Sample records for halogen donor molecules

  1. Evidence for Interfacial Halogen Bonding.

    PubMed

    Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-05-10

    A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  3. Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics.

    PubMed

    Sun, Shi-Xin; Huo, Yong; Li, Miao-Miao; Hu, Xiaowen; Zhang, Hai-Jun; Zhang, You-Wen; Zhang, You-Dan; Chen, Xiao-Long; Shi, Zi-Fa; Gong, Xiong; Chen, Yongsheng; Zhang, Hao-Li

    2015-09-16

    Two molecules containing a central diketopyrrolopyrrole and two oligothiophene units have been designed and synthesized. Comparisons between the molecules containing terminal F (FDPP) and Cl (CDPP) atoms allowed us to evaluate the effects of halogenation on the photovoltaic properties of the small molecule organic solar cells (OSCs). The OSCs devices employing FDPP:PC71BM films showed power conversion efficiencies up to 4.32%, suggesting that fluorination is an efficient method for constructing small molecules for OSCs.

  4. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  5. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  6. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  7. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  8. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  9. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  10. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  11. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    NASA Astrophysics Data System (ADS)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  12. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    PubMed

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  13. Halogen-bonding-triggered supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  14. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  15. The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactions.

    PubMed

    Wang, Jingjing; Mo, Lixin; Li, Xiaoyan; Geng, Zongke; Zeng, Yanli

    2016-12-01

    The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC 3 H 4 N 2 + ; X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH 3 ) 3 SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC 3 H 4 N 2 + to form the σ-hole and π-hole interactions in the bimolecular complexes (CH 3 ) 3 SiY · · · XC 3 H 4 N 2 + and (CH 3 ) 3 SiY · · · C 3 (X)H 4 N 2 + (X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.

  16. Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.

    1987-01-01

    A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less

  17. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    PubMed

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  18. Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.

    PubMed

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-05-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.

  19. Donor impurity incorporation during layer growth of Zn II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Barlow, D. A.

    2017-12-01

    The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.

  20. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  1. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  2. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  3. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  4. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    PubMed

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  5. On the Reliability of Pure and Hybrid DFT Methods for the Evaluation of Halogen, Chalcogen, and Pnicogen Bonds Involving Anionic and Neutral Electron Donors.

    PubMed

    Bauzá, Antonio; Alkorta, Ibon; Frontera, Antonio; Elguero, José

    2013-11-12

    In this article, we report a comprehensive theoretical study of halogen, chalcogen, and pnicogen bonding interactions using a large set of pure and hybrid functionals and some ab initio methods. We have observed that the pure and some hybrid functionals largely overestimate the interaction energies when the donor atom is anionic (Cl(-) or Br(-)), especially in the halogen bonding complexes. To evaluate the reliability of the different DFT (BP86, BP86-D3, BLYP, BLYP-D3, B3LYP, B97-D, B97-D3, PBE0, HSE06, APFD, and M06-2X) and ab initio (MP2, RI-MP2, and HF) methods, we have compared the binding energies and equilibrium distances to those obtained using the CCSD(T)/aug-cc-pVTZ level of theory, as reference. The addition of the latest available correction for dispersion (D3) to pure functionals is not recommended for the calculation of halogen, chalcogen, and pnicogen complexes with anions, since it further contributes to the overestimation of the binding energies. In addition, in chalcogen bonding interactions, we have studied how the hybridization of the chalcogen atom influences the interaction energies.

  6. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOEpatents

    Farcasiu, Malvina; Petrosius, Steven C.

    1994-01-01

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  7. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  8. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  9. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  10. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  11. Density functional IR, Raman, and VCD spectra of halogen substituted β-lactams

    NASA Astrophysics Data System (ADS)

    Rode, Joanna E.; Dobrowolski, Jan Cz.

    2003-06-01

    Halogenoazetidinones are important as synthetic intermediates for preparation of halogen β-lactam (2-azetidinone) antibiotics and as building blocks for carbohydrates and amino acids. In this paper, we consider the influence of the halogen atom, substituted at the C4 position of the 2-azetidinone ring, on the geometry, IR, Raman, and vibrational circular dichroism spectra. The vibrational spectra were calculated for the chiral 4-( R)-X-2-azetidinone (X=F, Cl or Br) molecules at the B3PW91/aug-cc-pVTZ level. It was shown that the geometry of the molecules studied do not change much upon the change of the halogen atom. In case of the vibrational spectra, the position but even more the intensities depend strongly on the kind of halogen substituent.

  12. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S

    2016-04-01

    The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modular Electron Donor Group Tuning Of Frontier Energy Levels In Diarylaminofluorenone Push-Pull Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homnick, Paul J.; Lahti, P. M.

    2012-01-01

    Push–pull organic molecules composed of electron donor diarylamines at the 2- and 2,7-positions of fluorenone exhibit intramolecular charge-transfer behaviour in static absorption and emission spectra. Electrochemical and spectral data combined in a modular electronic analysis model show how the donor HOMO and acceptor LUMO act as major determinants of the frontier molecular orbital energy levels.

  14. The unique role of halogen substituents in the design of modern agrochemicals.

    PubMed

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  15. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    PubMed

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-11-02

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  17. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    PubMed

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells.

    PubMed

    Loser, Stephen; Bruns, Carson J; Miyauchi, Hiroyuki; Ortiz, Rocío Ponce; Facchetti, Antonio; Stupp, Samuel I; Marks, Tobin J

    2011-06-01

    We report the synthesis, characterization, and first implementation of a naphtho[2,3-b:6,7-b']dithiophene (NDT)-based donor molecule in highly efficient organic photovoltaics (OPVs). When NDT(TDPP)(2) (TDPP = thiophene-capped diketopyrrolopyrrole) is combined with the electron acceptor PC(61)BM, a power conversion efficiency (PCE) of 4.06 ± 0.06% is achieved-a record for a PC(61)BM-based small-molecule OPV. The substantial PCE is attributed to the broad, high oscillator strength visible absorption, the ordered molecular packing, and an exceptional hole mobility of NDT(TDPP)(2). © 2011 American Chemical Society

  19. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  20. The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates.

    PubMed

    Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman

    2017-10-13

    Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

  1. Two-dimensional networks of brominated Y-shaped molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Jeon, Un Seung; Chang, Min Hui; Jang, Won-Jun; Lee, Soon-Hyung; Han, Seungwu; Kahng, Se-Jong

    2018-02-01

    In the design of supramolecular structures, Y-shaped molecules are useful to expand the structures in three different directions. The supramolecular structures of Y-shaped molecules with three halogen-ligands on surfaces have been extensively studied, but much less are done for those with six halogen-ligands. Here, we report on the intermolecular interactions of a Y-shaped molecule, 1,3,5-Tris(3,5-dibromophenyl)benzene, with six Br-ligands studied using scanning tunneling microscopy (STM). Honeycomb-like structures were observed on Au(111), and could be explained with chiral triple-nodes made of three Br···Br halogen bonds. Molecular models were proposed based on STM images and reproduced with density-functional theory calculations. Although the molecule has six Br-ligands, only three of them form Br···Br halogen bonds because of geometrical restrictions. Our study shows that halogenated Y-shaped molecules will be useful components for building supramolecular structures.

  2. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  3. Next Generation Highly Conducting Organic Films Using Novel Donor-Acceptor Molecules for Opto-electronic Applications

    DTIC Science & Technology

    2010-06-01

    addition, a new class of donor molecules was invented in the course of the DRI program. 2.1 Polymer Based Donor-acceptor Material The following work by...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

  4. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1) An...

  5. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    PubMed

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  6. Halogen Chemistry at North American Coastal Sites

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Pikelnaya, O.; Laskin, A.; Sumner, A.; Jobson, B. T.; Finley, B.; Lawler, M.; Saltzman, E. S.; Pszenny, A. A.; Deegan, B.

    2007-12-01

    In recent years observational evidence has emerged that reactive halogen species (RHS), such as chlorine atoms, and bromine and iodine oxides, are present in coastal areas. Their chemistry can be significant as they catalytically destroy O3; oxidize hydrocarbons, dimethylsulfide, and S(IV); and modify NOx and HOx cycling. Despite their potential importance our observational database on RHS is still very limited. Most observations of RHS thus far have been made in clean areas and very few observations along the North American coast have been made. Here we will review our current understanding of RHS chemistry in both clean and polluted environments. Recent observations at coastal areas around the world will be discussed. We will also give an overview of an experiment performed by our group in Malibu, CA in October 2006 and present initial results. A suite of trace gases and environmental parameters, including halogen molecules, halogen oxides, Cl + VOC reaction products, aerosol composition, O3, NOx, CO, VOCs, meteorology, and radiation, were measured during a three week period. In addition, Cl + VOC reaction products were measured at two locations in urban Los Angeles. Clear evidence for the presence of various halogen species on the California coast was found. Observations during periods with relatively clean marine air and during times where our site was in the outflow of Los Angeles show the impact of pollution on coastal atmospheric chemistry. Our observations will be compared to earlier studies of halogen chemistry at coastal areas to further advance our understanding of halogen chemistry.

  7. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  8. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  9. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  10. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  11. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  12. Iodine(III) Derivatives as Halogen Bonding Organocatalysts.

    PubMed

    Heinen, Flemming; Engelage, Elric; Dreger, Alexander; Weiss, Robert; Huber, Stefan M

    2018-03-26

    Hypervalent iodine(III) derivatives are known as versatile reagents in organic synthesis, but there is only one previous report on their use as Lewis acidic organocatalysts. Herein, we present first strong indications for the crucial role of halogen bonding in this kind of catalyses. To this end, the solvolysis of benzhydryl chloride and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone served as benchmark reactions for halide abstraction and the activation of neutral compounds. Iodolium compounds (cyclic diaryl iodonium species) were used as activators or catalysts, and we were able to markedly reduce or completely switch off their activity by sterically blocking one or two of their electrophilic axes. Compared with previously established bidentate cationic halogen bond donors, the monodentate organoiodine derivatives used herein are at least similarly active (in the Diels-Alder reaction) or even decidedly more active (in benzhydryl chloride solvolysis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photoproduction of halogens using platinized TiO2

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E.

    1981-01-01

    Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.

  14. Binding interactions of halogenated bisphenol A with mouse PPARα: In vitro investigation and molecular dynamics simulation.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua

    2018-02-01

    The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Halogen bonds in clathrate cages: A real space perspective.

    PubMed

    Guevara-Vela, José Manuel; Ochoa-Resendiz, David; Costales, Aurora; Hernández-Lamoneda, Ramón; Martin Pendas, Angel

    2018-06-22

    In this paper we present real space analyses of the nature of the dihalogen-water cage interactions in the 5^{12} and 5^{12}6^2 clathrate cages containing chlorine and bromine, respectively. Our Quantum Theory of Atoms in Molecules and Interacting Quantum Atoms results provide strong indications that halogen bonding is present even though the lone pairs of water molecules are already engaged in hydrogen bonding interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    PubMed

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  17. Modulation of the fibrillogenesis inhibition properties of two transthyretin ligands by halogenation.

    PubMed

    Cotrina, Ellen Y; Pinto, Marta; Bosch, Lluís; Vilà, Marta; Blasi, Daniel; Quintana, Jordi; Centeno, Nuria B; Arsequell, Gemma; Planas, Antoni; Valencia, Gregorio

    2013-11-27

    The amyloidogenic protein transthyretin (TTR) is thought to aggregate into amyloid fibrils by tetramer dissociation which can be inhibited by a number of small molecule compounds. Our analysis of a series of crystallographic protein-inhibitor complexes has shown no clear correlation between the observed molecular interactions and the in vitro activity of the inhibitors. From this analysis, it emerged that halogen bonding (XB) could be mediating some key interactions. Analysis of the halogenated derivatives of two well-known TTR inhibitors has shown that while flufenamic acid affinity for TTR was unchanged by halogenation, diflunisal gradually improves binding up to 1 order of magnitude after iodination through interactions that can be interpreted as a suboptimal XB (carbonyl Thr106: I...O distance 3.96-4.05 Å; C-I...O angle 152-156°) or as rather optimized van der Waals contacts or as a mixture of both. These results illustrate the potential of halogenation strategies in designing and optimizing TTR fibrillogenesis inhibitors.

  18. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  19. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  20. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  1. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less

  2. Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Hatano, Junichi; Nakagawa, Takafumi; Yamaguchi, Shigeru; Matsuo, Yutaka

    2013-01-01

    Utilizing tetraethynyl porphyrin derivative (TE-Por) as a small molecule donor material, we fabricated a small molecule solution-processed bulk heterojunction (BHJ) solar cell with inverted structure, which exhibited 1.6% power conversion efficiency (JSC (short-circuit current) = 4.6 mA/cm2, VOC (open-circuit voltage) = 0.90 V, and FF (fill factor) = 0.39) in the device configuration indium tin oxide/TiOx (titanium sub-oxide)/[6,6]-phenyl-C61-butyric acid methyl ester:TE-Por (5:1)/MoOx (molybdenum sub-oxide)/Au under AM1.5 G illumination at 100 mW/cm2. Without encapsulation, the small molecule solution-processed inverted BHJ solar cell also showed remarkable durability to air, where it kept over 73% of its initial power conversion efficiency after storage for 28 days under ambient atmosphere in the dark.

  3. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  4. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  5. Fine-tuning device performances of small molecule solar cells via the more polarized DPP-attached donor units.

    PubMed

    Huang, Jianhua; Jia, Hui; Li, Liangjie; Lu, Zhenhuan; Zhang, Wenqing; He, Weiwei; Jiang, Bo; Tang, Ailing; Tan, Zhan'ao; Zhan, Chuanlang; Li, Yongfang; Yao, Jiannian

    2012-11-07

    Three solution-processable small molecules of DPPT, DPPSe and DPPTT were synthesized by Stille coupling through attaching donor units of thiophene (T), selenophene (Se) and thieno[3,2-b]thiophene (TT) to the diketopyrrolopyrrole (DPP) core, respectively. Replacement of the T donors with the more polarized Se units results in a balance between the a and b direction packing and an obvious increase of the power conversion efficiency (PCE) from 1.90% to 2.33% with the increase of the short-circuit current (I(sc)) from 5.59 to 5.81 mA cm(-2) and the open-circuit voltage (V(oc)) from 0.78 V to 0.86 under the small molecule/acceptor ratio of 3 : 1. However, introduction of the conjugation-enlarged TT groups (versus the T units) leads to a decrease of the PCE, down to 1.70%, with a significant decrease of the fill factor (FF) (38% versus 44%), due to its poor film-forming characteristics.

  6. Molecular docking and structural analysis of non-opioid analgesic drug acemetacin with halogen substitution: A DFT approach

    NASA Astrophysics Data System (ADS)

    Leenaraj, D. R.; Manimaran, D.; Joe, I. Hubert

    2016-11-01

    Acemetacin is a non-opioid analgesic which belongs to the class, the non-steroidal anti-inflammatory drug. The bioactive conformer was identified through potential energy surface scan studies. Spectral features of acemetacin have been probed by the techniques of Fourier transform infrared, Raman and Nuclear magnetic resonance combined with density functional theory calculations at the B3LYP level with 6-311 + G(d,p) basis set. The detailed interpretation of vibrational spectral assignments has been carried out on the basis of potential energy distribution method. Geometrical parameters reveal that the carbonyl substitution in between chlorophenyl and indole ring leads to a significant loss of planarity. The red-shifted Cdbnd O stretching wavenumber describe the conjugation between N and O atoms. The shifted Csbnd H stretching wavenumbers of Osbnd CH3 and Osbnd CH2 groups depict the back-donation and induction effects. The substitution of halogen atoms on the title molecule influences the charge distribution and the geometrical parameters. Drug activity and binding affinity of halogen substitution in title molecule with target protein were undertaken by molecular docking study. This study enlightens the effects of bioefficiency due to the halogen substitution in the molecule.

  7. On the correlation between bond-length change and vibrational frequency shift in halogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-06-01

    The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.

  8. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers.

    PubMed

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J

    2014-01-07

    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  9. Chalcogen- and halogen-bonds involving SX2 (X = F, Cl, and Br) with formaldehyde.

    PubMed

    Mo, Lixin; Zeng, Yanli; Li, Xiaoyan; Zhang, Xueying; Meng, Lingpeng

    2016-07-01

    The capacity of SX2 (X = F, Cl, and Br) to engage in different kinds of noncovalent bonds was investigated by ab initio calculations. SCl2 (SBr2) has two σ-holes upon extension of Cl (Br)-S bonds, and two σ-holes upon extension of S-Cl (Br) bonds. SF2 contains only two σ-holes upon extension of the F-S bond. Consequently, SCl2 and SBr2 form chalcogen and halogen bonds with the electron donor H2CO while SF2 forms only a chalcogen bond, i.e., no F···O halogen bond was found in the SF2:H2CO complex. The S···O chalcogen bond between SF2 and H2CO is the strongest, while the strongest halogen bond is Br···O between SBr2 and H2CO. The nature of these two types of noncovalent interaction was probed by a variety of methods, including molecular electrostatic potentials, QTAIM, energy decomposition, and electron density shift maps. Termolecular complexes X2S···H2CO···SX'2 (X = F, Cl, Br, and X' = Cl, Br) were constructed to study the interplay between chalcogen bonds and halogen bonds. All these complexes contained S···O and Cl (Br)···O bonds, with longer intermolecular distances, smaller values of electron density, and more positive three-body interaction energies, indicating negative cooperativity between the chalcogen bond and the halogen bond. In addition, for all complexes studied, interactions involving chalcogen bonds were more favorable than those involving halogen bonds. Graphical Abstract Molecular electrostatic potential and contour map of the Laplacian of the electron density in Cl2S···H2CO···SCl2 complex.

  10. Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?

    PubMed

    Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D

    2011-05-01

    This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (<0.1). General indices such as the BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Structures and anti-inflammatory properties of 4-halogenated -mofebutazones

    NASA Astrophysics Data System (ADS)

    Reichelt, Hendrik; Paradies, Henrich H.

    2018-02-01

    The crystal structures of the 4-halogenated (hal: F, Cl, Br)-4-butyl-1-phenyl-1,3-pyrolidine-dione (mofebutazone) are determined, and compared with their solution structures. The racemic 4-halogenated mofebutazone approximants crystallize in a monoclinic space group with four molecules in the unit cell. The 4-hal-mofebutazone molecules reveal strong hydrogen bonding between the hydrogen atom located at the N-2 nitrogen atom and a carbonyl oxygen atom of an adjacent 4-hal-mofebutazone molecule. The hydrogen bond angle for 4-Br-mifebutazone N (2)sbnd H (1)⋯O (1) is 173(3) °, so that the hydrogen bond is essentially linear indicating an infinite chain hydrogen bond network. The 3d and 2d structures are stabilized by π-π and σ-π interactions, short intermolecular distances, and apolar forces between adjacently stacked phenyl rings. Small-angle-X-ray scattering (SAXS) experiments and osmometric measurements reveal the presence of dimers for the 4-hal-mofebutazone molecules. Molecular simulations indicate similar solution structure factors for the 4-hal-mofebutazones solutions, S(Q), and in the solid state. There is a strong indication that the [1,1,0], [1,0,0], and [1,0,0] periodicities of the 4-Brsbnd , 4-Clsbnd and 4-F-mofebutazone in the crystalline solid state were also present in the solution phase. The biochemical and cellular activities of the different 4-hal-mofebutazones were monitored by the magnitude of their inhibition of the PGE2 biosynthesis through the cyclo-oxygenase (COX-1) in macrophages, and on the inhibition of LTD4 (5-lipoxygenase) in polymorphonuclear leukocytes.

  12. Effect of halogen dopants on the properties of Li2O2: is chloride special?

    PubMed

    Cortes, Henry A; Vildosola, Verónica L; Barral, María Andrea; Corti, Horacio R

    2018-05-18

    There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.

  13. Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53

    PubMed Central

    2012-01-01

    The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery. PMID:22439615

  14. Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices.

    PubMed

    Patil, Hemlata; Chang, Jingjing; Gupta, Akhil; Bilic, Ante; Wu, Jishan; Sonar, Prashant; Bhosale, Sheshanath V

    2015-09-18

    Two solution-processable small organic molecules, (E)-6,6'-bis(4-(diphenylamino)phenyl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S10) and (E)-6,6'-di(9H-carbazol-9-yl)-1,1'-bis(2-ethylhexyl)-(3,3'-biindolinylidene)-2,2'-dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 and S11 are based on a donor-acceptor-donor structural motif and contain a common electron accepting moiety, isoindigo, along with different electron donating functionalities, triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed that the use of triphenylamine donor functionality resulted in an enhanced intramolecular charge transfer transition and reduction of optical band gap, when compared with its carbazole analogue. Both of these materials were designed to be donor semiconducting components, exerted excellent solubility in common organic solvents, showed excellent thermal stability, and their promising optoelectronic properties encouraged us to scrutinize charge-carrier mobilities using solution-processable organic field effect transistors. Hole mobilities of the order of 2.2 × 10(-4) cm²/Vs and 7.8 × 10(-3) cm²/Vs were measured using S10 and S11 as active materials, respectively.

  15. Chemical Action of Halogenated Agents in Fire Extinguishing

    NASA Technical Reports Server (NTRS)

    Belles, Frank E.

    1955-01-01

    The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.

  16. Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.

    PubMed

    Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2016-11-23

    The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.

  17. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells.

    PubMed

    Duan, Yu-Ai; Geng, Yun; Li, Hai-Bin; Jin, Jun-Ling; Wu, Yong; Su, Zhong-Min

    2013-07-15

    To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP  =  thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. Copyright © 2013 Wiley Periodicals, Inc.

  18. Halogen Chemistry in the CMAQ Model

    EPA Science Inventory

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  19. On the physical nature of halogen bonds: a QTAIM study.

    PubMed

    Syzgantseva, Olga A; Tognetti, Vincent; Joubert, Laurent

    2013-09-12

    In this article, we report a detailed study on halogen bonds in complexes of CHCBr, CHCCl, CH2CHBr, FBr, FCl, and ClBr with a set of Lewis bases (NH3, OH2, SH2, OCH2, OH(-), Br(-)). To obtain insight into the physical nature of these bonds, we extensively used Bader's Quantum Theory of Atoms-in-Molecules (QTAIM). With this aim, in addition to the examination of the bond critical points properties, we apply Pendás' Interacting Quantum Atoms (IQA) scheme, which enables rigorous and physical study of each interaction at work in the formation of the halogen-bonded complexes. In particular, the influence of primary and secondary interactions on the stability of the complexes is analyzed, and the roles of electrostatics and exchange are notably discussed and compared. Finally, relationships between QTAIM descriptors and binding energies are inspected.

  20. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence.

    PubMed

    Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma

    2017-02-01

    Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.

  1. Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface.

    PubMed

    Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao

    2018-01-09

    Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

  2. Experimental investigation of halogen-bond hard-soft acid-base complementarity.

    PubMed

    Riel, Asia Marie S; Jessop, Morly J; Decato, Daniel A; Massena, Casey J; Nascimento, Vinicius R; Berryman, Orion B

    2017-04-01

    The halogen bond (XB) is a topical noncovalent interaction of rapidly increasing importance. The XB employs a `soft' donor atom in comparison to the `hard' proton of the hydrogen bond (HB). This difference has led to the hypothesis that XBs can form more favorable interactions with `soft' bases than HBs. While computational studies have supported this suggestion, solution and solid-state data are lacking. Here, XB soft-soft complementarity is investigated with a bidentate receptor that shows similar associations with neutral carbonyls and heavy chalcogen analogs. The solution speciation and XB soft-soft complementarity is supported by four crystal structures containing neutral and anionic soft Lewis bases.

  3. Tropospheric Halogen Chemistry

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  4. Halogenated boron-dipyrromethenes: synthesis, properties and applications.

    PubMed

    Lakshmi, Vellanki; Rao, Malakalapalli Rajeswara; Ravikanth, Mangalampalli

    2015-03-07

    Boron-dipyrromethene dyes (BODIPYs) containing halogens at pyrrole carbons are very useful synthons for the synthesis of a variety of BOIDPYs for a wide range of applications. Among the functional groups, halogens are the functional groups which can be regiospecifically introduced at any desired pyrrole carbon of the BODIPY framework by adopting appropriate synthetic strategies. The halogenated BODIPYs can undergo facile nucleophilic substitution reactions to prepare several interesting BODIPY based compounds. This review describes the synthesis, properties and potential applications of halogenated BODIPYs containing one to six halogens at the pyrrole carbons of the BODIPY core as well as properties and applications of some of the substituted BODIPYs derived from halogenated BODIPYs.

  5. Phenothiazine-anthraquinone donor-acceptor molecules: synthesis, electronic properties and DFT-TDDFT computational study.

    PubMed

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-09-17

    Two donor-acceptor molecules with different pi-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and pi --> pi* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  6. Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell.

    PubMed

    Parlane, Fraser G L; Mustoe, Chantal; Kellett, Cameron W; Simon, Sarah J; Swords, Wesley B; Meyer, Gerald J; Kennepohl, Pierre; Berlinguette, Curtis P

    2017-11-24

    The interactions between a surface-adsorbed dye and a soluble redox-active electrolyte species in the dye-sensitized solar cell has a significant impact on the rate of regeneration of photo-oxidized dye molecules and open-circuit voltage of the device. Dyes must therefore be designed to encourage these interfacial interactions, but experimentally resolving how such weak interactions affect electron transfer is challenging. Herein, we use X-ray absorption spectroscopy to confirm halogen bonding can exist at the dye-electrolyte interface. Using a known series of triphenylamine-based dyes bearing halogen substituents geometrically positioned for reaction with halides in solution, halogen bonding was detected only in cases where brominated and iodinated dyes were photo-oxidized. This result implies that weak intermolecular interactions between photo-oxidized dyes and the electrolyte can impact device photovoltages. This result was unexpected considering the low concentration of oxidized dyes (less than 1 in 100,000) under full solar illumination.

