation mechanisms of the compounds, in order to identify their products; and the potential environmental effects of the decomposition products. The alternative compounds to be studied were hydrofluorocarbons (HFCs) with one or two carbon atoms and one or more each of fluorine and hydrogen.
Elucidation of the iron(IV)–oxo intermediate in the non-haem iron halogenase SyrB2
Wong, Shaun D.; Srnec, Martin; Matthews, Megan L.; Liu, Lei V.; Kwak, Yeonju; Park, Kiyoung; Bell, Caleb B.; Alp, E. Ercan; Zhao, Jiyong; Yoda, Yoshitaka; Kitao, Shinji; Seto, Makoto; Krebs, Carsten; Bollinger, J. Martin; Solomon, Edward I.
2013-01-01
SUMMARY Mononuclear non-haem iron (NHFe) enzymes catalyse a wide variety of oxidative reactions including halogenation, hydroxylation, ring closure, desaturation, and aromatic ring cleavage. These are highly important for mammalian somatic processes such as phenylalanine metabolism, production of neurotransmitters, hypoxic response, and the biosynthesis of natural products.1–3 The key reactive intermediate in the catalytic cycles of these enzymes is an S = 2 FeIV=O species, which has been trapped for a number of NHFe enzymes4–8 including the halogenase SyrB2, the subject of this study. Computational studies to understand the reactivity of the enzymatic NHFe FeIV=O intermediate9–13 are limited in applicability due to the paucity of experimental knowledge regarding its geometric and electronic structures, which determine its reactivity. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes of Fe on the nature of the FeIV=O active site.14–16 Here we present the first NRVS structural characterisation of the reactive FeIV=O intermediate of a NHFe enzyme. This FeIV=O intermediate reacts via an initial H-atom abstraction step, with its subsquent halogenation (native) or hydroxylation (non-native) rebound reactivity being dependent on the substrate.17 A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate is able to direct the orientation of the FeIV=O intermediate, presenting specific frontier molecular orbitals (FMOs) which can activate the selective halogenation versus hydroxylation reactivity. PMID:23868262
Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W
2006-12-05
We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.
Protostellar and cometary detections of organohalogens
NASA Astrophysics Data System (ADS)
Fayolle, Edith C.; Öberg, Karin I.; Jørgensen, Jes K.; Altwegg, Kathrin; Calcutt, Hannah; Müller, Holger S. P.; Rubin, Martin; van der Wiel, Matthijs H. D.; Bjerkeli, Per; Bourke, Tyler L.; Coutens, Audrey; van Dishoeck, Ewine F.; Drozdovskaya, Maria N.; Garrod, Robin T.; Ligterink, Niels F. W.; Persson, Magnus V.; Wampfler, Susanne F.; Rosina Team
2017-10-01
Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
Electron transfer of plurimodified DNA SAMs.
Rospigliosi, Alessandro; Ehlich, Rudolf; Hoerber, Heinrich; Middelberg, Anton; Moggridge, Geoff
2007-07-17
An STM-based current-voltage (I/V) investigation of deoxyribonucleic acid (DNA) 18 base pair (bp) oligonucleotide monolayers on gold is presented. Three bases of each of the immobilized and complementary strands were modified with either iodine or phenylethylene moieties. The oligonucleotides were immobilized on template stripped gold (tsg) surfaces and characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM imaging showed that monolayers of the expected height were formed. A comparative study of normal, halogenated, and phenyl-modified DNA was made with the STM in tunneling spectroscopy (TS) mode. I/V spectroscopic measurements in the range +/-250 mV on both single- and double-stranded (ds) DNA monolayers (modified and unmodified) showed that for negative substrate bias (U(sub)) electron transfer is more efficient through a phenyl-modified monolayer than through normal or halogenated DNA. This effect was particularly clear below a threshold bias of -100 mV. For positive U(sub), unmodified ds DNA was found to conduct slightly better than the modified strands. This is presumably caused by greater order in the unmodified versus modified DNA monolayers. Modifications on the immobilized (thiolated) strand seem to improve electron transport through the DNA monolayer more than modifications on the complementary (not surface-bound) strand.
NASA Astrophysics Data System (ADS)
Mohebpour, Mohammad Ali; Saffari, Mohaddeseh; Soleimani, Hamid Rahimpour; Tagani, Meysam Bagheri
2018-03-01
To be able to increase the efficiency of perovskite solar cells which is one of the most substantial challenges ahead in photovoltaic industry, the structural and optical properties of perovskite CH3NH3PbI3-xBrx for values x = 1-3 have been studied employing density functional theory (DFT). Using the optical constants extracted from DFT calculations, the amount of light reflectance and ideal current density of a simulated single-junction perovskite solar cell have been investigated. The results of DFT calculations indicate that adding halogen bromide to CH3NH3PbI3 compound causes the relocation of energy bands in band structure which its consequence is increasing the bandgap. In addition, the effect of increasing Br in this structure can be seen as a reduction in lattice constant, refractive index, extinction and absorption coefficient. As well, results of the simulation suggest a significant current density enhancement as much as 22% can be achieved by an optimized array of Platinum nanoparticles that is remarkable. This plan is able to be a prelude for accomplishment of solar cells with higher energy conversion efficiency.
Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J; Xia, Menghang; Attene-Ramos, Matias S
2017-08-01
Haloacetamides (HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S N 2 reaction mechanism. Toxicity of the monohalogenated HAMs (iodoacetamide, IAM; bromoacetamide, BAM; or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints. Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM>BAM>CAM for Rad51, and BAM≈IAM>CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM. Copyright © 2017. Published by Elsevier B.V.
Pan, Yang; Zhang, Xiangru
2013-02-05
Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens...
A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry.
Thornton, Joel A; Kercher, James P; Riedel, Theran P; Wagner, Nicholas L; Cozic, Julie; Holloway, John S; Dubé, William P; Wolfe, Glenn M; Quinn, Patricia K; Middlebrook, Ann M; Alexander, Becky; Brown, Steven S
2010-03-11
Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.
Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model
NASA Astrophysics Data System (ADS)
Gantt, B.; Sarwar, G.
2017-12-01
In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen chemistry in CMAQ and its impacts on air quality.
Lim, Seung Joo; Fox, Peter
2014-02-01
The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.
Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue
2016-09-01
Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.
Regina, Giuseppe La; Coluccia, Antonio; Piscitelli, Francesco; Bergamini, Alberto; Sinistro, Anna; Cavazza, Antonella; Maga, Giovanni; Samuele, Alberta; Zanoli, Samantha; Novellino, Ettore; Artico, Marino; Silvestri, Romano
2007-10-04
Indolyl aryl sulfones bearing the 4,5-difluoro (10) or 5-chloro-4-fluoro (16) substitution pattern at the indole ring were potent inhibitors of HIV-1 WT and the NNRTI-resistant strains Y181C and K103N-Y181C. These compounds were highly effective against the 112 and the AB1 strains in lymphocytes and inhibited at nanomolar concentration the multiplication of the IIIBBa-L strain in macrophages. Compound 16 was exceptionally potent against RT WT and RTs carrying the K103N, Y181I, and L100I mutations.
Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization
NASA Astrophysics Data System (ADS)
Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu
2017-06-01
The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.
La Regina, Giuseppe; Edler, Michael C; Brancale, Andrea; Kandil, Sahar; Coluccia, Antonio; Piscitelli, Francesco; Hamel, Ernest; De Martino, Gabriella; Matesanz, Ruth; Díaz, José Fernando; Scovassi, Anna Ivana; Prosperi, Ennio; Lavecchia, Antonio; Novellino, Ettore; Artico, Marino; Silvestri, Romano
2007-06-14
The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to beta-tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.
Supramolecular amplification of amyloid self-assembly by iodination
NASA Astrophysics Data System (ADS)
Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo
2015-06-01
Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect
NASA Astrophysics Data System (ADS)
Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui
2018-05-01
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
Wu, Meng; Shi, Jun-Jie; Zhang, Min; Ding, Yi-Min; Wang, Hui; Cen, Yu-Lang; Guo, Wen-Hui; Pan, Shu-Hang; Zhu, Yao-Hui
2018-05-18
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 10 3 cm 2 V -1 s -1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
Disposition of toxic PCB congeners in snapping turtle eggs: expressed as toxic equivalents of TCDD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, A.M.; Stone, W.B.; Olafsson, P.G.
1987-11-01
Studies of snapping turtles, taken from the region of the Upper Hudson River, in New York State, revealed exceedingly high levels of PCBs in the adipose tissue. There is evidence to suggest that large reserves of fat provide protection against chlorinated hydrocarbon toxicity. Such storage may protect snapping turtle eggs from disposition of toxic PCB congeners and account for the apparent absence of reports regarding detrimental effects on the hatchability of eggs from turtles living in the vicinity of the upper Hudson River. The present study was undertaken to determine if indeed these eggs are protected against disposition of toxicmore » PCB congeners by the presence of large reserves of fat. Although tissue volumes play an important role in determining the initial site of disposition, the major factor controlling the elimination of these compounds involves metabolism. For simple halogenated benzenes as well as for more complex halogenated biphenyls, oxidative metabolism catalyzed by P-448, occurs primarily at the site of two adjacent unsubstituted carbon atoms via arene oxide formation leading to the formation of water soluble metabolites. Toxicological studies have demonstrated that the most toxic PCB congeners, isosteriomers of tetrachlorodibenzo-p-dioxin (TCDD), require no metabolic activation. These compounds have chlorine atoms in the meta and para positions of both rings. It may be concluded that the structures of PCB congeners and isomers which favor induction of cytochrome P-448 are also those which are toxic and resist metabolism. It is the objective of the present study to determine if the heavy fat bodies of the female turtle provide a sufficiently large sink to retain the toxic congeners and prevent their incorporation into the eggs.« less
Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts
NASA Astrophysics Data System (ADS)
Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.
2013-09-01
Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga
2015-06-28
In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less
MEMBRANES FOR DRINKING WATER TREATMENT
Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. One of the most promising methods for halogenated by-product control includes removal of precursors before ...
Gonsior, Michael; Schmitt-Kopplin, Philippe; Stavklint, Helena; Richardson, Susan D; Hertkorn, Norbert; Bastviken, David
2014-11-04
The changes in dissolved organic matter (DOM) throughout the treatment processes in a drinking water treatment plant in Sweden and the formation of disinfection byproducts (DBPs) were evaluated by using ultra-high-resolution mass spectrometry (resolution of ∼500,000 at m/z 400) and nuclear magnetic resonance (NMR). Mass spectrometric results revealed that flocculation induced substantial changes in the DOM and caused quantitative removal of DOM constituents that usually are associated with DBP formation. While half of the chromophoric DOM (CDOM) was removed by flocculation, ∼4-5 mg L(-1) total organic carbon remained in the finished water. A conservative approach revealed the formation of ∼800 mass spectrometry ions with unambiguous molecular formula assignments that contained at least one halogen atom. These molecules likely represented new DBPs, which could not be prevented by the flocculation process. The most abundant m/z peaks, associated with formed DBPs, could be assigned to C5HO3Cl3, C5HO3Cl2Br, and C5HO3ClBr2 using isotope simulation patterns. Other halogen-containing formulas suggested the presence of halogenated polyphenolic and aromatic acid-type structures, which was supported by possible structures that matched the lower molecular mass range (maximum of 10 carbon atoms) of these DBPs. 1H NMR before and after disinfection revealed an ∼2% change in the overall 1H NMR signals supporting a significant change in the DOM caused by disinfection. This study underlines the fact that a large and increasing number of people are exposed to a very diverse pool of organohalogens through water, by both drinking and uptake through the skin upon contact. Nontarget analytical approaches are indispensable for revealing the magnitude of this exposure and to test alternative ways to reduce it.
Zhao, Ru-Fang; Yu, Le; Zhou, Fu-Qiang; Li, Jin-Feng; Yin, Bing
2017-10-11
A combined ab initio and DFT study is performed in this work to explore the superhalogen properties of polynuclear structures based on the ligands of -OH, -OOH and -OF. According to high-level CCSD(T) results, all the structures here are superhalogens whose properties are superior to the corresponding mononuclear ones. Although inferior to similar structures based on F ligands, some of the superhalogens here are capable of transcending the traditional ones based on Cl atoms. Therefore the superhalogen properties of the anions here are still promising and they have an important advantage of high safety, which is crucial for practical applications. An increased degree of structural versatility is imposed by these non-halogen ligands because of the various ways in which they connect the central atoms and their multiple orientations. It is important that this increased versatility will bring new factors, e.g., the larger spatial extent of the whole cluster and the existence of intra-molecular hydrogen bonds, which should favour high VDE values. These factors are not available in traditional halogen-based systems and they may play an important role in the future search for novel superhalogens. (HF + MP2)/2, ωB97XD as well as M06-2X are capable of providing accurate VDE values, close to the CCSD(T) results, and their absolute errors are even lower than that of the OVGF. Due to the good balance between the accuracy and efficiency, these methods could provide reliable predictions on large systems which cannot be treated with CCSD(T) or even with the OVGF. Balanced distribution of the extra electron, between the terminal and bridging ligands, is also shown to be favourable to realize a high VDE value.
40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1) An...
Mayer, S.W.
1962-11-13
This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)
The halogen bond: Nature and applications
NASA Astrophysics Data System (ADS)
Costa, Paulo J.
2017-10-01
The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.
Botsali, Murat Selim; Kuşgöz, Adem; Altintaş, Subutay Han; Ülker, Hayriye Esra; Kiliç, Serdar; Başak, Feridun; Ülker, Mustafa
2014-01-01
The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) monomers from resin-modified glass ionomer cement (RMGIC) and compomers cured with halogen and light-emitting diode (LED) light-curing units (LCUs). The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100) and two compomers (Dyract Extra and Twinkystar) were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells' viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P < 0.05) when cured with a halogen LCU. All material-LCU combinations decreased the fibroblast cells' viability more than the control group (P < 0.01), except for Dyract Extra cured with a halogen LCU (P > 0.05). Curing with the LED LCU decreased the cells' viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells' viability more than the LED LCU. PMID:24592149
NASA Astrophysics Data System (ADS)
Rust, H.-P.; König, T.; Simon, G. H.; Nowicki, M.; Simic-Milosevic, V.; Thielsch, G.; Heyde, M.; Freund, H.-J.
2009-11-01
Here, we present a microevaporator setup for single adatom deposition at low temperature, which is a prerequisite for most single atom studies with scanning probe techniques. The construction of the microevaporator is based on the tungsten filament of a modified halogen lamp, covered with the required adsorbate. Very stable evaporation conditions were obtained, which were controlled by the filament current. The installation of this microevaporator on a manipulator enabled its transportation directly to the sample at the microscope kept at 5 K. In this way, the controlled deposition of Li onto Ag(100), Li, Pd, and Au onto MgO/Ag(001) as well as Au onto alumina/NiAl(110) at low temperature has been performed. The obtained images recorded after the deposition show the presence of single Li/Au atoms on the sample surfaces as a prove for successful dispersion of single atoms onto the sample surface using this technique.
Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires
NASA Astrophysics Data System (ADS)
Zuluaga, Sebastian; Lin, Junhao; Suenaga, Kazu; Pantelides, Sokrates T.
2018-07-01
While the exfoliation of almost all layered materials results in a monolayer with the same atomic geometry as its bulk counterpart, the exfoliation of PdSe2 results in a monolayer with a different atomic geometry and a new stoichiometry, Pd2Se3, which is a fusion of two PdSe2 monolayers mediated by Se emission. Here we first report first-principles calculations of lateral junctions between a PdSe2 bilayer and a Pd2Se3 monolayer. We find that, while several distinct junction geometries are possible, they all exhibit empty interface states below the conduction band. As a result, light n-type doping of either or both sides, e.g. by halogen atoms replacing Se atoms, leads to a remotely-doped interface, i.e. a 1D conducting nanowire that runs along the junction, in between the two semiconductors. We have fabricated such junctions inside a scanning transmission electron microscope (STEM), but doping and transport measurements are not currently practical.
Synthesis and Antiviral Evaluation of Pyrazofurin Analogues
1990-06-19
heteronuclear coupling experiment performed on 22 showed that the carbon atom at 107.18 ppm was bonded to a hydrogen. The chemical shift for this carbon is...Treatment of 33 with n-butyllithium resulted in a 1,2-elimination to a bromoalkyne intermediate that then underwent metal -halogen exchange to the terminal... alkyne anion that was trapped 19 with methyl chloroformate to give 30. Reaction of 30 with 10, which was generated as needed from l-acetamido-2,5
Designing safer chemicals: Predicting the rates of metabolism of halogenated alkanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, H.; Anders, M.W.; Higgins, L.
1995-11-21
A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts that rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies ({Delta}H{sub act}) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,1,2,2-tetrachloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: (rate, human CYP2E1) = 44.99 - 1.79 ({Delta}H{sub act}), r{sup 2} = 0.86; In (rate, human Cyp2E1)= 46399 -1.77 ({Delta}H{sub act}), r{sup 2} = 0.97 (rates are in nmolmore » of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics. 41 refs., 1 fig., 2 tabs.« less
The interaction of mercury with halogenated graphene
NASA Astrophysics Data System (ADS)
Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer
2011-03-01
The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).