  7. Effect of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Park, Soohyeong; Nam, Sungho; Seo, Jooyeok; Jeong, Jaehoon; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo

    2015-02-01

    Here, we report the influence of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells that are made with bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) (as an electron donor) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) (as an electron acceptor). Diiodooctane (DIO) and dibromooctane (DBO) were employed as additives in order to compare the effect of different halogen groups (bromine and iodine). Results showed that the power conversion efficiency of devices was slightly (˜15%) improved by using additives due to the increased open-circuit voltage and fill factor. The synchrotron radiation grazing-incidence X-ray diffraction (GIXD) measurements disclosed that the performance improvement was closely related to the relatively well-evolved nanostructures in the P3HT:F8BT films caused by the additives.

  8. Halogen bonding in solution: thermodynamics and applications.

    PubMed

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  9. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less

  10. Adsorption of halogens on metal surfaces

    NASA Astrophysics Data System (ADS)

    Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.

    2018-06-01

    This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.

  11. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation.

    PubMed

    Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2016-01-01

    Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.

  12. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  13. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  14. Halogenated arsenenes as Dirac materials

    NASA Astrophysics Data System (ADS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-07-01

    Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  15. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    PubMed

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  16. Metal halogen battery construction with improved technique for producing halogen hydrate

    DOEpatents

    Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.

    1983-01-01

    An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.

  17. Independent Evolution of Six Families of Halogenating Enzymes.

    PubMed

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  18. Independent Evolution of Six Families of Halogenating Enzymes

    PubMed Central

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity. PMID:27153321

  19. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  20. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  1. T-Shaped Indan-1,3-dione derivatives as promising electron donors for bulk heterojunction small molecule solar cell

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Solanke, Parmeshwar; Pathak, Dinesh; Wagner, Tomas; Bureš, Filip; Reed, Tyler; Nunzi, Jean-Michel

    2017-07-01

    We report on the photovoltaic performance of novel T-Shaped Indan-1,3-dione derivatives as donors in a solution processed bulk heterojunction solar cells. Small molecule bulk heterojunction solar cells of these molecules with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were fabricated and characterized. The preliminary characterization of these devices yielded a PCE of 0.24% and 0.33% for two separate derivatives. These low power conversion efficiencies were attributed to a high surface roughness with a large number of dewetting spots. Doping with 10% Polystyrene in the Indan-1,3-dione derivatives decreases surface roughness and dewetting spots thereby improving the efficiency of the devices. Efficiency of the devices was found as 0.39% and 0.51% for two derivatives after doping with polystyrene. The charge transfer mechanism was studied with photoluminescence quenching. The morphology and packing behavior of molecules were further studied using Atomic Force Microscopy (AFM) and X-ray diffraction (XRD).

  2. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  3. Density Functional Theory Investigations of D-A-D' Structural Molecules as Donor Materials in Organic Solar Cell.

    PubMed

    Chen, Junxian; Liu, Qingyu; Li, Hao; Zhao, Zhigang; Lu, Zhiyun; Huang, Yan; Xu, Dingguo

    2018-01-01

    Squaraine core based small molecules in bulk heterojunction organic solar cells have received extensive attentions due to their distinguished photochemical properties in far red and infrared domain. In this paper, combining theoretical simulations and experimental syntheses and characterizations, three major factors (fill factor, short circuit and open-cirvuit voltage) have been carried out together to achieve improvement of power conversion efficiencies of solar cells. As model material systems with D-A-D' framework, two asymmetric squaraines (CNSQ and CCSQ-Tol) as donor materials in bulk heterojunction organic solar cell were synthesized and characterized. Intensive density functional theory computations were applied to identify some direct connections between three factors and corresponding molecular structural properties. It then helps us to predict one new molecule of CCSQ'-Ox that matches all the requirements to improve the power conversion efficiency.

  4. Rotationally adiabatic pair interactions of para- and ortho-hydrogen with the halogen molecules F2, Cl2, and Br2.

    PubMed

    Berg, Matthias; Accardi, Antonio; Paulus, Beate; Schmidt, Burkhard

    2014-08-21

    The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.

  5. Headspace GC-MS Analysis of Halogenated Volatile Organic Compounds in Aqueous Samples: An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Keller, John W.; Fabbri, Cindy E.

    2012-01-01

    Analysis of halogenated volatile organic compounds (HVOCs) by GC-MS demonstrates the use of instrumentation in the environmental analysis of pollutant molecules and enhances student understanding of stable isotopes in nature. In this experiment, students separated and identified several HVOCs that have been implicated as industrial groundwater…

  6. Polymorphism of a widely used building block for halogen-bonded assemblies: 1,3,5-trifluoro-2,4,6-triiodobenzene.

    PubMed

    Raffo, Pablo A; Suárez, Sebastián; Fantoni, Adolfo C; Baggio, Ricardo; Cukiernik, Fabio D

    2017-09-01

    After reporting the structure of a new polymorph of 1,3,5-trifluoro-2,4,6-triiodobenzene (denoted BzF3I3), C 6 F 3 I 3 , (I), which crystallized in the space group P2 1 /c, we perform a comparative analysis with the already reported P2 1 /n polymorph, (II) [Reddy et al. (2006). Chem. Eur. J. 12, 2222-2234]. In polymorph (II), type-II I...I halogen bonds and I...π interactions connect molecules in such a way that a three-dimensional structure is formed; however, the way in which molecules are connected in polymorph (I), through type-II I...I halogen bonds and π-π interactions, gives rise to an exfoldable lamellar structure, which looks less tightly bound than that of (II). In agreement with this structural observation, both the melting point and the melting enthalpy of (I) are lower than those of (II).

  7. Experimental and computational evidence of halogen bonds involving astatine

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Maurice, Rémi; Teze, David; Graton, Jérôme; Champion, Julie; Montavon, Gilles; Galland, Nicolas

    2018-03-01

    The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.

  8. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    PubMed

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  9. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    PubMed

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  10. The halogen bond: Nature and applications

    NASA Astrophysics Data System (ADS)

    Costa, Paulo J.

    2017-10-01

    The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.

  11. Magnesium Bisamide-Mediated Halogen Dance of Bromothiophenes.

    PubMed

    Yamane, Yoshiki; Sunahara, Kazuhiro; Okano, Kentaro; Mori, Atsunori

    2018-03-16

    A magnesium bisamide-mediated halogen dance of bromothiophenes is described. The thienylmagnesium species generated in situ is more stable than the corresponding thienyllithium species, which was applied to trap the transient anion species with several electrophiles, such as allyl iodide, phenyl isocyanate, and tributylstannyl chloride. The utility of the magnesium bisamide-mediated halogen dance is useful in the concise synthesis of a medicinally advantageous compound via a one-pot, ester-directed halogen dance/Negishi cross coupling.

  12. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    PubMed

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  13. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  14. Halogens in chondritic meteorites and terrestrial accretion

    NASA Astrophysics Data System (ADS)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  15. Nanographenes as electron-deficient cores of donor-acceptor systems.

    PubMed

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  16. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I...π/N/S halogen bond and other assisting interactions.

    PubMed

    Wang, Hui; Jin, Wei Jun

    2017-04-01

    The halogen-bonded cocrystal of 1,4-diiodotetrafluorobenzene (1,4-DITFB) with the butterfly-shape non-planar heterocyclic compound phenothiazine (PHT) was successfully assembled by the conventional solution-based method. X-ray single-crystal diffraction analysis reveals a 3:2 stoichiometric ratio for the cocrystal (1,4-DITFB/PHT), and the cocrystal structure is constructed via C-I...π, C-I...N and C-I...S halogen bonds as well as other assisting interactions (e.g. C-H...F/S hydrogen bond, C-H...H-C and C-F...F-C bonds). The small shift of the 1,4-DITFB vibrational band to lower frequencies in FT-IR and Raman spectroscopies provide evidence to confirm the existence of the halogen bond. In addition, the non-planarity of the PHT molecule in the cocrystal results in PHT emitting weak phosphorescence and relatively strong delayed fluorescence. Thus, a wide range of delayed fluorescence and weak phosphorescence could play a significant role in selecting a proper π-conjugated system to engineer functional cocrystal and luminescent materials by halogen bonds.

  17. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  18. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  19. GC-MS Study of Mono- and Bishaloethylphosphonates Related to Schedule 2.B.04 of the Chemical Weapons Convention: The Discovery of a New Intramolecular Halogen Transfer

    NASA Astrophysics Data System (ADS)

    Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A.; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther

    2016-09-01

    A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process.

  20. GC-MS Study of Mono- and Bishaloethylphosphonates Related to Schedule 2.B.04 of the Chemical Weapons Convention: The Discovery of a New Intramolecular Halogen Transfer.

    PubMed

    Picazas-Márquez, Nerea; Sierra, María; Nova, Clara; Moreno, Juan Manuel; Aboitiz, Nuria; de Rivas, Gema; Sierra, Miguel A; Martínez-Álvarez, Roberto; Gómez-Caballero, Esther

    2016-09-01

    A new class of compounds, mono- and bis-haloethylphosphonates (HAPs and bisHAPs, respectively), listed in Schedule 2.B.04 of the Chemical Weapons Convention (CWC), has been synthesized and studied by GC-MS with two aims. First, to improve the identification of this type of chemicals by the Organization for the Prohibition of Chemical Weapons, (OPCW). Second, to study the synergistic effect of halogen and silicon atoms in molecules undergoing mass spectrometry. Fragmentation patterns of trimethylsilyl derivatives of HAPs were found to depend on the nature of the halogen atom; this was in agreement with DFT-calculations. The data suggest that a novel intramolecular halogen transfer takes place during the fragmentation process. Graphical Abstract ᅟ.

  1. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  2. A new class of halogen bonds that avoids the σ-hole

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Ma, Ning; Wang, Weizhou

    2012-04-01

    A new class of halogen bonds of the type X = Hal⋯Y has been investigated by using the density functional theory calculations. The strength of this new class of halogen bonds is in the range of 90-120 kcal/mol, which is greatly larger than that of the conventional halogen bond of the type X-Hal⋯Y. The geometry of this new class of halogen bonds is not determined by the halogen's positive σ-hole. Natural bond orbital analysis shows it is the n → π∗ interaction that determines the geometry of this new class of halogen bonds. Experimental results are in good agreement with the theoretical predictions.

  3. Potential use and perspectives of nitric oxide donors in agriculture.

    PubMed

    Marvasi, Massimiliano

    2017-03-01

    Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    PubMed

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  5. Atomic resolution ADF-STEM imaging of organic molecular crystal of halogenated copper phthalocyanine.

    PubMed

    Haruta, Mitsutaka; Yoshida, Kaname; Kurata, Hiroki; Isoda, Seiji

    2008-05-01

    Annular dark-field (ADF) scanning transmission electron microscopy (STEM) measurements are demonstrated for the first time to be applicable for acquiring Z-contrast images of organic molecules at atomic resolution. High-angle ADF imaging by STEM is a new technique that provides incoherent high-resolution Z-contrast images for organic molecules. In the present study, low-angle ADF-STEM is successfully employed to image the molecular crystal structure of hexadecachloro-Cu-phthalocyanine (Cl16-CuPc), an organic molecule. The structures of CuPc derivatives (polyhalogenated CuPc with Br and Cl) are determined quantitatively using the same technique to determine the occupancy of halogens at each chemical site. By comparing the image contrasts of atomic columns, the occupancy of Br is found to be ca. 56% at the inner position, slightly higher than that for random substitution and in good agreement with previous TEM results.

  6. Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory.

    PubMed

    George, Janine; Deringer, Volker L; Dronskowski, Richard

    2014-05-01

    Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.

  7. Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process.

    PubMed

    Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong

    2017-09-06

    Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.

  8. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  9. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  10. Investigating Planetary Volatile Accretion Mechanisms Using the Halogens

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.

    2014-12-01

    Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in

  11. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  12. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  13. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  14. Alternative Donor/Unrelated Donor Transplants for the β-Thalassemia and Sickle Cell Disease.

    PubMed

    Fitzhugh, Courtney D; Abraham, Allistair; Hsieh, Matthew M

    2017-01-01

    Considerable progress with respect to donor source has been achieved in allogeneic stem cell transplant for patients with hemoglobin disorders, with matched sibling donors in the 1980s, matched unrelated donors and cord blood sources in the 1990s, and haploidentical donors in the 2000s. Many studies have solidified hematopoietic progenitors from matched sibling marrow, cord blood, or mobilized peripheral blood as the best source-with the lowest graft rejection and graft versus host disease (GvHD), and highest disease-free survival rates. For patients without HLA-matched sibling donors, but who are otherwise eligible for transplant, fully allelic matched unrelated donor (8/8 HLA-A, B, C, DRB1) appears to be the next best option, though an ongoing study in patients with sickle cell disease will provide data that are currently lacking. There are high GvHD rates and low engraftment rates in some of the unrelated cord transplant studies. Haploidentical donors have emerged in the last decade to have less GvHD; however, improvements are needed to increase the engraftment rate. Thus the decision to use unrelated cord blood units or haploidentical donors may depend on the institutional expertise; there is no clear preferred choice over the other. Active research is ongoing in expanding cord blood progenitor cells to overcome the limitation of cell dose, including the options of small molecule inhibitor compounds added to ex vivo culture or co-culture with supportive cell lines. There are inconsistent data from using 7/8 or lower matched unrelated donors. Before routine use of these less matched donor sources, work is needed to improve patient selection, conditioning regimen, GvHD prophylaxis, and/or other strategies.

  15. Scientific conferences: A big hello to halogen bonding

    NASA Astrophysics Data System (ADS)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  16. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  17. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-10-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.

  18. Tropospheric impacts of volcanic halogen emissions: first simulations of reactive halogen chemistry in the Eyjafjallajökull eruption plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2013-04-01

    Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is

  19. Halogen bonding based recognition processes: a world parallel to hydrogen bonding.

    PubMed

    Metrangolo, Pierangelo; Neukirch, Hannes; Pilati, Tullio; Resnati, Giuseppe

    2005-05-01

    Halogen bonding is the noncovalent interaction between halogen atoms (Lewis acids) and neutral or anionic Lewis bases. The main features of the interaction are given, and the close similarity with the hydrogen bonding will become apparent. Some heuristic principles are presented to develop a rational crystal engineering based on halogen bonding. The focus is on halogen-bonded supramolecular architectures given by halocarbons. The potential of the interaction is shown by useful applications in the field of synthetic chemistry, material science, and bioorganic chemistry.

  20. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

    PubMed Central

    Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B

    1985-01-01

    A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371

  1. Electroreduction of Halogenated Organic Compounds

    NASA Astrophysics Data System (ADS)

    Rondinini, Sandra; Vertova, Alberto

    The electroreductive cleavage of the carbon-halogen bond in halogenated organic compounds has been extensively studied for more than 70 years, since it is prodromal to a large variety of synthetic applications in organic electrochemistry. Over the years the research interest have progressively included the environmental applications, since several organic halocompounds are known to have (or have had) a serious environmental impact because of their (present or past) wide use as cleaning agents, herbicides, cryogenic fluids, reagents (e.g. allyl and vinyl monomers) for large production materials, etc. Recent studies have also demonstrated the wide spread out- and in-door-presence of volatile organic halides, although at low level, in connexion with residential and non-residential (e.g. stores, restaurants and transportation) activities. In this context, the detoxification of emissions to air, water and land by the selective removal of the halogen group represents a valid treatment route, which, although not leading to the complete mineralization of the pollutants, produces less harmful streams to be easily treated by electrochemical or conventional techniques. The electroreduction process is analysed and discussed in terms of electrode material, reaction medium, cell design and operation, and of substrate classification.

  2. Structures and electronic states of halogen-terminated graphene nano-flakes

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Iyama, Tetsuji

    2015-12-01

    Halogen-functionalized graphenes are utilized as electronic devices and energy materials. In the present paper, the effects of halogen-termination of graphene edge on the structures and electronic states of graphene flakes have been investigated by means of density functional theory (DFT) method. It was found that the ionization potential (Ip) and electron affinity of graphene (EA) are blue-shifted by the halogen termination, while the excitation energy is red-shifted. The drastic change showed a possibility as electronic devices such as field-effect transistors. The change of electronic states caused by the halogen termination of graphene edge was discussed on the basis of the theoretical results.

  3. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  5. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  6. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    NASA Astrophysics Data System (ADS)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  7. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  8. QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method.

    PubMed

    Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan

    2012-02-01

    The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Channel-resolved photo- and Auger-electron spectroscopy of halogenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Kushawaha, R.; Rudenko, A.; Rolles, D.; Xiong, H.; Berrah, N.; Bomme, C.; Savelyev, E.; Kilcoyne, D.

    2016-05-01

    Inner-shell photoelectron and Auger electron spectra of polyatomic molecules such as halogenated hydrocarbons are typically hard to interpret and assign due to many overlapping states that form broad bands even in high-resolution measurements. With the help of electron-ion-ion coincidence measurements performed using the velocity map imaging technique, we are able to detect high-energy (<= 150 eV) photo- and Auger electrons in coincidence with two- or many-body ionic fragmentation channels. Such channel-resolved measurements allow disentangling the overlapping electronic structures and help assigning individual components of the electron spectra to specific potential surfaces and final states. In this work, we present measurements on CH3 I, CH2 IBr, and CH2 ICl molecules in the gas-phase using soft x-ray light provided by the Advanced Light Source at LBNL. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).

  10. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  11. Characterization of non-classical Csbnd Br⋯π interactions in (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene and related derivatives of ferrocene

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Panini, Piyush; McAdam, C. John; Robinson, Brian H.; Simpson, Jim; Tagg, Tei; Chopra, Deepak

    2017-03-01

    Amongst the halogens, the involvement of bromine atoms in various types of intermolecular interactions is comparatively the least studied. In this manuscript, we report the formation of Csbnd Br⋯π interactions, with the π-rings being the cyclopentadienyl (Cp) rings of a ferrocene molecule in a newly synthesized compound (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene. We have also performed a detailed quantitative analysis on Csbnd Br⋯π interactions observed in the synthesized molecule and in several related molecules found in the Cambridge Structure Database (CSD) showing the presence of these interactions. A topological analysis based upon QTAIM theory and electrostatic potential ESP mapped on the Hirshfeld surface of these molecules confirm that these interactions are better described as "halogen bonds" wherein the electropositive region (σ-hole) on the Br-atom interacts with the electronegative region over the Cp-ring of the ferrocene. Further, the electronegative region on the bromine atom (perpendicular to the Csbnd Br bond) was observed to be involved in the formation of highly directional Csbnd H⋯Br interactions with the ∠Csbnd Br⋯H close to 90°. Thus the bromine atom is acting as both a "halogen bond donor" and "hydrogen bond acceptor" in the crystal packing with the two interactions being mutually orthogonal.

  12. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation

    PubMed Central

    2017-01-01

    Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution. PMID:28581720

  13. Extending Halogen-based Medicinal Chemistry to Proteins

    PubMed Central

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B.; Smith, Brian J.; Menting, John G.; Whittaker, Jonathan; Lawrence, Michael C.; Meuwly, Markus; Weiss, Michael A.

    2016-01-01

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24–B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a “micro-receptor” complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such “halogen engineering” promises to extend principles of medicinal chemistry to proteins. PMID:27875310

  14. Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Sarwar, G.

    2017-12-01

    In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen

  15. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  16. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  17. Halogens are key cofactors in building of collagen IV scaffolds outside the cell.

    PubMed

    Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A

    2018-05-01

    The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.

  18. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.

    PubMed

    Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel

    2016-11-04

    Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Construction of noninterpenetrating and interpenetrating Co(ii) networks with halogenated carboxylate modulated by auxiliary N-donor co-ligands: structural diversity, electrochemical and photocatalytic properties.

    PubMed

    Hao, Shao Yun; Hou, Suo Xia; Van Hecke, Kristof; Cui, Guang Hua

    2017-02-14

    Six Co(ii)-based coordination polymers (CPs) with characteristic frameworks and topologies-namely, [Co(L1)(DCTP)] n (1), [Co(L2)(DCTP)] n (2), [Co(L3)(DCTP)] n (3), {[Co 3 (L4) 3 (DCTP) 3 ·H 2 O]·H 2 O} n (4), [Co(L5) 1.5 (DCTP)] n (5) and [Co(L6)(DCTP)] n (6)-were successfully hydrothermally synthesized by employing the halogenated linear ligand 2,5-dichloroterephthalic acid (H 2 DCTP). The interpenetrated structures could be rationally modulated by auxiliary N-donor co-ligands containing 1,1'-(1,4-butanediyl)bis-1H-benzimidazole (L1), 1,4-bis(5,6-dimethylbenzimidazol-1-yl)-2-butylene (L2), 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene (L3), 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene (L4), 1,2-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene (L5) and 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene (L6). These diaphanous crystals were clearly characterized by elemental analysis, infrared (IR) spectra and X-ray powder diffraction (XRPD) as well as single-crystal X-ray diffraction analysis. With the aid of the flexible N-donor co-ligands, CP 1 occupies a non-interpenetrated 2D sheet with the point symbol {4 4 ·6 2 } sql net topology, CP 2 possesses a 3D hexagon-shaped network with the point symbol {6 6 } three-fold interpenetrated sqc6 topology, CP 3 exhibits a 2D layer with the point symbol {4 4 ·6 2 } sql net topology, CP 4 reveals an unusual 3D framework with the point symbol {4 2 ·6 3 ·8} three-fold interpenetrated sra topology, CP 5 has a 3D hexagon-shaped network with the point symbol {6 6 } two-fold interpenetrated sqc6 topology, while CP 6 displays a 3D hexagon-shaped network with the point symbol {6 6 } three-fold interpenetrated sqc6 topology. The diverse structures of CPs 1-6 illustrate that the substitute group and position of the methyl group of the bis(benzimidazole) derivatives play a significant role in the assembly of such interpenetrated frameworks. Moreover, luminescence properties and thermal behavior, as well as the

  20. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: A Review

    PubMed Central

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-01-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical, and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter, or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article. PMID:29755967

  1. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review

    NASA Astrophysics Data System (ADS)

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-04-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.

  2. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites.

    PubMed

    Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M

    1995-05-11

    The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed

  3. The relation between molecular structure and biological activity among mononitrophenols containing halogens

    USGS Publications Warehouse

    Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.

    1966-01-01

    The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.

  4. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  5. Substituent Effects on the [N-I-N](+) Halogen Bond.

    PubMed

    Carlsson, Anna-Carin C; Mehmeti, Krenare; Uhrbom, Martin; Karim, Alavi; Bedin, Michele; Puttreddy, Rakesh; Kleinmaier, Roland; Neverov, Alexei A; Nekoueishahraki, Bijan; Gräfenstein, Jürgen; Rissanen, Kari; Erdélyi, Máté

    2016-08-10

    We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.

  6. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  7. Triphenylamine-Based Push–Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics

    PubMed Central

    2017-01-01

    Small push–pull molecules attract much attention as prospective donor materials for organic solar cells (OSCs). By chemical engineering, it is possible to combine a number of attractive properties such as broad absorption, efficient charge separation, and vacuum and solution processabilities in a single molecule. Here we report the synthesis and early time photophysics of such a molecule, TPA-2T-DCV-Me, based on the triphenylamine (TPA) donor core and dicyanovinyl (DCV) acceptor end group connected by a thiophene bridge. Using time-resolved photoinduced absorption and photoluminescence, we demonstrate that in blends with [70]PCBM the molecule works both as an electron donor and hole acceptor, thereby allowing for two independent channels of charge generation. The charge-generation process is followed by the recombination of interfacial charge transfer states that takes place on the subnanosecond time scale as revealed by time-resolved photoluminescence and nongeminate recombination as follows from the OSC performance. Our findings demonstrate the potential of TPA-DCV-based molecules as donor materials for both solution-processed and vacuum-deposited OSCs. PMID:28413568

  8. Theoretical investigation on the molecular structure, Infrared, Raman and NMR spectra of para-halogen benzenesulfonamides, 4-X-C 6H 4SO 2NH 2 (X = Cl, Br or F)

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa

    2009-02-01

    In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.

  9. Double-chamber electrode for spectrochemical determination of chlorine and other halogens

    USGS Publications Warehouse

    de Paiva, Azevedo; Specht, A.W.; Harner, R.S.

    1954-01-01

    A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.

  10. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    PubMed Central

    Parker, Kimberly M.; Mitch, William A.

    2016-01-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  11. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  12. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  13. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  14. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2017-06-14

    A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.

  15. RESIDUAL RISK ASSESSMENT: HALOGENATED SOLVENTS

    EPA Science Inventory

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Halogenated Solvent Degreasing Facilities. These assessments utilize existing models and d...

  16. Reduction of halogenated ethanes by green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanesmore » having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.« less

  17. Halogenated quinolines bearing polar functionality at the 2-position: Identification of new antibacterial agents with enhanced activity against Staphylococcus epidermidis.

    PubMed

    Basak, Akash; Abouelhassan, Yasmeen; Kim, Young S; Norwood, Verrill M; Jin, Shouguang; Huigens, Robert W

    2018-06-19

    Antibiotic-resistant bacteria and surface-attached biofilms continue to play a significant role in human health and disease. Innovative strategies are needed to identify new therapeutic leads to tackle infections of drug-resistant and tolerant bacteria. We synthesized a focused library of 14 new halogenated quinolines to investigate the impact of ClogP values on antibacterial and biofilm-eradication activities. During these investigations, we found select polar appendages at the 2-position of the HQ scaffold were more well-tolerated than others. We were delighted to see multiple compounds display enhanced activities against the major human pathogen S. epidermidis. In particular, HQ 2 (ClogP = 3.44) demonstrated enhanced activities against MRSE 35984 planktonic cells (MIC = 0.59 μM) compared to MRSA and VRE strains in addition to potent MRSE biofilm eradication activities (MBEC = 2.35 μM). Several of the halogenated quinolines identified here reported low cytotoxicity against HeLa cells with minimal hemolytic activity against red blood cells. We believe that halogenated quinoline small molecules could play an important role in the development of next-generation antibacterial therapeutics capable of targeting and eradicating biofilm-associated infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  19. Investigation of reactive halogens in the Arctic using a mobile instrumental laboratory

    NASA Astrophysics Data System (ADS)

    Custard, K.; Shepson, P. B.; Stephens, C. R.

    2011-12-01

    Custard, K kcustard@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Shepson, P pshepson@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Stephens, C thompscr@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Investigation of the chemistry of reactive halogens in ice-covered regions is important because of its significant impact on atmospheric composition. Halogens in the Arctic react with ozone and gaseous elemental mercury to sometimes completely deplete them from the ambient atmosphere, at least during polar springtime. There is much uncertainty about the sources and concentrations of these atmospheric halogens in the Arctic, particularly with respect to chlorine. To gain a better understanding of them, we have developed a method to simultaneously measure the concentrations of BrOx and ClOx radicals using a flowtube method. The method involves reaction of the halogen atom with a halogenated alkene, to produce a multiply halogenated characteristic ketone product, which is then detected via GC/ECD. The system was deployed at Barrow, AK, using a mobile instrumental laboratory so that measurements could be made from multiple locations along the sea ice. In this paper we will discuss laboratory evaluation of the flowtube method, and present preliminary data from Barrow, AK, during the spring 2011 deployment.

  20. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  1. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  2. Interaction of surface hydroxyls with adsorbed molecules. A quantum-chemical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerlings, P.; Tariel, N.; Botrel, A.

    1984-11-08

    A study has been conducted to explain the interaction mechanisms of (bridging and terminal) surface hydroxyl groups with molecules, using ab initio, EHT, and CNDO/2-FA quantum-chemical calculations. Bond strength variations and charge shifts were found to be in complete agreement with Gutmann's rules, and provide a basis for the understanding of the Bronsted acid properties of zeolites and amorphous silica-alumina. A quantitative measure of the interaction strength is possible by referring to the experimentally determined donor number (Gutmann) following many molecules, but care should be taken for those molecules for which the donor strength was determined by indirect methods. Onlymore » a few exceptions to Gutmann's rules should exist, e.g., in those cases where the atom interacting with the proton is not the most electronegative of the donor molecule (such as for CO). Individual bonds in a given complex are more susceptible to perturbations (changes in composition and interactions with adsorbing molecules) if the coordination number increases. These rules are in agreement with the observations and apply to all reactions (inter- or intramolecular) involving a change in coordination. 52 references, 6 figures, 4 tables.« less

  3. Donor cycle and donor segmentation: new tools for improving blood donor management.

    PubMed

    Veldhuizen, I; Folléa, G; de Kort, W

    2013-07-01

    An adequate donor population is of key importance for the entire blood transfusion chain. For good donor management, a detailed overview of the donor database is therefore imperative. This study offers a new description of the donor cycle related to the donor management process. It also presents the outcomes of a European Project, Donor Management IN Europe (DOMAINE), regarding the segmentation of the donor population into donor types. Blood establishments (BEs) from 18 European countries, the Thalassaemia International Federation and a representative from the South-Eastern Europe Health Network joined forces in DOMAINE. A questionnaire assessed blood donor management practices and the composition of the donor population using the newly proposed DOMAINE donor segmentation. 48 BEs in 34 European countries were invited to participate. The response rate was high (88%). However, only 14 BEs could deliver data on the composition of their donor population. The data showed large variations and major imbalances in the donor population. In 79% of the countries, inactive donors formed the dominant donor type. Only in 21%, regular donors were the largest subgroup, and in 29%, the proportion of first-time donors was higher than the proportion of regular donors. Good donor management depends on a thorough insight into the flow of donors through their donor career. Segmentation of the donor database is an essential tool to understand the influx and efflux of donors. The DOMAINE donor segmentation helps BEs in understanding their donor database and to adapt their donor recruitment and retention practices accordingly. Ways to use this new tool are proposed. © 2013 International Society of Blood Transfusion.

  4. Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.

    DTIC Science & Technology

    1982-10-15

    nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly

  5. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  6. Halogen-free benzoxazine based curable compositions for high TG applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  7. Conductivity Modifications of Graphene by Electron Donative Organic Molecules

    NASA Astrophysics Data System (ADS)

    Masujima, Hiroaki; Mori, Takehiko; Hayamizu, Yuhei

    2017-07-01

    Graphene has been studied for the application of transparent electrodes in flexible electrical devices with semiconductor organics. Control of the charge carrier density in graphene is crucial to reduce the contact resistance between graphene and the active layer of organic semiconductor. Chemical doping of graphene is an approach to change the carrier density, where the adsorbed organic molecules donate or accept electrons form graphene. While various acceptor organic molecules have been demonstrated so far, investigation about donor molecules is still poor. In this work, we have investigated doping effect in graphene field-effect transistors functionalized by organic donor molecules such as dibenzotetrathiafulvalene (DBTTF), hexamethyltetrathiafulvalene (HMTTF), 1,5-diaminonaphthalene (DAN), and N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD). Based on conductivity measurements of graphene transistors, the former three molecules do not have any significant effect to graphene transistors. However, TMPD shows effective n-type doping. The doping effect has a correlation with the level of highest occupied molecular orbital (HOMO) of each molecule, where TMPD has the highest HOMO level.

  8. Halogen bonding (X-bonding): A biological perspective

    PubMed Central

    Scholfield, Matthew R; Zanden, Crystal M Vander; Carter, Megan; Ho, P Shing

    2013-01-01

    The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials. PMID:23225628

  9. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  10. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  11. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-04

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.

  12. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk

    2016-01-01

    The feasibility of using biochar as a sorbent to remove nine halogenated phenols (2,4-dichlorophenol, 2,4-dibromophenol, 2,4-difluorophenol, 2-chlorophenol, 4-chlorophenol, 2-bromophenol, 4-bromophenol, 2-fluorophenol, and 4-fluorophenol) and two pharmaceuticals (triclosan and ibuprofen) from water was examined through a series of batch experiments. Types of biochar, synthesized using various biomasses including fallen leaves, rice straw, corn stalk, used coffee grounds, and biosolids, were evaluated. Compared to granular activated carbon (GAC), most of the biochar samples did not effectively remove halogenated phenols or pharmaceuticals from water. The increase in pH and deprotonation of phenols in biochar systems may be responsible for its ineffectiveness at this task. When pH was maintained at 4 or 7, the sorption capacity of biochar was markedly increased. Considering maximum sorption capacity and properties of sorbents and sorbates, it appears that the sorption capacity of biochar for halogenated phenols is related to the surface area and carbon content of the biochar and the hydrophobicity of halogenated phenols. In the cases of triclosan and ibuprofen, the sorptive capacities of GAC, graphite, and biochars were also significantly affected by pH, according to the point of zero charge (PZC) of sorbents and deprotonation of the pharmaceuticals. Pyrolysis temperature did not affect the sorption capacity of halogenated phenols or pharmaceuticals. Based on the experimental observations, some biochars are good candidates for removal of halogenated phenols, triclosan, and ibuprofen from water and soil.

  13. Molecular association via halogen bonding and other weak interactions in the crystal structures of 11-bromo-12-oxo-5β-cholan derivatives

    NASA Astrophysics Data System (ADS)

    Salunke, Deepak B.; Hazra, Braja G.; Gonnade, Rajesh G.; Pore, Vandana S.; Bhadbhade, Mohan M.

    2008-12-01

    Methyl 3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 2, methyl 11α-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 3, methyl 11β-bromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 4 and methyl 11,11-dibromo-3α,7α-diacetoxy-12-oxo-5β-cholan-24-oate 5 were synthesized. The crystal structures of these molecules were resolved to study the effect of bulky bromine atom in the steroid skeleton of cholic acid with different stereo-chemical orientations at C-11 on the two-dimensional arrangement of molecules and solid-state properties. All the molecules associate only via weak intermolecular interactions in their crystal structures, notable one being the Halogen Bonded assembly (C-Br…O) in 5.

  14. Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback.

    PubMed

    Luek, Jenna L; Harir, Mourad; Schmitt-Kopplin, Philippe; Mouser, Paula J; Gonsior, Michael

    2018-06-01

    The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Halogen bonding and pharmaceutical cocrystals: the case of a widely used preservative.

    PubMed

    Baldrighi, Michele; Cavallo, Gabriella; Chierotti, Michele R; Gobetto, Roberto; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2013-05-06

    3-Iodo-2-propynyl-N-butylcarbamate (IPBC) is an iodinated antimicrobial product used globally as a preservative, fungicide, and algaecide. IPBC is difficult to obtain in pure form as well as to handle in industrial products because it tends to be sticky and clumpy. Here, we describe the preparation of four pharmaceutical cocrystals involving IPBC. The obtained cocrystals have been characterized by X-ray diffraction, solution and solid-state NMR, IR, and DSC analyses. In all the described cases the halogen bond (XB) is the key interaction responsible for the self-assembly of the pharmaceutical cocrystals thanks to the involvement of the 1-iodoalkyne moiety of IPBC, which functions as a very reliable XB-donor, with both neutral and anionic XB-acceptors. Most of the obtained cocrystals have improved properties with respect to the source API, in terms, e.g., of thermal stability. The cocrystal involving the GRAS excipient CaCl2 has superior powder flow characteristics compared to the pure IPBC, representing a promising solution to the handling issues related to the manufacturing of products containing IPBC.

  16. Cross-reactivity of Halogenated Platinum Salts

    EPA Science Inventory

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  17. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  18. Inorganic bromine in organic molecular crystals: Database survey and four case studies

    NASA Astrophysics Data System (ADS)

    Nemec, Vinko; Lisac, Katarina; Stilinović, Vladimir; Cinčić, Dominik

    2017-01-01

    We present a Cambridge Structural Database and experimental study of multicomponent molecular crystals containing bromine. The CSD study covers supramolecular behaviour of bromide and tribromide anions as well as halogen bonded dibromine molecules in crystal structures of organic salts and cocrystals, and a study of the geometries and complexities in polybromide anion systems. In addition, we present four case studies of organic structures with bromide, tribromide and polybromide anions as well as the neutral dibromine molecule. These include the first observed crystal with diprotonated phenazine, a double salt of phenazinium bromide and tribromide, a cocrystal of 4-methoxypyridine with the neutral dibromine molecule as a halogen bond donor, as well as bis(4-methoxypyridine)bromonium polybromide. Structural features of the four case studies are in the most part consistent with the statistically prevalent behaviour indicated by the CSD study for given bromine species, although they do exhibit some unorthodox structural features and in that indicate possible supramolecular causes for aberrations from the statistically most abundant (and presumably most favourable) geometries.

  19. Collisional quenching dynamics and reactivity of highly vibrationally excited molecules

    NASA Astrophysics Data System (ADS)

    Liu, Qingnan

    Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine

  20. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  1. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  2. Halogen degassing during ascent and eruption of water-poor basaltic magma

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  3. Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua

    2018-03-01

    The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.

  4. Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride

    NASA Astrophysics Data System (ADS)

    Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.

    2017-03-01

    A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

  5. The interaction of excited He, Ar and Ne metastable atoms with the CF2Cl2 molecule

    NASA Astrophysics Data System (ADS)

    Cherid, M.; Ben Arfa, M.; Driss Khodja, M.

    2004-02-01

    We studied Penning ionization of the CF2Cl2 molecule by neon and helium metastable atoms. In the case of the neon ionizing particle, we measured the electron kinetic energy as well as mass spectra; for helium metastable atoms, only the mass spectrum was recorded. We, therefore, obtained the branching ratios for the heavy charged particles produced in both interactions. In this report we will discuss the mechanism involved in the production of metastable halogen atoms in the dielectric barrier discharge further to the use of rare gases/CF2Cl2 mixtures. We show that this process needs a two-stage reaction. Ground state free halogen atoms are formed over the first stage by Penning ionization, charge transfer, dissociate excitation and ionization. Therefore, metastable halogen atoms can be produced by excitation transfer process in the second stage through interaction with metastable rare gas atoms. This paper is dedicated to Professor F M E Tuffin on the occasion of his retirement.

  6. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  7. A Review of Hydrogen/Halogen Flow Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  8. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  9. A Review of Hydrogen/Halogen Flow Cells

    DOE PAGES

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    2016-05-17

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  10. Halogens, Barium and Uranium in Mantle Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Villa, I. M.; Peverelli, V.; Oglialoro, E.; Pettke, D. T.; Frezzotti, M. L.

    2016-12-01

    Halogens are an underexplored geochemical marker. A way to measure halogens at ng/g levels is measuring Ar, Kr and Xe in irradiated samples [1,2]. We derive absolute halogen amounts from rare gas amounts via scapolite monitor SY [2]. Kr-Xe systematics also yield Ba and U concentrations. We combined irradiation with stepheating on carbonate-sulfate-rich fluid inclusions (FI)-bearing xe­no­liths from El Hierro, Canarias: spinel harzburgite XML-7 and spinel dunite XML-1 [3]. Three components are recognized in the rare gas release. (1) Atmospheric surface contamination occurs up to 1000 °C. (2) FI decrepitation by laboratory heating occurs above 1200 °C [4], corresponding to the release of 80,82Kr and 128Xe in the 1200 and 1400 °C steps. Br whole-rock concentrations are 3-8 ng/g; the molar Br/Cl and I/Cl ratios in the harzburgite FI, 9 E-4 resp. 2 E-4, are identical to those in the dunite FI. This sets the halogens in our FI apart from MORB [2]. Halogen-derived rare gases are closely associated to artificial 131Xe from Ba; Ba has a high affinity of for CO2-rich fluids. Daughter minerals in multiphase FI were identified by Raman micro­spectroscopy [4]. The calculated Ba concentrations are 2-6 µg/g. (3) The third component is U-derived 134,136Xe and 86Kr released in a spike at 1000 °C, decoupled from FI. This requires a different carrier than FI, e.g. Ti oxides. As U concentrations are 10-20 pg/g, the U-bearing phase needs to be below a ppm, invisible by petro­graphy. The 136Xe/134Xe ratio > 1 suggests retention of radio­genic Xe. However, analysis of an unirradiated sample detected no radiogenic Xe. It is likely that Xe-U produced in the core of the McMaster reactor (thermal, epithermal and fast neutrons) has a different isotopic composition from that in textbooks, as proposed by [2].[1] Jeffery & Reynolds (1961) J.Geophys. Res. 66, 3582 [2] Kendrick (2012) Chem. Geol. 292, 116 [3] Oglialoro et al (2015) AGU Fall Meeting abstract V21C-3046 [4] Roedder (1965

  11. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  12. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies.

    PubMed

    Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L

    2018-05-28

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.

  13. Absolute configuration and crystal packing chirality for three conglomerate-forming ortho-halogen substituted phenyl glycerol ethers

    NASA Astrophysics Data System (ADS)

    Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.

    2010-06-01

    Three conglomerate-forming ortho-Hal (Hal = Cl, Br, I) substituted phenyl glycerol ethers 1- 3 were investigated by single-crystal X-ray analysis, and the absolute configuration for all substances was established. The molecular structures and crystal packing details for halogen derivatives were compared with the same characteristics for ortho-OCH 3 and ortho-CH 3 analogues. Two different types of crystal packing were evaluated for these very much alike compounds. The interplay of the supramolecular crystal organization chirality sense and the single molecule absolute configuration was demonstrated. Some stabilizing and destabilizing interactions involving the ortho-substituents were revealed. The resolution of rac-2 by entrainment procedure was successfully realized.

  14. Design of organic ternary blends and small-molecule bulk heterojunctions: photophysical considerations

    NASA Astrophysics Data System (ADS)

    Rajesh, Kallarakkal Ramakrishnan; Paudel, Keshab; Johnson, Brian; Hallani, Rawad; Anthony, John; Ostroverkhova, Oksana

    2015-01-01

    We explored relationships between photophysical processes and solar cell characteristics in solution-processable bulk heterojunctions (BHJs), in particular: (1) polymer donor:fullerene acceptor:small-molecule (SM) nonfullerene acceptor, (2) polymer donor:SM donor:SM nonfullerene acceptor, and (3) SM donor:SM nonfullerene or fullerene acceptor. Addition of a nonfullerene SM acceptor to "efficient" polymer:fullerene BHJs led to a reduction in power conversion efficiency (PCE), mostly due to decreased charge photogeneration efficiency and increased disorder. By contrast, addition of an SM donor to "inefficient" polymer:SM nonfullerene acceptor BHJs led to a factor of two to three improvement in the PCE, due to improved charge photogeneration efficiency and transport. In most blends, exciplex formation was observed and correlated with a reduced short-circuit current (Jsc) without negatively impacting the open-circuit voltage (Voc). A factor of ˜5 higher PCE was observed in SM donor:fullerene acceptor BHJs as compared to SMBHJs with the same SM donor but nonfullerene acceptor, due to enhanced charge carrier photogeneration in the blend with fullerene. Our study revealed that the HOMO and LUMO energies of molecules comprising a blend are not reliable parameters for predicting Voc of the blend, and an understanding of the photophysics is necessary for interpreting solar cell characteristics and improving the molecular design of BHJs.

  15. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  16. Deviation from the Forster theory for time-dependent donor decays for randomly distributed molecules in solution

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Johnson, Michael L.

    1990-05-01

    We examined the time -dependent donor decays of 2 - amino purine (2 -APU) , in the presence of increasing amounts of acceptor 2-aminobenzophenine (2-ABP). As the concentration of 2-ABP increases, the frequency-responses diverge from that predicted by Forster. The data were found to be consistent with modified Forster equations, but at this time we do not state that these modified expressions provide a correct molecular description of this donor-acceptor system. To the best of our knowledge this is the first paper which reports a failure of the Forster theory for randomly distributed donors and acceptors.

  17. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  18. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments.

    PubMed

    Chung, Hoi Sung; Louis, John M; Eaton, William A

    2010-02-17

    Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small alpha/beta protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers-donor(10)/acceptor(57) and donor(57)/acceptor(10)-which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol-coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects-a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products.

    PubMed

    Odabasi, Mustafa

    2008-03-01

    Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and

  20. Management to optimize organ procurement in brain dead donors.

    PubMed

    Mascia, L; Mastromauro, I; Viberti, S; Vincenzi, M; Zanello, M

    2009-03-01

    The demand for donor organs continues to exceed the number of organs available for transplantation. Many reasons may account for this discrepancy, such as the lack of consent, the absence of an experienced coordinator team able to solve logistical problems, the use of strict donor criteria, and suboptimal, unstandardized critical care management of potential organ donors. This has resulted in efforts to improve the medical care delivered to potential organ donors, so as to reduce organ shortages, improve organ procurement, and promote graft survival. The physiological changes that follow brain death entail a high incidence of complications jeopardizing potentially transplantable organs. Adverse events include cardiovascular changes, endocrine and metabolic disturbances, and disruption of internal homeostasis. Brain death also upregulates the release of pro-inflammatory molecules. Recent findings support the hypothesis that a preclinical lung injury characterized by an enhanced inflammatory response is present in potential donors and may predispose recipients to an adverse clinical prognosis following lung transplantation. In clinical practice, hypotension, diabetes insipidus, relative hypothermia, and natremia are more common than disseminated intravascular coagulation, cardiac arrhythmias, pulmonary oedema, acute lung injury, and metabolic acidosis. Strategies for the management of organ donors exist and consist of the normalization of donor physiology. Management has been complicated by the recent use of ''marginal'' donors and donors of advanced age or with ''extended'' criteria. Current guidelines suggest that the priority of critical care management for potential organ donors should be shifted from a ''cerebral protective'' strategy to a multimodal strategy aimed to preserve peripheral organ function.

  1. The Role of Halogens in High-Grade Metamorphism and Anatexis

    NASA Astrophysics Data System (ADS)

    Aranovich, L.; Safonov, O.

    2016-12-01

    We review factors controlling the distribution of the two major halogens, F and Cl, in high-grade metamorphic rocks; their compositional correlations and partitioning between minerals; experimental data on stability and phase equilibria of the halogen-bearing minerals; the influence of halogens on Fe-Mg exchange reactions; and the means of estimating concentrations/activity of halogen species concentration/ activity in the fluid phase ("chlorimetry and fluorimetry") via calculation of equilibrium conditions for mineral assemblages containing halogen-bearing phases. Clear negative correlation between the F content and XFe=Fe/(Fe+Mg) suggests that natural biotite and amphibole obey the Fe-F avoidance rule. A strong positive correlation exists between K and Cl in amphibole. A scattering of points on the XFe -Cl and TiO2- Cl diagrams indicate the possible involvement of an exotic Cl-rich phase (fluid or melt) during the formation of Cl-bearing biotite and amphibole. Fluorine and Cl substituting for OH-groups substantially stabilize minerals relative to dehydration and melting. They should also strongly affect partitioning of Fe and Mg between biotite, amphibole and anhydrous minerals. This effect is quantified for Fe-Mg exchange reactions involving biotite (Zhu and Sverjensky, 1992), but remains to be evaluated for amphibole. Calculations based on recent thermodynamic systematics show that the relatively Mg-rich, Cl-poor biotite (for example, XFe = 0.4 and about 0.2 wt.% Cl) may coexist with a fairly Cl-rich fluid, i.e. total Cl/(Cl+H2O) from 0.1-0.3, depending on the assemblage, under granulite facies P-T conditions. Alkali (and Ca) metasomatism caused by interaction of high grade rocks with halogen-bearing fluids has major impact on the subsolidus phase transformations and melting processes during high-grade metamorphism and anatexis. For example, an increase in sodium content in plagioclase (Pl) by 20 mol% due to infiltration of Na- fluid into the quartz (Qtz

  2. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    NASA Astrophysics Data System (ADS)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  3. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  4. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  5. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  6. 3D-QSAR based on quantum-chemical molecular fields: toward an improved description of halogen interactions.

    PubMed

    Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Müller, Marco; Schmidt, Friedemann; Clark, Timothy

    2012-09-24

    Current 3D-QSAR methods such as CoMFA or CoMSIA make use of classical force-field approaches for calculating molecular fields. Thus, they can not adequately account for noncovalent interactions involving halogen atoms like halogen bonds or halogen-π interactions. These deficiencies in the underlying force fields result from the lack of treatment of the anisotropy of the electron density distribution of those atoms, known as the "σ-hole", although recent developments have begun to take specific interactions such as halogen bonding into account. We have now replaced classical force field derived molecular fields by local properties such as the local ionization energy, local electron affinity, or local polarizability, calculated using quantum-mechanical (QM) techniques that do not suffer from the above limitation for 3D-QSAR. We first investigate the characteristics of QM-based local property fields to show that they are suitable for statistical analyses after suitable pretreatment. We then analyze these property fields with partial least-squares (PLS) regression to predict biological affinities of two data sets comprising factor Xa and GABA-A/benzodiazepine receptor ligands. While the resulting models perform equally well or even slightly better in terms of consistency and predictivity than the classical CoMFA fields, the most important aspect of these augmented field-types is that the chemical interpretation of resulting QM-based property field models reveals unique SAR trends driven by electrostatic and polarizability effects, which cannot be extracted directly from CoMFA electrostatic maps. Within the factor Xa set, the interaction of chlorine and bromine atoms with a tyrosine side chain in the protease S1 pocket are correctly predicted. Within the GABA-A/benzodiazepine ligand data set, PLS models of high predictivity resulted for our QM-based property fields, providing novel insights into key features of the SAR for two receptor subtypes and cross

  7. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1975-02-26

    K. 0. Christe and C. J. Schack, Advances Inorg. Chem. Radiochem. 15. "The NF * Radical Cation. Esr Studies of Radiation Effects in NF„+ Salts...and 25°) in a wide variety of polar and nonpolar solvents, such as aqueous solutions, alcohols, ketones , esters, ethers , and aromatic and halogenated... Studies of Radiation Effects in NF, Salts = 4 S. P. Mishra, M. C R. Symons, K. 0. Christe, R. D. Wilson and R. I. Wagner Received. . . August .9

  8. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    NASA Astrophysics Data System (ADS)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  9. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  10. α-Halogenated oxaphosphinanes: Synthesis, unexpected reactions and evaluation as inhibitors of cancer cell proliferation.

    PubMed

    Babouri, Rachida; Rolland, Marc; Sainte-Catherine, Odile; Kabouche, Zahia; Lecouvey, Marc; Bakalara, Norbert; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc

    2015-11-02

    This paper describes the preparation and the biological evaluation of α-halogenated oxaphosphinanes. These halogen derivatives were synthetized from a short and stereoselective synthetic sequence starting by previously described hydroxy-precursors 1 and 2 with respectively a glucose and mannose-like configuration. The in vitro biological tests of these unnatural halogenated phosphinosugars, on several cell lines, highlighted, for some of them, their antiproliferative and anti migration and invasion properties at nanomolar concentration. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  12. Diatomics-in-molecules description of the Rg-Hal2 rare gas-halogen van der Waals complexes with applications to He-Cl2

    NASA Astrophysics Data System (ADS)

    Grigorenko, B. L.; Nemukhin, A. V.; Buchachenko, A. A.; Stepanov, N. F.; Umanskii, S. Ya.