Yin, Xihou; Chen, Ying; Zhang, Ling; Wang, Yang; Zabriskie, T. Mark
2010-01-01
Enduracidins (1, 2) and ramoplanin (3) are structurally and functionally closely related lipodepsipeptide antibiotics. They are active against multidrug resistant Gram-positive pathogens, including MRSA. Each peptide contains one chlorinated non-proteinogenic amino acid residue, Cl2-Hpg or Cl-Hpg. To investigate the timing of halogenation, the importance of chlorination on bioactivity and bioavailability of enduracidin, and to probe the substrate specificity and portability of the ramoplanin halogenase, we constructed the mutant strain SfΔ30 in which the enduracidin halogenase gene orf30 had been deleted and complemented it with the ramoplanin counterpart orf20. We also expressed orf20 in the enduracidin wild type producer. Metabolite analysis revealed SfΔ30 produced the novel analogues dideschloroenduracidins A (4) and B (5), while the recombinant strains SfΔ30R20 and SfR20 produced monodeschloroenduracidins A (6) and B (7), and a trichlorinated enduracidin (8), respectively. In addition, orf30 self-complementation yielded the strain SfΔ30E30 which is capable of producing six peptides including 6 and 7. MS/MS analysis positioned the single chlorine atom in 6 at Hpg13 and localized the third chlorine atom in 8 to Hpg11. Biological evaluation of these enduracidin analogues indicated that all retained activity against Staphylococcus aureus. Our findings lay the foundation for further utilization of enduracidin and ramoplanin halogenases in combinatorial biosynthesis. PMID:20353165
NASA Astrophysics Data System (ADS)
Grigorenko, B. L.; Nemukhin, A. V.; Buchachenko, A. A.; Stepanov, N. F.; Umanskii, S. Ya.
1997-03-01
The diatomics-in-molecules (DIM) technique is applied for a description of the low-lying states of the Rg-Hal2 van der Waals complexes correlating with the lowest states of constituent atoms Rg(1S)+Hal(2Pj)+Hal(2Pj). The important feature of this approach is the construction of polyatomic basis functions as products of the Hal2 diatomic eigenstates classified within the Hund "c" scheme and the atomic rare gas wave function. Necessary transformations to the other basis set representations are described, and finally all the matrix elements are expressed in terms of nonrelativistic adiabatic energies of Hal2 and Rg Hal fragments and spin-orbit splitting constant of the halogen atom. Our main concern is to test the DIM-based approximations of different levels taking the He-Cl2 system as an example. Namely, we have compared the results obtained within a hierarchy of approaches: (1) the simplest pairwise potential scheme as a far extreme of the DIM model, (2) the same as (1) but with the different components (Σ and Π) for He-Cl interaction, (3) the accurate DIM technique without spin-orbit terms, and (4) the highest level which takes into account all these contributions. The results have been compared to the other DIM like models as well. The shapes of two-dimensional potential surfaces for the ground (X) and excited (B) states of HeCl2, binding energies De with respect to He+Cl2, stretching and bending vibrational frequencies of the complex, binding energies D0, and spectral shifts for the B←X transition are discussed.
Groen, Cornelis Petrus; Oskam, Ad; Kovács, Attila
2003-02-10
The structure, bonding, and vibrational properties of the mixed MLaX(4) (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes have been studied using the MP2 method in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. From the three characteristic structures, possessing 1- (C(3)(v)), 2- (C(2)(v)), or 3-fold coordination (C(3)(v)) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are stable isomers with close dissociation energies. In general, for the complexes existing of lighter alkali metals and halogens, the bidentate structure corresponds to the global minimum of the potential energy surface, while the heavier analogues favor the tridentate structure. At experimentally relevant temperatures (T > 800 K), however, the isomerization entropy leads to a domination of the bidentate structures over the tridentate forms for all complexes. An important effect of the size of the alkali metal is manifested in the larger stabilities of the K and Cs complexes. The natural atomic charges are in agreement with strong electrostatic interactions in the title complexes. The marginal covalent contributions show a slight increasing trend in the heavier analogues. The calculated vibrational data indicate that infrared spectroscopy may be an effective tool for experimental investigation and characterization of MLaX(4) molecules.
Coutinho, Nayara D; Silva, Valter H C; de Oliveira, Heibbe C B; Camargo, Ademir J; Mundim, Kleber C; Aquilanti, Vincenzo
2015-05-07
The OH + HBr → H2O + Br reaction, prototypical of halogen-atom liberating processes relevant to mechanisms for atmospheric ozone destruction, attracted frequent attention of experimental chemical kinetics: the nature of the unusual reactivity drop from low to high temperatures eluded a variety of theoretical efforts, ranking this one among the most studied four-atom reactions. Here, inspired by oriented molecular-beams experiments, we develop a first-principles stereodynamical approach. Thermalized sets of trajectories, evolving on a multidimensional potential energy surface quantum mechanically generated on-the-fly, provide a map of most visited regions at each temperature. Visualizations of rearrangements of bonds along trajectories and of the role of specific angles of reactants' mutual approach elucidate the mechanistic change from the low kinetic energy regime (where incident reactants reorient to find the propitious alignment leading to reaction) to high temperature (where speed hinders adjustment of directionality and roaming delays reactivity).
NASA Astrophysics Data System (ADS)
Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu
2017-08-01
The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.
Phosphazene membranes for gas separations
Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.
2006-07-11
A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.
Gas discharge headlights and visibility of coloured road signs.
Venkatachalam, Kannan; Smith, George
2000-01-01
BACKGROUND: Automotive headlamps mostly use the tungsten halogen bulb but several years ago a new type of headlamp, the gas discharge bulb, was introduced. Because of the different spectral output of this type of lamp, there has been a suggestion that it may affect the colour recognition and sign conspicuity under night-time conditions. In this study, the visibility of the road signs is used to examine the effect of the gas discharge lamp's spectrum compared with that of the conventional halogen headlamp. METHODS: The spectral output of the lamps and the spectral reflectance of common-coloured road signs were measured using a Spectra-Pritchard spectroradiometer. Using luminous reflectance data, chromaticity co-ordinates and the colorimetric shift of the road signs, when illuminated by gas discharge lamps, were plotted using CIE x,y co-ordinate system. Colour rendering indices of the lamp were calculated using Munsell samples and road signs as proscribed by the CIE Publication. In addition, the visibility index of the road signs was calculated using Adrian's 'Visibility of Target' model. RESULTS: The gas discharge headlamp has more energy in the blue region and less energy in the red region of the spectrum than the halogen headlamp. The general colour rendering index of the gas discharge lamp is higher than that of the halogen lamp. When compared with daylight, all coloured road signs used in this study have less colorimetric shift when illuminated by the gas discharge headlamp than by the halogen headlamp. CONCLUSION: The result indicates that the gas discharge lamp, while having a very different spectrum from daylight or tungsten halogen lamps, should not have a deleterious effect on sign detection or recognition, when compared to daylight or tungsten halogen lamps.
Eustáquio, Alessandra S; McGlinchey, Ryan P; Liu, Yuan; Hazzard, Christopher; Beer, Laura L; Florova, Galina; Alhamadsheh, Mamoun M; Lechner, Anna; Kale, Andrew J; Kobayashi, Yoshihisa; Reynolds, Kevin A; Moore, Bradley S
2009-07-28
Polyketides are among the major classes of bioactive natural products used to treat microbial infections, cancer, and other diseases. Here we describe a pathway to chloroethylmalonyl-CoA as a polyketide synthase building block in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity. S-adenosyl-L-methionine (SAM) is converted to 5'-chloro-5'-deoxyadenosine (5'-ClDA) in a reaction catalyzed by a SAM-dependent chlorinase as previously reported. By using a combination of gene deletions, biochemical analyses, and chemical complementation experiments with putative intermediates, we now provide evidence that 5'-ClDA is converted to chloroethylmalonyl-CoA in a 7-step route via the penultimate intermediate 4-chlorocrotonyl-CoA. Because halogenation often increases the bioactivity of drugs, the availability of a halogenated polyketide building block may be useful in molecular engineering approaches toward polyketide scaffolds.
Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo; Ursini, Maurizio
2013-01-01
In the crystal structure of the title compound, C29H8F16I4O4, short I⋯I and I⋯F contacts, which can be understood as halogen bonds (XBs), represent the strongest intermolecular interactions, consistent with the presence of I and F atoms, and the absence of H atoms, at the periphery of the molecule. In addition, π–π stacking interactions between tetrafluoroiodophenyl (TFIP) groups and five short F⋯F interactions are present. PMID:23634113
Reactions and Spectroscopy of Excited Nitrenes
1992-10-05
eighteen month period is described. In the first project. reactions of halogen amines with excess H or D atams were studied as sources c -,, t, Žd NF and...NC1. The reaction of H /D with nit- rogen trichloride was scaled .;ent and product densities about 100 times greater than those of previous • .-. nts...an investigation of the reaction of NFC1 2 with H atoms. This work was performed with additional support from a second AFOSR sup- ported grant (AFOSR
Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.
1982-10-15
nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly
Halogen-Mediated Conversion of Hydrocarbons to Commodities.
Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier
2017-03-08
Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.
2006-11-01
EFFECTIVENESS OF HALOGEN-BASED DISINFECTANTS AGAINST Acinetobacter baumannii: WOUND CARE AND ENVIROMENTAL DECONTAMINATION James...a standard E. coli comparator, in a novel bacterial culture system that incorporated a three log range of organic growth media concentrations. We...report the highest dilutions of stock disinfectant able to inhibit replication or kill the bacteria , denoted as the maximum inhibitory dilution
METABOLIC FATE OF HALOGENATED DISINFECTION BY-PRODUCTS IN VIVO, AND RELATION TO BIOLOGICAL ACTIVITY
Objectives/Hypotheses: Halogenated by-products of drinking water disinfection are of concern because of uncertainty over their health effects, particularly an increased risk of kidney and bladder cancer and widespread consumption. Due to their abundance relative to other h...
Berger, Sandrine Bittencourt; Cavalli, Vanessa; Martin, Airton Abrahão; Soares, Luis Eduardo Silva; Arruda, Marco Aurelio Zezzi; Brancalion, Marcel Luis; Giannini, Marcelo
2010-08-01
The objective of this study was to evaluate the effects of the combined use of light irradiation (LIR, halogen light, or LED/diode laser) and 35% hydrogen peroxide (35%HP) on human enamel mineral content. The use of high-intensity light has been indicated for acceleration of the rate of chemical bleaching; however, it is not known whether LIR can promote additional effects on enamel surfaces during the bleaching. One hundred enamel samples were obtained from third molars and randomly divided into 10 groups (n = 10). The control group (CG) remained untreated. Three whitening products were used: Whiteness HP Maxx, Pola Office, and Opalescence Xtra. Bleaching consisted of one session, and the products were applied three times to each specimen for 10 min each. The products were subjected, or not, to LIR during treatment with halogen light or LED/diode laser. The mineral concentration of enamel was determined before and after treatments using an FT-Raman spectroscope (FT-RS), and the amount of calcium lost from the bleached enamel surfaces was quantified with an atomic absorption spectrometer (AAS). FT-RS results showed a decreased mineral content after all treatments, with the exception of Pola Office when irradiated with LED/diode laser and the CG. The losses of calcium detected for Pola Office and Opalescence Xtra were similar for the three situations (without or with light irradiations), whereas for Whiteness HP Maxx the lowest calcium loss was detected without LIR. Most of the bleaching treatments investigated, in combination with LIR or not, can reduce the mineral content of enamel surface. LIR increased the calcium loss for Whiteness HP Maxx; no effects were observed for Pola Office and Opalescence Xtra.
Chen, Yishan; Yao, Lifeng
2014-01-01
The ternary complexes X(-) · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2) have been investigated by MP2 calculations to understand the noncovalently electron-withdrawing effects on anion-arene interactions. The results indicate that in binary complexes (1 · X(-)), both weak σ-type and anion-π complexes can be formed for Cl(-) and Br(-), but only anion-π complex can be formed for I(-). Moreover, the hydrogen-bonding complex is the global minimum for all three halides in binary complexes. However, in ternary complexes, anion-π complex become unstable and only σ complex can retain in many cases for Cl(-) and Br(-). Anion-π complex keeps stable only when YF = HF. In contrast with binary complexes, σ complex become the global minimum for Cl(-) and Br(-) in ternary complexes. These changes in binding mode and strength are consistent with the results of covalently electron-withdrawing effects. However, in contrast with the covalently electron-withdrawing substituents, Cl(-) and Br(-) can attack the aromatic carbon atom to form a strong σ complex when the noncovalently electron-withdrawing effect is induced by halogen bonding. The binding behavior for I(-) is different from that for Cl(-) and Br(-) in two aspects. First, the anion-π complex for I(-) can also keep stable when the noncovalent interaction is halogen bonding. Second, the anion-π complex for I(-) is the global minimum when it can retain as a stable structure.
Second-order optical effects in several pyrazolo-quinoline derivatives
NASA Astrophysics Data System (ADS)
Makowska-Janusik, M.; Gondek, E.; Kityk, I. V.; Wisła, J.; Sanetra, J.; Danel, A.
2004-11-01
Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 μm varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities.
Solimannejad, Mohammad; Malekani, Masumeh; Alkorta, Ibon
2010-11-18
MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F(3)CX···HMgH···Y and F(3)CX···Y···HMgH triads (X = Cl, Br; Y = HCN, and HNC) which are connecting with three kinds of unusual weak interactions, namely halogen-hydride, dihydrogen, and σ-hole. To understand the properties of the systems better, the corresponding dyads are also studied. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads were investigated at the MP2/cc-pVTZ computational level. Particular attention is given to parameters such as cooperative energies, cooperative dipole moments, and many-body interaction energies. Those complexes with simultaneous presence of a σ-hole bond and a dihydrogen bond show cooperativity energy ranging between -1.02 and -2.31 kJ mol(-1), whereas those with a halogen-hydride bond and a dihydrogen bond are diminutive, with this energetic effect between 0.1 and 0.63 kJ mol(-1). The electronic properties of the complexes have been analyzed using the molecular electrostatic potential (MEP), the electron density shift maps, and the parameters derived from the atoms in molecules (AIM) methodology.
Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang
2015-03-15
Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.
Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen
2016-10-01
The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of halogen-induced secondary organic aerosol (XOA)
NASA Astrophysics Data System (ADS)
Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas
2013-04-01
Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for bromine with α-pinene. This work was funded by German Research Foundation (DFG) under grants HE 5214/5-1 and ZE792/5-2. References: Cai, X., and Griffin, R. J.: Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms, J. Geophys. Res., 111, D14206/14201-D14206/14214, 2006. Ofner, J. Balzer, N., Buxmann, J., Grothe, H., Schmitt-Kopplin, Ph., Platt, U., and Zetzsch, C., Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms, Atmos. Chem. Phys. Discuss. 12, 2975-3017, 2012.
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.
Oh, Seok-Young; Seo, Yong-Deuk
2016-01-01
The feasibility of using biochar as a sorbent to remove nine halogenated phenols (2,4-dichlorophenol, 2,4-dibromophenol, 2,4-difluorophenol, 2-chlorophenol, 4-chlorophenol, 2-bromophenol, 4-bromophenol, 2-fluorophenol, and 4-fluorophenol) and two pharmaceuticals (triclosan and ibuprofen) from water was examined through a series of batch experiments. Types of biochar, synthesized using various biomasses including fallen leaves, rice straw, corn stalk, used coffee grounds, and biosolids, were evaluated. Compared to granular activated carbon (GAC), most of the biochar samples did not effectively remove halogenated phenols or pharmaceuticals from water. The increase in pH and deprotonation of phenols in biochar systems may be responsible for its ineffectiveness at this task. When pH was maintained at 4 or 7, the sorption capacity of biochar was markedly increased. Considering maximum sorption capacity and properties of sorbents and sorbates, it appears that the sorption capacity of biochar for halogenated phenols is related to the surface area and carbon content of the biochar and the hydrophobicity of halogenated phenols. In the cases of triclosan and ibuprofen, the sorptive capacities of GAC, graphite, and biochars were also significantly affected by pH, according to the point of zero charge (PZC) of sorbents and deprotonation of the pharmaceuticals. Pyrolysis temperature did not affect the sorption capacity of halogenated phenols or pharmaceuticals. Based on the experimental observations, some biochars are good candidates for removal of halogenated phenols, triclosan, and ibuprofen from water and soil.
METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF
Frazer, J.W.
1959-08-18
A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece)
Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H.
2015-01-01
The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age ‘Minoan’ eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth’s ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions. PMID:26206616
Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece).
Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H
2015-07-24
The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age 'Minoan' eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth's ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions.
Process for functionalizing alkanes
Bergman, Robert G.; Janowicz, Andrew H.; Periana-Pillai, Roy A.
1985-01-01
Process for functionalizing saturated hydrocarbons selectively in the terminal position comprising: (a) reacting said saturated hydrocarbons of the formula: RH where: H represents a hydrogen atom, and R represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRhPMe.sub.3 H.sub.2 where: Cp represents a pentamethylated cyclopentadienyl radical, Rh represents a rhodium atom, P represents a phosphorous atom, Me represents a methyl group, H represents a hydrogen atom, in the presence of ultraviolet radiation at a temperature maintained at about -60.degree. to -17.degree. C. to form a hydridoalkyl complex of the formula: CpRhPMe.sub.3 RH (b) reacting said hydridoalkyl complex with a haloform of the formula: CHX.sub.3 where: X represents a bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e. ambient) to form a functional haloalkyl compound.
Polymer blend compositions and methods of preparation
Naskar, Amit K.
2016-09-27
A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.
Phosphorus-containing nucleophiles in reactions with polyfluorinated organic compounds
NASA Astrophysics Data System (ADS)
Furin, Georgii G.
1993-03-01
The review presents a compilation of new expelimental data on the reactions of phosphorus-containing nucleophiles [triphenylphosphine, trialkylphosphines, trialkyl phosphites, phosphorus tris(diethylamide), etc.] with perfluorinated olefins and aromatic and heterocyclic compounds, leading to substances both with and without a phosphorus atom. It is shown that the interaction of phosphorus tris(diethylamide) and trialkylphosphines with organic polyfluoro-compounds and perfluoroolefins leads to the formation of phosphoranes, the decomposition of which is accompanied by the generation of aryl and alkenyl anions. The reactions of these anions with C-electrophiles and compounds containing mobile halogen atoms are examined. In addition, the pathways in the Arbuzov reaction involving a series of unsaturated perfluorinated compounds are analysed. Possible applications of these reactions in organic synthesis are demonstrated. The bibliography includes 120 references.