    1997-03-01

    The diatomics-in-molecules (DIM) technique is applied for a description of the low-lying states of the Rg-Hal2 van der Waals complexes correlating with the lowest states of constituent atoms Rg(1S)+Hal(2Pj)+Hal(2Pj). The important feature of this approach is the construction of polyatomic basis functions as products of the Hal2 diatomic eigenstates classified within the Hund "c" scheme and the atomic rare gas wave function. Necessary transformations to the other basis set representations are described, and finally all the matrix elements are expressed in terms of nonrelativistic adiabatic energies of Hal2 and Rg Hal fragments and spin-orbit splitting constant of the halogen atom. Our main concern is to test the DIM-based approximations of different levels taking the He-Cl2 system as an example. Namely, we have compared the results obtained within a hierarchy of approaches: (1) the simplest pairwise potential scheme as a far extreme of the DIM model, (2) the same as (1) but with the different components (Σ and Π) for He-Cl interaction, (3) the accurate DIM technique without spin-orbit terms, and (4) the highest level which takes into account all these contributions. The results have been compared to the other DIM like models as well. The shapes of two-dimensional potential surfaces for the ground (X) and excited (B) states of HeCl2, binding energies De with respect to He+Cl2, stretching and bending vibrational frequencies of the complex, binding energies D0, and spectral shifts for the B←X transition are discussed.

  13. Structure-Energy Relationships of Halogen Bonds in Proteins.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  14. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    NASA Astrophysics Data System (ADS)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  15. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  16. Distinguishing between Protein Dynamics and Dye Photophysics in Single-Molecule FRET Experiments

    PubMed Central

    Chung, Hoi Sung; Louis, John M.; Eaton, William A.

    2010-01-01

    Abstract Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small α/β protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers—donor10/acceptor57 and donor57/acceptor10—which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol–coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects—a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity. PMID:20159166

  17. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  18. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-04

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  19. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    PubMed

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    EPA Science Inventory

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  2. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497

  3. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 721.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to...

  4. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    PubMed

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  5. Energetics of halogen impurities in thorium dioxide

    NASA Astrophysics Data System (ADS)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.

    2017-11-01

    Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.

  6. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE PAGES

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.; ...

    2018-02-27

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  7. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  8. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  9. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    PubMed

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sources of halogens in the environment, influences on human and animal health.

    PubMed

    Fuge, R

    1988-06-01

    Of the halogens, fluorine has the highest crustal abundance (544 mg/kg) while iodine has the lowest (0.25 mg/kg), however, chlorine is by far the most abundant halogen in the cosmos. The geochemistries of the four naturally occurring halogens have some similarities with fluorine, chlorine and bromine being classified as lithophile elements while iodine is more chalcophile in nature. Bromine and iodine behave in a similar fashion in the secondary environment and could be classified as biophile elements being concentrated in organic matter. Chlorine, bromine and iodine are strongly enriched in the sea while iodine and to a lesser extent bromine are further concentrated in the marine algae.Apart from the occurrence of fluorine in fluorite (CaF2) there are few commonly occurring minerals which contain the halogens as essential constituents. In the igneous environment fluorine and chlorine tend to occupy hydroxyl lattice sites in micas, amphiboles, apatites etc., while in sediments clays can contain appreciable quantities of these elements. Bromine and iodine, however, would be unlikely to fit into the lattice sites of common rock-forming minerals.Bromine, like iodine, is probably volatilised from the marine environment and is carried on to land surfaces. This behaviour of iodine and bromine is reflected in the increased I/CI and Br/CI ratios of surface run-off in continental compared with near coastal environments.Limited information on the soil geochemistry of the halogens suggests that the soil contents of chlorine, bromine and iodine are influenced by proximity to the sea. Soil fluorine, however, is generally dependent on its content in the parent material. In some areas pollutant sources of the halogens contribute appreciably to their concentration in the environment.Iodine and chlorine are essential elements for mammals and fluorine has been shown to have beneficial effects on bone and tooth formation. However, excess quantities of dietary fluorine can be harmful

  11. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  12. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  13. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1981-04-21

    International Rocketdyne Division 6633 Canoga Avenue Canoga Park, California 91304 RI/R.D8l1-14O A ’N-NUAL REPORT INORGANIC HALOGEN OXIDIZER RESEARCH (I...March 1980 through 8 February 198L) 21 April 1981 "Contract N00014-79-C-0176 . GO. 95067 . , Office of Naval Research I-- Power Branch , ,, Code 473...Office of Naval Research Power Branch 11 I-ar Ccovie 473 ~ UMBER OF PA’E1 Arlington. VA 22217 . 76" 74 AONIYONING AGENCY NAME III Dw~S~ d, I f,. .f

  14. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  15. Halogens and the Chemistry of the Free Troposphere

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    The role of halogens in both the marine boundary layer and the stratosphere has long been recognized, while their role in the free troposphere is often not considered in global chemical models. However, a careful examination of free-tropospheric chemistry constrained by observations using a full chemical data assimilation system shows that halogens do play a significant role in the free troposphere. In particular, the chlorine initiation of methane oxidation in the free troposphere can contribute more than 10%, and in some regions up to 50%, of the total rate of initiation. The initiation of methane oxidation by chlorine is particularly important below the polar vortex and in northern mid-latitudes. Likewise, the hydrolysis of BrONO2 alone can contribute more than 35% of the HNO3 production rate in the free-troposphere.

  16. Support of Unrelated Stem Cell Donor Searches by Donor Center-Initiated HLA Typing of Potentially Matching Donors

    PubMed Central

    Schmidt, Alexander H.; Solloch, Ute V.; Baier, Daniel; Grathwohl, Alois; Hofmann, Jan; Pingel, Julia; Stahr, Andrea; Ehninger, Gerhard

    2011-01-01

    Large registries of potential unrelated stem cell donors have been established in order to enable stem cell transplantation for patients without HLA-identical related donors. Donor search is complicated by the fact that the stored HLA information of many registered donors is incomplete. We carried out a project that was aimed to improve chances of patients with ongoing donor searches to find an HLA-matched unrelated donor. For that purpose, we carried out additional donor center-initiated HLA-DRB1 typing of donors who were only typed for the HLA loci A and B so far and were potential matches for patients in need of a stem cell transplant. In total, 8,861 donors were contacted for donor center-initiated HLA-DRB1 typing within 1,089 donor searches. 12 of these donors have donated stem cells so far, 8 thereof for their respective target patients. We conclude that chances of patients with ongoing donor searches to find an HLA-matched unrelated donor can indeed be improved by donor-center initiated typing that is carried out in addition to the standard donor search process. Our results also raise questions regarding the appropriate use of incompletely typed donors within unrelated donor searches. PMID:21625451

  17. Auger analysis of films formed on metals in sliding contact with halogenated polymers

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The use of Auger electron spectroscopy (AES) to search for transferred polymer must contend with the fact that there has been no published work on Auger analysis of polymers. Since this is a new area for AES, the Auger spectra of polymers and of halogenated polymers in particular is discussed. It is shown that the Auger spectra of halogenated polymers have certain characteristics that permit an assessment of whether a polymeric transfer film has been established by sliding contact. The discussion is general and the concepts should be useful in considering the Auger analysis of any polymer. The polymers chosen for this study are the halogenated polymers polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polychlorotrifluorethylene (PCTFE).

  18. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  19. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE PAGES

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; ...

    2014-12-05

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  20. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  1. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  2. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  3. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  4. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  5. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  6. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  7. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  8. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  9. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  10. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  11. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  12. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  13. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  14. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  15. Temperature Dependence of Dissociative Electron Attachment to Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Christophorou, Loucas G.

    1996-10-01

    Most of the gas mixtures currently in use for plasma processing of semiconductors involve halogenated hydrocarbons such as the strongly electronegative gases CCl4 and CFCl_3, the weakly electronegative gas CF_2Cl2 and the very weakly electronegative gases CHF3 and CF_4. Many dissociation processes are known to occur for these molecules. One of these dissociation reactions which is particularly effective for the strongly electronegative hydrocarbons is dissociative electron attachment. Even for weakly electron attaching gases, molecular dissociation via dissociative electron attachment at low energies can be an efficient dissociation process if the gas temperature is higher than ambient. Dissociative electron attachment is known to increase with increasing temperature above room temperature for many such compounds. In this paper, we report our measurements on the increases of the total electron attachment rate constant for CF_2Cl2 with increasing gas temperature from room temperature to about 600 K. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.

  16. Voluntary whole-blood donors, and compensated platelet donors and plasma donors: motivation to donate, altruism and aggression.

    PubMed

    Trimmel, Michael; Lattacher, Helene; Janda, Monika

    2005-10-01

    To establish if voluntary whole-blood donors and compensated platelet donors and plasma donors may differ in their motivation to donate, altruism, aggression and autoaggression. Whole-blood (n=51), platelet (n=52) and plasma donors (n=48) completed a battery of validated questionnaires while waiting to donate. Bivariate and multivariate analyses of variance and t-tests were performed to detect differences between groups as noted. Altruism (mean=40.2) was slightly higher in whole-blood donors than in platelet (mean=38.3) and plasma donors (mean=39.1) (p=0.07). Blood donors (mean=2.8) scored lower in the spontaneous aggression measure than platelet (mean=4.1) and plasma donors (mean=4.4) (p=0.01). Plasma donors (mean=4.9) had higher auto-aggression than whole-blood donors and platelet donors (mean for both groups=3.4) (p=0.01). Differences between the three groups were mediated by sociodemographic variables (MANCOVA). Whole-blood donors donated to help others, platelet and plasma donors mostly to receive the compensation. However, those platelet and plasma donors, who would continue to donate without compensation were similar in altruism and aggression to whole-blood donors. While most platelet donors and plasma donors were motivated by the compensation, those who stated that they would continue to donate without compensation had altruism and aggression scores similar to voluntary whole-blood donors.

  17. Mechanochemical synthesis of small organic molecules

    PubMed Central

    Achar, Tapas Kumar; Bose, Anima

    2017-01-01

    With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies. In this review, a collection of examples on recent developments in organic bond formation reactions like carbon–carbon (C–C), carbon–nitrogen (C–N), carbon–oxygen (C–O), carbon–halogen (C–X), etc. is documented. Mechanochemical syntheses of heterocyclic rings, multicomponent reactions and organometallic molecules including their catalytic applications are also highlighted. PMID:29062410

  18. Natural Abundance 15 N and 13 C Solid-State NMR Chemical Shifts: High Sensitivity Probes of the Halogen Bond Geometry.

    PubMed

    Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo

    2016-11-14

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Associations between Deceased-Donor Urine Injury Biomarkers and Kidney Transplant Outcomes

    PubMed Central

    Reese, Peter P.; Hall, Isaac E.; Weng, Francis L.; Schröppel, Bernd; Doshi, Mona D.; Hasz, Rick D.; Thiessen-Philbrook, Heather; Ficek, Joseph; Rao, Veena; Murray, Patrick; Lin, Haiqun

    2016-01-01

    Assessment of deceased-donor organ quality is integral to transplant allocation practices, but tools to more precisely measure donor kidney injury and better predict outcomes are needed. In this study, we assessed associations between injury biomarkers in deceased-donor urine and the following outcomes: donor AKI (stage 2 or greater), recipient delayed graft function (defined as dialysis in first week post-transplant), and recipient 6-month eGFR. We measured urinary concentrations of microalbumin, neutrophil gelatinase–associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), IL-18, and liver-type fatty acid binding protein (L-FABP) from 1304 deceased donors at organ procurement, among whom 112 (9%) had AKI. Each biomarker strongly associated with AKI in adjusted analyses. Among 2441 kidney transplant recipients, 31% experienced delayed graft function, and mean±SD 6-month eGFR was 55.7±23.5 ml/min per 1.73 m2. In analyses adjusted for donor and recipient characteristics, higher donor urinary NGAL concentrations associated with recipient delayed graft function (highest versus lowest NGAL tertile relative risk, 1.21; 95% confidence interval, 1.02 to 1.43). Linear regression analyses of 6-month recipient renal function demonstrated that higher urinary NGAL and L-FABP concentrations associated with slightly lower 6-month eGFR only among recipients without delayed graft function. In summary, donor urine injury biomarkers strongly associate with donor AKI but provide limited value in predicting delayed graft function or early allograft function after transplant. PMID:26374609

  20. Donor CTLA-4 genotype influences clinical outcome after T cell-depleted allogeneic hematopoietic stem cell transplantation from HLA-identical sibling donors.

    PubMed

    Bosch-Vizcaya, Anna; Pérez-García, Arianne; Brunet, Salut; Solano, Carlos; Buño, Ismael; Guillem, Vicent; Martínez-Laperche, Carolina; Sanz, Guillermo; Barrenetxea, Cristina; Martínez, Carmen; Tuset, Esperanza; Lloveras, Natàlia; Coll, Rosa; Guardia, Ramon; González, Yolanda; Roncero, Josep M; Bustins, Anna; Gardella, Santiago; Fernández, Cristalina; Buch, Joan; Gallardo, David

    2012-01-01

    CTLA-4 (cytotoxic T-lymphocyte antigen-4) plays a pivotal role in inhibiting T cell activation through competitive interaction with B7 molecules and interruption of costimulatory signals mediated by CD28. Polymorphisms on the CTLA-4 gene have been previously associated with autoimmune diseases, predisposition to leukemic relapse, and with graft-versus-host disease (GVHD) or relapse after allogeneic transplant. As CTLA-4 is expressed on T-lymphocytes, the aim of this study was to determine whether the donor CTLA-4 CT60 genotype also influences clinical outcome even after T cell depletion with CD34-positive selection. We studied 136 patient-donor pairs. Overall survival (OS) was worse for those patients who received grafts from a donor with the CT60 AA genotype rather than from a donor with the AG or GG genotype (35.6% vs 49.4%; P = .043). This association was confirmed through multivariate analysis, which identified the donor CT60 genotype as an independent risk factor for OS (P = .008; hazard ratio [HR]: 2.24, 95% confidence interval [CI]: 1.23-4.08). The donor CT60 AA genotype was also associated with lower disease-free survival, this being related to an increased risk of relapse (P = .001; HR: 3.41, 95% CI: 1.67-6.96) and a trend toward higher transplant-related mortality. These associations were stronger when considering only patients in the early stage of disease. Our results suggest that graft-versus-leukemia (GVL) activity after T cell depletion is conditioned by the donor CTLA-4 genotype. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers

    PubMed Central

    2013-01-01

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4′-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results. PMID:24215390

  2. Combined diffraction and density functional theory calculations of halogen-bonded cocrystal monolayers.

    PubMed

    Sacchi, Marco; Brewer, Adam Y; Jenkins, Stephen J; Parker, Julia E; Friščić, Tomislav; Clarke, Stuart M

    2013-12-03

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4'-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results.

  3. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  4. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  5. Urinary biomarkers of acute kidney injury in deceased organ donors--kidney injury molecule-1 as an adjunct to predicting outcome.

    PubMed

    Field, Melanie; Dronavalli, Vamsi; Mistry, Punam; Drayson, Mark; Ready, Andrew; Cobbold, Mark; Inston, Nicholas

    2014-07-01

    Deceased kidney donors are increasingly "marginal," and many have risk factors for acute kidney injury (AKI) that may impact on subsequent renal transplant outcome. Despite this, determining the presence of AKI at the time of deceased organ donation remains difficult. Urine samples from 182 brainstem dead multi-organ donors (all of whom donated hearts that were transplanted) were analyzed for a Luminex(™) panel of biomarkers linked with AKI. This included KIM-1, NGAL, IFN-γ, TNF-α, cystatin C, Fractalkine and vascular endothelial growth factor. Levels were correlated to early renal transplant outcomes, most specifically delayed graft function. Donor urinary KIM-1 levels were significantly higher in donors whose kidneys displayed aberrant early function (p = 0.011). Fractalkine levels showed a trend toward elevation in such donors but uncorrected this did not attain significance. No correlation occurred with the remaining biomarkers. KIM-1 appears to show promise as a marker for AKI in deceased cardiac organ donors. The availability of a lateral flow device (Renastick(™) ) for KIM-1 that also demonstrates higher urinary KIM-1 levels in donors whose kidneys show aberrant initial function (p = 0.03), makes KIM-1 a potential indicator of AKI that may merit further evaluation for its application at the donor bedside. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing

    2015-06-01

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  7. Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry-Global Climate System: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M.; Keene, W. C.; Easter, Richard C.

    Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permittingmore » the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading

  8. Giant light-harvesting nanoantenna for single-molecule detection in ambient light

    PubMed Central

    Trofymchuk, Kateryna; Reisch, Andreas; Didier, Pascal; Fras, François; Gilliot, Pierre; Mely, Yves; Klymchenko, Andrey S.

    2017-01-01

    Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight. PMID:28983324

  9. Exploring hydride-π interactions and their tuning by σ-hole bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Asadollahi, Soheila; Mousavian, Parisasadat

    2018-01-01

    In the present work, ab initio calculations are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CH3) and a series of π-acidic heteroaromatic rings. In all the resulting complexes, the heteroaromatic ring acts as a Lewis acid (electron acceptor), while the H atom of the HMX molecule acts as a Lewis base (electron donor). The nature of this interaction, called 'hydride-π' interaction, is explored in terms of molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. The results show that the interaction energies of these hydride-π interactions are between -1.24 and -2.72 kcal/mol. Furthermore, mutual influence between the hydride-π and halogen- or pnicogen-bonding interactions is studied in complexes in which these interactions coexist. For a given π-acidic ring, the formation of the pnicogen-bonding induces a larger enhancing effect on the strength of hydride-π bond than the halogen-bonding.

  10. Influence of 5-HALOGENATION on the Structure of Protonated Uridine: Irmpd Action Spectroscopy and Theoretical Studies of the Protonated 5-HALOURIDINES

    NASA Astrophysics Data System (ADS)

    Roy, Harrison; Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos

    2016-06-01

    The chemical and structural diversity and the extent of post-transcriptional modification of RNA is remarkable! Presently, there are 142 different naturally-occurring and many more synthetically modified nucleosides known. Uridine (Urd) is the most commonly modified nucleoside among those that occur naturally, but has also been an important target for synthesis and development of modified nucleosides for pharmaceutical applications. Indeed, modified nucleosides are of pharmaceutical interest due to their bioactivities. In particular, 5-bromouridine (br5Urd) has been shown to exhibit antiviral activity to human immunodeficiency virus and has been used in RNA labeling studies. Halogenation is a common modification employed in pharmaceutical studies that enables systematic variation is the electronic properties of the molecule of interest due to the availability of halogen substituents that vary in size, dipole moment, polarizability, and electron withdrawing properties. In order to elucidate the influence of 5-halogenation on the intrinsic gas-phase structure and stability on the protonated form of Urd, synergistic spectroscopic and theoretical studies of the protonated forms of the 5-halouridines are performed here, where x5Urd = 5-fluorouridine (f5Urd), 5-chlorouridine (cl5Urd), br5Urd, and 5-iodouridine (i5Urd). Infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of the 5-halouridines, [x5Urd+H]+, are measured over the IR fingerprint region using the FELIX free electron laser and the hydrogen stretching region using an OPO/OPA laser from 3300-3800 wn. Complementary electronic structure calculations are performed to determine the stable low-energy conformations available to these species and to predict their IR spectra. Comparative analyses of the measured IRMPD spectra and predicted IR spectra are performed to elucidate the preferred sites of protonation, and the low-energy tautomeric conformations that are populated by

  11. Use of Less Reactive Materials and More Stable Gases to Reduce Corrosive Wear When Lubricating with Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Johnson, Robert L.

    1960-01-01

    The gases CF2Cl-CF2Cl, CF2Cl2, and CF2Br-CF2Br were used to lubricate metals, cermets, and ceramics in this study. One of the criteria for determining the effectiveness of a reactive-gas-lubricated systems is the stability of the halogen-containing gas molecule. The carbon-to-halogen bond in the ethane molecule has extremely good thermal stability superior to the methane analogs (CF2Cl2 and CF2Br2) used in earlier research. For this reason, the ethane compounds CF2Cl-CF2Cl and CF2Br-CF2Br were considered as high-temperature lubricants. Friction and wear studies were made with a hemisphere (3/16-in. rad.) rider sliding in a circumferential path on the flat surface of a rotating disk (21/2-in. diam. ). The specimens of metal alloys, cermets, and ceramics were run In an atmosphere of the various gases with a load of 1200 grams, sliding velocities from 75 to 8000 feet per minute, and temperatures from 75 to 1400 F. The gas CF2Cl-CF2Cl was found to be an effective lubricant for the cermet LT-LB (59.0 Cr, 19.0 Al2O3, 20.0 Mo, 2.0 Ti) and the ceramic Al2O3 sliding on Stellite Star J (cobalt-base alloy) at temperatures to 1400 F. The bromine-containing gas CF2Br-CF2Br was found to give friction and wear values that can be considered to be in a region of effective boundary lubrication for the cermet K175D (nickel-bonded metal carbide) sliding on the metal Hastelloy R-235 (nickel-base alloy) at temperatures to 1200 F.

  12. Mixing Behavior in Small Molecule: Fullerene Organic Photovoltaics [On the Mixing Behavior in Small Molecule: Fullerene Organic Photovoltaics

    DOE PAGES

    Oosterhout, Stefan D.; Savikhin, Victoria; Zhang, Junxiang; ...

    2017-02-22

    Here, we report a novel method to determine the amount of pure, aggregated phase of donor and acceptor in organic photovoltaic (OPV) bulk heterojunctions. By determination of the diffraction intensity per unit volume for both donor and acceptor, the volume content of pure, aggregated donor and acceptor in the blend can be determined. We find that for the small molecule X2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) system, in contrast to most polymer systems, all the PCBM is aggregated, indicating there is negligible miscibility of PCBM with X2. This provides an explanation why the performance of OPV devices of X2:PCBM are highmore » over a large range of PCBM concentrations. This is in contrast to many other OPV blends, where PCBM forms a mixed phase with the donor and does not provide sufficient transport for electrons when the PCBM concentration is low. This study demonstrates that a mixed phase is not necessarily a requirement for good OPV device performance.« less

  13. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  14. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    EPA Science Inventory

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  15. Comparing colour discrimination and proofreading performance under compact fluorescent and halogen lamp lighting.

    PubMed

    Mayr, Susanne; Köpper, Maja; Buchner, Axel

    2013-01-01

    Legislation in many countries has banned inefficient household lighting. Consequently, classic incandescent lamps have to be replaced by more efficient alternatives such as halogen and compact fluorescent lamps (CFL). Alternatives differ in their spectral power distributions, implying colour-rendering differences. Participants performed a colour discrimination task - the Farnsworth-Munsell 100 Hue Test--and a proofreading task under CFL or halogen lighting of comparable correlated colour temperatures at low (70 lx) or high (800 lx) illuminance. Illuminance positively affected colour discrimination and proofreading performance, whereas the light source was only relevant for colour discrimination. Discrimination was impaired with CFL lighting. There were no differences between light sources in terms of self-reported physical discomfort and mood state, but the majority of the participants correctly judged halogen lighting to be more appropriate for discriminating colours. The findings hint at the colour-rendering deficiencies associated with energy-efficient CFLs. In order to compare performance under energy-efficient alternatives of classic incandescent lighting, colour discrimination and proofreading performance was compared under CFL and halogen lighting. Colour discrimination was impaired under CFLs, which hints at the practical drawbacks associated with the reduced colour-rendering properties of energy-efficient CFLs.

  16. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    PubMed

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  17. Emission of Volatile OrganoHalogens by Southern African Solar Salt Works

    NASA Astrophysics Data System (ADS)

    Kotte, Karsten; Weissflog, Ludwig; Lange, Christian Albert; Huber, Stefan; Pienaar, Jacobus J.

    2010-05-01

    Volatile organic compounds containing halogens - especially chlorine - have been considered for a long time of industrial origin only, and it was assumed that the production and emission of these compounds can easily be controlled by humans in case they will cause a threat for life on Earth. Since the middle of the 80ies of the last century it became clear that the biologically active organohalogens isolated by chemists are purposefully produced by nature as antibiotics or as antifeedant etc. To date more than 3800 organohalogens are known to be naturally produced by bio-geochemical processes. The global budgets of many such species are poorly understood and only now with the emergence of better analytical techniques being discovered. For example the compound chloromethane nature's production (5 GT) outdates the anthropogenic production (50 KT) by a factor of 100. Thus organohalogens are an interesting recent case in point since they can influence the ozone budget of the boundary layer, play a role in the production of aerosols and the climate change discussion. An intriguing observation is that most of the atmospheric CH3Cl and CH3Br are of terrestrial rather than of marine origin and that a number of halogenated small organic molecules are produced in soils. The high concentrations of halides in salt soils point to a possibly higher importance of natural halogenation processes as a source of volatile organohalogens. Terrestrial biota, such as fungi, plants, animals and insects, as well as marine algea, bacteria and archaea are known or suspected to be de-novo producers of volatile organohalogens. In recent years we revealed the possibility for VOX to form actively in water and bottom sediments of hyper-saline environments in the course of studying aridization processes during climatic warming. Due to the nature of their production process solar salt works, as to be found along-side the Southern African coast line but also upcountry, combine a variety of semi- and

  18. Virucidal properties of metal oxide nanoparticles and their halogen adducts.

    PubMed

    Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George

    2010-04-01

    Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.

  19. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  20. Donor Outcomes in Living Donor Liver Transplantation-Analysis of 275 Donors From a Single Centre in India.

    PubMed

    Narasimhan, Gomathy; Safwan, Mohamed; Kota, Venugopal; Reddy, Mettu S; Bharathan, Anand; Dabora, Abderrhaim; Kaliamoorthy, Ilankumaran; Kanagavelu, Rathnavel G; Srinivasan, Vijaya; Rela, Mohamed

    2016-06-01

    Live donor liver transplantation is the predominant form of liver transplantation in India and in most Asian countries. Donor outcome reports are an important source of information to be shared with prospective donors at the time of informed consent. This is the first donor outcome series from India. Analysis of donor characteristics and morbidity of 275 live donors from a single large volume center is documented. Two hundred seventy-five patients donated from November 2009 to October 2014, 144 were women and 131 were men, 180 donated to adults and 95 donated to children. Right lobe donors were majority at 62.2% followed by left lateral segment 28%. Two thirds of the live donors did not have any morbidity; 114 complications were encountered in 85 patients. The complications were graded as per Clavien 5 tier grading and major morbidity (grade III b, grade IV grade V) was 4.36%. Postoperative biliary complication was seen in 3 donors. This large single-center study is the first donor outcome report from India, and the results are comparable to other published donor series. Documentation and regular audit of donor outcomes is important to help improve the safety of donor hepatectomy and to provide a database for informed consent of prospective donors.

  1. Importance of reactive halogens in the tropical marine atmosphere using WRF-chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; Apel, Eric; Saiz-Lopez, Alfonso; von Glasow, Roland

    2017-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens participate in catalytic reaction cycles that efficiently destroy O3, change the HOX and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. Up to 34% of O3 loss in the tropical East Pacific is due to I and Br combined. Recent studies have highlighted the key role that heterogeneous chemistry plays in explaining observations of BrO and IO abundances in the tropical troposphere. The main objective of this study is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. Our reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. Heterogeneous recycling reactions involving sea-salt aerosol and other particles have been included into the model, along with oceanic emissions of important OVOCs and halocarbons. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present the tropospheric impacts of halogens (BrO, IO) in the tropospheric chemistry of relevant species (O3, OH and OVOCS). Sensitivity runs are made in order to study the impact of heterogeneous chemistry in the iodine and bromine species partitioning. A comparison between the online calculation of Very Short Lived Halocarbons (VSLH) oceanic emissions with prescribed oceanic emissions is

  2. Unexpected autumnal halogen activity in the lower troposphere at Neumayer III/Antarctica

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Schmitt, Stefan; Weller, Rolf; Schaefer, Thomas; Platt, Ulrich

    2017-04-01

    The influence of Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) on the lower polar troposphere has been subject of intense research for several decades. Ozone Depletion Events (ODEs) caused by the catalytic reaction of tropospheric ozone with inorganic halogen species or the oxidation of gaseous elemental mercury are well observed phenomena that occur during the respective springtime in both Arctic and Antarctica. Chlorine atoms also react more efficiently with hydrocarbons than e.g. OH radicals and all reactive halogen species can furthermore influence the atmospheric sulphur or nitrate cycles. While an autocatalytic release mechanism from salty surfaces, the so called bromine explosion, has been identified to rapidly increase inorganic bromine mixing ratios many aspects of atmospheric halogen chemistry in polar regions remains unclear. Since January 2016, we are operating an active Long Path DOAS instrument at Neumayer III on the Antarctic Ekström shelf ice designed for autonomous measurements. This instrument is able to detect a wide range of trace gases absorbing in the UV/Vis including ClO, BrO, OClO, IO, I2, OIO, ozone, NO2, H2O, O4, and SO2 at a temporal resolution of 5-30 minutes. The analysis of the first year of observations shows several surprising findings which give new insights into polar halogen chemistry. E.g. we observe surprisingly strong bromine activity in late summer and autumn (in addition to well-known springtime events) with mixing ratios often higher than 20 pptv. We could even observe peak mixing ratios of 110 pptv. The observed BrO levels could be the result of local/regional chemistry rather than long-range transport and modulated by the stability of the boundary layer. Also, there are hints for NOx - driven halogen activation. Furthermore, chlorine monoxide (ClO) and OClO mixing ratios of several ten pptv could be detected on a number of days, however the source mechanism for reactive chlorine remains unclear. We will give an

  3. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

  4. Deceased donor renal transplantation from older donors to increase the donor pool.

    PubMed

    Kute, Vivek B; Trivedi, Hargovind L; Vanikar, Aruna V; Shah, Pankaj R; Gumber, Manoj R; Patel, Himanshu V; Modi, Pranjal R; Shah, Veena R

    2012-09-01

    Use of kidneys from donors aged 70 years and older is controversial. Organ shortage has led many transplant centers to accept kidneys from old, suboptimal deceased donors and make increasing use of old-for-old allocation systems. We describe our institutional experience with outcomes from transplanting deceased-donor kidneys from older donors (=70 years). 20 deceased donor renal transplants (DDRTx) were performed at our center using grafts from deceased donors 70 years and older between June 2004 and September 2011. Kidneys were allocated to dual or single grafting according to pre-transplant biopsy. Mean age of recipients was 47.60 ± 11.38 years, 13 of whom were males. Mean donor age was 76.49 ± 4.9 years; 10 of whom were males. The most common cause of donor death was cerebrovascular/road traffic accidents. Mean dialysis duration pre-transplantation was 19.5 ± 6.5 months. Mean HLA (Human Leukocyte Antigens) match was 1 ± 0.8. Most common recipient diseases leading to ESRD were chronic glomerulonephritis (25%), diabetes (20%), and hypertension (20%). Post-transplant immunosuppression consisted of a calcineurin inhibitor-based regimen. Over a mean follow-up of 2.8 ± 1.7 years, patient and graft survival rates were 75% (n = 15) and 80% ( n = 16), respectively, with a mean serum creatinine of 1.78 ± 0.56 mg/dl; 20% of the patients had biopsy-proven acute rejection episodes. A total of 25% (n = 5) patients died, mainly due to infections. DDRTx from older donors achieves acceptable graft function with patient/graft survival, provided that organs are allocated to dual or single grafting according to pre-transplant biopsy. These findings encourage the use of this approach even in low-income countries.

  5. Rapid and reliable determination of the halogenating peroxidase activity in blood samples.

    PubMed

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2014-12-15

    By combining easy and fast leukocyte enrichment with aminophenyl-fluorescein (APF) staining we developed a method to quickly and specifically address the halogenating activity of the immunological relevant blood heme peroxidases myeloperoxidase and eosinophil peroxidase, respectively. For leukocyte enrichment a two-fold hypotonic lysis procedure of the blood with Millipore water was chosen which represents a cheap, fast and reliable method to diminish the amount of erythrocytes in the samples. This procedure is shown to be suitable both to human and murine blood micro-samples, making it also applicable to small animal experiments with recurring blood sampling. As all types of leukocytes are kept in the sample during the preparation, they can be analysed separately after discrimination during the flow cytometry analysis. This also holds for all heme peroxidase-containing cells, namely neutrophils, eosinophils and monocytes. Moreover additional parameters (e.g. antibody staining) can be combined with the heme peroxidase activity determination to gain additional information about the different immune cell types. Based on previous results we applied APF for specifically addressing the halogenating activity of leukocyte peroxidases in blood samples. This dye is selectively oxidized by the MPO and EPO halogenation products hypochlorous and hypobromous acid. This approach may provide a suitable tool to gain more insights into the immune-physiological role of the halogenating activity of heme peroxidases. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Halogenated Peptides as Internal Standards (H-PINS)

    PubMed Central

    Mirzaei, Hamid; Brusniak, Mi-Youn; Mueller, Lukas N.; Letarte, Simon; Watts, Julian D.; Aebersold, Ruedi

    2009-01-01

    As the application for quantitative proteomics in the life sciences has grown in recent years, so has the need for more robust and generally applicable methods for quality control and calibration. The reliability of quantitative proteomics is tightly linked to the reproducibility and stability of the analytical platforms, which are typically multicomponent (e.g. sample preparation, multistep separations, and mass spectrometry) with individual components contributing unequally to the overall system reproducibility. Variations in quantitative accuracy are thus inevitable, and quality control and calibration become essential for the assessment of the quality of the analyses themselves. Toward this end, the use of internal standards cannot only assist in the detection and removal of outlier data acquired by an irreproducible system (quality control) but can also be used for detection of changes in instruments for their subsequent performance and calibration. Here we introduce a set of halogenated peptides as internal standards. The peptides are custom designed to have properties suitable for various quality control assessments, data calibration, and normalization processes. The unique isotope distribution of halogenated peptides makes their mass spectral detection easy and unambiguous when spiked into complex peptide mixtures. In addition, they were designed to elute sequentially over an entire aqueous to organic LC gradient and to have m/z values within the commonly scanned mass range (300–1800 Da). In a series of experiments in which these peptides were spiked into an enriched N-glycosite peptide fraction (i.e. from formerly N-glycosylated intact proteins in their deglycosylated form) isolated from human plasma, we show the utility and performance of these halogenated peptides for sample preparation and LC injection quality control as well as for retention time and mass calibration. Further use of the peptides for signal intensity normalization and retention time

  7. Syntheses of halogen derivatives of L-tryptophan, L-tyrosine and L-phenylalanine labeled with hydrogen isotopes.

    PubMed

    Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna

    2016-01-01

    Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Comparison of halogen, plasma and LED curing units.

    PubMed

    Nomoto, Rie; McCabe, John F; Hirano, Susumu

    2004-01-01

    This study evaluated the characteristics of two kinds of recently developed light-curing unit; plasma arc and blue light emitting diodes (LED), in comparison with a conventional tungsten-halogen light-curing unit. The light intensity and spectral distribution of light from these light-curing units, the temperature rise of the bovine enamel surface and the depth of cure of composites exposed to each unit were investigated. The light intensity and depth of cure were determined according to ISO standards. The spectral distributions of emitted light were measured using a spectro-radiometer. The temperature increase induced by irradiation was measured by using a thermocouple. Generally, light intensities in the range 400-515 nm emitted from the plasma arc were greater than those from other types. Light in the UV-A region was emitted from some plasma arc units. The required irradiation times were six to nine seconds for the plasma arc units and 40 to 60 seconds for the LED units to create a depth of cure equal to that produced by the tungsten-halogen light with 20 seconds of irradiation. The temperature increased by increasing the irradiation time for every light-curing unit. The temperature increases were 15 degrees C to 60 degrees C for plasma arc units, around 15 degrees C for a conventional halogen unit and under 10 degrees C for LED units. Both the plasma arc and LED units required longer irradiation times than those recommended by their respective manufacturers. Clinicians should be aware of potential thermal rise and UV-A hazard when using plasma arc units.

  9. The biopsied donor liver: incorporating macrosteatosis into high-risk donor assessment.

    PubMed

    Spitzer, Austin L; Lao, Oliver B; Dick, André A S; Bakthavatsalam, Ramasamy; Halldorson, Jeffrey B; Yeh, Matthew M; Upton, Melissa P; Reyes, Jorge D; Perkins, James D

    2010-07-01

    To expand the donor liver pool, ways are sought to better define the limits of marginally transplantable organs. The Donor Risk Index (DRI) lists 7 donor characteristics, together with cold ischemia time and location of the donor, as risk factors for graft failure. We hypothesized that donor hepatic steatosis is an additional independent risk factor. We analyzed the Scientific Registry of Transplant Recipients for all adult liver transplants performed from October 1, 2003, through February 6, 2008, with grafts from deceased donors to identify donor characteristics and procurement logistics parameters predictive of decreased graft survival. A proportional hazard model of donor variables, including percent steatosis from higher-risk donors, was created with graft survival as the primary outcome. Of 21,777 transplants, 5051 donors had percent macrovesicular steatosis recorded on donor liver biopsy. Compared to the 16,726 donors with no recorded liver biopsy, the donors with biopsied livers had a higher DRI, were older and more obese, and a higher percentage died from anoxia or stroke than from head trauma. The donors whose livers were biopsied became our study group. Factors most strongly associated with graft failure at 1 year after transplantation with livers from this high-risk donor group were donor age, donor liver macrovesicular steatosis, cold ischemia time, and donation after cardiac death status. In conclusion, in a high-risk donor group, macrovesicular steatosis is an independent risk factor for graft survival, along with other factors of the DRI including donor age, donor race, donation after cardiac death status, and cold ischemia time.

  10. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao

    2015-06-15

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M{sub 2}(CN){sub 5}]{sup −1} (M =  Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca{sub 2}(CN){sub 5}]{sup −1} which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimatesmore » or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.« less

  11. Single-electron quantization at room temperature in a-few-donor quantum dot in silicon nano-transistors

    NASA Astrophysics Data System (ADS)

    Samanta, Arup; Muruganathan, Manoharan; Hori, Masahiro; Ono, Yukinori; Mizuta, Hiroshi; Tabe, Michiharu; Moraru, Daniel

    2017-02-01

    Quantum dots formed by donor-atoms in Si nanodevices can provide a breakthrough for functionality at the atomic level with one-by-one control of electrons. However, single-electron effects in donor-atom devices have only been observed at low temperatures mainly due to the low tunnel barriers. If a few donor-atoms are closely coupled as a molecule to form a quantum dot, the ground-state energy level is significantly deepened, leading to higher tunnel barriers. Here, we demonstrate that such an a-few-donor quantum dot, formed by selective conventional doping of phosphorus (P) donors in a Si nano-channel, sustains Coulomb blockade behavior even at room temperature. In this work, such a quantum dot is formed by 3 P-donors located near the center of the selectively-doped area, which is consistent with a statistical analysis. This finding demonstrates practical conditions for atomic- and molecular-level electronics based on donor-atoms in silicon nanodevices.

  12. Evaluation of Potential Donors in Living Donor Liver Transplantation.

    PubMed

    Dirican, A; Baskiran, A; Dogan, M; Ates, M; Soyer, V; Sarici, B; Ozdemir, F; Polat, Y; Yilmaz, S

    2015-06-01

    Correct donor selection in living donor liver transplantation (LDLT) is essential not only to decrease the risks of complications for the donors but also to increase the survival of both the graft and the recipient. Knowing their most frequent reasons of donor elimination is so important for transplantation centers to gain time. In this study we evaluated the effectiveness of potential donors in LDLT and studied the reasons for nonmaturation of potential liver donors at our transplantation center. We studied the outcomes of 342 potential living donor candidates for 161 recipient candidates for liver transplantation between January 2013 and June 2014. Donor candidates' gender, age, body mass index (BMI), relationship with recipient, and causes of exclusion were recorded. Among 161 recipients, 96 had a LDLT and 7 had cadaveric liver transplantation. Twelve of the 342 potential donors did not complete their evaluation; 106 of the remaining 330 donor candidates were accepted as suitable for donation (32%) but 10 of these were excluded preoperatively. The main reasons for unsuitability for liver donation were small remnant liver size (43%) and fatty changes of the liver (38.4%). Other reasons were arterial anatomic variations, ABO incompatibility, and Gilbert syndrome. Only 96 of the candidates (29% of the 330 candidates who completed the evaluation) underwent donation. Effective donors were 29% of potential and 90.5% of suitable donors. In our center, 106 of 330 (32%) donor candidates were suitable for donation and the main reasons for unsuitability for liver donation were small remnant liver size and fatty changes of the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effect of halogenated impurities on lifetime of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Yamawaki, Hayato; Suzuki, Kunihiko; Kubota, Tomohiro; Watabe, Takeyoshi; Ishigaki, Ayumi; Nakamura, Rina; Inoue, Hideko; Nakashima, Harue; Horikoshi, Nozomi; Nowatari, Hiromi; Kataishi, Riho; Hamada, Toshiki; Sasaki, Toshiki; Suzuki, Tsunenori; Seo, Satoshi

    2016-09-01

    We investigated a correlation between lifetime and the halogen element concentration in an organic light-emitting diode (OLED) and conducted experiments and simulations to discuss degradation mechanisms due to the halogen. OELD is generally formed of high-purity materials. Since the synthesis of high-purity materials takes time and cost, quantitative understanding of the kind, amount, and influence of impurities in OLED devices is expected. The results of combustion ion chromatography show that, if the chlorine concentration in the host material is more than several parts per million, the lifetime of the device is drastically reduced. The chlorine element, which is derived from the chlorinated by-product of the host material, is found to be transferred from the chloride to other materials (e.g., an emissive dopant) according to the results of LC-MS analysis. In addition, the electron transport layer including such impurities is also found to adversely affect the lifetime. The results of TOF-SIMS analysis suggest that the dissociated chlorine element diffuse to the light-emitting layer side when the device is driven. The results of simulations (Gaussian 09) and electrochemical analyses (cyclic voltammetry and electrolysis) reveal that the halogen element is easy to dissociate from halide by excitation or reduction. The halogen element can repeat reactions with the peripheral materials by excitation or reduction and cause damages, e.g., generate radicals or further reaction products due to the radicals. The results of simulation suggest that, such compounds have low energy level and become quenchers.

  14. Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3

    NASA Astrophysics Data System (ADS)

    Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.

    2016-04-01

    We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

  15. Volatile halogenated hydrocarbons in foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  16. Temperature analysis during bonding of brackets using LED or halogen light base units.

    PubMed

    Silva, Paulo César Gomes; De Fátima Zanirato Lizarelli, Rosane; Moriyama, Lílian Tan; De Toledo Porto Neto, Sizenando; Bagnato, Vanderlei Salvador

    2005-02-01

    The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance.

  17. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  18. Selenium-Mediated Dehalogenation of Halogenated Nucleosides and its Relevance to the DNA Repair Pathway.

    PubMed

    Mondal, Santanu; Manna, Debasish; Mugesh, Govindasamy

    2015-08-03

    Halogenated nucleosides can be incorporated into the newly synthesized DNA of replicating cells and therefore are commonly used in the detection of proliferating cells in living tissues. Dehalogenation of these modified nucleosides is one of the key pathways involved in DNA repair mediated by the uracil-DNA glycosylase. Herein, we report the first example of a selenium-mediated dehalogenation of halogenated nucleosides. We also show that the mechanism for the debromination is remarkably different from that of deiodination and that the presence of a ribose or deoxyribose moiety in the nucleosides facilitates the deiodination. The results described herein should help in understanding the metabolism of halogenated nucleosides in DNA and RNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gamete donors' expectations and experiences of contact with their donor offspring

    PubMed Central

    Kirkman, Maggie; Bourne, Kate; Fisher, Jane; Johnson, Louise; Hammarberg, Karin

    2014-01-01

    STUDY QUESTION What are the expectations and experiences of anonymous gamete donors about contact with their donor offspring? SUMMARY ANSWER Rather than consistently wanting to remain distant from their donor offspring, donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. WHAT IS KNOWN ALREADY Donor conception is part of assisted reproduction in many countries, but little is known about its continuing influence on gamete donors' lives. STUDY DESIGN, SIZE, DURATION A qualitative research model appropriate for understanding participants' views was employed; semi-structured interviews were conducted during January–March 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Before 1998, gamete donors in Victoria, Australia, were subject to evolving legislation that allowed them to remain anonymous or (from 1988) to consent to the release of identifying information. An opportunity to increase knowledge of donors' expectations and experiences of contact with their donor offspring recently arose in Victoria when a recommendation was made to introduce mandatory identification of donors on request from their donor offspring, with retrospective effect. Pre-1998 donors were invited through an advertising campaign to be interviewed about their views, experiences and expectations; 36 sperm donors and 6 egg donors participated. MAIN RESULTS AND THE ROLE OF CHANCE This research is unusual in achieving participation by donors who would not normally identify themselves to researchers or government inquiries. Qualitative thematic analysis revealed that most donors did not characterize themselves as parents of their donor offspring. Donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. LIMITATIONS, REASONS FOR CAUTION It is not possible to establish whether participants were representative of all pre-1998 donors. WIDER IMPLICATIONS OF THE FINDINGS Anonymous

  20. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia.

    PubMed

    Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul

    2014-01-01

    The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.

  1. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... into a plastic, resin matrix, or pelletized so humans are not reasonally likely to be exposed. (2) The...

  2. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... into a plastic, resin matrix, or pelletized so humans are not reasonally likely to be exposed. (2) The...

  3. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  4. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  5. Retention of "safe" blood donors. The Retrovirus Epidemiology Donor Study.

    PubMed

    Thomson, R A; Bethel, J; Lo, A Y; Ownby, H E; Nass, C C; Williams, A E

    1998-04-01

    There are obvious advantages to increasing donor retention. However, for reasons of blood safety, certain donors may, in fact, be more desirable to retain than others. "Safe" donors are defined as those who provided a blood donation that was negative on all laboratory screening tests and who subsequently reported no behavioral risks in response to an anonymous survey. This study identifies the most important factors affecting the intention of "safe" donors to provide another donation. An anonymous survey asking about donation history, sexual history, injecting drug use, and recent donation experience was mailed to 50,162 randomly selected allogeneic donors (including directed donors) who gave blood from April through July or from October through December 1993 at one of the five United States blood centers participating in the Retrovirus Epidemiology Donor Study. Before mailing, questionnaires were coded to designate donors with nonreactive laboratory screening tests at their most recent donation. A total of 34,726 donors (69%) responded, with substantially higher response among repeat donors. According to reported intentions only, the vast majority of "safe" donors indicated a high likelihood of donating again within the next 12 months. Only 3.4 percent reported a low likelihood of donating again. A comparison of those likely to return and those unlikely to return reveals significant differences in demographics and in ratings of the donation experience. A higher proportion of those unlikely to return were first-time donors, minority-group donors, and donors with less education. The highest projected loss among "safe" donors was seen for those who gave a fair to poor assessment of their treatment by blood center staff or of their physical well-being during or after donating. These data suggest that efforts to improve donors' perceptions of their donation experience, as well as attention to the physical effects of blood donation, may aid in the retention of both

  6. Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation: a prospective randomized controlled trial.

    PubMed

    Kotsch, Katja; Ulrich, Frank; Reutzel-Selke, Anja; Pascher, Andreas; Faber, W; Warnick, P; Hoffman, S; Francuski, M; Kunert, C; Kuecuek, O; Schumacher, G; Wesslau, C; Lun, A; Kohler, S; Weiss, S; Tullius, S G; Neuhaus, P; Pratschke, Johann

    2008-12-01

    To investigate potential beneficial effects of donor treatment with methylprednisolone on organ function and outcome after liver transplantation. It is proven experimentally and clinically that the brain death of the donor leads to increased levels of inflammatory cytokines and is followed by an intensified ischemia/reperfusion injury after organ transplantation. In experiments, donor treatment with steroids successfully diminished these effects and led to better organ function after transplantation. To investigate whether methylprednisolone treatment of the deceased donor is applicable to attenuate brain death-associated damage in clinical liver transplantation we conducted a prospective randomized treatment-versus-control study in 100 deceased donors. Donor treatment (n = 50) consisted of 250 mg methylprednisolone at the time of consent for organ donation and a subsequent infusion of 100 mg/h until recovery of organs. A liver biopsy was taken immediately after laparotomy and blood samples were obtained after brain death diagnosis and before organ recovery. Cytokines were assessed by real-time reverse transcriptase-polymerase chain reaction. Soluble serum cytokines were measured by cytometric bead array system. After methylprednisolone treatment, steroid plasma levels were significantly higher (P < 0.05), and a significant decrease in soluble interleukins, monocyte chemotactic protein-1, interleukin-2, interleukin-6, tumor necrosis factor-alpha, and inducible protein-10 was observed. Methylprednisolone treatment resulted in a significant downregulation of intercellular adhesion molecule-1, tumor necrosis factor-alpha, major histocompatibility complex class II, Fas-ligand, inducible protein-10, and CD68 intragraft mRNA expression. Significantly ameliorated ischemia/reperfusion injury in the posttransplant course was accompanied by a decreased incidence of acute rejection. Our present study verifies the protective effect of methylprednisolone treatment in deceased

  7. Scientific Studies in Association with the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mickley, Lorretta J.; Frederick, John E.

    1996-01-01

    This work examines measurements of ozone, NO, NO2, and HCl made by the Halogen Occultation Experiment (HALOE) to track chemical change in the stratosphere. In addition, HALOE observations of two long-lived species, HF and CH4, are used as tracers to distinguish between change due to transport processes and change due to chemistry. The first study investigates the response of NO(x), (NO and NO2) and ozone to the presence of large amounts of sulfate aerosol in the stratosphere following the 1991 eruption of Mount Pinatubo. As the Pinatubo aerosol cleared the atmosphere at 17 mb (about 27-28 km), the partitioning of total reactive nitrogen shifted more toward NO(x), and ozone amounts declined. This trend is opposite that observed at lower altitudes. The second study examines the chemical aftermath of severe ozone depletion over Antarctica in spring. When ozone levels drop to a threshold amount (about 1 ppm near 20 km), the partitioning of the total chlorine family shifts rapidly from reactive species to the reservoir molecule HCl. This sudden repartitioning shuts down further ozone loss and may be significant as filaments of air peel off the polar vortex and mix with mid-latitude air.

  8. Novel halogen chemistry in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, J. M.; Saiz-Lopez, A.; Shillito, J. A.