Halogenated solvent remediation
Sorenson, Kent S.
2004-08-31
Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.
Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo
2016-11-14
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.
Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin
2017-08-01
The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Process for removal of hydrogen halides or halogens from incinerator gas
Huang, Hann S.; Sather, Norman F.
1988-01-01
A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.
Process for removal of hydrogen halides or halogens from incinerator gas
Huang, H.S.; Sather, N.F.
1987-08-21
A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.
D'Agostini, F; Caimo, A; De Filippi, S; De Flora, S
1999-07-01
Previous studies have shown that the light emitted by halogen tungsten lamps contains UV radiation in the UV-A, UV-B and UV-C regions, induces mutations and irreparable DNA damage in bacteria, enhances the frequency of micronuclei in cultured human lymphocytes and is potently carcinogenic to the skin of hairless mice. The present study showed that the light emitted by an uncovered, traditional halogen lamp induces a significant, dose-related and time-related increase not only in micronuclei but also in chromosome-type aberrations, such as breaks, and even more in chromatid-type aberrations, such as isochromatid breaks, exchanges and isochromatid/chromatid interchanges, all including gaps or not, in cultured human lymphocytes. All these genotoxic effects were completely prevented by shielding the same lamp with a silica glass cover, blocking UV radiation. A new model of halogen lamp, having the quartz bulb treated in order to reduce the output of UV radiation, was considerably less genotoxic than the uncovered halogen lamp, yet induction of chromosomal alterations was observed at high illuminance levels.
40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for the... substance may cause internal organ effects (kidney and blood). The requirements of this section do not apply... processors of this substance as specified in § 721.125 (a), (b), (c), (d), (f), (g), (h), and (i). (2...
Inactivation of Ichthyophonus spores using sodium hypochlorite and polyvinyl pyrrolidone iodine
Hershberger, P.K.; Pacheco, C.A.; Gregg, J.L.
2008-01-01
Chlorine and iodine solutions were effective at inactivating Ichthyophonus spores in vitro. Inactivation in sea water increased directly with halogen concentration and exposure duration, with significant differences (P < 0.05) from controls occurring at all chlorine concentrations and exposure durations tested (1.5-13.3 ppm for 1-60 min) and at most iodine concentrations and exposure durations tested (1.2 ppm for 60 min and 5.9-10.7 ppm for 1-60 min). However, 10-fold reductions in spore viability occurred only after exposure to halogen solutions at higher concentrations and/or longer durations (13 ppm total chlorine for 1-60 min, 5.9 ppm total iodine for 60 min, and 10.7 ppm total iodine for 1-60 min). Inactivation efficacy was greater when halogen solutions were prepared in fresh water, presumably because of combined effects of halogen-induced inactivation and general spore instability in fresh water. The results have practical implications for disinfection and biocontainment in research laboratories and other facilities that handle live Ichthyophonus cultures and/or infected fish.
Compositions for labeling .beta.-amyloid plaques and neurofibrillary tangles
Barrio, Jorge R [Agoura Hills, CA; Petric, Andrej [Ljubljana, SI; Satyamurthy, Nagichettiar [Los Angeles, CA; Small, Gary W [Los Angeles, CA; Cole, Gregory M [Santa Monica, CA; Huang, Sung-Cheng [Sherman Oaks, CA
2008-03-11
Compositions useful for labeling .beta.-amyloid plaques and neurofibrillary tangles are provided. The compositions comprises compounds of formula (I): ##STR00001## wherein R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2-alkyl, --C.dbd.C(CN).sub.2-alkylenyl-R.sub.4, ##STR00002## wherein R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5 is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 and --C(O)NH.sub.2; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S; and R.sub.2 is selected from the group consisting of alkyl and alkylenyl-R.sub.10 and R.sub.3 is alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal, and spiperone-3-yl, or R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl, and further wherein one or more of the hydrogen, halogen or carbon atoms are optionally replaced with a radiolabel.
Methods for labeling .beta.-amyloid plaques and neurofibrillary tangles
Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng
2003-12-09
A method for labeling .beta.-amyloid plaques and neurofibrillary tangles in vivo and in vitro, comprises contacting a compound of formula (I): ##STR1## with mammalian tissue. In formula (I), R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2 -alkyl, --C.dbd.C(CN).sub.2 -alkylenyl-R.sub.4, ##STR2## R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5 is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4 ; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH, --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 ; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S. R.sub.2 and R.sub.3 are each independently selected from the group consisting of alkyl and alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal and spiperone-3-yl. Alternatively, R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl. In the compounds of formula (I), one or more of the hydrogen, halogen or carbon atoms can, optionally, be replaced with a radiolabel.
Methods for labeling .beta.-amyloid plaques and neurofibrillary tangles
Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng
2001-01-01
A method for labeling .beta.-amyloid plaques and neurofibrillary tangles in vivo and in vitro, comprises contacting a compound of formula (I): ##STR1## with mammalian tissue. In formula (I), R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2 -alkyl, --C.dbd.C(CN).sub.2 -alkylenyl-R.sub.4 , ##STR2## R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5, is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4 ; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH , --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 ; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S. R.sub.2 and R.sub.3 are each independently selected from the group consisting of alkyl and alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal and spiperone-3-yl. Alternatively, R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl. In the compounds of formula (I), one or more of the hydrogen, halogen or carbon atoms can, optionally, be replaced with a radiolabel.
NASA Astrophysics Data System (ADS)
Lu, Q.-B.
2013-07-01
This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970-2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of 0.6°C in 1970-2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 7 decades. It is also expected that the global sea level will continue to rise in coming 1 2 decades until the effect of the global temperature recovery dominates over that of the polar O3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.
Pauling Electronegativity On/Off Effects Assessed by 13 C and 29 Si NMR Spectroscopic Analysis.
Benedetti, Michele; De Castro, Federica; Fanizzi, Francesco P
2017-11-27
In carbon and silicon tetrahalide compounds, the experimental 13 C and 29 Si NMR chemical-shift values are known to increase or decrease on increasing the overall sum of the ionic radii of the bonded halides Σ(r h ) (normal and inverse halogen dependence (NHD and IHD, respectively)). Herein, we extrapolate the main factors responsible for such NMR chemical shifts. Intriguingly, we found a characteristic value for the overall sum of the Pauling electronegativities of the bonded halides Σ(χ h ), which works as a triggering factor to determine the transition from the NHD to IHD. Below this Σ(χ h ) value, the chemical shift of the central atom was strictly related to only the Σ(r h ) value, thus producing a NHD trend. Conversely, above this value, the chemical shift of the central atom was dependent on both the Σ(r h ) and Σ(χ h ) values, thus producing a IHD trend. A simple model, in which the effect of the Σ(χ h ) value on 13 C and 29 Si NMR chemical shifts is related to an apparent increase in the Σ(r h ) value, is deduced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Insights into the Nature of Anesthetic-Protein Interactions: An ONIOM Study.
Qiu, Ling; Lin, Jianguo; Bertaccini, Edward J
2015-10-08
Anesthetics have been employed widely to relieve surgical suffering, but their mechanism of action is not yet clear. For over a century, the mechanism of anesthesia was previously thought to be via lipid bilayer interactions. In the present work, a rigorous three-layer ONIOM(M06-2X/6-31+G*:PM6:AMBER) method was utilized to investigate the nature of interactions between several anesthetics and actual protein binding sites. According to the calculated structural features, interaction energies, atomic charges, and electrostatic potential surfaces, the amphiphilic nature of anesthetic-protein interactions was demonstrated for both inhalational and injectable anesthetics. The existence of hydrogen and halogen bonding interactions between anesthetics and proteins was clearly identified, and these interactions served to assist ligand recognition and binding by the protein. Within all complexes of inhalational or injectable anesthetics, the polarization effects play a dominant role over the steric effects and induce a significant asymmetry in the otherwise symmetric atomic charge distributions of the free ligands in vacuo. This study provides new insight into the mechanism of action of general anesthetics in a more rigorous way than previously described. Future rational design of safer anesthetics for an aging and more physiologically vulnerable population will be predicated on this greater understanding of such specific interactions.
NASA Astrophysics Data System (ADS)
Oliveira, Vytor; Cremer, Dieter
2017-08-01
Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.
Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping
2008-01-01
This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.
NASA Astrophysics Data System (ADS)
Tittal, Ram Kumar
2018-03-01
CuCl/TMEDA-promoted halogen atom transfer radical cyclization (HATRC) of dichloroacetic acid 1-(3-methyl-but-2-enyl)-naphthalen-2-yl ester in refluxing DCE gave chlorine containing 7-member lactone 3-Chloro-2-(1-chloro-1-methyl-ethyl)-2,3-dihydro-1H-naphtho[2,1-b]oxepin-4-one via 7-exo trig radical cyclization reaction. The structure of the Lactone was confirmed by X-ray diffraction data.
(2E)-1-(2,6-Dichloro-3-fluoro-phen-yl)-3-phenyl-prop-2-en-1-one.
Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard
2012-04-01
In the title compound, C(15)H(9)Cl(2)FO, the F atom shows positional disorder over two positions, with site-occupancy factors of 0.747 (4) and 0.253 (4). The dihedral angle between the rings is 86.37 (10)°. In the crystal, C-H⋯O contacts connect the mol-ecules into chains along the c axis. The shortest inter-centroid distance between two aromatic systems is 3.6686 (12) Å and is apparent between the halogenated rings.
Carcinogenicity of by-products of disinfection in mouse and rat liver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herren-Freund, S.L.; Pereira, M.A.
1986-11-01
By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either hadmore » no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.« less
Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L
2003-06-01
Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated equilenin derivatives in vitro, we studied the relative ability of the 17beta-hydroxy-4-halogenated equilenin derivatives to induce estrogenic effects in the ovariectomized rat model. The 4-fluoro derivative showed higher activity than 4-chloro and 4-bromo derivatives as demonstrated by inducing higher vaginal cellular differentiation, uterine growth, and mammary gland branching. However, 17beta-hydroxy-4-fluoroequilenin showed a lower estrogenic activity than 17beta-hydroxyequilenin and estradiol, which could be due to alternative pharmacokinetic properties for these compounds. These data suggest that the 4-fluoroequilenin derivatives have promise as alternatives to traditional estrogen replacement therapy due to their similar estrogenic properties with less overall toxicity.
Bhat, Mahima; Poojary, Boja; Kalal, Bhuvanesh Sukhlal; Gurubasavaraja Swamy, Purawarga Matada; Kabilan, Senthamaraikannan; Kumar, Vasantha; Shruthi, Nooji; Alias Anand, Selvam Athavan; Pai, Vinitha Ramanath
2018-05-01
To synthesize a series of new thiazolidinone-pyrazole hybrids (5a-o) and assess their anticancer (in vitro and in vivo) and antimicrobial activities. The compounds 5h (against Ehrlich ascites carcinoma cells), 5e and 5i (against the human breast cancer [MDA-MB231] cell line) exhibited potent anticancer activity. All the compounds except 5g and 5e found to be less toxic for the human dermal fibroblast cells. The effective interactions of the compounds in silico with MDM2 exemplified their inhibitory potency. The derivatives also showed moderate antimicrobial activity. The halogen atoms on various positions of the N-arylamino ring played an advantageous role in elevating the potency of the molecules. Thus, these conjugates could be used as a lead for further optimization to achieve promising therapeutics.
Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P
2015-01-01
A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.
Inorganic Halogen Oxidizer Research
1975-02-26
K. 0. Christe and C. J. Schack, Advances Inorg. Chem. Radiochem. 15. "The NF * Radical Cation. Esr Studies of Radiation Effects in NF„+ Salts...and 25°) in a wide variety of polar and nonpolar solvents, such as aqueous solutions, alcohols, ketones , esters, ethers , and aromatic and halogenated... Studies of Radiation Effects in NF, Salts = 4 S. P. Mishra, M. C R. Symons, K. 0. Christe, R. D. Wilson and R. I. Wagner Received. . . August .9
Determination of heavy metals and halogens in plastics from electric and electronic waste.
Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos
2009-10-01
The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.
A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Schneider, Holger; Du, Hui; Kelley, Tracy; Leitner, Klaus; ter Maat, Johan; Scordilis-Kelley, Chariclea; Sanchez-Carrera, Roel; Kovalev, Igor; Mudalige, Anoma; Kulisch, Jörn; Safont-Sempere, Marina M.; Hartmann, Pascal; Weiβ, Thomas; Schneider, Ling; Hinrichsen, Bernd
2017-10-01
Solid electrolytes are the core components for many next generation lithium battery concepts such as all-solid-state batteries (ASSB) or batteries based on metallic lithium anodes protected by a ceramic or composite passivation layer. Therefore, the search for new solid state Li-ion conductors with superior properties and improved electrochemical stabilities remains of high interest. In this work, the synthesis of a new class of silicon-containing, sulfide-based lithium-ion conductors is reported. Very good conductivities of up to ∼2.0-3.0·10-3 S/cm could be achieved for compositions such as Li22SiP2S18, among the highest for silicon sulfide containing materials. Based on the recorded powder XRD diffraction patterns and simulations it could be confirmed that they constitute novel members of the argyrodite family of sulfide lithium-ion conductors. The cubic high-temperature modification of such argyrodites with high lithium-ion conductivity can therefore be stabilized by implementation of silicon into the lattice, while additional doping with halogen atoms is not necessary.
NASA Astrophysics Data System (ADS)
González-Vera, Juan A.; Medina, Rocío A.; Martín-Fontecha, Mar; Gonzalez, Angel; de La Fuente, Tania; Vázquez-Villa, Henar; García-Cárceles, Javier; Botta, Joaquín; McCormick, Peter J.; Benhamú, Bellinda; Pardo, Leonardo; López-Rodríguez, María L.
2017-01-01
Serotonin 5-HT6 receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer’s disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT6 receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT6 receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4. In vitro pharmacological characterization of 5-HT6 receptor antagonist 7 indicates high affinity and selectivity over a panel of receptors including 5-HT2B subtype and hERG channel, which suggests no major cardiac issues. Compound 7 exhibited in vivo procognitive activity (1 mg/kg, ip) in the novel object recognition task as a model of memory deficit.
π-Extended triptycene-based material for capillary gas chromatographic separations.
Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin
2017-10-02
Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.
Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.
Abusallout, Ibrahim; Hua, Guanghui
2016-09-01
The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse. Published by Elsevier Ltd.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua
2018-02-01
The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn; Wu, Jiang; Kirillov, Alexander M.
2014-05-01
A series of six coordination compounds ([Zn(5-Brnic){sub 2}]·1.5H{sub 2}O){sub n} (1), [Cd(5-Brnic){sub 2}]{sub n} (2), [Co(5-Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (3), [Zn(5-Brnic){sub 2}(H{sub 2}biim)]{sub n} (4), ([Cd(5-Brnic){sub 2}(phen)]·H{sub 2}O){sub n} (5), and [Pb(5-Brnic){sub 2}(phen)] (6) have been generated by the hydrothermal method from the metal(II) nitrates, 5-bromonicotinic acid (5-BrnicH), and an optional ancillary 1,10-phenanthroline (phen) or 2,2′-biimidazole (H{sub 2}biim) ligand. All the products 1–6 have been characterized by IR spectroscopy, elemental, thermal, powder and single-crystal X-ray diffraction analyses. Their 5-bromonicotinate-driven structures vary from the 3D metal-organic framework with the seh-3,5-P21/c topology (in 2) and the 2D interdigitated layers with themore » sql topology (in 1 and 3), to the 1D chains (in 4 and 5) and the 0D discrete monomers (in 6). The 5-bromonicotinate moiety acts as a versatile building block and its tethered bromine atom plays a key role in reinforcing and extending the structures into diverse 3D supramolecular networks via the various halogen bonding Br⋯O, Br⋯Br, and Br⋯π interactions, as well as the N–H⋯O and C–H⋯O hydrogen bonds. The obtained results demonstrate a useful guideline toward engineering the supramolecular architectures in the coordination network assembly under the influence of various halogen bonding interactions. The luminescent (for 1, 2, 4, 5, and 6) and magnetic (for 3) properties have also been studied and discussed in detail. - Graphical abstract: Six coordination compounds driven by 5-bromonicotinic acid have been generated and structurally characterized, revealing diverse metal-organic networks that are further reinforced and extended via various halogen bonding interactions. - Highlights: • 5-Bromonicotinic acid is a versatile ligand for Zn, Cd, Co and Pb derivatives. • Careful selection of co-ligands and metals resulted in different network structures. • Halogen and hydrogen bonding interactions lead to various supramolecular networks. • Luminescent and magnetic properties were studied and discussed in detail.« less
Treatment System for Removing Halogenated Compounds from Contaminated Sources
NASA Technical Reports Server (NTRS)
Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)
2015-01-01
A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.
Halogenated boron-dipyrromethenes: synthesis, properties and applications.
Lakshmi, Vellanki; Rao, Malakalapalli Rajeswara; Ravikanth, Mangalampalli
2015-03-07
Boron-dipyrromethene dyes (BODIPYs) containing halogens at pyrrole carbons are very useful synthons for the synthesis of a variety of BOIDPYs for a wide range of applications. Among the functional groups, halogens are the functional groups which can be regiospecifically introduced at any desired pyrrole carbon of the BODIPY framework by adopting appropriate synthetic strategies. The halogenated BODIPYs can undergo facile nucleophilic substitution reactions to prepare several interesting BODIPY based compounds. This review describes the synthesis, properties and potential applications of halogenated BODIPYs containing one to six halogens at the pyrrole carbons of the BODIPY core as well as properties and applications of some of the substituted BODIPYs derived from halogenated BODIPYs.