    2003-12-01

    This paper will report the first observations of I2 in the marine boundary layer, made by Differential Optical Absorption (DOAS) spectroscopy during a field campaign at Mace Head (Ireland) in the summer of 2002. Very large I2 concentrations correlating with low tide indicate that the source is emission from macro-algae. Simple scaling suggests that this coastal emission could approach 2 Tg per year, making it a major contribution to the global iodine budget. During the same campaign, DOAS observations were also made of the halogen oxides IO, OIO and BrO. The pulses of IO and BrO that were measured at sunrise are strong evidence for heterogeneous processing on sea-salt aerosol producing high levels of IBr during the night. Simple modelling shows that the observed concentrations of the halogen radicals will play important roles in ozone depletion, the oxidation of dimethyl sulfide, and the formation of new particles in the marine boundary layer.

  9. Which Donor for Uterus Transplants: Brain-Dead Donor or Living Donor? A Systematic Review.

    PubMed

    Lavoué, Vincent; Vigneau, Cécile; Duros, Solène; Boudjema, Karim; Levêque, Jean; Piver, Pascal; Aubard, Yves; Gauthier, Tristan

    2017-02-01

    The aim of this systematic review was to evaluate and compare the pros and cons of using living donors or brain-dead donors in uterus transplantation programs, 2 years after the first worldwide live birth after uterus transplantation. The Medline database and the Central Cochrane Library were used to locate uterine transplantation studies carried out in human or nonhuman primates. All types of articles (case reports, original studies, meta-analyses, reviews) in English or French were considered for inclusion. Overall, 92 articles were screened and 44 were retained for review. Proof of concept for human uterine transplantation was demonstrated in 2014 with a living donor. Compared with a brain-dead donor strategy, a living donor strategy offers greater possibilities for planning surgery and also decreases cold ischemia time, potentially translating into a higher success rate. However, this approach poses ethical problems, given that the donor is exposed to surgery risks but does not derive any direct benefit. A brain-dead donor strategy is more acceptable from an ethical viewpoint, but its feasibility is currently unproven, potentially owing to a lack of compatible donors, and is associated with a longer cold ischemia time and a potentially higher rejection rate. The systematic review demonstrates that uterine transplantation is a major surgical innovation for the treatment of absolute uterine factor infertility. Living and brain-dead donor strategies are not mutually exclusive and, in view of the current scarcity of uterine grafts and the anticipated future rise in demand, both will probably be necessary.

  10. Tailoring topological states in silicene using different halogen-passivated Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Derakhshan, Vahid; Moghaddam, Ali G.; Ceresoli, Davide

    2018-03-01

    We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface using density functional theory calculations. Our results show that the Dirac character of low-energy excitations in silicene is almost preserved in the presence of a silicon substrate passivated by various halogens. Nevertheless, the combined effects of symmetry breaking due to both direct and van der Waals interactions between silicene and the substrate, charge transfer from suspended silicene into the substrate, and, finally, the hybridization which leads to the charge redistribution result in a gap in the spectrum of the embedded silicene. We further take the spin-orbit interaction into account and obtain the resulting modification in the gap. The energy gaps with and without spin-orbit coupling vary significantly when different halogen atoms are used for the passivation of the Si surface, and for the case of iodine, they become on the order of 100 meV. To examine the topological properties, we calculate the projected band structure of silicene from which the Berry curvature and Z2 invariant based on the evolution of Wannier charge centers are obtained. As a key finding, it is shown that silicene on halogenated Si substrates has a topological insulating state which can survive even at room temperature for the substrates with iodine and bromine at the surface. Therefore, these results suggest that we can have a reliable, stable, and robust silicene-based two-dimensional topological insulator using the considered substrates.

  11. Motivations for Giving of Alumni Donors, Lapsed Donors and Non-Donors: Implications for Christian Higher Education

    ERIC Educational Resources Information Center

    Rugano, Emilio Kariuki

    2011-01-01

    This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…

  12. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    PubMed

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion.

    PubMed

    Brammer, Lee

    2017-10-13

    The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203 rd Faraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10-12 th July, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.

  14. Room-Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects.

    PubMed

    Xiao, Lu; Wu, Yishi; Yu, Zhenyi; Xu, Zhenzhen; Li, Jinbiao; Liu, Yanping; Yao, Jiannian; Fu, Hongbing

    2018-02-06

    Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two β-iminoenamine-BF 2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH 2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH 2 and S-2I⋅⋅⋅I-Ph-NH 2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH 2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH 2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH 2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH 2 ensures red RTP from S-2CN/I-Ph-NH 2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Organohalide respiration in pristine environments: implications for the natural halogen cycle.

    PubMed

    Atashgahi, Siavash; Häggblom, Max M; Smidt, Hauke

    2018-03-01

    Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide-respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    NASA Astrophysics Data System (ADS)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  17. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    PubMed

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    NASA Astrophysics Data System (ADS)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D.; DeYoung, Paul A.; Blum, Arlene; Stapleton, Heather M.; Peaslee, Graham F.

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography-Mass Spectrometry (GC-MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC-MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  19. Room Temperature Halogenation of Polyimide Film Surface using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Kosuga, Takahiro; Koike, Kunihiko; Aida, Toshihiro; Takeuchi, Takashi; Aihara, Masahiko

    2004-02-01

    In order to develop a new application of chlorine trifluoride gas, the halogenation of a polyimide film surface at room temperature and at atmospheric pressure is studied for the first time. The polyimide film surface after exposure to the chlorine trifluoride gas shows a decreased water contact angle with increasing chlorine trifluoride gas concentration and exposure period. Since both X-ray photoelectron spectroscopy and infrared absorption spectroscopy simultaneously showed the formation of a carbon-chlorine bond and carbon-fluorine bond, it is concluded that the chlorine trifluoride gas can easily and safely perform the halogenation of the polyimide film surface under the stated conditions using a low-cost process and equipment.

  20. Large Plasmids from Soil Bacteria Enriched on Halogenated Alkanoic Acids

    PubMed Central

    Hardman, David J.; Gowland, Peter C.; Slater, J. Howard

    1986-01-01

    Four Pseudomonas species and two Alcaligenes species were isolated from soil with a capacity to grow on halogenated alkanoic acids. They were shown to contain one of five large plasmids. The plasmids had molecular weights ranging from 98,800 to 190,000. They were associated with the ability to utilize the halogenated substrates 2-monochloropropionic acid and 2-monochloroacetic acid and with resistance towards one or more of the heavy metals mercury, selenium, and tellurium. The largest plasmid, pUU204, was shown to be unstable in continuous-flow culture when the organism was supplied with succinate as the sole carbon source. The dehalogenase gene associated with pUU204 appeared to be readily transferred to an incP group plasmid, R68-45. PMID:16346975

  1. C-I···π Halogen Bonding Driven Supramolecular Helix of Bilateral N-Amidothioureas Bearing β-Turns.

    PubMed

    Cao, Jinlian; Yan, Xiaosheng; He, Wenbin; Li, Xiaorui; Li, Zhao; Mo, Yirong; Liu, Maili; Jiang, Yun-Bao

    2017-05-17

    We report the first example of C-I···π halogen bonding driven supramolecular helix in highly dilute solution of micromolar concentration, using alanine based bilateral I-substituted N-amidothioureas that contain helical fragments, the β-turn structures. The halogen bonding interactions afford head-to-tail linkages that help to propagate the helicity of the helical fragments. In support of this action of the halogen bonding, chiral amplification was observed in the supramolecular helix formed in acetonitrile solution. The present finding provides alternative tools in the design of self-assembling macromolecules.

  2. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  3. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  4. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Atalla, Viktor; Smith, Sean

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  5. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE PAGES

    Park, Changwon; Atalla, Viktor; Smith, Sean; ...

    2017-06-16

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  6. Halogen and LED light curing of composite: temperature increase and Knoop hardness.

    PubMed

    Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A

    2006-03-01

    This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.

  7. Donor profiles: demographic factors and their influence on the donor career.

    PubMed

    Veldhuizen, I J T; Doggen, C J M; Atsma, F; De Kort, W L A M

    2009-08-01

    Studying the contribution of demographic factors to the donor career provides important knowledge to be used for donor management. The aim of this study is to gain insight into donor characteristics, more specifically into the demographic profile of active vs. resigned donors, and multi-gallon vs. occasional donors. The study population consisted of all registered Dutch whole-blood donors between 1 January 2004 and 1 January 2005 (N = 370 470). The effect of several blood donor characteristics and demographic variables on (i) resigning donating and (ii) being a multi-gallon donor were assessed. Blood donor characteristics were extracted from the blood bank information system and included age, sex, blood group, number of donations and invitations. Demographic characteristics were constituted by population data on urbanization level, socio-economic status (income, housing value), and ethnicity. Men clearly resigned less often than women (odds ratio (OR) 0.73, 95% confidence interval (CI) 0.72-0.75). Being older than 24 years, having a high income, a high-priced house, living in less urbanized areas or areas with relatively few ethnically diverse people also reduced the stopping risk. With respect to multi-gallon donorship, men were five times more often multi-gallon donor than women (OR 5.27, 95% CI 5.15-5.39) irrespective of the number of donation invitations. Furthermore, multi-gallon donors appeared to live in urbanized areas and have a higher income than occasional donors. Our results show that different donor profiles can be distinguished. Differences between active and resigned donors include age, the number of donations, sex, socio-economic-status, ethnicity, and urbanization level. The factors highly associated with being a multi-gallon donor are sex, age, socio-economic status, and to a lesser extent urbanization level. Donor profiles do provide the blood bank with knowledge on their donor population, which may be used as valuable information for donor

  8. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  9. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  10. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  11. Are drowned donors marginal donors? A single pediatric center experience.

    PubMed

    Kumm, Kayla R; Galván, N Thao N; Koohmaraie, Sarah; Rana, Abbas; Kueht, Michael; Baugh, Katherine; Hao, Liu; Yoeli, Dor; Cotton, Ronald; O'Mahony, Christine A; Goss, John A

    2017-09-01

    Drowning, a common cause of death in the pediatric population, is a potentially large donor pool for OLT. Anecdotally, transplant centers have deemed these organs high risk over concerns for infection and graft dysfunction. We theorized drowned donor liver allografts do not portend worse outcomes and therefore should not be excluded from the donation pool. We reviewed our single-center experience of pediatric OLTs between 1988 and 2015 and identified 33 drowned donor recipients. These OLTs were matched 1:2 to head trauma donor OLTs from our center. A chart review assessed postoperative peak AST and ALT, incidence of HAT, graft and recipient survival. Recipient survival at one year between patients with drowned donor vs head trauma donor allografts was not statistically significant (94% vs 97%, P=.63). HAT incidence was 6.1% in the drowned donor group vs 7.6% in the control group (P=.78). Mean postoperative peak AST and ALT was 683 U/L and 450 U/L for drowned donors vs 1119 U/L and 828 U/L in the matched cohort. These results suggest drowned donor liver allografts do not portend worse outcomes in comparison with those procured from head trauma donors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Implications of hydrogen/halogen-bond in the stabilization of confined water and anion-water clusters by a cationic receptor

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Najbul; Das, Gopal

    2016-03-01

    Anion complexation of benzene capped flexible tripodal receptor and solid state stabilization of discrete hybrid anion-water or infinite water clusters by various supramolecular interactions are reported here. The crystal structure of the receptor in protonated states shows all the three arms projected in one direction. We structurally demonstrate discrete fluoride-water cluster [F2-H2O]2- and square shaped chloride-water cluster [Cl2-(H2O)2]2- inside the cationic channel of the receptor. Structural analysis also reveals that these clusters are stabilized inside the channel through active participation of N/C/Ow‧H⋯Ow, N/C/Ow‧H⋯X- (X- = F-, Cl- and I-) H-bonds and electrostatic interactions. Moreover, C-H⋯π and π⋯π types weak intermolecular interactions appear to play crucial role in supramolecular assembly of receptor. Additionally, on treatment with hydroiodic acid (HI) L resulted zwitterionic iodide complex. Crystal structure reveals the presence of S···I halogen bonded dimer, I2···I halogen bond, 1D infinite water chain and neutral iodine molecules. It is comprehensible that ligand basal structure (benzene capped and N-bridge head in two tripodal) play crucial roles in the formation of diverse halide-water cluster. All structures were well examined by different techniques such as NMR, IR, TGA, DSC, PXRD and XRD.

  13. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  14. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  15. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  16. Gamete donation: parents' experiences of searching for their child's donor siblings and donor.

    PubMed

    Freeman, T; Jadva, V; Kramer, W; Golombok, S

    2009-03-01

    This study investigates the new phenomenon of parents of donor offspring searching for and contacting their child's 'donor siblings' (i.e. donor offspring conceived by the same donor) and donor. Online questionnaires were completed by 791 parents (39% lone-mother, 35% lesbian-couple, 21% heterosexual-couple, 5% non-specified) recruited via the Donor Sibling Registry; a US-based international registry that facilitates contact between donor conception families who share the same donor. Data were collected on parents' reasons for searching for their child's donor siblings and/or donor, the outcome of these searches and parents' and their child's experiences of any resulting contact. Parents' principal motivation for searching for their child's donor siblings was curiosity and for their donor, enhancing their child's sense of identity. Some parents had discovered large numbers of donor siblings (maximum = 55). Most parents reported positive experiences of contacting and meeting their child's donor siblings and donor. This study highlights that having access to information about a child's donor origins is important for some parents and has potentially positive consequences. These findings have wider implications because the removal of donor anonymity in the UK and elsewhere means that increasing numbers of donor offspring are likely to seek contact with their donor relations in the future.

  17. [Personality and donor-recipient relationships of potential donors before living donor liver transplantation--diagnostics with the repertory-grid technique].

    PubMed

    Walter, Marc; Walter, Otto B; Fliege, Herbert; Klapp, Burghard F; Danzer, Gerhard

    2003-06-01

    Living-donor liver transplantation (LDLT) is developing into an established therapy for terminal liver diseases in adults. Potential donors are faced with the risk of postoperative complications and are subject to a high level of psychological pressure and ambivalent feelings. Our assumption is that ambivalent feelings before donation are crucially influenced by the personality and the quality of the donor-recipient relationship. In highly motivated donors we expected a positive description of the recipient and a similarity in the characterisation of the donor and recipient. 58 potential living donors were evaluated between March 2000 and June 2001. On the basis of the clinical interview 10 were rated as unsuited for donation. Among those potential donors assessed as unsuited, we found a high level of ambivalent feelings. For 50 potential donors we gained a set of completed psychometric diagnostic questionnaires. A Repertory-grid investigation was conducted with a total of 28 potential donors. Seven of them were not recommended as living donors. The relationship between donors and recipients was analysed concerning constructs that were most important to the characterisation of the donor or recipient. By means of inter-element distances self-concept of donors and donor-recipient relation were analysed. Ambivalent candidates who were not recommended as living donors tended to describe the recipient negatively (selfish, carping, and unable to take criticism) and did not show a similarity in the characterisations of self and ideal-self. Whereas the highly motivated candidates were marked by a closeness of self and ideal-self concepts. Both groups saw the recipient as indifferent. Closeness between self and ideal-self-indicating satisfaction with the decision to donate seems to be one suitable criterion to distinguish between highly motivated potential donors on the one hand and ambivalent candidates on the other hand. Another criterion appears to be a description of

  18. Liver regeneration in donors and adult recipients after living donor liver transplantation.

    PubMed

    Haga, Junko; Shimazu, Motohide; Wakabayashi, Go; Tanabe, Minoru; Kawachi, Shigeyuki; Fuchimoto, Yasushi; Hoshino, Ken; Morikawa, Yasuhide; Kitajima, Masaki; Kitagawa, Yuko

    2008-12-01

    In living donor liver transplantation, the safety of the donor operation is the highest priority. The introduction of the right lobe graft was late because of concerns about donor safety. We investigated donor liver regeneration by the types of resected segments as well as recipients to assess that appropriate regeneration was occurring. Eighty-seven donors were classified into 3 groups: left lateral section donors, left lobe donors, and right lobe donors. Forty-seven adult recipients were classified as either left or right lobe grafted recipients. Volumetry was retrospectively performed at 1 week, 1, 2, 3, and 6 months, and 1 year after the operation. In the right lobe donor group, the remnant liver volume was 45.4%, and it rapidly increased to 68.9% at 1 month and 89.8% at 6 months. At 6 months, the regeneration ratios were almost the same in all donor groups. The recipient liver volume increased rapidly until 2 months, exceeding the standard liver volume, and then gradually decreased to 90% of the standard liver volume. Livers of the right lobe donor group regenerated fastest in the donor groups, and the recipient liver regenerated faster than the donor liver. Analyzing liver regeneration many times with a large number of donors enabled us to understand the normal liver regeneration pattern. Although the donor livers did not reach their initial volume, the donors showed normal liver function at 1 year. The donors have returned to their normal daily activities. Donor hepatectomy, even right hepatectomy, can be safely performed with accurate preoperative volumetry and careful decision-making concerning graft-type selection.

  19. Halogenated Solvent Cleaning: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the Maximum Achievable Control Technology (MACT) standards for halogenated solvent cleaner. Find the rule history information, federal register citations, legal authority, and additional resources.

  20. Quinacridone-based molecular donors for solution processed bulk-heterojunction organic solar cells.

    PubMed

    Chen, John Jun-An; Chen, Teresa L; Kim, BongSoo; Poulsen, Daniel A; Mynar, Justin L; Fréchet, Jean M J; Ma, Biwu

    2010-09-01

    New soluble quinacridone-based molecules have been developed as electron donor materials for solution-processed organic solar cells. By functionalizing the pristine pigment core of quinacridone with solubilizing alkyl chains and light absorbing/charge transporting thiophene units, i.e., bithiophene (BT) and thienylbenzo[c][1,2,5]thiadiazolethienyl (BTD), we prepared a series of multifunctional quinacridone-based molecules. These molecular donors show intense absorption in the visible spectral region, and the absorption range and intensity are well-tuned by the interaction between the quinacridone core and the incorporated thiophene units. The thin film absorption edge extends with the expansion of molecular conjugation, i.e., 552 nm for N,N'-di(2-ethylhexyl)quinacridone (QA), 592 nm for 2,9-Bis(5'-hexyl-2,2'-bithiophene)-N,N'-di(2-ethylhexyl)quinacridone (QA-BT), and 637 nm for 4-(5-hexylthiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (QA-BTD). The change of molecular structure also influences the electrochemical properties. Observed from cyclic voltammetry measurements, the oxidation and reduction potentials (vs ferrocene) are 0.7 and -1.83 V for QA, 0.54 and -1.76 V for QA-BT, and 0.45 and -1.68 V for QA-BTD. Uniform thin films can be generated from both single component molecular solutions and blend solutions of these molecules with [6,6]-phenyl C70-butyric acid methyl ester (PC70BM). The blend films exhibit space-charge limited current (SCLC) hole mobilities on the order of 1×10(-4) cm(2) V(-1) S(-1). Bulk heterojunction (BHJ) solar cells using these soluble molecules as donors and PC70BM as the acceptor were fabricated. Power conversion efficiencies (PCEs) of up to 2.22% under AM 1.5 G simulated 1 sun solar illumination have been achieved and external quantum efficiencies (EQEs) reach as high as ∼45%.

  1. Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK's C-terminal peptide.

    PubMed

    Wang, Juan; Guo, Yunjie; Zhang, Xue

    2018-02-01

    Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca 2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK's C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5-peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide's aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5-peptide binding affinity can be improved considerably by optimizing their combination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions.

    PubMed

    Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting

    2017-08-01

    Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.

  3. All-electric control of donor nuclear spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.

    2017-10-01

    The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.

  4. Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Aldrich, Thomas J.

    Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two highperformance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4Hthieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4''dodecyl-2,2':5',2''- terthiophene-5,5''-diyl] (PTPD3T or D1) and amorphous poly{4,8- bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene- 2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1-A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templatedmore » by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater Mn), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ~5%, but here both A2 and PBDTT-FTTE (medium Mn) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.« less

  5. Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property

    NASA Astrophysics Data System (ADS)

    Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2015-01-01

    An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1.An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05915h

  6. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  7. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  8. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  9. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  10. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  11. Manganese Catalyzed C–H Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species thatmore » transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–Mn V$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  12. Solution Processed Organic Photovoltaic Cells Using D-A-D-A-D Type Small Molecular Donor Materials with Benzodithiophene and Diketopyrrolopyrrole Units.

    PubMed

    Park, Sangman; Nam, So Yeon; Suh, Dong Hack; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Organic photovoltaic Cells (OPVs) have been considered to be a next-generation energy source to overcome exhaustion of resources. Currently, OPVs are developed based on two types of donor material with polymer and small molecule. Polymeric donor materials have shown better power conversion efficiency (PCE) than small molecular donor materials, since it's easy to control the morphology of photoactive film. However, the difficulty in synthetic reproducibility and purification of polymeric donor were main drawback to overcome. And then, recently small molecule donor materials have been overcome bad morphology of OPVs film by using appropriate alkyl substituents and relatively long conjugation system. In this study, we designed and synthesized D-A-D-A-D type small molecular donor materials containing alternatively linked benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Also, we studied on the effect of photovoltaic performance of prepared small molecular D-A-D-A-D type donor with variation of thiophene links and with/without hexyl substituent. Our small molecular donors showed HOMO energy levels from -5.26 to -5.34 eV and optical bandgaps from 1.70 to 1.87 eV by CV (cyclic voltammetry) and UV/Vis spectroscopy, respectively. Finally, 3.4% of PCE can be obtained using a mixture of BDT(DPP)2-T2 and PCBM as an active layer with a Voc of 0.78 V, a Jsc of 9.72 mA/cm2, and a fill factor of 0.44 under 100 mW/cm2 AM 1.5G simulated light. We will discuss the performance of D-A-D-A-D type small molecular donor based OPVs with variation of both terminal substituents.

  13. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2003-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that

  14. Linear σ-hole⋯CO⋯σ-hole intermolecular interactions between carbon monoxide and dihalogen molecules XY (X, Y=Cl, Br).

    PubMed

    Yang, Xing; Yang, Fan; Wu, Rui-Zhi; Yan, Chao-Xian; Zhou, Da-Gang; Zhou, Pan-Pan; Yao, Xiaojun

    2017-09-01

    Carbon monoxide can interact with two dihalogen molecules XY (X, Y=Cl, Br) in the form of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complex, and their nature and characteristics were investigated at MP2/aug-cc-pVDZ level without and with counterpoise method, together with single point calculations at CCSD(T)/aug-cc-pVDZ level. The optimized geometries, stretching modes and interaction energies of a series of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complexes were obtained and discussed. The cooperativity in these complexes was evaluated. EDA analyses reveal that the electrostatic interaction is the dominant net driving force in each trimer, but the contributions of other interactions like exchange, dispersion and polarization interactions are also important. QTAIM and NCI analyses confirm the existence of attractive halogen-bonding interactions. Additionally, EDDMF analysis was employed for the component dimers of these trimers, which indicates that the formation of halogen-bonding interactions is closely related to the charge shift and the rearrangement of electronic density in the formation of these complexes. The results would provide valuable insight into for these linear halogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Experiences of offspring searching for and contacting their donor siblings and donor.

    PubMed

    Jadva, Vasanti; Freeman, Tabitha; Kramer, Wendy; Golombok, Susan

    2010-04-01

    This study investigates a new phenomenon whereby individuals conceived by donor insemination are searching for and contacting their donor and/or 'donor siblings' (i.e. donor offspring conceived by the same donor who are their genetic half siblings). On-line questionnaires were completed by members of the Donor Sibling Registry (DSR), a US-based registry that facilitates contact between donor conception families who share the same donor. Of the 165 donor offspring who completed the survey, 15% were searching for their donor siblings, 13% were searching for their donor, and 64% were searching for both. Differences were found according to family type and age of disclosure. Fewer offspring from heterosexual couple families had told their father about their search when compared with offspring from lesbian couple families who had told their co-parent. Offspring who had found out about their conception after age 18 were more likely to be searching for medical reasons, whereas those who had found out before age 18 tended to be searching out of curiosity. Some offspring had discovered large numbers of half siblings (maximum=13). The majority of offspring who had found their donor relations reported positive experiences and remained in regular contact with them. Copyright (c) 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Energy transfer and correlations in cavity-embedded donor-acceptor configurations.

    PubMed

    Reitz, Michael; Mineo, Francesca; Genes, Claudiu

    2018-06-13

    The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range interactions in a simplified model consisting of effective two-level quantum emitters that could be relevant for molecules in experiments under cryogenic conditions. We find that free-space collective incoherent interactions, typically associated with sub- and superradiance, can modify the traditional resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit concurrence as a measure of entanglement.