Godfrey, Amy; Hooser, Blair; Abdelmoneim, Ahmed; Horzmann, Katharine A; Freemanc, Jennifer L; Sepúlveda, Maria S
2017-12-01
Endocrine disrupting chemicals (EDCs) can alter thyroid function and adversely affect growth and development. Halogenated compounds, such as perfluorinated chemicals commonly used in food packaging, and brominated flame retardants used in a broad range of products from clothing to electronics, can act as thyroid disruptors. Due to the adverse effects of these compounds, there is a need for the development of safer next generation chemicals. The objective of this study was to test the thyroid disruption potential of old use and next generation halogenated chemicals. Zebrafish embryos were exposed to three old use compounds, perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and two next generation chemicals, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxdie (DOPO) and perfluorobutyric acid (PFBA). Sub-chronic (0-6days post fertilization (dpf)) and chronic (0-28dpf) exposures were conducted at 1% of the concentration known to kill 50% (LC 50 ) of the population. Changes in the surface area of the swim bladder as well as in expression levels of genes involved in the thyroid control of swim bladder inflation were measured. At 6dpf, zebrafish exposed to all halogenated chemicals, both old use and next generation, had smaller posterior swim bladder and increased expression in the gene encoding thyroid peroxidase, tpo and the genes encoding two swim bladder surfactant proteins, sp-a and sp-c. These results mirrored the effects of thyroid hormone-exposed positive controls. Fish exposed to a TPO inhibitor (methimazole, MMI) had a decrease in tpo expression levels at 28dpf. Effects on the anterior swim bladder at 28dpf, after exposure to MMI as well as both old and new halogenated chemicals, were the same, i.e., absence of SB in ∼50% of fish, which were also of smaller body size. Overall, our results suggest thyroid disruption by the halogenated compounds tested via the swim bladder surfactant system. However, with the exception of TBBPA and TDCPP, the concentrations tested (∼5-137ppm) are not likely to be found in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L
2017-03-01
Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.
A new class of halogen bonds that avoids the σ-hole
NASA Astrophysics Data System (ADS)
Zhang, Yu; Ma, Ning; Wang, Weizhou
2012-04-01
A new class of halogen bonds of the type X = Hal⋯Y has been investigated by using the density functional theory calculations. The strength of this new class of halogen bonds is in the range of 90-120 kcal/mol, which is greatly larger than that of the conventional halogen bond of the type X-Hal⋯Y. The geometry of this new class of halogen bonds is not determined by the halogen's positive σ-hole. Natural bond orbital analysis shows it is the n → π∗ interaction that determines the geometry of this new class of halogen bonds. Experimental results are in good agreement with the theoretical predictions.
Yao, Qiushi; Fang, Hong; Deng, Kaiming; Kan, Erjun; Jena, Puru
2016-10-20
Organic-inorganic hybrid perovskites, well known for their potential as the next generation solar cells, have found another niche application in optoelectronics. This was demonstrated in a recent experiment (L. Dou, et al., Science, 2015, 349, 1518) on atomically thin (C 4 H 9 NH 3 ) 2 PbBr 4 , where, due to quantum confinement, the bandgap and the exciton binding energy are enhanced over their corresponding values in the three-dimensional bulk phase. Using density functional theory we show that when halogen atoms (e.g. I) are sequentially replaced with superhalogen molecules (e.g. BH 4 ) the bandgap and exciton binding energy increase monotonically with the superhalogen content with the exciton binding energy of (C 4 H 9 NH 3 ) 2 Pb(BH 4 ) 4 approaching the value in monolayer black phosphorus. Lead-free admixtures (C 4 H 9 NH 3 ) 2 MI 4-x (BH 4 ) x (M = Sn and Ge; x = 0-4) also show a similar trend. Thus, a combination of quantum confinement and compositional change can be used as an effective strategy to tailor the bandgap and the exciton binding energy of two-dimensional hybrid perovskites, making them promising candidates for optoelectronic applications.
Feng, Yong; Lee, Po-Heng; Wu, Deli; Shih, Kaimin
2017-02-21
The development of environmentally friendly, oxidation-selective advanced oxidation processes (AOPs) for water decontamination is important for resource recovery, carbon dioxide abatement, and cost savings. In this study, we developed an innovative AOP using a combination of peroxymonosulfate (PMS) and iodide ions (I - ) for the selective removal of phenolic pollutants from aqueous solutions. The results showed that nearly 100% degradation of phenol, bisphenol A, and hydroquinone was achieved after reaction for 4 min in the presence of 65 μM PMS and 50 μM I - . PMS-I - oxidation had a wide effective pH range, with the best performance achieved under circumneutral conditions. The ratio between [PMS] and [I - ] influenced the degradation, and the optimal ratio was approximately 1.00 for the degradation of the phenols. Neither sulfate nor hydroxyl radicals were found to be the active species in PMS-I - oxidation. Instead, we found evidence that iodide atoms were the dominant oxidants. In addition, both Cl - and Br - also promoted the degradation of phenol in PMS solution. The results of this work may promote the application of reactive halogen species in water treatment.
Halogen Chemistry in the CMAQ Model
Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...
Method of dehalogenation using diamonds
Farcasiu, Malvina; Kaufman, Phillip B.; Ladner, Edward P.; Anderson, Richard R.
2000-01-01
A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.
Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua
2018-03-01
The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.
MISTRA mechanism development: A new mechanism focused on marine environments
NASA Astrophysics Data System (ADS)
Bräuer, Peter; Sommariva, Roberto; von Glasow, Roland
2015-04-01
The tropospheric multiphase chemistry of halogen compounds plays a key role in marine environments. Moreover, halogen compounds have an impact on the tropospheric oxidation capacity and climate. With more than two thirds of the Earth's surface covered with oceans, effects are of global importance. Various conditions are found in marine environments ranging from pristine regions to polluted regimes in the continental outflow. Furthermore, there are important sources for halogen compounds over land, such as volcanoes, salt lakes, or emissions from industrial processes. To assess the impact of halogen chemistry with numerical models under these distinct conditions, a multiphase mechanism has been developed in the last decades and applied successfully in numerous box and 1D model studies. Contributions from these model studies helped to identify important chemical cycles affecting the composition and chemistry of the troposphere. However, several discrepancies between model results and field measurements remain. Therefore, a major revision of the chemical mechanism has been performed including an update of the kinetic data and the addition of new reaction cycles. The extended mechansims have been evaluated in several model studies with the 1D model MISTRA. Current work focuses at the identification of the most important reaction cycles, which led to significant changes in the concentration-time profiles of several halogen species. Subsequently, the mechanism will be reduced to the most imporatant reactions, which are currently investigated. As regional and global model studies become more important to identify the importance of tropospheric halogen multiphase chemistry, the goal is to derive parameterisations for the most important halogen chemistry cycles, which can than be implemented in regional and global 3D models. In the reduction process, the extented MISTRA version will serve as a benchmark to assess the quality and accuracy of the reduced mechansim versions.
Waste-to-energy: Dehalogenation of plastic-containing wastes.
Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong
2016-03-01
The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Role of Halogens in High-Grade Metamorphism and Anatexis
NASA Astrophysics Data System (ADS)
Aranovich, L.; Safonov, O.
2016-12-01
We review factors controlling the distribution of the two major halogens, F and Cl, in high-grade metamorphic rocks; their compositional correlations and partitioning between minerals; experimental data on stability and phase equilibria of the halogen-bearing minerals; the influence of halogens on Fe-Mg exchange reactions; and the means of estimating concentrations/activity of halogen species concentration/ activity in the fluid phase ("chlorimetry and fluorimetry") via calculation of equilibrium conditions for mineral assemblages containing halogen-bearing phases. Clear negative correlation between the F content and XFe=Fe/(Fe+Mg) suggests that natural biotite and amphibole obey the Fe-F avoidance rule. A strong positive correlation exists between K and Cl in amphibole. A scattering of points on the XFe -Cl and TiO2- Cl diagrams indicate the possible involvement of an exotic Cl-rich phase (fluid or melt) during the formation of Cl-bearing biotite and amphibole. Fluorine and Cl substituting for OH-groups substantially stabilize minerals relative to dehydration and melting. They should also strongly affect partitioning of Fe and Mg between biotite, amphibole and anhydrous minerals. This effect is quantified for Fe-Mg exchange reactions involving biotite (Zhu and Sverjensky, 1992), but remains to be evaluated for amphibole. Calculations based on recent thermodynamic systematics show that the relatively Mg-rich, Cl-poor biotite (for example, XFe = 0.4 and about 0.2 wt.% Cl) may coexist with a fairly Cl-rich fluid, i.e. total Cl/(Cl+H2O) from 0.1-0.3, depending on the assemblage, under granulite facies P-T conditions. Alkali (and Ca) metasomatism caused by interaction of high grade rocks with halogen-bearing fluids has major impact on the subsolidus phase transformations and melting processes during high-grade metamorphism and anatexis. For example, an increase in sodium content in plagioclase (Pl) by 20 mol% due to infiltration of Na- fluid into the quartz (Qtz)-bearing rocks decreases melting temperature by about 50o. Similar effect may occur in the originally Qtz-absent rocks due to interaction with Ca-rich fluids. Acknowledgements: This work was supported by RFBR grant 15-05-01053.
Ichikawa, Shinichiro; Tada, Mizuki; Iwasawa, Yasuhiro; Ikariya, Takao
2005-02-21
Chemoselective hydrogenation of halogenated nitrobenzenes over Pt/C catalysts proceeds effectively in supercritical carbon dioxide (scCO2) to produce halogenated anilines with excellent selectivity; the rate of the hydrogenation of nitro groups is markedly enhanced in scCO2 compared to the neat reaction, and the dehalogenation reaction is significantly suppressed.
Tomić, Mirko; Vasković, Djurdjica; Tovilović, Gordana; Andrić, Deana; Penjišević, Jelena; Kostić-Rajačić, Sladjana
2011-05-01
Five groups of previously synthesized and initially screened non-substituted and 4-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles were estimated for their in-vitro binding affinities at the rat D(2) , 5-HT(2A) , and α(1) -adrenergic receptors. Among all these compounds, 2-methoxyphenyl and 2-chlorophenyl piperazines demonstrate the highest affinities for the tested receptors. The effects of 4-halogenation of benzimidazoles reveal that substitution with bromine may greatly increase the affinity of the compounds for the studied receptors, while the effect of substitution with chlorine is less remarkable. Most of the tested components show 5-HT(2A)/D(2) pK(i) binding ratios slightly above or less than 1, while only 4-chloro-6-(2-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}ethyl)-1H-benzimidazole expresses an appropriate higher binding ratio (1.14), which was indicated for atypical neuroleptics. This compound exhibits a non-cataleptic action in rats and prevents d-amphetamine-induced hyperlocomotion in mice, which suggest its atypical antipsychotic potency. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Wenlei; Jiang, Yunfeng; Zhu, Xiuwei; Luo, Chunhua; Jiang, Kai; Chen, Liangliang; Zhang, Juan
2018-05-01
The effects of halogen substitution on microstructure, optical absorption, and phonon modes for perovskite CH3NH3PbX3 (MAPbX3, X = I/Br/Cl) films grown on FTO substrates have been investigated. The X-ray diffraction analysis exhibited good crystallization, and the strong diffraction peak assigned to (1 0 0) c for X = Br/Cl shifted toward a higher angle compared to (1 1 0) t of MAPbI3. Band-gap tuning from 1.63 to 2.37 to 3.11 eV in the I-Br-Cl series can be found due to the halogen effects. These energy values closely match the positions of peak determined from photoluminescence experiments. The remarkable absorption dip and emission peak appear for the MAPbBr3, suggesting higher crystallinity under the same preparation conditions. The wavenumbers of main IR-vibrations slightly decrease with ionic radius of the halogen increasing (in the order of Cl-Br-I), which related to the increasing polarizability. These results provide important progress towards the understanding of the halide role in the realization of high performance MAPbX3-based solar cells.
Identifying the Molecular Origin of Global Warming
NASA Technical Reports Server (NTRS)
Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.
2009-01-01
We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.
Abiotic Formation of Methyl Halides in the Terrestrial Environment
NASA Astrophysics Data System (ADS)
Keppler, F.
2011-12-01
Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will include a consideration on how stable isotope studies assisted advancements in this subject area. For example, it has been shown that the methoxyl groups of lignin and pectin which together constitute the bulk of the C1 plant pool have a carbon isotope signature significantly depleted in 13C. Plant-derived C1 volatile organic compounds (VOCs) are also highly depleted in 13C compared with Cn+1 VOCs. These observations suggest that the plant methoxyl pool is the predominant source of methyl halides released from senescent and dead plant litter. The distinct 13C depletion of plant methoxyl groups and naturally produced methyl halides may provide a helpful tool in constraining complex environmental processes and therefore improve our understanding of the global cycles of atmospheric methyl halides.
Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko
2016-01-01
Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.
Passivation of quartz for halogen-containing light sources
Falkenstein, Zoran
1999-01-01
Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.
Method and apparatus for low temperature destruction of halogenated hydrocarbons
Reagen, William Kevin; Janikowski, Stuart Kevin
1999-01-01
A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.
Halogen lamp experiment, HALEX
NASA Technical Reports Server (NTRS)
Schmitt, G.; Stapelmann, J.
1986-01-01
The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.
The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis
NASA Astrophysics Data System (ADS)
Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi
2016-10-01
The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.
Halogen bonding in solution: thermodynamics and applications.
Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S
2013-02-21
Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Haskin, Larry A.; Colson, Russell O.; Wadhwa, Meenakshi
1993-01-01
Compositions, including REEs determined by ion microprobe, of apatite and whitlockite in lunar rock assemblages rich in incompatible trace elements, are presented. Concentrations of REEs in lunar whitlockites are high, ranging from about 1.2 to 2.1 REEs (lanthanides + Y) per 56 oxygens. This slightly exceeds the level of two REE atoms per 56 oxygens at which the dominant substitution theoretically becomes saturated. This saturation effect leads to whitlockite REE(3+) D values at typical lunar whitlockite REE concentrations which are 30-40 percent lower than the D values at low concentrations. The halogen-to-phosphorous ratio in lunar melts is a key factor determining the REE distribution with crystalline assemblages. As long as P and REE concentrations of melts are in KREEP-like proportions, one or both of the phosphates will saturate in melts at similar REE concentrations.
Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi
2013-08-07
The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.
Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan
2015-03-20
The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).
NASA Astrophysics Data System (ADS)
Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.
2017-03-01
This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.
NASA Astrophysics Data System (ADS)
Park, Soohyeong; Nam, Sungho; Seo, Jooyeok; Jeong, Jaehoon; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo
2015-02-01
Here, we report the influence of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells that are made with bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) (as an electron donor) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) (as an electron acceptor). Diiodooctane (DIO) and dibromooctane (DBO) were employed as additives in order to compare the effect of different halogen groups (bromine and iodine). Results showed that the power conversion efficiency of devices was slightly (˜15%) improved by using additives due to the increased open-circuit voltage and fill factor. The synchrotron radiation grazing-incidence X-ray diffraction (GIXD) measurements disclosed that the performance improvement was closely related to the relatively well-evolved nanostructures in the P3HT:F8BT films caused by the additives.
THE DYNAMICS OF HYDROGEN ATOM ABSTRACTION FROM POLYATOMIC MOLECULES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIU,X.; SUITS,A.G.
2002-11-21
The hydrogen atom abstraction reaction is an important fundamental process that is extensively involved in atmospheric and combustion chemistry. The practical significance of this type of reaction with polyatomic hydrocarbons is manifest, which has led to many kinetics studies. The detailed understanding of these reactions requires corresponding dynamics studies. However, in comparison to the A + HX {radical} AH + X reactions, the study of the dynamics of A + HR {yields} AH + R reactions is much more difficult, both experimentally and theoretically (here and in the following, A stands for an atom, X stands for a halogen atom,more » and R stands for a polyatomic hydrocarbon radical). The complication stems from the structured R, in contrast to the structureless X. First of all, there are many internal degrees of freedom in R that can participate in the reaction. In addition, there are different carbon sites from which an H atom can be abstracted, and the dynamics are correspondingly different; there are also multiple identical carbon sites in HR and in the picture of a local reaction, there exist competitions between neighboring H atoms, and so on. Despite this complexity, there have been continuing efforts to obtain insight into the dynamics of these reactions. In this chapter, some examples are presented, including the reactions of ground state H, Cl, and O atoms, with particular focus on our recent work using imaging to obtain the differential cross sections for these reactions.« less
Zhang, Patricia; Le, Chi Chip; MacMillan, David W C
2016-07-06
A strategy for cross-electrophile coupling has been developed via the merger of photoredox and transition metal catalysis. In this report, we demonstrate the use of commercially available tris(trimethylsilyl)silane with metallaphotoredox catalysis to efficiently couple alkyl bromides with aryl or heteroaryl bromides in excellent yields. We hypothesize that a photocatalytically generated silyl radical species can perform halogen-atom abstraction to activate alkyl halides as nucleophilic cross-coupling partners. This protocol allows the use of mild yet robust conditions to construct Csp(3)-Csp(2) bonds generically via a unique cross-coupling pathway.
Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.
2016-04-12
A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.