  17. Infected donors in renal transplantation: expanding the donor pool.

    PubMed

    Outerelo, C; Gouveia, R; Mateus, A; Cruz, P; Oliveira, C; Ramos, A

    2013-04-01

    The shortage of suitable organ donors is now the most important limiting factor in the field of transplantation and more expanded criteria have been accepted to overcome this problem. The objectives of this study were to evaluate the outcome of patients who received an organ from an infected donor and to compare them with patients who received organs from noninfected donors. Retrospective analysis of all patients who underwent transplantation in our unit between January 2008 and June 2011 was performed. The definition of infected donor included: (1) documented bacteremia at the time of transplantation; and (2) organ-related infection, either with or without isolation from biological products (urine, liquor, and bronchial secretions). Nineteen of 77 transplant recipients (24.7%) received organs from infected donors. There were 9 cases of pneumonia, 4 cases of meningitis with bacteremia, 5 cases of urinary tract infection, 1 case of bacteremia due to Staphylococcus aureus, and 1 case of ventriculo-peritoneal shunt infection. All these recipients were prescribed antibiotic prophylaxis for 10.9 ± 3.2 days, according to the antibiotic administered to the donor. Significant differences between both groups were not observed concerning demographics features, graft thrombosis, arterial disruption, delayed graft function, rejection episodes, and renal graft and patient survivals at 12 months. The recipients of infected donor kidneys were mostly treated with basiliximab for induction therapy. There was a trend toward fewer infectious complications among patients who received organs from infected donors (21.1% vs 44.8%; P = .065) and shorter hospital stay durations (median, 11 vs 17.5 days; P = .041). Kidney transplantation using organs from infected donors did not seem to be associated with a greater risk of complications. Antibiotic therapy initiated in the donor and continued in the recipient may explain these results, perhaps by reducing infectious complications that

  18. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    PubMed

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  19. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    NASA Astrophysics Data System (ADS)

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  20. Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China

    NASA Astrophysics Data System (ADS)

    Kim, Jooil; Li, Shanlan; Kim, Kyung-Ryul; Stohl, Andreas; Mühle, Jens; Kim, Seung-Kyu; Park, Mi-Kyung; Kang, Dong-Jin; Lee, Gangwoong; Harth, Christina M.; Salameh, Peter K.; Weiss, Ray F.

    2010-06-01

    High-frequency in-situ measurements of a wide range of halogenated compounds including chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorinated compounds (PFCs), sulfur hexafluoride (SF6), and other chlorinated and brominated compounds have been made at Gosan (Jeju Island, Korea). Regional emissions of HCFC-22 (CHClF2) calculated from inverse modeling were combined with interspecies correlation methods to estimate national emissions for China, a major emitter of industrial halogenated gases. Our results confirm the signs of successful phase-out of primary ozone-depleting species such as CFCs, halons and many chlorinated or brominated compounds, along with substantial emissions of replacement HCFCs. Emissions derived for HFCs, PFCs, and SF6 were compared to published estimates and found to be a significant fraction of global totals. Overall, Chinese emissions of the halogenated compounds discussed here represent 19(14-17)% and 20(15-26)% of global emissions when evaluated in terms of their Ozone Depletion Potentials and 100-year Global Warming Potentials, respectively.

  1. Associations of health status with subsequent blood donor behavior-An alternative perspective on the Healthy Donor Effect from Donor InSight.

    PubMed

    van den Hurk, Katja; Zalpuri, Saurabh; Prinsze, Femmeke J; Merz, Eva-Maria; de Kort, Wim L A M

    2017-01-01

    In donor health research, the 'Healthy Donor Effect' (HDE) often biases study results and hampers their interpretation. This refers to the fact that donors are a selected 'healthier' subset of a population due to both donor selection procedures and self-selection. Donors with long versus short donor careers, or with high versus low donation intensities are often compared to avoid this HDE, but underlying health differences might also cause these differences in behaviour. Our aim was to estimate to what extent a donor´s perceived health status associates with donation cessation and intensity. All active whole blood donors participating in Donor InSight (2007-2009; 11,107 male; 12,616 female) were included in this prospective cohort study. We performed Cox survival and Poisson regression analyses to assess whether self-reported health status, medication use, disease diagnosed by a physician and recently having consulted a general practitioner (GP) or specialist were associated with (time to) donation cessation and donation intensity. At the end of 2013, 44% of the donors in this study had stopped donating. Donors in self-rated good health had a 15% lower risk to stop donating compared to donors in perceived poorer health. Medication use, disease diagnoses and consulting a GP were associated with a 20-40% increased risk to stop donating and a lower donation intensity, when adjusting for age, number of donations and new donor status. Both men and women reporting good health made on average 10% more donations. Donors with a "good" health status were less likely to stop donating blood and tended to donate blood more often than donors with perceived poorer health status. This implies that the HDE is an important source of selection bias in studies on donor health and this includes studies where comparisons within donors are made. This HDE should be adjusted for appropriately when assessing health effects of donation and donors' health status may provide estimates of

  2. Feelings of living donors about adult-to-adult living donor liver transplantation.

    PubMed

    Kusakabe, Tomoko; Irie, Shinji; Ito, Naomi; Kazuma, Keiko

    2008-01-01

    This study investigated the feelings of living donors about adult-to-adult liver transplantation. We interviewed 18 donors about their feelings before and after transplantation using semistructured interviews and then conducted a content analysis of their responses. Before transplantation, many donors reported that they wanted recipients to live for the donor or his or her family, and there was no one else to donate. Many donors were not anxious, did not feel coerced, and did not consider donation dangerous. Some reported being excited at facing a new experience. Some said they would not mind whatever happens. Others were anxious or unsure about the operation. Diagnostic testing and preoperative blood banking were painful. Donors experienced increasing stress just before the operation. After transplantation, some donors verbalized feeling more grateful to others and that they gained maturity. Throughout the process, donors were concerned about their recipients. Our results suggest that donors might act for themselves or their family. It is important to recognize the varied responses of donors' feelings toward liver transplant recipients.

  3. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates.

    PubMed

    Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen

    2016-10-01

    The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Methods for the synthesis of donor-acceptor cyclopropanes

    NASA Astrophysics Data System (ADS)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  5. Outcomes of strategic alternative donor selection or suspending donor search based on Japan Marrow Donor Program coordination status.

    PubMed

    Kawashima, Naomi; Nishiwaki, Satoshi; Shimizu, Naoko; Kamoshita, Sonoko; Watakabe, Kyoko; Yokohata, Emi; Kurahashi, Shingo; Ozawa, Yukiyasu; Miyamura, Koichi

    2018-05-01

    In allogeneic hematopoietic stem cell transplantation (allo-HSCT) from unrelated donors, delays in donor search are adversely associated with patient outcome. However, the optimal duration for either waiting for an unrelated donor or selecting alternative sources remains undetermined. Using data from the Japan Marrow Donor Program (JMDP) registry, we retrospectively analyzed 349 adult patients who had searched for unrelated donors. Two hundred and three patients received allo-HSCT from JMDP donors (Group A) with a median of 140 days required to identify a donor, 60 received allo-HSCT from alternative sources (Group B) after a median of 111.5 days at which point either all donor candidates had failed or the patient achieved a second or subsequent complete remission, and 77 suspended allo-HSCT (Group C) after a median of 310 days. The 5-year overall survival (OS) rate in Group A was superior to that of Group C (48.6 vs 38.5%, P = 0.001). Although Group B included more patients with high or very high disease risk index (DRI) at the time of allo-HSCT compared with Group A, the 5-year OS was not significantly different between Groups A and B (48.6 vs 40.9%, P = 0.07), indicating that switching to alternative donors may benefit patients with high DRI.

  6. Rotaxanes and Photovoltaic Materials Based on Pi-Conjugated Donors and Acceptors: Toward Energy Transduction on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.

    The flow of energy between its various forms is central to our understanding of virtually all natural phenomena, from the origins and fate of the universe to the mechanisms that underpin Life. Therefore, a deeper fundamental understanding of how to manage energy processes at the molecular scale will open new doors in science and technology. This dissertation describes organic molecules and materials that are capable of transducing various forms of energy on the nanoscale, namely, a class of mechanically interlocked molecules known as rotaxanes for electrochemical-to-mechanical energy transduction (Part I), and a class of thin films known as organic photovoltaics (OPVs) for solar-to-electric energy transduction (Part II). These materials are all based on conjugated molecules with a capacity to donate or accept pi-electrons. A contemporary challenge in molecular nanotechnology is the development of artificial molecular machines (AMMs) that mimic the ability of motor proteins (e.g. myosin, kinesin) to perform mechanical work by leveraging a combination of energy sources and rich structural chemistry. Part I describes the synthesis, characterization, molecular dynamics, and switching properties of a series of `daisy chain' and oligorotaxane AMM prototypes. All compounds are templated by charge transfer and hydrogen bonding interactions between pi-associated 1,5-dioxynaphthlene donors appended with polyether groups and pi-acceptors of either neutral (naphthalenediimide) or charged (4,4´-bipyridinium) varieties, and are synthesized using efficient one-pot copper(I)-catalyzed azide-alkyne cycloaddition `click chemistry' protocols. The interlocked architectures of these rotaxanes enable them to express sophisticated secondary structures (i.e. foldamers) and mechanical motions in solution, which have been elucidated using dynamic 1H NMR spectroscopy. Furthermore, molecular dynamics simulations, cyclic voltammetry, and spectroelectrochemistry experiments have demonstrated

  7. Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype

    PubMed Central

    Kharbanda, Sandhya; Koh, Winston; Martin, Lance R.; Khush, Kiran K.; Valantine, Hannah; Pritchard, Jonathan K.; De Vlaminck, Iwijn

    2017-01-01

    Quantification of cell-free DNA (cfDNA) in circulating blood derived from a transplanted organ is a powerful approach to monitoring post-transplant injury. Genome transplant dynamics (GTD) quantifies donor-derived cfDNA (dd-cfDNA) by taking advantage of single-nucleotide polymorphisms (SNPs) distributed across the genome to discriminate donor and recipient DNA molecules. In its current implementation, GTD requires genotyping of both the transplant recipient and donor. However, in practice, donor genotype information is often unavailable. Here, we address this issue by developing an algorithm that estimates dd-cfDNA levels in the absence of a donor genotype. Our algorithm predicts heart and lung allograft rejection with an accuracy that is similar to conventional GTD. We furthermore refined the algorithm to handle closely related recipients and donors, a scenario that is common in bone marrow and kidney transplantation. We show that it is possible to estimate dd-cfDNA in bone marrow transplant patients that are unrelated or that are siblings of the donors, using a hidden Markov model (HMM) of identity-by-descent (IBD) states along the genome. Last, we demonstrate that comparing dd-cfDNA to the proportion of donor DNA in white blood cells can differentiate between relapse and the onset of graft-versus-host disease (GVHD). These methods alleviate some of the barriers to the implementation of GTD, which will further widen its clinical application. PMID:28771616

  8. Pharmacological evaluation of halogenated and non-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles as D(2) and 5-HT(2A) receptor ligands.

    PubMed

    Tomić, Mirko; Vasković, Djurdjica; Tovilović, Gordana; Andrić, Deana; Penjišević, Jelena; Kostić-Rajačić, Sladjana

    2011-05-01

    Five groups of previously synthesized and initially screened non-substituted and 4-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles were estimated for their in-vitro binding affinities at the rat D(2) , 5-HT(2A) , and α(1) -adrenergic receptors. Among all these compounds, 2-methoxyphenyl and 2-chlorophenyl piperazines demonstrate the highest affinities for the tested receptors. The effects of 4-halogenation of benzimidazoles reveal that substitution with bromine may greatly increase the affinity of the compounds for the studied receptors, while the effect of substitution with chlorine is less remarkable. Most of the tested components show 5-HT(2A)/D(2) pK(i) binding ratios slightly above or less than 1, while only 4-chloro-6-(2-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}ethyl)-1H-benzimidazole expresses an appropriate higher binding ratio (1.14), which was indicated for atypical neuroleptics. This compound exhibits a non-cataleptic action in rats and prevents d-amphetamine-induced hyperlocomotion in mice, which suggest its atypical antipsychotic potency. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Role of halogen and hydrogen bonds for stabilization of antithyroid drugs with hypohalous acids (HOX, X = I, Br, and Cl) adducts

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim

    2017-11-01

    The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.

  10. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    NASA Astrophysics Data System (ADS)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  11. Extended criteria donors in liver transplantation: adapting donor quality and recipient.

    PubMed

    Gastaca, M

    2009-04-01

    Despite the progressive increase in the number of liver transplantations, the mortality on the waiting list remains between 5% and 10%, and patients have to deal with longer waiting periods. Facing this situation, transplant centers have developed alternatives to increase the number of grafts by accepting donors who were previously considered to be inadequate, because they are at higher risk of initial poor function and graft failure or may cause disease transmission. Currently, some marginal donors are being routinely used: elderly donors, steatotic grafts, non-heart-beating donors, hepatitis C virus-positive (HCV+) or hepatitis B core antibody-positive donors. These so-called marginal or extended-criteria donors were initially used in high-risk or urgent recipients; however, the number of marginal grafts has significantly increased, forcing the transplant community toward their more rationale use to maintain excellent results of liver transplantation. In this new scenario, the adequacy between donor and recipient may be paramount. Advanced donor age seems to be related to a greater graft failure rate in HCV+ recipients. Early survival seems to be significantly reduced when steatotic grafts are used in recipients with high Model for End-stage Liver Disease (MELD) scores. Moreover, a decreased survival has been observed among high-risk patients receiving organs from marginal donors. No benefit seems to exist when high-donor risk index grafts are transplanted into recipients with low MELD Scores. The recognition of various donor groups according to their quality and the need for good donor and recipient selection must lead us to define new policies for organ allocation of marginal grafts that may come into conflict with current policies of organ allocation according to the risk of death among patients awaiting a liver transplantation.

  12. Travel behavior and deferral of Dutch blood donors: consequences for donor availability.

    PubMed

    Lieshout-Krikke, Ryanne W; Oei, Welling; Habets, Karin; Pasker-de Jong, Pieternel C M

    2015-01-01

    Donors returning from areas with outbreaks of infectious diseases may donate infectious blood back home. Geographic donor deferral is an effective measure to ensure the blood safety, but donor deferral may pose a threat for the blood supply especially after holiday seasons. Insight into the travel behavior of blood donors is a first step to define appropriate deferral strategies. This study describes the travel behavior of Dutch donors, the actual deferral, and the consequences of deferral strategies on donor availability. A questionnaire designed to assess travel behavior (destination, frequency, and duration of travels) was sent to 2000 Dutch donors. The impact of travel deferral policies on donor availability was calculated, expressed as proportionate decrease in donor availability. The deferral policies considered were 1) deferral based on entire countries instead of affected regions where an infection is prevalent and 2) deferral after any travel outside Europe ("universal deferral"). Of the 1340 respondents, 790 (58.9%) donors traveled within Europe only, 61 (4.6%) outside Europe only, and 250 (18.7%) within and outside Europe. The deferral for entire countries and universal deferral would lead to 11.1 and 11.4% decrease in donor availability, respectively. Most Dutch donors traveled outside the Netherlands, while 23.2% traveled outside Europe. Universal deferral resulted in an additional decrease in donor availability of 0.3% compared with deferral for entire countries instead of affected regions where an infection is prevalent. Thus, the universal deferral could be considered as a simpler and safer measure. © 2014 AABB.

  13. Engineering of new-to-nature halogenated indigo precursors in plants.

    PubMed

    Fräbel, Sabine; Wagner, Bastian; Krischke, Markus; Schmidts, Volker; Thiele, Christina M; Staniek, Agata; Warzecha, Heribert

    2018-03-01

    Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study

  14. Utilization of elderly donors in living donor liver transplantation: when more is less?

    PubMed

    Dayangac, Murat; Taner, C Burcin; Yaprak, Onur; Demirbas, Tolga; Balci, Deniz; Duran, Cihan; Yuzer, Yildiray; Tokat, Yaman

    2011-05-01

    An accepted definition of donor exclusion criteria has not been established for living donor liver transplantation (LDLT). The use of elderly donors to expand the living donor pool raises ethical concerns about donor safety. The aims of this study were (1) the comparison of the postoperative outcomes of living liver donors by age (≥ 50 versus < 50 years) and (2) the evaluation of the impact of the extent of right hepatectomy on donor outcomes. The study group included 150 donors who underwent donor right hepatectomy between October 2004 and April 2009. Extended criteria surgery (ECS) was defined as right hepatectomy with middle hepatic vein (MHV) harvesting or right hepatectomy resulting in an estimated remnant liver volume (RLV) less than 35%. The primary endpoints were donor outcomes in terms of donor complications graded according to the Clavien classification. Group 1 consisted of donors who were 50 years old or older (n = 28), and group 2 consisted of donors who were less than 50 years old (n = 122). At least 1 ECS criterion was present in 74% of donors: 57% had 1 criterion, and 17% had 2 criteria. None of the donors had grade 4 complications or died. The overall and major complication rates were similar in the 2 donor age groups [28.6% and 14.3% in group 1 and 32% and 8.2% in group 2 for the overall complication rates (P = 0.8) and the major complication rates (P = 0.2), respectively]. However, there was a significant correlation between the rate of major complications and the type of surgery in donors who were 50 years old or older. In LDLT, extending the limits of surgery comes at the price of more complications in elderly donors. Right hepatectomy with MHV harvesting and any procedure causing an RLV less than 35% should be avoided in living liver donors who are 50 years old or older. Copyright © 2011 American Association for the Study of Liver Diseases.

  15. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  16. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2004-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and

  17. Donor motivation in Xi'an, China: comparison with Canadian donors.

    PubMed

    O'Brien, S F; Shao, Z-J; Osmond, L; Yi, Q-L; Li, C-Y; An, Q-X

    2013-04-01

    In China, paid donation is prohibited by law. There is little literature assessing donor motivation in China, and comparison with western countries such as Canada is important in understanding the application of Western literature. We compared motivational factors in donors from the city of Xi'an, China, with Canadian donors matched for age, sex and donation status. A total of 218 donors in Xi'an completed an interview about motivation as did 218 Canadian donors matched for age, sex and donation status. Frequencies and percentages of responses to questions were tabulated and compared using the Chi-squared test. Donors in Xi'an and Canada felt a personal responsibility to donate blood (81·2% vs. 78·0%, P = 0·2057), but Xi'an donors were more likely to consider blood donation a social responsibility (81·7% vs. 45·2%, P < 0·0001). Xi'an donors more often believed that society views donation as a normal activity (98·6% vs. 48·4%, P < 0·0001) and that the social atmosphere promotes donation (90·3% vs. 53·5%, P < 0·0001) and saw greater health benefit (52·3% vs. 12·5%, P < 0·0001). Most Xi'an donors believed in balance between their life force (Qi) and blood (86·7% vs. 49·8%, P < 0·0001) but did not believe blood lost from donating would affect this (0·5% vs. 3·8%, P = 0·01). While traditional Chinese beliefs may not be seen as a barrier among people in Xi'an who donate blood, blood donation is seen differently than by Canadian donors. There is a need for more research specific to China to tailor recruitment strategies. © 2012 The Author(s). Vox Sanguinis © 2012 International Society of Blood Transfusion.

  18. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    PubMed

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  19. Donor milk volume and characteristics of donors and their children.

    PubMed

    Sierra-Colomina, Gemma; García-Lara, Nadia Raquel; Escuder-Vieco, Diana; Alonso-Díaz, Clara; Esteban, Eva María Andrés; Pallás-Alonso, Carmen Rosa

    2014-05-01

    Little is known regarding the effect of the characteristics of donors and their children on the volume of donor milk delivered to a human milk bank (HMB). Our study aimed to determine the relationship between different social and demographic variables of donors and their infants with the volume of human milk delivered. We included donors accepted at the Hospital Doce de Octubre HMB from January 1st, 2009 until April 31st, 2013, and who had finished their donation. Data of social and demographic characteristics of the donors and their children, and the total volume of DHM given were obtained from our HMB database. Included variables were previous donors, donor age, number of children, place of residence, gestational age of the infant at birth, child's age at the start of the donation, hospital admission, and death of the infant. A linear regression model was used to study the relationship between independent variables that were significant in bivariate analysis and the volume of donated milk. A total of 415 donations from 391 women were included. The median volume of milk delivered was 3.1l (IQR-interquartile range-1.3-8.3l). In the linear regression model, previous donors, smaller gestational age of children, and the start of donation at earlier stages of lactation were associated with a larger quantity of HMB donated (p≤0.001). Previous donors, smaller gestational age of children, and the start of donation at earlier stages of lactation are associated with a larger quantity of milk donated to the HMB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reactivity of some halogenated alkanes of 13X molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fevrier, D.; Vernet, J.L.; Mignon, P.

    1977-12-01

    The decomposition and transhalogenation products of trichlorofluoromethane (F 11), dichlorodifluoromethane (F-12), dichlorofluoromethane (F-21), chlorodifluoromethane (F-22), trichlorotrifluoroethane (F-113), and bromotrifluoromethane (F-13B1) in air on 13X molecular sieve at 150/sup o/ and 320/sup o/C were analyzed. All compounds decomposed to some extent except F-13B1 and F-113 at 150/sup o/C. The decomposition product was carbon dioxide except from F-21 and F-22, which decomposed more readily than the other Freons because of their hydrogen atoms and which yielded carbon monoxide. The sieves were not regenerated by sweeping with water in nitrogen, although adsorbed halogens were displaced and formed strong acids. Halogenated hydracids formed alongmore » with carbon dioxide by reaction with constitutional water of the sieves are probably responsible for the destruction of the sieve. Diagram, graphs, tables, and 17 references.« less

  1. Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches

    PubMed Central

    Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.

    2016-01-01

    The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors. PMID:26876789

  2. Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches

    NASA Astrophysics Data System (ADS)

    Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.

    2016-02-01

    The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors.

  3. Donor morbidity in right and left hemiliver living donor liver transplantation: the impact of graft selection and surgical innovation on donor safety.

    PubMed

    Iwasaki, Junji; Iida, Taku; Mizumoto, Masaki; Uemura, Tadahiro; Yagi, Shintaro; Hori, Tomohide; Ogawa, Kohei; Fujimoto, Yasuhiro; Mori, Akira; Kaido, Toshimi; Uemoto, Shinji

    2014-11-01

    This study investigated adequate liver graft selection for donor safety by comparing postoperative donor liver function and morbidity between the right and left hemilivers (RL and LL, respectively) of living donors. Between April 2006 and March 2012, RL (n = 168) and LL (n = 140) donor operations were performed for liver transplantation at Kyoto University Hospital. Postoperative hyperbilirubinemia and coagulopathy persisted in RL donors, whereas the liver function of LL donors normalized more rapidly. The overall complication rate of the RL donors was significantly higher than that of the LL donors (59.5% vs. 30.7%; P < 0.001). There were no significant differences in severe complications worse than Clavien grade IIIa or in biliary complication rates between the two donor groups. In April 2006, we introduced an innovative surgical procedure: hilar dissection preserving the blood supply to the bile duct during donor hepatectomy. Compared with our previous outcomes (1990-2006), the biliary complication rate of the RL donors decreased from 12.2% to 7.2%, and the severity of these complications was significantly lower. In conclusion, LL donors demonstrated good recovery in postoperative liver function and lower morbidity, and our surgical innovations reduced the severity of biliary complications in living donors. © 2014 Steunstichting ESOT.

  4. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  5. Donor, dad, or…? Young adults with lesbian parents' experiences with known donors.

    PubMed

    Goldberg, Abbie E; Allen, Katherine R

    2013-06-01

    In this exploratory qualitative study of 11 young adults, ages 19-29 years, we examine how young people who were raised by lesbian parents make meaning out of and construct their relationships with known donors. In-depth interviews were conducted to examine how participants defined their family composition, how they perceived the role of their donors in their lives, and how they negotiated their relationships with their donors. Findings indicate that mothers typically chose known donors who were family friends, that the majority of participants always knew who their donors were, and that their contact with donors ranged from minimal to involved. Further, participants perceived their donors in one of three ways: as strictly donors and not members of their family; as extended family members but not as parents; and as fathers. The more limited role of donors in participants' construction of family relationships sheds light on how children raised in lesbian, gay, and bisexual families are contributing to the redefinition and reconstruction of complex kinship arrangements. Our findings hold implications for clinicians who work with lesbian-mother families, and suggest that young adulthood is an important developmental phase during which interest in and contact with the donor may shift, warranting a transfer of responsibility from mother to offspring in terms of managing the donor-child relationship. © FPI, Inc.

  6. SYNTHESIS AND STUDY OF HALOGENATED BENZYLAMIDES OF SOME ISOCYCLIC AND HETEROCYCLIC ACIDS AS POTENTIAL ANTICONVULSANTS.

    PubMed

    Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P

    2015-01-01

    A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.

  7. Computational insights into the photocyclization of diclofenac in solution: effects of halogen and hydrogen bonding.

    PubMed

    Bani-Yaseen, Abdulilah Dawoud

    2016-08-21

    The effects of noncovalent interactions, namely halogen and hydrogen bonding, on the photochemical conversion of the photosensitizing drug diclofenac (DCF) in solution were investigated computationally. Both explicit and implicit solvent effects were qualitatively and quantitatively assessed employing the DFT/6-31+G(d) and SQM(PM7) levels of theory. Full geometry optimizations were performed in solution for the reactant DCF, hypothesized radical-based intermediates, and the main product at both levels of theories. Notably, in good agreement with previous experimental results concerning the intermolecular halogen bonding of DCF, the SQM(PM7) method revealed different values for d(ClO, Å) and ∠(C-ClO, °) for the two chlorine-substituents of DCF, with values of 2.63 Å/162° and 3.13 Å/142° for the trans and cis orientations, respectively. Employing the DFT/6-31+G(d) method with implicit solvent effects was not conclusive; however, explicit solvent effects confirmed the key contribution of hydrogen and halogen bonding in stabilizing/destabilizing the reactant and hypothesized intermediates. Interestingly, the obtained results revealed that a protic solvent such as water can increase the rate of photocyclization of DCF not only through hydrogen bonding effects, but also through halogen bonding. Furthermore, the atomic charges of atoms majorly involved in the photocyclization of DCF were calculated using different methods, namely Mulliken, Hirshfeld, and natural bond orbital (NBO). The obtained results revealed that in all cases there is a notable nonequivalency in the noncovalent intermolecular interactions of the two chlorine substituents of DCF and the radical intermediates with the solvent, which in turn may account for the discrepancy of their reactivity in different media. These computational results provide insight into the importance of halogen and hydrogen bonding throughout the progression of the photochemical conversion of DCF in solution.