Muñiz-Unamunzaga, Maria; Borge, Rafael; Sarwar, Golam; Gantt, Brett; de la Paz, David; Cuevas, Carlos A; Saiz-Lopez, Alfonso
2018-01-01
The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens (Cl, Br and I) and dimethyl sulfide (DMS) on the air quality of a large coastal city through a set of high-resolution (4-km) air quality simulations for the urban area of Los Angeles, US, using the Community Multiscale Air Quality (CMAQ model). The results indicate that marine halogen emissions decrease ozone and nitrogen dioxide levels up to 5ppbv and 2.5ppbv, respectively, in the city of Los Angeles. Previous studies suggested that the inclusion of chlorine in air quality models leads to the generation of ozone in urban areas through photolysis of nitryl chloride (ClNO 2 ). However, we find that when considering the chemistry of Cl, Br and I together the net effect is a reduction of surface ozone concentrations. Furthermore, combined ocean emissions of halogens and DMS cause substantial changes in the levels of key urban atmospheric oxidants such as OH, HO 2 and NO 3 , and in the composition and mass of fine particles. Although the levels of ozone, NO 3 and HO x are reduced, we find a 10% increase in secondary organic aerosol (SOA) mean concentration, attributed to the increase in aerosol acidity and sulfate aerosol formation when combining DMS and bromine. Therefore, this new pathway for enhanced SOA formation may potentially help with current model under predictions of urban SOA. Although further observations and research are needed to establish these preliminary conclusions, this first city-scale investigation suggests that the inclusion of oceanic halogens and DMS in air quality models may improve regional air quality predictions over coastal cities around the world. Copyright © 2017 Elsevier B.V. All rights reserved.
Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M
1995-05-11
The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed that the observed decrease in 4-aminophenol formation was accompanied by a metabolic switch to 2-aminophenols and N-hydroxyanilines, while products resulting from NIH-type mechanisms were not observed. For a C4-chloro-, bromo-, or iodo-substituted 2-fluoroaniline the Vmax for the oxidative dehalogenation was reduced by the additional electron withdrawing fluorine substituent at the C2 position in a similar way.(ABSTRACT TRUNCATED AT 400 WORDS)
Halogenation of microcapsule walls
NASA Technical Reports Server (NTRS)
Davis, T. R.; Schaab, C. K.; Scott, J. C.
1972-01-01
Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.
Halogens are key cofactors in building of collagen IV scaffolds outside the cell.
Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A
2018-05-01
The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.
Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.
1992-01-01
A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.
Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.
1992-11-24
A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.
The possibility of using platinum foils with a rippled surface as diffraction gratings
NASA Astrophysics Data System (ADS)
Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.
2014-09-01
The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
Cai, Jia-Zhong; Tang, Rong; Ye, Gui-Fu; Qiu, Sheng-Xiang; Zhang, Nen-Ling; Hu, Ying-Jie; Shen, Xiao-Ling
2015-06-11
A new natural halogen-containing stilbene derivative was isolated from the leaves of Cajanus cajan (L.) Millsp. and identified as 3-O-(3-chloro-2-hydroxyl-propanyl)-longistylin A by comprehensive spectroscopic and chemical analysis, and named cajanstilbene H (1). It is the first halogen-containing stilbene derivative found from plants. In human mesenchymal stem cells (hMSC) from bone marrow, 1 did not promote cell proliferation, but distinctly enhanced osteogenic differentiation of hMSC in time- and dose-dependent manners. In six human cancer cell lines, 1 showed a moderate inhibitory effect on cell proliferation, with IC50 values of 21.42-25.85 μmol·L(-1).
NASA Technical Reports Server (NTRS)
Schack, C. J.
1972-01-01
The preparation of the tetraperchlorate of methane (TPM) was attempted. Displacement of halogen from carbon tetrahalides was accomplished with either CCl4 or CBr4 using the halogen perchlorates, ClOClO3, and BOClO3. Although the displacement process was successful, the generated carbon perchlorate intermediates were not isolated. Instead, these species decomposed to COCl2, CO2, and Cl2O7. The vigorous displacement reaction that often occurred required moderation. Fluorocarbon solvents and chlorine perchlorate were successfully tested for compatibility, permitting their use in these synthetic reactions. While the sought for moderating effect was obtained, the net result of the displacement of halogen from CX sub 4 substrates was the same as before. Thus only CO2, COCl2, and Cl2O7 were isolated.
The bright future of unconventional σ/π-hole interactions.
Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio
2015-08-24
Non-covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host-guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non-covalent component (e.g. protein folding, recognition) and rational interference in such 'living' devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ-hole and π-hole interactions. A σ- or π-hole can be seen as positive electrostatic potential on unpopulated σ* or π(() *()) orbitals, which are thus capable of interacting with some electron dense region. A σ-hole is typically located along the vector of a covalent bond such as XH or XHlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ-holes can also be found along a covalent bond with chalcogen (XCh), pnictogen (XPn) and tetrel (XTr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π-hole is typically located perpendicular to the molecular framework of diatomic π-systems such as carbonyls, or conjugated π-systems such as hexafluorobenzene. Anion-π and lone-pair-π interactions are examples of named π-hole interactions between conjugated π-systems and anions or lone-pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well-established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ- and π-hole interactions, present a selection of inquiries that utilise σ- and π-holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid-state structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M
2008-09-15
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.
Co-combustion of E+E waste plastics in the TAMARA test plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J.; Wanke, T.; Bergfeldt, B.
1997-12-01
The co-combustion of different amounts of various plastic fractions of electrical and electronic (E+E) waste together with municipal solid waste has been tested in the Karlsruhe test incinerator TAMARA. The tests revealed no negative influences upon the combustion process. In general the increased heating value of the fuel causes an improved burnout in all residue streams. The halogens Cl and Br added with the plastics are mainly transferred as HCl or HBr into the flue gas. An influence upon the formation of chlorinated dioxins and furans could not be observed. With increasing Br feed bromine containing homologues were detected inmore » the raw gas. The furans formed easier than the dioxins and those homologues carrying one Br atom were by far prevailing. Even at high Br input the total amount of mixed halogenated species was limited to approximately 30% of the total load of such compounds which did not leave the typical operation window for PCDD/PCDF in TAMARA. The co-combustion tests demonstrated that MSW combustion is an ecologically acceptable and economically sound disposal route for limited amounts of specific E+E waste.« less
40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...
40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...
2017-01-01
Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759
Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes.
Yin, H; Anders, M W; Korzekwa, K R; Higgins, L; Thummel, K E; Kharasch, E D; Jones, J P
1995-11-21
A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics.
Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes.
Yin, H; Anders, M W; Korzekwa, K R; Higgins, L; Thummel, K E; Kharasch, E D; Jones, J P
1995-01-01
A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics. PMID:7479940
Probing the crystal structure landscape by doping: 4-bromo, 4-chloro and 4-methylcinnamic acids.
Desiraju, Gautam R; Chakraborty, Shaunak; Joseph, Sumy
2018-06-11
Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br-atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii and others, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of pi...pi interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cappelletti, David; Falcinelli, Stefano; Pirani, Fernando
2016-10-07
Gas phase collisions of a D 2 projectile by CF 4 and by CCl 4 targets have been investigated with the molecular beam technique. The integral cross section, Q, has been measured for both collisional systems in the thermal energy range and oscillations due to the quantum "glory" interference have been resolved in the velocity dependence of Q. The analysis of the measured Q(v) data provided novel information on the anisotropic potential energy surfaces of the studied systems at intermediate and large separation distances. The relative role of the most relevant types of contributions to the global interaction has been characterized. Extending the phenomenology of a weak intermolecular halogen bond, the present work demonstrates that while D 2 - CF 4 is basically bound through the balance between size (Pauli) repulsion and dispersion attraction, an appreciable intermolecular bond stabilization by charge transfer is operative in D 2 - CCl 4 . We also demonstrated that the present analysis is consistent with that carried out for the F( 2 P)-D 2 and Cl( 2 P)-D 2 systems, previously characterized by scattering experiments performed with state-selected halogen atom beams. A detailed comparison of the present and previous results on O 2 -CF 4 and O 2 -CCl 4 systems pinpointed striking differences in the behavior of hydrogen and oxygen molecules when they interact with the same partner, mainly due to the selectivity of the charge transfer component. The present work contributes to cast light on the nature and role of the intermolecular interaction in prototype systems, involving homo-nuclear diatoms and symmetric halogenated molecules.
Schwarz, A; Heumann, K G
2002-09-01
Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.
Transuranic Hybrid Materials: Crystallographic and Computational Metrics of Supramolecular Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surbella, Robert G.; Ducati, Lucas C.; Pellegrini, Kristi L.
A family of twelve supramolecular [AnO2Cl4]2- (An = U, Np, Pu) containing compounds assembled via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I) is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons are the norm. We present a hierarchy of assembly criteria based on crystallographic observations, and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials (ESPs) of the actinyl tetrahalidemore » dianions and reconcile crystallographically observed structural motifs and non-covalent interaction (NCI) acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ~2 kJ mol-1 across the AnO22+ series, indicating the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen N-H+. Subsequent analyses using the Quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) approaches support this conclusion and highlight the structure directing role of the cations. Whereas one can infer that the 2 Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.« less
Song, Junjie; Su, Yue; Jia, Yanping; Chen, Lusheng; Zhang, Guiqiu
2018-05-07
Several noble-gas-containing molecules XNgY were observed experimentally. However, the bonding in such systems is still not understood. Using natural bond orbital and natural resonance theory (NBO/NRT) methods, the present work investigated bonding of the title molecules. The results show that each of the studied XNgY molecules should be better described as a resonance hybrid of ω-bonding and [Formula: see text]-type long-bonding structures: X: - Ng + - Y, X - Ng + : Y - , and X ^ Y. The ω-bonding and long-bonding make competing contributions to the composite resonance hybrid due to the accurately preserved bond order conservation principle. We find that the resonance bonding is highly tunable for these noble-gas-containing molecules due to its dependence on the nature of the halogen X or the central noble-gas atoms Ng. When the molecule XNgY consists of a relatively lighter Ng atom, a relatively low-electronegative X atom, and the CN fragment rather than NC, the long-bonding structure X ^ Y tends to be highlighted. In contrast, the heavy Ng atom and high-electronegative X atom will enhance the ω-bonding structure. Overall, the present work provides electronic principles and chemical insights that help understand the bonding in these XNgY species.
Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...
2016-07-25
Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less
Virucidal properties of metal oxide nanoparticles and their halogen adducts.
Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George
2010-04-01
Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.
Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D
2015-08-04
Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wu, R. R.; Rodgers, M. T.
2015-09-01
(CCG)n•(CGG)n trinucleotide repeats have been found to be associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical proton-bound dimers of cytosine (C+•C). Halogenated cytosine residues are one form of DNA damage that may be important in altering the structure and stability of DNA or DNA-protein interactions and, hence, regulate gene expression. Previously, we investigated the effects of 5-halogenation and 1-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present study, we extend our work to include proton-bound homo- and heterodimers of cytosine, 1-methyl-5-fluorocytosine, and 1-methyl-5-bromocytosine. All modifications examined here are found to produce a decrease in the BPEs. However, the BPEs of all of the proton-bound dimers examined significantly exceed those of Watson-Crick G•C, neutral C•C base pairs, and various methylated variants such that DNA i-motif conformations should still be preserved in the presence of these modifications. The proton affinities (PAs) of the halogenated cytosines are also obtained from the experimental data by competitive analysis of the primary dissociation pathways that occur in parallel for the proton-bound heterodimers. 5-Halogenation leads to a decrease in the N3 PA of cytosine, whereas 1-methylation leads to an increase in the N3 PA. Thus, the 1-methyl-5-halocytosines exhibit PAs that are intermediate.
NASA Astrophysics Data System (ADS)
Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli
2018-03-01
The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.
Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal
2015-01-01
To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.
Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai
2016-09-06
This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.
Halogen-free boron based electrolyte solution for rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi
2014-02-01
All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.
Effect of halogen dopants on the properties of Li2O2: is chloride special?
Cortes, Henry A; Vildosola, Verónica L; Barral, María Andrea; Corti, Horacio R
2018-05-18
There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-06-01
The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.
Müller, Danny; Knoll, Christian; Seifried, Marco; Welch, Jan M; Giester, Gerald; Reissner, Michael; Weinberger, Peter
2018-04-06
1-(3-Halopropyl)-1H-tetrazoles and their corresponding Fe II spin-crossover complexes have been investigated in a combined experimental and theoretical study. Halogen substitution was found to positively influence the spin transition, shifting the transition temperature about 70 K towards room temperature. Halogens located at the ω position were found to be too far away from the coordinating tetrazole moiety to have an electronic impact on the spin transition. The subtle variation of the steric demand of the ligand in a highly comparable series was found to have a comparatively large impact on the spin-transition behavior, which highlights the sensitivity of the effect to subtle structural changes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and DNA-binding properties of substituted triostin antibiotics.
Cornish, A; Fox, K R; Waring, M J
1983-02-01
Novel derivatives of the triostin group of antibiotics were prepared by supplementing cultures of the producing organism Streptomyces triostinicus with a variety of aromatic carboxylic acids. Five new antibiotics, each having both the natural quinoxaline chromophores replaced by a substituted ring system, were purified to homogeneity and characterized by high-pressure liquid chromatography and nuclear magnetic resonance. Their antibacterial activities and DNA-binding properties were investigated. Addition of a halogen atom at position 6 of the quinoxaline ring or an amino group at position 3 had little effect on either the biological activity or the DNA-binding characteristics. The bis-3-amino derivative is fluorescent, and its fluorescence is strongly quenched by calf thymus DNA and polydeoxyguanylate-polydeoxycytidylate but not by polydeoxyadenylate-polydeoxythymidylate, suggesting that it binds preferentially to guanosine-cytosine-rich sequences in natural DNA. Binding constants for the bis-6-chloro and bis-3-amino derivatives do not differ greatly from those of unsubstituted triostin A. The analogs having two quinoline chromophores or a chlorine atom in position 7 of the quinoxaline ring display little or no detectable antibacterial activity, in marked contrast to the other congeners. Bis-7-chloro-triostin A binds conspicuously more tightly to polydeoxyadenylate-polydeoxythymidylate than to any other polynucleotide tested.
Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study
NASA Astrophysics Data System (ADS)
Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad
2018-06-01
Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.
Adsorption of halogens on metal surfaces
NASA Astrophysics Data System (ADS)
Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.
2018-06-01
This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.
Wang, Yue; Okabe, Nobuo; Odoko, Mamiko
2005-10-01
The crystal structures of a series of three palladium(II) ternary complexes of 5-halogeno-2-aminobenzoic acid (5-X-AB, where X=Cl, Br and I) with 1,10-phenanthroline [Pd(5-Cl-AB)(phen)] (1), [Pd(5-Br-AB)(phen)] (2) and [Pd(5-I-AB)(phen)] (3) have been determined, and their coordination geometries and the crystal architecture characterized. All of the complexes are an isostructure in which each Pd(II) atom has basically similar square planar coordination geometry. The substitute halogen group at 5-position of AB plays an important role in producing the coordination bonds of the carboxylate and amino groups in which the carboxylate O atom and the amino N atom act as the negative monodentate ligand atoms. The coordination bond distances of O-Pd increase in the order 1<2<3, while those of N-Pd decrease in the same order. The binding of the complexes to the calf thymus DNA has also been studied by the fluorescence method. Each of the complexes shows high binding propensity to DNA which can be reflected as the relative order 1<2<3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista-Romero, Fidel A.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón, E-mail: ramon@uaem.mx
The performance of local correlation methods is examined for the interactions present in clusters of bromine with water where the combined effect of hydrogen bonding (HB), halogen bonding (XB), and hydrogen-halogen (HX) interactions lead to many interesting properties. Local methods reproduce all the subtleties involved such as many-body effects and dispersion contributions provided that specific methodological steps are followed. Additionally, they predict optimized geometries that are nearly free of basis set superposition error that lead to improved estimates of spectroscopic properties. Taking advantage of the local correlation energy partitioning scheme, we compare the different interaction environments present in small clustersmore » and those inside the 5{sup 12}6{sup 2} clathrate cage. This analysis allows a clear identification of the reasons supporting the use of local methods for large systems where non-covalent interactions play a key role.« less
Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion
Holmes; Ellis
1997-09-01
/ This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.
A computational study on the strength and nature of bifurcated aerogen bonds
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Sadr-Mousavi, Asma
2018-04-01
A quantum chemical study is performed to unveil the strength and bonding properties of bifurcated aerogen-bonding (BAB) interactions in complexes formed between ZO3 molecules (Z = Ar, Kr and Xe) and 1,2-dihydroxybenzene derivatives. The interaction energies of the resulting complexes are between -7.70 and -15.59 kcal/mol. The nature of BAB interactions is identified by the molecular electrostatic potential, quantum theory of atoms in molecules, noncovalent interaction index and natural bond orbital analyses. The mutual influence between the BAB and a halogen, chalcogen, pnicogen or tetrel bonding interaction is also studied in systems where these interactions coexist.
CHAiOS: Chemistry of Halogens at the Isles of Shoals
NASA Astrophysics Data System (ADS)
Keene, W. C.; Stutz, J.; Pszenny, A. A.; Russell, L.; von Glasow, R.; Sive, B.; Varner, R.
2005-12-01
During summer 2004, a comprehensive suite of reactive trace gases (including halogen radicals and precursors, O3, reactive N, soluble acids, NH3, HCHO, SO2, hydrocarbons, and halocarbons), the chemical and physical characteristics of size-resolved aerosols, actinic flux, and related physical conditions was measured at Appledore Island, ME as part of the International Consortium for Atmospheric Research on Transport and Transformations (ICARTT). Acid displacement of sea-salt Cl- primarily by HNO3 sustained high HCl mixing ratios (often >2000 pptv or >5 * 1010 cm-3) during daytime. HCl + OH produced 105 to 106 Cl atoms cm-3 sec-1. Cl* (including HOCl and Cl2) typically ranged from <20 (<5 * 108 cm-3) to about 100 pptv (3 * 109 cm-3). Depending on its assumed composition, Cl* photolysis yielded an additional source for Cl ranging from <104 to 107 atoms cm-3 sec-1. Maximum steady-state Cl concentrations during daytime (104 to 106 atoms cm-3) indicated significant contributions to oxidizing capacity. IO, OIO, and I2 were quantified simultaneously by long-path and MAX DOAS. IO ranged from <1.8 to 7 pptv, was detected only during daytime at wind speeds >2 m sec-1, and was uncorrelated with tidal height. For the first time, OIO was detected during daytime indicating that photolysis was an unimportant sink. The presence of OIO at high NOx implies unknown chemical pathways. Calculations with the 1-D photochemical model MISTRA predict longer lifetimes for OIO relative to IO, consistent with observations. I chemistry influenced ozone significantly by direct reaction (e.g., I + O3 → IO + O2) and by changing OH/HO2 and NO/NO2 ratios. Aerosols in all size fractions were highly enriched in I relative to sea salt (factors of 102 to 105) indicating active multiphase transformations. Numerous aerosol growth events were detected some of which were associated with elevated IO and OIO. However, the lack of consistent correlation with iodine species suggests that I chemistry may not be the dominant nucleation pathway in polluted coastal New England air. Br radical chemistry was relatively unimportant.
1993-10-01
100.00 _______________ Carbon tetrachloride 20,000.00 2 11.47 *Carbon disulfide 170.00 1 10.08 Chlorine 977,000.00 0.5 11.48 Chlorobenzene 192.00 75 9.07...SYMPTOMS AND EFFECTS Chlorine Strong irritant to eyes, mucous membranes, skin, and respiratory rn system; pulmonary edema; cough; lachrymator; nausea...sodium hypochlorite. Inorganic halogen salts are compounds containing halogens ( chlorine , bromine, fluorine) such as sodium chloride, potassium bromate
Code of Federal Regulations, 2014 CFR
2014-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2013 CFR
2013-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...
A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil
Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian
2016-01-01
In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292
Reversible capture and release of Cl 2 and Br 2 with a redox-active metal–organic framework
Tulchinsky, Yuri; Hendon, Christopher H.; Lomachenko, Kirill A.; ...
2017-03-28
Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitantmore » release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. Finally, these results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.« less
Magnesium Bisamide-Mediated Halogen Dance of Bromothiophenes.
Yamane, Yoshiki; Sunahara, Kazuhiro; Okano, Kentaro; Mori, Atsunori
2018-03-16
A magnesium bisamide-mediated halogen dance of bromothiophenes is described. The thienylmagnesium species generated in situ is more stable than the corresponding thienyllithium species, which was applied to trap the transient anion species with several electrophiles, such as allyl iodide, phenyl isocyanate, and tributylstannyl chloride. The utility of the magnesium bisamide-mediated halogen dance is useful in the concise synthesis of a medicinally advantageous compound via a one-pot, ester-directed halogen dance/Negishi cross coupling.
Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.
Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B
1985-01-01
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371
Evidence for Interfacial Halogen Bonding.
Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P
2016-05-10
A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of halogenated impurities on lifetime of organic light emitting diode
NASA Astrophysics Data System (ADS)
Yamawaki, Hayato; Suzuki, Kunihiko; Kubota, Tomohiro; Watabe, Takeyoshi; Ishigaki, Ayumi; Nakamura, Rina; Inoue, Hideko; Nakashima, Harue; Horikoshi, Nozomi; Nowatari, Hiromi; Kataishi, Riho; Hamada, Toshiki; Sasaki, Toshiki; Suzuki, Tsunenori; Seo, Satoshi
2016-09-01
We investigated a correlation between lifetime and the halogen element concentration in an organic light-emitting diode (OLED) and conducted experiments and simulations to discuss degradation mechanisms due to the halogen. OELD is generally formed of high-purity materials. Since the synthesis of high-purity materials takes time and cost, quantitative understanding of the kind, amount, and influence of impurities in OLED devices is expected. The results of combustion ion chromatography show that, if the chlorine concentration in the host material is more than several parts per million, the lifetime of the device is drastically reduced. The chlorine element, which is derived from the chlorinated by-product of the host material, is found to be transferred from the chloride to other materials (e.g., an emissive dopant) according to the results of LC-MS analysis. In addition, the electron transport layer including such impurities is also found to adversely affect the lifetime. The results of TOF-SIMS analysis suggest that the dissociated chlorine element diffuse to the light-emitting layer side when the device is driven. The results of simulations (Gaussian 09) and electrochemical analyses (cyclic voltammetry and electrolysis) reveal that the halogen element is easy to dissociate from halide by excitation or reduction. The halogen element can repeat reactions with the peripheral materials by excitation or reduction and cause damages, e.g., generate radicals or further reaction products due to the radicals. The results of simulation suggest that, such compounds have low energy level and become quenchers.
Curing efficacy of a new generation high-power LED lamp.
Yap, Adrian U J; Soh, M S
2005-01-01
This study investigated the curing efficacy of a new generation high-power LED lamp (Elipar Freelight 2 [N] 3M-ESPE). The effectiveness of composite cure with this new lamp was compared to conventional LED/halogen (Elipar Freelight [F], 3M-ESPE; Max [M], Dentsply-Caulk) and high-power halogen (Elipar Trilight [T], 3M-ESPE; Astralis 10 [A], Ivoclar Vivadent) lamps. Standard continuous (NS, FS, TS; MS), turbo (AT) and exponential (NE, FE, TE) curing modes of the various lights were examined. Curing efficacy of the various lights and modes were determined by measuring the top and bottom surface hardness of 2-mm thick composite specimens (Z100, 3M-ESPE) using a digital microhardness tester (n=5; load=500 g; dwell time=15 seconds) one hour after light polymerization. The hardness ratio was computed by dividing HK (Knoops Hardness) of the bottom surface by HK of the top surface. The data was analyzed using one-way ANOVA/Scheffe's test and Independent Samples t-test at significance level 0.05. Results of the statistical analysis were as follows: HK top--E, FE, NE > NS and NE > AT, TS, FS; HK bottom--TE, NE > NS; Hardness ratio--NS > FE and FS, TS > NE. No significant difference in HK bottom and hardness ratio was observed between the two modes of Freelight 2 and Max. Freelight 2 cured composites as effectively as conventional LED/halogen and high-power halogen lamps, even with a 50% reduction in cure time. The exponential modes of Freelight 2, Freelight and Trilight appear to be more effective than their respective standard modes.
NASA Astrophysics Data System (ADS)
Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.
2011-12-01
Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the averaged carbon oxidation state (OSc). The heterogeneous reaction of SOA with molecular halogens released from the simulated salt-pan at different simulated environmental conditions leads to changes of several physico-chemical features of the aerosol. However, the halogen release mechanisms are also affected by the presence of organic aerosols. One order of magnitude less BrO was detected by an active Differential Optical Absorption Spectroscopy (DOAS) instrument in the presence of SOA compared to experiments without SOA. This work was supported by the German Research Foundation within the HALOPROC project. Ofner, J., Krüger, H.-U., Grothe, H., Schmitt-Kopplin, P., Whitmore, K., and Zetzsch, C. (2011), Atmos. Chem. Phys., 11, 1-15.
Carlson, G P; Dziezak, J D; Johnson, K M
1979-07-01
1,2,4-Trichlorobenzene, 1,3,5-trichlorobenzene, hexachlorobenzene, 1,2,4-tribromobenzene, 1,3,5-tribromobenzene and hexabromobenzene were compared for their abilities to induce acetanilide esterase, acentailide hydroxylase and procaine esterase. Except for hexabromobenzene all induced acetanilide esterase whereas the hydroxylation of acetanilide was seen only with the fully halogenated benzenes and with 1,3,5-tribromobenzene. Hepatic procaine esterase activity was increased by the three chlorinated benzenes and 1,2,4-tribromobenzene.
NASA Astrophysics Data System (ADS)
Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.
2014-12-01
Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.
Punnathara, Sairaj; Krishnakumar, Ramalingam; Govindarajan, Mohan; Kanaran, Momeka; Philip, Sunil Thomas; Nair, Aswin Saseendran; Peter, Joby
2017-06-01
A major challenge when using glass ionomer cement in clinical situation particularly in paediatric dentistry is to overcome the problem of microleakage. Fast or command setting of Type IX glass ionomer cement using external energy source enhances the setting reaction and results in improved initial physical and mechanical properties. To compare and evaluate the influence of ultrasonic activation, halogen light irradiation and combined effect of both on microleakage of enamel adjacent to Type IX glass ionomer restorations. For forty premolar teeth, standard Class V cavities prepared were restored with GC Gold Label Type IX glass ionomer cement in vitro. The specimens were randomly divided into four groups: 1) Control group; 2) halogen group; 3) ultrasonic group; 4) ultrasonic with halogen group. The teeth were kept in distilled water for 24 hours. Teeth were exposed to 1500 thermocycles at temperature of 12°C ±2 and 60°C ±2 with alternate immersion in hot and cold water for one minute. First teeth were immersed in dye solution for four hours and then in developing solution for four hours. The samples were sectioned buccolingually through centre of the restorations and degree of dye penetration was assessed under stereomicroscope and scored. One-Way ANOVA model was constructed followed by post-hoc Tukey's test for multiple pair wise comparison of mean values. Statistically significant differences were found in microleakage among the four groups (p<0.001) with respect to dye penetration. Halogen group showed least microleakage followed by control but differences between them were statistically not significant (p>0.05). Similarly the differences between Ultrasonic plus halogen group and ultrasonic group were not significant (p>0.05). The differences between ultrasonic and halogen group were statistically significant (p<0.05). Halogen light decreases the microleakage of enamel adjacent to GC Type IX glass ionomer restorations, when used to accelerate the setting reaction of glass ionomers and can be used as command set method in paediatric dentistry.
Sources of halogens in the environment, influences on human and animal health.
Fuge, R
1988-06-01
Of the halogens, fluorine has the highest crustal abundance (544 mg/kg) while iodine has the lowest (0.25 mg/kg), however, chlorine is by far the most abundant halogen in the cosmos. The geochemistries of the four naturally occurring halogens have some similarities with fluorine, chlorine and bromine being classified as lithophile elements while iodine is more chalcophile in nature. Bromine and iodine behave in a similar fashion in the secondary environment and could be classified as biophile elements being concentrated in organic matter. Chlorine, bromine and iodine are strongly enriched in the sea while iodine and to a lesser extent bromine are further concentrated in the marine algae.Apart from the occurrence of fluorine in fluorite (CaF2) there are few commonly occurring minerals which contain the halogens as essential constituents. In the igneous environment fluorine and chlorine tend to occupy hydroxyl lattice sites in micas, amphiboles, apatites etc., while in sediments clays can contain appreciable quantities of these elements. Bromine and iodine, however, would be unlikely to fit into the lattice sites of common rock-forming minerals.Bromine, like iodine, is probably volatilised from the marine environment and is carried on to land surfaces. This behaviour of iodine and bromine is reflected in the increased I/CI and Br/CI ratios of surface run-off in continental compared with near coastal environments.Limited information on the soil geochemistry of the halogens suggests that the soil contents of chlorine, bromine and iodine are influenced by proximity to the sea. Soil fluorine, however, is generally dependent on its content in the parent material. In some areas pollutant sources of the halogens contribute appreciably to their concentration in the environment.Iodine and chlorine are essential elements for mammals and fluorine has been shown to have beneficial effects on bone and tooth formation. However, excess quantities of dietary fluorine can be harmful. It is possible, in view of its ubiquitous occurrence in the biosphere, that bromine has a hitherto unknown function in human and animal health.
3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.
Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng
2015-06-15
The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.
Room-Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects.
Xiao, Lu; Wu, Yishi; Yu, Zhenyi; Xu, Zhenzhen; Li, Jinbiao; Liu, Yanping; Yao, Jiannian; Fu, Hongbing
2018-02-06
Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two β-iminoenamine-BF 2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH 2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH 2 and S-2I⋅⋅⋅I-Ph-NH 2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH 2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH 2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH 2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH 2 ensures red RTP from S-2CN/I-Ph-NH 2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Exploitation of Low-Energy Electrons in Cancer Treatment.
Rezaee, Mohammad; Hill, Richard P; Jaffray, David A
2017-08-01
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Chuang, Feng-Chuan; Su, Wan-Sheng; Guo, Guang-Yu
2016-12-01
The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as ~9 meV/edge-site, being 2×103 time greater than that of bulk Ni and Fe (~5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5% to 5%. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.
The 1,2-hydrogen shift reaction for monohalogenophosphanes PH2X and HPX (X = F, Cl)
NASA Astrophysics Data System (ADS)
Viana, Rommel B.; Varela, Jaldyr J. G., Jr.; Tello, Ana C. M.; Savedra, Ranylson M. L.; da Silva, Albérico B. F.
2016-10-01
The aim of the present study was to perform a quantum chemical investigation in the 1,2-hydrogen shift reaction for the PH2X and HPX molecules (X = F,Cl). Several phosphorus-halogen-bearing molecules were studied, including PH2F, PH2Cl, HPF, HPCl, HPFH, HPClH, PFH and PClH. The energies of stationary and saddle points on the ground electronic potential energy surface were investigated with post-Hartree-Fock methods [CCSD(T), MP2, QCISD] and different DFT functionals. The PH2F 1,2-hydrogen shift energy barrier was 75 kcal mol-1 at the CCSD(T) level and only a small increase in this value was observed for the HPF isomerisation. In contrast, the HPCl 1,2-hydrogen shift barrier is higher than the PH2Cl one, which presented a barrier height of 69 kcal mol-1 among CCSD(T) and composite methods. The rate constants of these unimolecular rearrangements varied from 10-44 to 10-38 s-1, and these isomerisation channels exhibited large half-lives. In addition, the heat of formation of each monohalogenophosphane was also calculated. The Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analysis were also employed to characterise the differences between the phosphorous-halogen bonds.
Gupta, Sanjay Prasad; Shrestha, Basanta Kumar
2018-01-01
Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633
Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.
2015-06-01
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.
Treatment of halogen-containing waste and other waste materials
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1997-01-01
A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.
Treatment of halogen-containing waste and other waste materials
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1997-03-18
A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.
Metal halogen battery system with multiple outlet nozzle for hydrate
Bjorkman, Jr., Harry K.
1983-06-21
A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.
Isotope effects in aqueous solvation of simple halides
NASA Astrophysics Data System (ADS)
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2018-03-01
We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.
Mosquera, Angeles; Férnandez, M Isabel; Canle Lopez, Moisés; Pérez Sestelo, José; Sarandeses, Luis A
2014-10-27
The synthesis and photochemical study of novel nonsymmetrical 1,2-dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium-catalyzed cross-coupling reactions of 5-susbtituted-2-methyl-3-thiophenyl indium reagents with 3,4-dichloromaleimides. The required organoindium reagents were prepared from 2-methyl-3,5-dibromothiophene by a selective (C-5) coupling reaction with triorganoindium compounds (R3 In) and subsequent metal-halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3 In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON-OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for halogenating or radiohalogenating a chemical compound
Kabalka, George W.
2006-05-09
A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.
Double-chamber electrode for spectrochemical determination of chlorine and other halogens
de Paiva, Azevedo; Specht, A.W.; Harner, R.S.
1954-01-01
A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model.
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew Ja
2017-01-01
The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging.
[Near infrared light irradiator using halogen lamp].
Ide, Yasuo
2012-07-01
The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.
Chiral Alkyl Halides: Underexplored Motifs in Medicine
Gál, Bálint; Bucher, Cyril; Burns, Noah Z.
2016-01-01
While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902
Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan
2015-07-07
The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.
Scientific conferences: A big hello to halogen bonding
NASA Astrophysics Data System (ADS)
Erdelyi, Mate
2014-09-01
Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.
DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)
Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...
Recyclable catalysts methods of making and using the same
Dioumaev, Vladimir K.; Bullock, R. Morris
2006-02-28
Organometallic complexes are provided, which include a catalyst containing a transition metal, a ligand and a component having the formula GAr.sup.F. Ar.sup.F is an aromatic ring system selected from phenyl, naphthalenyl, anthracenyl, fluorenyl, or indenyl. The aromatic ring system has at least a substituent selected from fluorine, hydrogen, hydrocarbyl or fluorinated hydrocarbyl, G is substituted or unsubstituted (CH.sub.2).sub.n or (CF.sub.2).sub.n, wherein n is from 1 to 30, wherein further one or more CH.sub.2 or CF.sub.2 groups are optionally replaced by NR, PR, SiR.sub.2, BR, O or S, or R is hydrocarbyl or substituted hydrocarbyl, GAr.sup.F being covalently bonded to either said transition metal or said ligand of said catalyst, thereby rendering said cationic organometallic complex liquid. The catalyst of the organometallic complex can be [CpM(CO).sub.2(NHC)L.sub.k].sup.+A.sup.-, wherein M is an atom of molybdenum or tungsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5Q.sup.1Q.sup.2Q.sup.3Q.sup.4Q.sup.5], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, GAr.sup.F C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, substituted hydrocarbyl radical substituted by GAr.sup.F, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2R', --SiR'.sub.3 and --NR'R'', wherein R' and R'' are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complexes as catalysts in catalytic reactions, such as for example, the hydrosilylation of aldehydes, ketones and esters are also provided.
Halogen-bonding-triggered supramolecular gel formation
NASA Astrophysics Data System (ADS)
Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.
2013-01-01
Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.
Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L
2018-05-28
Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.
The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.
2015-09-01
Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.
Hanafi, Mohammad Ghasem; Sahraeizadeh, Aliakbar
2018-02-22
The objective is to assess if fetal halogen light stimulation can reduce the time needed to obtain a normal biophysical profile (BPP). Patients scheduled for a BPP and who satisfied the inclusion criteria were prospectively randomized to halogen light stimulation and no stimulation groups. The study group was exposed to handheld halogen light for 10 s whenever fetal breathing, movement, or tone was absent through the first 5 min of BPP. The time required to achieve complete BPP score was recorded. In patients with complete BPP score who had delivery within 1 week after the test, perinatal morbidity was examined. A total of 598 patients were randomized (light = 302, no light = 296). There was no difference between the two groups in terms of gestational age, maternal age, body mass index, and indication for BPP except for preterm labor (light: 9%, no light: 4%, p = 0.03). Among the patients who had a normal BPP score (n = 507), the mean (light: 7.1 ± 6 min, no light: 12.3 ± 8 min, p < 0.0001) and median (light: 4.3, no light: 8, p = 0.004) time needed to complete the BPP score was significantly less in the light stimulation group than the no stimulation group. Perinatal outcomes were not different between groups who had delivery during the first week after BPP. Fetal halogen light stimulation can be utilized to reduce the time needed to complete a BPP. However, further studies should be conducted in order to determine the effect of this method on decreasing non-reassuring test results. The study was submitted to the Registry of Clinical Trials on 04/20/2017 (IRCT2017041633470N1). After IRCT registration on 06/07/2017, we recruited patients from 06/08/2017 till 10/15/2017.
Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.
Yu, Yun; Reckhow, David A
2015-09-15
Haloacetonitriles (HANs) are an important class of drinking water disinfection byproducts (DBPs) that are reactive and can undergo considerable transformation on time scales relevant to system distribution (i.e., from a few hours to a week or more). The stability of seven mono-, di-, and trihaloacetonitriles was examined under a variety of conditions including different pH levels and disinfectant doses that are typical of drinking water distribution systems. Results indicated that hydroxide, hypochlorite, and their protonated forms could react with HANs via nucleophilic attack on the nitrile carbon, forming the corresponding haloacetamides (HAMs) and haloacetic acids (HAAs) as major reaction intermediates and end products. Other stable intermediate products, such as the N-chloro-haloacetamides (N-chloro-HAMs), may form during the course of HAN chlorination. A scheme of pathways for the HAN reactions was proposed, and the rate constants for individual reactions were estimated. Under slightly basic conditions, hydroxide and hypochlorite are primary reactants and their associated second-order reaction rate constants were estimated to be 6 to 9 orders of magnitude higher than those of their protonated conjugates (i.e., neutral water and hypochlorous acid), which are much weaker but more predominant nucleophiles at neutral and acidic pHs. Developed using the estimated reaction rate constants, the linear free energy relationships (LFERs) summarized the nucleophilic nature of HAN reactions and demonstrated an activating effect of the electron withdrawing halogens on nitrile reactivity, leading to decreasing HAN stability with increasing degree of halogenation of the substituents, while subsequent shift from chlorine to bromine atoms has a contrary stabilizing effect on HANs. The chemical kinetic model together with the reaction rate constants that were determined in this work can be used for quantitative predictions of HAN concentrations depending on pH and free chlorine contact times (CTs), which can be applied as an informative tool by drinking water treatment and system management engineers to better control these emerging nitrogenous DBPs, and can also be significant in making regulatory decisions.
Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu
2018-08-01
There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018 Elsevier B.V. All rights reserved.
Pinto, Marta; Almeida, Maria Rosário; Gales, Luis; Ballesteros, Alfredo; Barluenga, José; Pérez, Juan J.; Vázquez, Jesús T.; Centeno, Nuria B.; Saraiva, Maria Joao; Damas, Ana M.; Planas, Antoni; Arsequell, Gemma; Valencia, Gregorio
2009-01-01
The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant. Up to now, TTR aggregation inhibitors have been designed looking at various structural features of this binding channel others than its ability to host iodine atoms. In the present work, greatly improved inhibitors have been designed and tested by taking into account that thyroid hormones are unique in human biochemistry owing to the presence of multiple iodine atoms in their molecules which are probed to interact with specific halogen binding domains sitting at the TTR binding channel. The new TTR fibrillogenesis inhibitors are based on the diflunisal core structure because diflunisal is a registered salicylate drug with NSAID activity now undergoing clinical trials for TTR amyloid diseases. Biochemical and biophysical evidence confirms that iodine atoms can be an important design feature in the search for candidate drugs for TTR related amyloidosis. PMID:19125186
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...
Halogenated arsenenes as Dirac materials
NASA Astrophysics Data System (ADS)
Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin
2016-07-01
Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.
Babouri, Rachida; Rolland, Marc; Sainte-Catherine, Odile; Kabouche, Zahia; Lecouvey, Marc; Bakalara, Norbert; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc
2015-11-02
This paper describes the preparation and the biological evaluation of α-halogenated oxaphosphinanes. These halogen derivatives were synthetized from a short and stereoselective synthetic sequence starting by previously described hydroxy-precursors 1 and 2 with respectively a glucose and mannose-like configuration. The in vitro biological tests of these unnatural halogenated phosphinosugars, on several cell lines, highlighted, for some of them, their antiproliferative and anti migration and invasion properties at nanomolar concentration. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso
2015-08-04
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.
A study was made of the catalytic decomposition of a number of fluorine-containing halogenated hydrocarbons in air, using Hopcalite catalyst in a... Hopcalite catalyst had no significant effect on the rate of decomposition of the chlorofluorocarbons. Sulfur hexafluoride in air was stable over Hopcalite ...as those of nuclear submarines. Where they are needed, as in refrigeration systems, it is recommended that R-114, R-14, or R-12 be used since they show the greatest resistance to Hopcalite -catalyzed decomposition.
Photoproduction of I2, Br2, and Cl2 on n-semiconducting powder
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E.
1981-01-01
The photosynthetic production of Br2 and Cl2 and the photocatalytic production of I2 from aqueous solutions of the respective halide ions in the presence of platinized semiconducting n-TiO2 powder are reported. Reactions were produced in 2-3 M oxygen-saturated aqueous solutions of KI, KBr or NaCl containing Pt-TiO2 powder which were irradiated by a high-pressure mercury lamp at a power of 400 mW/sq cm. Halogens are found to be produced in greater quantities when platinized TiO2 powders are used rather than pure TiO2, and rates of halogen production are observed to increase from Cl2 to Br2 to I2. The presence of the synthetic reactions producing Br2 and Cl2 with a net influx of energy indicates that an effective separation of the photoproduced electron-hole pair occurs in the semiconductor. Quantum efficiencies of the reaction, which increase with decreasing solution pH, are found to be as high as 30%, implying a solar-to-chemical energy conversion efficiency between 0.03% and 3% for the case of chlorine production. It is concluded that the photoproduction of halogens may be of practical value if product halogens are efficiently removed from the reaction cell.
Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting
2017-08-01
Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.
Cerreia Vioglio, P.; Szell, P. M. J.; Chierotti, M. R.; Gobetto, R.
2018-01-01
Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81Br NQR to characterize the electronic changes in the C–Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance (dBr···N). Notably, 79/81Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81Br NQR resonances. PMID:29899948
Degree of conversion of two lingual retainer adhesives cured with different light sources.
Usümez, Serdar; Büyükyilmaz, Tamer; Karaman, Ali Ihya; Gündüz, Beniz
2005-04-01
The aim of this study was to evaluate the degree of conversion (DC) of two lingual retainer adhesives, Transbond Lingual Retainer (TLR) and Light Cure Retainer (LCR), cured with a fast halogen light, a plasma arc light and a light-emitting diode (LED) at various curing times. A conventional halogen light served as the control. One hundred adhesive samples (five per group) were cured for 5, 10 or 15 seconds with an Optilux 501 (fast halogen light), for 3, 6 or 9 seconds with a Power Pac (plasma arc light), or for 10, 20 or 40 seconds with an Elipar Freelight (LED). Samples cured for 40 seconds with the conventional halogen lamp were used as the controls. Absorbance peaks were recorded using Fourier transform infrared (FT-IR) spectroscopy. DC values were calculated. Data were analysed using Kruskal-Wallis and Mann-Whitney U-tests. For the TLR, the highest DC values were achieved in 6 and 9 seconds with the plasma arc light. Curing with the fast halogen light for 15 seconds and with the LED for 40 seconds produced statistically similar DC values, but these were lower than those with the plasma arc light. All of these light exposures yielded a statistically significantly higher DC than 40 seconds of conventional halogen light curing. The highest DC value for the LCR was achieved in 15 seconds with the fast halogen light, then the plasma arc light curing for 6 seconds. These two combinations produced a statistically significantly higher DC when compared with the 40 seconds of conventional halogen light curing. The lowest DC for the LCR was achieved with 10 seconds of LED curing. The overall DC of the LCR was significantly higher than that of the TLR. The results suggest that a similar or higher DC than the control values could be achieved in 6-9 seconds by plasma arc curing, in 10-15 seconds by fast halogen curing or in 20 seconds by LED curing.
Halogens in chondritic meteorites and terrestrial accretion
NASA Astrophysics Data System (ADS)
Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.
2017-11-01
Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.
C-I···π Halogen Bonding Driven Supramolecular Helix of Bilateral N-Amidothioureas Bearing β-Turns.
Cao, Jinlian; Yan, Xiaosheng; He, Wenbin; Li, Xiaorui; Li, Zhao; Mo, Yirong; Liu, Maili; Jiang, Yun-Bao
2017-05-17
We report the first example of C-I···π halogen bonding driven supramolecular helix in highly dilute solution of micromolar concentration, using alanine based bilateral I-substituted N-amidothioureas that contain helical fragments, the β-turn structures. The halogen bonding interactions afford head-to-tail linkages that help to propagate the helicity of the helical fragments. In support of this action of the halogen bonding, chiral amplification was observed in the supramolecular helix formed in acetonitrile solution. The present finding provides alternative tools in the design of self-assembling macromolecules.
Aromatic fluorine compounds. XI. Replacement of chlorine by fluorine in halopyridines
Finger, G.C.; Starr, L.D.; Dickerson, D.R.; Gutowsky, H.S.; Hamer, J.
1963-01-01
The ??-halogenated pyridines react with potassium fluoride in various solvents to give replacement of the ??-halogen by fluorine. A 50% yield of 2-fluoropyridine was obtained from 2-chloropyridine by heating with potassium fluoride in dimethyl sulfone or tetramethylene sulfone for twenty-one days; 2-bromopyridine gave a similar yield with a heating period of only seven days. The ??-halogens of the polyhalopyridines undergo the exchange reaction more readily than do the halogens of the ??-monohalopyridines. The proposed structures of the fluoropyridines are supported by alternate syntheses and by n.m.r. studies.
The effect of ambient lighting on Laser Doppler Imaging of a standardized cutaneous injury model
Pham, Alan Chuong Q; Hei, Erik La; Harvey, John G; Holland, Andrew JA
2017-01-01
Objective: The aim of this study was to investigate the potential confounding effects of four different types of ambient lighting on the results of Laser Doppler Imaging (LDI) of a standardized cutaneous injury model. Methods: After applying a mechanical stimulus to the anterior forearm of a healthy volunteer and inducing a wheal and arteriolar flare (the Triple response), we used a Laser Doppler Line Scanner (LDLS) to image the forearm under four different types of ambient lighting: light-emitting-diode (LED), compact fluorescent lighting (CFL), halogen, daylight, and darkness as a control. A spectrometer was used to measure the intensity of light energy at 785 nm, the wavelength used by the scanner for measurement under each type of ambient lighting. Results: Neither the LED nor CFL bulbs emitted detectable light energy at a wavelength of 785 nm. The color-based representation of arbitrary perfusion unit (APU) values of the Triple response measured by the scanner was similar between darkness, LED, and CFL light. Daylight emitted 2 mW at 785 nm, with a slight variation tending more towards lower APU values compared to darkness. Halogen lighting emitted 6 mW of light energy at 785 nm rendering the color-based representation impossible to interpret. Conclusions: Halogen lighting and daylight have the potential to confound results of LDI of cutaneous injuries whereas LED and CFL lighting did not. Any potential sources of daylight should be reduced and halogen lighting completely covered or turned off prior to wound imaging. PMID:29348978
Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation
2017-01-01
Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution. PMID:28581720
NASA Astrophysics Data System (ADS)
Halfacre, John W.
The photochemically-induced destruction of ground-level Arctic ozone in the Arctic occurs at the onset of spring, in concert with polar sunrise. Solar radiation is believed to stimulate a series of reactions that cause the production and release of molecular halogens from frozen, salty surfaces, though this mechanism is not yet well understood. The subsequent photolysis of molecular halogens produces reactive halogen atoms that remove ozone from the atmosphere in these so-called "Ozone Depletion Events" (ODEs). Given that much of the Arctic region is sunlit, meteorologically stable, and covered by saline ice and snow, it is expected that ODEs could be a phenomenon that occurs across the entire Arctic region. Indeed, an ever-growing body of evidence from coastal sites indicates that Arctic air masses devoid of O3 most often pass over sea ice-covered regions before arriving at an observation site, suggesting ODE chemistry occurs upwind over the frozen Arctic Ocean. However, outside of coastal observations, there exist very few long-term observations from the Arctic Ocean from which quantitative assessments of basic ODE characteristics can be made. This work presents the interpretation of ODEs through unique chemical and meteorological observations from several ice-tethered buoys deployed around the Arctic Ocean. These observations include detection of ozone, bromine monoxide, and measurements of temperature, relative humidity, atmospheric pressure, wind speed, and wind direction. To assess whether the O-Buoys were observing locally based depletion chemistry or the transport of ozone-poor air masses, periods of ozone decay were interpreted based on current understanding of ozone depletion kinetics, which are believed to follow a pseudo-first order rate law. In addition, the spatial extents of ODEs were estimated using air mass trajectory modeling to assess whether they are a localized or synoptic phenomenon. Results indicate that current understanding of the responsible chemical mechanisms are lacking, ODEs are observed primarily due to air mass transport (even in the Arctic Ocean), or some combination of both. Air mass trajectory modeling was also used in tandem with remote sensing observations of sea ice to determine the types of surfaces air masses were exposed to before arriving at O-Buoys. The impact of surface exposure was subsequently compared with local meteorology to assess which variables had the most effect on O 3 variability. For two observation sites, the impact of local meteorology was significantly stronger than air mass history, while a third was inconclusive. Finally, this work tests the viability of the hypothesis that initial production of molecular halogens from frozen saline surfaces results from photolytic production of the hydroxyl radical, and could be enhanced in the presence of O3. This investigation was enabled by a custom frozen-walled flow reactor coupled with chemical ionization spectrometry. It was found that hydroxyl radical could indeed promote the production and release of iodine, bromine, and chlorine, and that this production could be enhanced in the presence of ozone.
Halogen-free benzoxazine based curable compositions for high TG applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietze, Roger; Nguyen, Yen-Loan
The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.
Halogen free benzoxazine based curable compositions for high T.sub.g applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietze, Roger; Nguyen, Yen-Loan
A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.
NASA Astrophysics Data System (ADS)
Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.
2012-12-01
Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E-MORB from Macquarie Island [Kendrick et al., 2012]. The concentrations are not related to superficial processes. The on-axis samples display a relatively restricted range (6.9-8.6wt%) of MgO contents, suggesting no control of the crystallisation processes. The basalts were erupted between 3900-2000 m bsl, so no appreciable degassing of halogens would be expected. The strong correlation, which exists between the halogens and other incompatible elements (e.g., Rb, La), also rules out seawater assimilation. Therefore, concentrations and elemental ratios can be directly linked to melting and source features. Estimates of halogens abundances in the depleted-mantle source are 4 ppm Cl, 14 ppb Br and 0.3 ppb I. These low abundances, which are in agreement with values derived for sub-continental mantle from coated diamonds [Burgess et al., 2002], suggest that, like noble gases, the upper mantle is degassed of its halogens. Critically, the halogen elemental ratios show no significant variations along the axial ridge and off-axis ridge or between N-MORB and E-MORB: Br/Cl=0.00147±0.00014, I/Cl=0.000021±0.000005; I/Br=0.0142±0.0036. These ratios are similar to E-MORB from Macquarie Island [Kendrick et al., 2012]. This observation is thus not consistent with subduction as a source of halogen enrichment in E-MORB.
Odabasi, Mustafa
2008-03-01
Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and several other halogenated VOCs.
Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan
2018-02-20
The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindi, Luca; Garavelli, Anna; Pinto, Daniela
2008-02-15
To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb{sub 2}AsS{sub 3}(I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2{sub 1}, with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A{sup 3} and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicatingmore » that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F{sub o}>4{sigma}(F{sub o})] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma{yields}Pnm2{sub 1} are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma{yields}Pnm2{sub 1} from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms.« less
Zhang, Xian-Fu; Feng, Nan
2017-09-19
Pristine BODIPY compounds have negligible efficiency to generate the excited triplet state and singlet oxygen. In this report, we show that attaching a good electron donor to the BODIPY core can lead to singlet oxygen formation with up to 58 % quantum efficiency. For this purpose, BODIPYs with meso-aryl groups (phenyl, naphthyl, anthryl, and pyrenyl) were synthesized and characterized. The fluorescence, excited triplet state, and singlet oxygen formation properties for these compounds were measured in various solvents by UV/Vis absorption, steady-state and time-resolved fluorescence methods, as well as laser flash photolysis technique. In particular, the presence of anthryl and pyrenyl showed substantial enhancement on the singlet oxygen formation ability of BODIPY with up to 58 % and 34 % quantum efficiency, respectively, owing to their stronger electron-donating ability. Upon the increase in singlet oxygen formation, the fluorescence quantum yield and lifetime values of the aryl-BODIPY showed a concomitant decrease. The increase in solvent polarity enhances the singlet oxygen generation but decreases the fluorescence quantum yield. The results are explained by the presence of intramolecular photoinduced electron transfer from the aryl moiety to BODIPY core. This method of promoting T 1 formation is very different from the traditional heavy atom effect by I, Br, or transition metal atoms. This type of novel photosensitizers may find important applications in organic oxygenation reactions and photodynamic therapy of tumors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons
NASA Astrophysics Data System (ADS)
Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu
The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Du, Shixuan; Müllen, Klaus; Gao, Hong-Jun
2015-03-01
The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen-halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive ClCl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C60 molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C60 molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system.
Emissions of Bromine and Iodine from the Marine Environment in New Zealand
NASA Astrophysics Data System (ADS)
Martinez-Aviles, M.; Kreher, K.; Johnston, P. V.; Hay, T.; Thomas, A.; Schofield, R.
2009-12-01
As noted in the WMO/UNEP Scientific Assessment of Ozone Depletion: 2006, halogenated very short-lived substances (VSLS) contribute to the atmospheric budget of halogens and thereby lead to substantial decreases in ozone and increases in surface UV radiation in the tropics and mid-latitudes. Halogenated VSLS are primarily of natural origin; oceanic emissions constitute the largest source providing 90-95% of the total global flux to the atmosphere. Macro algae in the ocean appear to be an important source of polyhalogenated VSLS. Oxidation of halogenated VSLS in the atmosphere (i.e. photolysis and reactions with OH) produces halogen oxide radicals (e.g. ClO, BrO, IO) which have been suggested as the main component of gas-phase halogens. Countries with long coastlines and little land suitable for forestation are investigating the possibility of industrial scale marine kelp farming as a means of carbon sequestration. This marine analogy of the Kyoto Protocol forest has been thought as a means to contribute to climate change mitigation. Knowledge of how natural emissions of VSLS will respond to both the drivers of climate change (e.g. changes in CO2 and land use) and to the consequences of climate change (e.g. changes in sea surface temperature and wind stress) is very limited. As a result, it is imperative that observational studies are performed to quantify the contributions of these natural VSLS to halogen loading in the troposphere and, subsequently, in the stratosphere. For this, transport and degradation processes of the source gases and product gases need to be studied and quantified. A key question surfacing from the WMO Assessment is to what extent halogenated VSLS contribute to atmospheric Bry and Iy. During a field campaign conducted during the spring of 2009, measurements of BrO and IO were made along the coastline of the South Island of New Zealand using a portable Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) spectrometer with the aim of determining coastal sites where high active halogen release could be observed. The selected sites had high biomass concentration of marine algae that would be exposed by low tides. Local macro algae type, tidal height, sunlight, temperature, and wind speed were recorded and correlated to the resulting data in order to better understand the environmental factors that modulate the emissions of halogen oxides from the marine environment to the troposphere. Results of this multi-disciplinary approach to studying brominated VSLS and their atmospheric implications are presented. As well, the chemical processes taking place and producing these halogen oxides are discussed in a thorough manner. This study contributes to a better understanding of the origin of bromine and iodine in the lowermost atmosphere (i.e. marine boundary layer). Particularly, the role that natural emissions of halogenated VSLS from the ocean may play in the halogen budget of the lower atmosphere is addressed by quantitatively understanding key links in this chain so that its potential future impacts on atmospheric chemistry, surface UV radiation, and the biosphere can be thoroughly assessed.
NASA Astrophysics Data System (ADS)
Wada, Yoshiki; Mitani, Tadaoki; Yamashita, Masahiro; Koda, Takao
1985-08-01
Polarized reflection and luminescence have been measured for the single crystals of [MA2][MX2A2](ClO4)4 (M=Pt, Pd, X=Cl, Br, I and A=ethylenediamine, cyclohexanediamine). The strong absorption bands due to the charge-transfer (CT) exciton transitions between the mixed-valent metal ions have been investigated in detail in the visible or infrared energy regions. The dependence of the CT excitation energies on the species M and X is shown to be consistent with the prediction by the Peierls-Hubbard model which incorporates the effect of the electron-electron correlation on inter-metal sites. The oscillator strength of the CT excitons are observed to be enhanced by substituting heavier halogen ions. This enhancement is interpreted by a halogen-linked super-transfer mechanism. The unusually large values of the oscillator strength can be qualitatively explained in terms of the trimer CT model.
FT IR spectral investigations of toxic material dibrom using DFT
NASA Astrophysics Data System (ADS)
Parvathy, M.; Gopika, M. S.; Mary, B. L. Bincy; Nimmi, D. E.; Praveen, S. G.; Binoy, J.
2018-05-01
Since, dibrom is widely used organophosphate pesticide, the exploration of its structural features is of immense research interest, and can be effectively carried out using infrared spectroscopy aided by DFT simulation. The present work aims to investigate the interrelation between carbon-halogen bond strength and electronegativity halogen. The resonance of phosphate in dibrom and the deviation from resonant structure due to bridging of oxygen by electron donating methyl group has been investigated in detail. The molecular docking study has been performed to explore the bioactivity of dibrom and to assess the strength of interaction of dibrom towards DNA and BSA.
Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites
Goodman, Mark M.; Faraj, Bahjat
1999-01-01
Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.
Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites
Goodman, M.M.; Faraj, B.
1999-07-06
Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.
Halogenated compounds from marine algae.
Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar
2010-08-09
Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.
Halogenated Compounds from Marine Algae
Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar
2010-01-01
Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909
Investigating Planetary Volatile Accretion Mechanisms Using the Halogens
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.
2014-12-01
Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in carbonaceous chondrites should be considered when we assess Earth's halogen abundance relative to CI. [1] Lodders (2003) Astr J 591:1220-47. [2] Sharp et al. (2013) EPSL 369/70: 71-7. [3] Dreibus et al. (1979) Phys Chem Earth 11:33-8. [4] Goles et al. (1967) GCA 31: 1771-7. [5] Reed and Allen (1966) GCA 30: 779-800. [6] Greenland & Lovering (1965) GCA 29: 821-58.
Partial separation of halogens during the subduction of oceanic crust
NASA Astrophysics Data System (ADS)
Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.
2014-05-01
Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.
Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K
NASA Astrophysics Data System (ADS)
Mandowska, E.; Mandowski, A.; Tsvirko, M.
2009-10-01
The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.
Rawat, Vikas S; Bathini, Thulasiram; Govardan, S; Sreedhar, Bojja
2014-09-14
Propargylamines are synthesized via metal-free activation of the C-halogen bond of dihalomethanes and the C-H bond of terminal alkynes in a three-component coupling without catalyst or additional base and under mild reaction conditions. The dihalomethanes are used both as solvents as well as precursors for the methylene fragment (C1) in the final product. The scope of the reaction and the influence of various reaction variables has been investigated. A plausible reaction mechanism is proposed and the involvement of various intermediates that can be generated in situ in the process is discussed. The metal-free conditions also make this protocol environmentally benign and atom economical.
The Role of Triads in the Evolution of the Periodic Table: Past and Present
NASA Astrophysics Data System (ADS)
Scerri, Eric
2008-04-01
The purpose of this article is to propose a new design for the presentation of the periodic system of the elements. It is a system that highlights the fundamental importance of elements as basic substances rather than elements as simple substances, a distinction that is explained in the article. The proposed table is a variant of the Janet or left-step periodic table. Furthermore the fundamental nature of atomic number triads of elements is put to use in obtaining a new perfect triad by relocating hydrogen among the halogens to give the triad H, F, Cl. The relative virtues of this table, as compared with the medium-long form and the left-step table, are discussed.
Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna
2016-01-01
Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used. Copyright © 2015 John Wiley & Sons, Ltd.
Sources of volcanic aerosols: Petrologic and volcanological constraints
NASA Technical Reports Server (NTRS)
Sigurdsson, Haraldur
1991-01-01
Global climatic effects brought about by volcanism are related to the impact of volcanic gases and their derivative aerosols on the atmosphere, rather than the effects of volcanic ash. Evidence from both historic eruptions and polar ice cores indicate that volcanic sulfur gases are the dominant aerosol-forming component, resulting in produciton of a sulfuric acid-rich stratosphere aerosol that can have profound effects on the earth radiation budget over periods of a few years. Due to highly variable sulfur content of different magma types, the climatic effects do not relate simply to total erupted mass. There is a close relationship between volcanic sulfur yield to the atmospheric and hemispheric surface temperature decrease following an eruption, with up to 1 C surface temperature decrease indicated following a major volcanic event such as the 1815 Tambora eruption. While the erupted mass of HCl and HF is equal to or greater than that of sulfur gases in some volcanic events, the halogens do not form known aerosols nor are they abundant in ice core acidity layers. The early removal of halogens from eruption columns occurs by rain flushing and adsorption onto tephra particles, but the fate of halogens in the atmosphere following very large explosive eruptions is unknown. The CO2 flux to the atmosphere from volcanic eruptions is volumetrically one of the most important of the gas species, but owing to the huge size of the atmospheric reservoir of this gas, the volcanic contribution is likely to have negligible effects.
Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M
2003-01-01
Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent in some humans, but present in others. Alanine-glyoxylate aminotransferase II may contribute to the bioactivation (toxification) of halogenated cysteine S-conjugates in a subset of individuals exposed to halogenated alkenes. PMID:12859250
Catellani, Alessandra; Calzolari, Arrigo
2017-01-01
We report on first principle investigations about the electrical character of Li-X codoped ZnO transparent conductive oxides (TCOs). We studied a set of possible X codopants including either unintentional dopants typically present in the system (e.g., H, O) or monovalent acceptor groups, based on nitrogen and halogens (F, Cl, I). The interplay between dopants and structural point defects in the host (such as vacancies) is also taken explicitly into account, demonstrating the crucial effect that zinc and oxygen vacancies have on the final properties of TCOs. Our results show that Li-ZnO has a p-type character, when Li is included as Zn substitutional dopant, but it turns into an n-type when Li is in interstitial sites. The inclusion of X-codopants is considered to deactivate the n-type character of interstitial Li atoms: the total Li-X compensation effect and the corresponding electrical character of the doped compounds selectively depend on the presence of vacancies in the host. We prove that LiF-doped ZnO is the only codoped system that exhibits a p-type character in the presence of Zn vacancies. PMID:28772691
Donor impurity incorporation during layer growth of Zn II-VI semiconductors
NASA Astrophysics Data System (ADS)
Barlow, D. A.
2017-12-01
The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits for Hydrogen Halide and... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... Compliance Requirements § 63.2465 What requirements must I meet for process vents that emit hydrogen halide... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you must...
Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Mitzi, David B; Yan, Yanfa
2017-09-25
Recently, Cu I - and Ag I -based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb-based halide perovskite absorbers. However, up to date, only Ag I -based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of Cu I -based analogues. Here we show that, owing to the much higher energy level for the Cu 3d 10 orbitals than for the Ag 4d 10 orbitals, Cu I atoms energetically favor 4-fold coordination, forming [CuX 4 ] tetrahedra (X=halogen), but not 6-fold coordination as required for [CuX 6 ] octahedra. In contrast, Ag I atoms can have both 6- and 4-fold coordinations. Our density functional theory calculations reveal that the synthesis of Cu I halide double perovskites may instead lead to non-perovskites containing [CuX 4 ] tetrahedra, as confirmed by our material synthesis efforts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi
2018-03-15
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM
2012-06-12
The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##
Revisiting the SOLVE ClOOCl and ClO measurements in consideration of the Pope et al., 2007 results.
NASA Astrophysics Data System (ADS)
Stimpfle, R. M.; Wilmouth, D. M.; Anderson, J. G.
2008-12-01
The interpretation of the SOLVE measurements of ClOOCl and ClO has recently acquired renewed interest with the publication of new ClOOCl cross section measurements (Pope et al, 2007) that are significantly smaller than expected. The SOLVE analysis showed agreement with J values based upon the JPL 2002 or Burkholder 1990 cross sections, dependent upon various values for the rate constant for dimer production. J values based upon Pope are currently not in agreement with the SOLVE observations and/or their analysis. As various hypotheses emerge to possibly rationalize the Pope results, it is worthwhile to consider two critical constraints that the SOLVE halogen data place on any newly considered Clx photochemistry. The first constraint is the lack of a detectable Cl atom signal in the observed background signal at the temperature used for thermal dissociation of ClOOCl. The second constraint is the observed SZA dependence of the partitioning of ClO and ClOOCl. Here we present evidence of the Cl atom constraint.
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction
Lipton-Duffin, J. A.; Miwa, J. A.; Kondratenko, M.; Cicoira, F.; Sumpter, B. G.; Meunier, V.; Perepichka, D. F.; Rosei, F.
2010-01-01
One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked—i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the 110 facet of copper) simultaneously as template and catalyst for polymerization. Copper acts as promoter for the Ullmann coupling reaction, whereas the inherent anisotropy of the fcc 110 facet confines growth to a single dimension. High resolution scanning tunneling microscopy performed under ultrahigh vacuum conditions allows us to simultaneously image PEDOT oligomers and the copper lattice with atomic resolution. Density functional theory calculations confirm an unexpected adsorption geometry of the PEDOT oligomers, which stand on the sulfur atom of the thiophene ring rather than lying flat. This polymerization approach can be extended to many other halogen-terminated molecules to produce epitaxially aligned conjugated polymers. Such systems might be of central importance to develop future electronic and optoelectronic devices with high quality active materials, besides representing model systems for basic science investigations. PMID:20534511
Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2015-06-04
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less
NASA Astrophysics Data System (ADS)
Peebles, Rebecca A.; Peebles, Sean A.; Christenholz, Cori L.; Ernst, Anthony A.; Dhahir, Yasser J.
2013-06-01
The spectra of the CH_2F_2\\cdotspropyne and CH_2ClF\\cdotspropyne complexes have been studied by chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy and by ab initio calculations at the MP2/6-311++G(2d,2p) level. Both complexes contain C-H\\cdotsπ contacts, with the halogen atoms angled towards the methyl group end of the propyne. While CH_2F_2\\cdotspropyne has C_s symmetry, CH_2ClF\\cdotspropyne has C_1 symmetry, with the fluorine and chlorine atoms straddling the propyne. Investigation of four single ^{13}C and the DC≡CCH_3 isotopologues in CH_2F_2\\cdotspropyne has allowed a detailed structural determination, while only the ^{35}Cl and ^{37}Cl isotopologues have so far been assigned for CH_2ClF\\cdotspropyne. Experimental data will be compared with ab initio results and with the analogous acetylene complexes, both of which have C_s symmetry structures, with double C-H\\cdotsπ interactions.
Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E
2012-05-16
An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.
Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose
2008-10-30
A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.
Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds
NASA Technical Reports Server (NTRS)
Smith, G. B.
1996-01-01
The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakazaki, Nobuya, E-mail: nakazaki.nobuya.58x@st.kyoto-u.ac.jp; Takao, Yoshinori; Eriguchi, Koji
Classical molecular dynamics (MD) simulations have been performed for Cl{sup +} and Br{sup +} ions incident on Si(100) surfaces with Cl and Br neutrals, respectively, to gain a better understanding of the ion-enhanced surface reaction kinetics during Si etching in Cl- and Br-based plasmas. The ions were incident normally on surfaces with translational energies in the range E{sub i} = 20–500 eV, and low-energy neutrals of E{sub n} = 0.01 eV were also incident normally thereon with the neutral-to-ion flux ratio in the range Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 0–100, where an improved Stillinger--Weber potential form was employed for the interatomic potential concerned. The etch yieldsmore » and thresholds presently simulated were in agreement with the experimental results previously reported for Si etching in Cl{sub 2} and Br{sub 2} plasmas as well as in Cl{sup +}, Cl{sub 2}{sup +}, and Br{sup +} beams, and the product stoichiometry simulated was consistent with that observed during Ar{sup +} beam incidence on Si in Cl{sub 2}. Moreover, the surface coverage of halogen atoms, halogenated layer thickness, surface stoichiometry, and depth profile of surface products simulated for Γ{sub n}{sup 0}/Γ{sub i}{sup 0} = 100 were in excellent agreement with the observations depending on E{sub i} reported for Si etching in Cl{sub 2} plasmas. The MD also indicated that the yield, coverage, and surface layer thickness are smaller in Si/Br than in Si/Cl system, while the percentage of higher halogenated species in product and surface stoichiometries is larger in Si/Br. The MD further indicated that in both systems, the translational energy distributions of products and halogen adsorbates desorbed from surfaces are approximated by two Maxwellians of temperature T{sub 1} ≈ 2500 K and T{sub 2} ≈ 7000–40 000 K. These energy distributions are discussed in terms of the desorption or evaporation from hot spots formed through chemically enhanced physical sputtering and physically enhanced chemical sputtering, which have so far been speculated to both occur in the ion-enhanced surface reaction kinetics of plasma etching.« less
Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan
2018-02-05
Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.
Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D
2016-09-05
The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Two-dimensional networks of brominated Y-shaped molecules on Au(111)
NASA Astrophysics Data System (ADS)
Jeon, Un Seung; Chang, Min Hui; Jang, Won-Jun; Lee, Soon-Hyung; Han, Seungwu; Kahng, Se-Jong
2018-02-01
In the design of supramolecular structures, Y-shaped molecules are useful to expand the structures in three different directions. The supramolecular structures of Y-shaped molecules with three halogen-ligands on surfaces have been extensively studied, but much less are done for those with six halogen-ligands. Here, we report on the intermolecular interactions of a Y-shaped molecule, 1,3,5-Tris(3,5-dibromophenyl)benzene, with six Br-ligands studied using scanning tunneling microscopy (STM). Honeycomb-like structures were observed on Au(111), and could be explained with chiral triple-nodes made of three Br···Br halogen bonds. Molecular models were proposed based on STM images and reproduced with density-functional theory calculations. Although the molecule has six Br-ligands, only three of them form Br···Br halogen bonds because of geometrical restrictions. Our study shows that halogenated Y-shaped molecules will be useful components for building supramolecular structures.