  8. Tuning Optoelectronic Properties of Organic Semiconductors Via Donor-Acceptor Cocrystals and Interfacial Composites

    NASA Astrophysics Data System (ADS)

    Wang, Chen

    Organic donor-acceptor (D-A) interaction has attracted intensive research interest because of the promising applications in electronic devices and renewable energy. Depending on the interaction process, the optoelectronic properties of organic semiconductors may change dramatically. To improve their performance and expand the applications, we have investigated the structure-property relationship in D-A cocrystals and nanofibril composites. These materials provide unique D-A interface structures, thus allowing tunable charge transfer across the interface, which can be modified and controlled by exquisite molecule design and supramolecular assembly. In Chapter 2, we studied the fabrication, conductivity, and chemiresistive sensor performance of tetrathiafulvalene (TTF) - 7,7,8,8-tetracyanoquinodimethane (TCNQ) charge transfer cocrystal microfibers. Compared to TCNQ and TTF, TTF-TCNQ cocrystal has much higher conductivity under ambient conditions, due to the high yield of charge separation, which also induces high polarization at the interface, resulting in different binding intensity towards alkyl and aromatic amines. Based on this investment, we developed a TTF-TCNQ chemiresistive sensor to efficiently discriminate alkyl and aromatic amine vapors. In Chapter 3, we further designed a new series of D-A cocrystals, and studied the coassembly and optical properties. The cocrystal is composed of coronene and perylene diimide at 1:1 molar ratio and belongs to the triclinic system, as confirmed by X-ray analysis. The donor and acceptor molecules perform an alternate pi-pi stacking along the (100) direction, leading to the strong one-dimensional growth tendency of macroscopic cocrystal. Additionally, due to the charge transfer interaction, the cocrystal shows a new and largely red-shifted photoluminescence band, compared to the crystals of the components. In Chapter 4, we alternatively developed a series of donor-acceptor nanofibril composites, in which the donor and

  9. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for the... substance may cause internal organ effects (kidney and blood). The requirements of this section do not apply... processors of this substance as specified in § 721.125 (a), (b), (c), (d), (f), (g), (h), and (i). (2...

  10. Sperm donor anonymity and compensation: an experiment with American sperm donors

    PubMed Central

    Cohen, Glenn; Coan, Travis; Ottey, Michelle; Boyd, Christina

    2016-01-01

    Abstract Most sperm donation that occurs in the USA proceeds through anonymous donation. While some clinics make the identity of the sperm donor available to a donor-conceived child at age 18 as part of ‘open identification’ or ‘identity release programs,’ no US law requires clinics to do so, and the majority of individuals do not use these programs. By contrast, in many parts of the world, there have been significant legislative initiatives requiring that sperm donor identities be made available to children after a certain age (typically when the child turns 18). One major concern with prohibiting anonymous sperm donation has been that the number of willing sperm donors will decrease leading to shortages, as have been experienced in some of the countries that have prohibited sperm donor anonymity. One possible solution, suggested by prior work, would be to pay current anonymous sperm donors more per donation to continue to donate when their anonymity is removed. Using a unique sample of current anonymous and open identity sperm donors from a large sperm bank in the USA, we test that approach. As far as we know, this is the first attempt to examine what would happen if the USA adopted a prohibition on anonymous sperm donation that used the most ecologically valid population, current sperm donors. We find that 29% of current anonymous sperm donors in the sample would refuse to donate if the law changed such that they were required to put their names in a registry available to donor-conceived children at age 18. When we look at the remaining sperm donors who would be willing to participate, we find that they would demand an additional $60 per donation (using our preferred specification). We also discuss the ramifications for the industry. PMID:28852536

  11. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

    PubMed

    Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao

    2016-09-07

    A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.

  13. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Donor selection for adult-to-adult living donor liver transplantation: well begun is half done.

    PubMed

    Sharma, Amit; Ashworth, April; Behnke, Martha; Cotterell, Adrian; Posner, Marc; Fisher, Robert A

    2013-02-15

    Donor selection criteria for adult-to-adult living donor liver transplantation vary with the medical center of evaluation. Living donor evaluation uses considerable resources, and the nonmaturation of potential into actual donors may sometimes prove fatal for patients with end-stage liver disease. On the contrary, a thorough donor evaluation process is mandatory to ensure safe outcomes in otherwise healthy donors. We aimed to study the reasons for nonmaturation of potential right lobe liver donors at our transplant center. A retrospective data analysis of all potential living liver donors evaluated at our center from 1998 to 2010 was done. Overall, 324 donors were evaluated for 219 potential recipients, and 171 (52.7%) donors were disqualified. Common reasons for donor nonmaturation included the following: (1) donor reluctance, 21%; (2) greater than 10% macro-vesicular steatosis, 16%; (3) assisted donor withdrawal, 14%; (4) inadequate remnant liver volume, 13%; and (5) psychosocial issues, 7%, and thrombophilia, 7%. Ten donors (6%) were turned down because of anatomic variations (8 biliary and 2 arterial anomalies). Donors older than 50 years and those with body mass index of more than 25 were less likely to be accepted for donation. We conclude that donor reluctance, hepatic steatosis, and assisted donor withdrawal are major reasons for nonmaturation of potential into actual donors. Anatomic variations and underlying medical conditions were not a major cause of donor rejection. A system in practice to recognize these factors early in the course of donor evaluation to improve the efficiency of the selection process and ensure donor safety is proposed.

  15. Donor Selection for Adult- to- Adult Living Donor Liver Transplantation: Well Begun is Half Done

    PubMed Central

    Sharma, Amit; Ashworth, April; Behnke, Martha; Cotterell, Adrian; Posner, Marc; Fisher, Robert A.

    2012-01-01

    Background Donor selection criteria for adult-to-adult living donor liver transplantation vary with the medical center of evaluation. Living donor evaluation utilizes considerable resources and the non-maturation of potential into actual donors may sometimes prove fatal for patients with end stage liver disease. On the contrary, a thorough donor evaluation process is mandatory to ensure safe outcomes in otherwise healthy donors. We aimed to study the reasons for non-maturation of potential right lobe liver donors at our transplant center. Methods A retrospective data analysis of all potential living liver donors evaluated at our center from 1998 to 2010 was done. Results Overall 324 donors were evaluated for 219 potential recipients and 171 (52.7%) donors were disqualified. Common reasons for donor non-maturation included: (1) Donor reluctance, 21% (2) >10% macro-vesicular steatosis, 16% (3) assisted donor withdrawal, 14% (4) inadequate remnant liver volume, 13% (5) psychosocial issues, 7% and thrombophilia, 7%. Ten donors (6%) were turned down due to anatomical variations (8 biliary and 2 arterial anomalies). Donors older than 50 years and those with BMI over 25 were less likely to be accepted for donation. Conclusions We conclude that donor reluctance, hepatic steatosis and assisted donor withdrawal are major reasons for non-maturation of potential into actual donors. Anatomical variations and underlying medical conditions were not a major cause of donor rejection. A system in practice to recognize these factors early in the course of donor evaluation to improve the efficiency of the selection process and ensure donor safety is proposed. PMID:23128999

  16. Abnormal synergistic effects between Lewis acid-base interaction and halogen bond in F3B···NCX···NCM

    NASA Astrophysics Data System (ADS)

    Tang, Qingjie; Li, Qingzhong

    2015-12-01

    An abnormal synergistic effect was found between the Lewis acid-base interaction and halogen bond in triads F3B···NCX···NCM (X and M are halogen atoms), where the strong Lewis acid-base interaction between F3B and NCX has a larger enhancement than the weak halogen bond between NCX and NCM. This is in contrast with the traditional cooperative effect. It is interesting that the alkali-metal substituent as well as the heavier halogen atom play a more remarkable role in the enhancement of the interaction F3B···NCX than that of NCX···NCM, particularly, the alkali-metal substituent makes the abnormal synergistic effect be the traditional cooperative one.

  17. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  18. Considering Tangible Benefit for Interdependent Donors: Extending a Risk-Benefit Framework in Donor Selection.

    PubMed

    Van Pilsum Rasmussen, S E; Henderson, M L; Kahn, J; Segev, D

    2017-10-01

    From its infancy, live donor transplantation has operated within a framework of acceptable risk to donors. Such a framework presumes that risks of living donation are experienced by the donor while all benefits are realized by the recipient, creating an inequitable distribution that demands minimization of donor risk. We suggest that this risk-tolerance framework ignores tangible benefits to the donor. A previously proposed framework more fully considers potential benefits to the donor and argues that risks and benefits must be balanced. We expand on this approach, and posit that donors sharing a household with and/or caring for a potential transplant patient may realize tangible benefits that are absent in a more distantly related donation (e.g. cousin, nondirected). We term these donors, whose well-being is closely tied to their recipient, "interdependent donors." A flexible risk-benefit model that combines risk assessment with benefits to interdependent donors will contribute to donor evaluation and selection that more accurately reflects what is at stake for donors. In so doing, a risk-benefit framework may allow some donors to accept greater risk in donation decisions. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca; Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formationmore » of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.« less

  20. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance.

    PubMed

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-03-31

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  1. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance

    PubMed Central

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-01-01

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology. PMID:20479964

  2. A single molecule rectifier with strong push-pull coupling

    NASA Astrophysics Data System (ADS)

    Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan

    2008-11-01

    We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.

  3. Marginal donors: can older donor hearts tolerate prolonged cold ischemic storage?

    PubMed

    Korkmaz, Sevil; Bährle-Szabó, Susanne; Loganathan, Sivakkanan; Li, Shiliang; Karck, Matthias; Szabó, Gábor

    2013-10-01

    Both advanced donor age and prolonged ischemic time are significant risk factors for the 1-year mortality. However, its functional consequences have not been fully evaluated in the early-phase after transplantation; even early graft dysfunction is the main determinant of long-term outcome following transplantation. We evaluated in vivo left-ventricular (LV) cardiac and coronary vascular function of old-donor grafts after short and prolonged cold ischemic times in rats 1 h after heart transplantation. The hearts were excised from young donor (3-month-old) or old donor (18-month-old) rats, stored in cold preservation solution for either 1 or 8 h, and heterotopically transplanted. After 1 h of ischemic period, in the old-donor group, LV pressure, maximum pressure development (dP/dt max), time constant of LV pressure decay (τ), LV end-diastolic pressure and coronary blood flow did not differ compared with young donors. However, endothelium-dependent vasodilatation to acetylcholine resulted in a significantly lower response of coronary blood flow in the old-donor group (33 ± 4 vs. 51 ± 15 %, p < 0.05). After 8 h preservation, two of the old-donor hearts showed no mechanical activity upon reperfusion. LV pressure (55 ± 6 vs. 72 ± 5 mmHg, p < 0.05), dP/dt max (899 ± 221 vs. 1530 ± 217 mmHg/s, p < 0.05), coronary blood flow and response to acetylcholine were significantly reduced and τ was increased in the old-donor group in comparison to young controls. During the early-phase after transplantation, the ischemic tolerance of older-donor hearts is reduced after prolonged preservation time and the endothelium is more vulnerable to ischemia/reperfusion.

  4. Donor-transmitted, donor-derived, and de novo cancer after liver transplant.

    PubMed

    Chapman, Jeremy R; Lynch, Stephen V

    2014-03-01

    Cancer is the third most common cause of death (after cardiovascular disease and infection) for patients who have a functioning kidney allograft. Kidney and liver transplant recipients have similar cancer risks because of immunosuppression but different risks because of differences in primary diseases that cause renal and hepatic failure and the inherent behavior of cancers in the liver. There are 4 types of cancer that may develop in liver allograft recipients: (1) recurrent cancer, (2) donor-transmitted cancer, (3) donor-derived cancer, and (4) de novo cancer. Identification of potential donor cancer transmission may occur at postmortem examination of a deceased donor or when a probable donor-transmitted cancer is identified in another recipient. Donor-transmitted cancer after liver transplant is rare in Australia, the United Kingdom, and the United States. Aging of the donor pool may increase the risk of subclinical cancer in donors. Liver transplant recipients have a greater risk of de novo cancer than the general population, and risk factors for de novo cancer in liver transplant recipients include primary sclerosing cholangitis, alcoholic liver disease, smoking, and increased age. Liver transplant recipients may benefit from cancer screening because they have a high risk, are clearly identifiable, and are under continuous medical supervision.

  5. Marginal kidney donor

    PubMed Central

    Gopalakrishnan, Ganesh; Gourabathini, Siva Prasad

    2007-01-01

    Renal transplantation is the treatment of choice for a medically eligible patient with end stage renal disease. The number of renal transplants has increased rapidly over the last two decades. However, the demand for organs has increased even more. This disparity between the availability of organs and waitlisted patients for transplants has forced many transplant centers across the world to use marginal kidneys and donors. We performed a Medline search to establish the current status of marginal kidney donors in the world. Transplant programs using marginal deceased renal grafts is well established. The focus is now on efforts to improve their results. Utilization of non-heart-beating donors is still in a plateau phase and comprises a minor percentage of deceased donations. The main concern is primary non-function of the renal graft apart from legal and ethical issues. Transplants with living donors outnumbered cadaveric transplants at many centers in the last decade. There has been an increased use of marginal living kidney donors with some acceptable medical risks. Our primary concern is the safety of the living donor. There is not enough scientific data available to quantify the risks involved for such donation. The definition of marginal living donor is still not clear and there are no uniform recommendations. The decision must be tailored to each donor who in turn should be actively involved at all levels of the decision-making process. In the current circumstances, our responsibility is very crucial in making decisions for either accepting or rejecting a marginal living donor. PMID:19718332

  6. A Simple Base-Mediated Halogenation of Acidic sp2 C-H Bonds under Non-Cryogenic Conditions

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2009-01-01

    A new method has been developed for in situ halogenation of acidic sp2 carbon-hydrogen bonds in heterocycles and electron-deficient arenes. Either selective monohalogenation or one-step exhaustive polyhalogenation is possible for substrates possessing several C-H bonds that are flanked by electron-withdrawing groups. For the most acidic arenes, such as pentafluorobenzene, K3PO4 base can be employed instead of BuLi for metalation/halogenation sequences. PMID:19102661

  7. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E

  8. Low-Level detections of halogenated volatile organic compounds in groundwater: Use in vulnerability assessments

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Eberts, S.M.; Bexfield, L.M.; Brown, C.J.; Fahlquist, L.S.; Katz, B.G.; Landon, M.K.

    2008-01-01

    Concentrations of halogenated volatile organic compounds (VOCs) were determined by gas chromatography (GC) with an electron-capture detector (GC-ECD) and by gas chromatography with mass spectrometry (GC-MS) in 109 groundwater samples from five study areas in the United States. In each case, the untreated water sample was used for drinking-water purposes or was from a monitoring well in an area near a drinking-water source. The minimum detection levels (MDLs) for 25 VOCs that were identified in GC-ECD chromatograms, typically, were two to more than four orders of magnitude below the GC-MS MDLs. At least six halogenated VOCs were detected in all of the water samples analyzed by GC-ECD, although one or more VOCs were detected in only 43% of the water samples analyzed by GC-MS. In nearly all of the samples, VOC concentrations were very low and presented no known health risk. Most of the low-level VOC detections indicated post-1940s recharge, or mixtures of recharge that contained a fraction of post-1940s water. Concentrations of selected halogenated VOCs in groundwater from natural and anthropogenic atmospheric sources were estimated and used to recognize water samples that are being impacted by nonatmospheric sources. A classification is presented to perform vulnerability assessments at the scale of individual wells using the number of halogenated VOC detections and total dissolved VOC concentrations in samples of untreated drinking water. The low-level VOC detections are useful in vulnerability assessments, particularly for samples in which no VOCs are detected by GC-MS analysis.

  9. Safely expanding the donor pool: brain dead donors with history of temporary cardiac arrest.

    PubMed

    Hoyer, Dieter P; Paul, Andreas; Saner, Fuat; Gallinat, Anja; Mathé, Zoltan; Treckmann, Juergen W; Schulze, Maren; Kaiser, Gernot M; Canbay, Ali; Molmenti, Ernesto; Sotiropoulos, Georgios C

    2015-06-01

    Cardiac arrest (CA) in deceased organ donors can potentially be associated with ischaemic organ injury, resulting in allograft dysfunction after liver transplantation (LT). The aim of this study was to analyse the influence of cardiac arrest in liver donors. We evaluated 884 consecutive adult patients undergoing LT at our Institution from September 2003 to December 2011. Uni- and multivariable analyses was performed to identify predictive factors of outcome and survival for organs from donors with (CA donor) and without (no CA donor) a history of cardiac arrest. We identified 77 (8.7%) CA donors. Median resuscitation time was 16.5 (1-150) minutes. Allografts from CA donors had prolonged CIT (p = 0.016), were obtained from younger individuals (p < 0.001), and had higher terminal preprocurement AST and ALT (p < 0.001) than those of no CA donors. 3-month, 1-year and 5-year survival for recipients of CA donor grafts was 79%, 76% and 57% and 72.1%, 65.1% and 53% for no CA donor grafts (log rank p = 0.435). Peak AST after LT was significantly lower in CA donor organs than in no CA donor ones (886U/l vs 1321U/l; p = 0.031). Multivariable analysis identified CIT as a risk factor for both patient and graft survival in CA donors. This analysis represents the largest cohort of liver donors with a history of cardiac arrest. Reasonable selection of these donors constitutes a safe approach to the expansion of the donor pool. Rapid allocation and implantation with diminution of CIT may further improve the outcomes of livers from CA donors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  11. Donor Retention in Online Crowdfunding Communities: A Case Study of DonorsChoose.org

    PubMed Central

    Althoff, Tim; Leskovec, Jure

    2016-01-01

    Online crowdfunding platforms like DonorsChoose.org and Kick-starter allow specific projects to get funded by targeted contributions from a large number of people. Critical for the success of crowdfunding communities is recruitment and continued engagement of donors. With donor attrition rates above 70%, a significant challenge for online crowdfunding platforms as well as traditional offline non-profit organizations is the problem of donor retention. We present a large-scale study of millions of donors and donations on DonorsChoose.org, a crowdfunding platform for education projects. Studying an online crowdfunding platform allows for an unprecedented detailed view of how people direct their donations. We explore various factors impacting donor retention which allows us to identify different groups of donors and quantify their propensity to return for subsequent donations. We find that donors are more likely to return if they had a positive interaction with the receiver of the donation. We also show that this includes appropriate and timely recognition of their support as well as detailed communication of their impact. Finally, we discuss how our findings could inform steps to improve donor retention in crowdfunding communities and non-profit organizations. PMID:27077139

  12. Donor Retention in Online Crowdfunding Communities: A Case Study of DonorsChoose.org.

    PubMed

    Althoff, Tim; Leskovec, Jure

    2015-05-01

    Online crowdfunding platforms like DonorsChoose.org and Kick-starter allow specific projects to get funded by targeted contributions from a large number of people. Critical for the success of crowdfunding communities is recruitment and continued engagement of donors. With donor attrition rates above 70%, a significant challenge for online crowdfunding platforms as well as traditional offline non-profit organizations is the problem of donor retention. We present a large-scale study of millions of donors and donations on DonorsChoose.org, a crowdfunding platform for education projects. Studying an online crowdfunding platform allows for an unprecedented detailed view of how people direct their donations. We explore various factors impacting donor retention which allows us to identify different groups of donors and quantify their propensity to return for subsequent donations. We find that donors are more likely to return if they had a positive interaction with the receiver of the donation. We also show that this includes appropriate and timely recognition of their support as well as detailed communication of their impact. Finally, we discuss how our findings could inform steps to improve donor retention in crowdfunding communities and non-profit organizations.

  13. Shear bond strength of a bracket-bonding system cured with a light-emitting diode or halogen-based light-curing unit at various polymerization times

    PubMed Central

    Gupta, Sanjay Prasad; Shrestha, Basanta Kumar

    2018-01-01

    Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633

  14. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    NASA Astrophysics Data System (ADS)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  15. Donor Conception and "Passing," or; Why Australian Parents of Donor-Conceived Children Want Donors Who Look Like Them.

    PubMed

    Wong, Karen-Anne

    2017-03-01

    This article explores the processes through which Australian recipients select unknown donors for use in assisted reproductive technologies and speculates on how those processes may affect the future life of the donor-conceived person. I will suggest that trust is an integral part of the exchange between donors, recipients, and gamete agencies in donor conception and heavily informs concepts of relatedness, race, ethnicity, kinship, class, and visibility. The decision to be transparent (or not) about a child's genetic parentage affects recipient parents' choices of donor, about who is allowed to "know" children's genetic backgrounds, and how important it is to be able to "pass" as an unassisted conception. In this way, recipients must trust the process, institutions, and individuals involved in their treatment, as well as place trust in the future they imagine for their child. The current market for donor gametes reproduces normative conceptions of the nuclear family, kinship, and relatedness by facilitating "matching" donors to recipients by phenotype and cultural affinities. Recipient parents who choose not to prioritize "matching," and actively disclose the process of children's conceptions, may embark on a project of queering heteronormative family structures and place great trust in both their own children and changing social attitudes to reduce stigma and generate acceptance for non-traditional families.

  16. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  17. A simplified donor risk index for predicting outcome after deceased donor kidney transplantation.

    PubMed

    Watson, Christopher J E; Johnson, Rachel J; Birch, Rhiannon; Collett, Dave; Bradley, J Andrew

    2012-02-15

    We sought to determine the deceased donor factors associated with outcome after kidney transplantation and to develop a clinically applicable Kidney Donor Risk Index. Data from the UK Transplant Registry on 7620 adult recipients of adult deceased donor kidney transplants between 2000 and 2007 inclusive were analyzed. Donor factors potentially influencing transplant outcome were investigated using Cox regression, adjusting for significant recipient and transplant factors. A United Kingdom Kidney Donor Risk Index was derived from the model and validated. Donor age was the most significant factor predicting poor transplant outcome (hazard ratio for 18-39 and 60+ years relative to 40-59 years was 0.78 and 1.49, respectively, P<0.001). A history of donor hypertension was also associated with increased risk (hazard ratio 1.30, P=0.001), and increased donor body weight, longer hospital stay before death, and use of adrenaline were also significantly associated with poorer outcomes up to 3 years posttransplant. Other donor factors including donation after circulatory death, history of cardiothoracic disease, diabetes history, and terminal creatinine were not significant. A donor risk index based on the five significant donor factors was derived and confirmed to be prognostic of outcome in a validation cohort (concordance statistic 0.62). An index developed in the United States by Rao et al., Transplantation 2009; 88: 231-236, included 15 factors and gave a concordance statistic of 0.63 in the UK context, suggesting that our much simpler model has equivalent predictive ability. A Kidney Donor Risk Index based on five donor variables provides a clinically useful tool that may help with organ allocation and informed consent.

  18. Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin.

    PubMed

    Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L

    2003-06-01

    Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated

  19. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  20. Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints

    NASA Astrophysics Data System (ADS)

    Williams, M. J.; Kendrick, M. A.; Rubatto, D.

    2017-12-01

    A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens

  1. Factors influencing donor return.

    PubMed

    Schlumpf, Karen S; Glynn, Simone A; Schreiber, George B; Wright, David J; Randolph Steele, Whitney; Tu, Yongling; Hermansen, Sigurd; Higgins, Martha J; Garratty, George; Murphy, Edward L

    2008-02-01

    To predict future blood donation behavior and improve donor retention, it is important to understand the determinants of donor return. A self-administered questionnaire was completed in 2003 by 7905 current donors. With data mining methods, all factors measured by the survey were ranked as possible predictors of actual return within 12 months. Significant factors were analyzed with logistic regression to determine predictors of intention and of actual return. Younger and minority donors were less likely to return in 12 months. Predictors of donor return were higher prior donation frequency, higher intention to return, a convenient place to donate, and having a good donation experience. Most factors associated with actual donor return were also associated with a high intention to return. Although not significant for actual return, feeling a responsibility to help others, higher empathetic concern, and a feeling that being a blood donor means more than just donating blood were related to high intention to return. Prior donation frequency, intention to return, donation experience, and having a convenient location appear to significantly predict donor return. Clearly, donor behavior is dependent on more than one factor alone. Altruistic behavior, empathy, and social responsibility items did not enter our model to predict actual return. A donor's stated intention to give again is positively related to actual return and, while not a perfect measure, might be a useful proxy when donor return cannot be determined.

  2. Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling

    NASA Astrophysics Data System (ADS)

    Thierry, Pauline; Villemant, Benoit; Caron, Benoit

    2016-04-01

    Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to

  3. Small Molecule Organic Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Bakken, Nathan

    Organic optoelectronics include a class of devices synthesized from carbon containing 'small molecule' thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L'Eclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical

  4. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ombaka, L.M.; Ndungu, P.G.; Department of Applied Chemistry, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF{sub 3} and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF{sub 3} catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF{sub 3} catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and aremore » less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF{sub 3} and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF{sub 3} catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.« less

  5. Long-term Studies of Marine Halogen Release

    NASA Astrophysics Data System (ADS)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  7. Impact of enhanced ozone deposition and halogen chemistry on model performance

    EPA Science Inventory

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  8. Halogenated fatty amides - A brand new class of disinfection by-products.

    PubMed

    Kosyakov, Dmitry S; Ul'yanovskii, Nikolay V; Popov, Mark S; Latkin, Tomas B; Lebedev, Albert T

    2017-12-15

    An array of similar halogenated nitrogen-containing compounds with elemental composition C n H 2n NO 2 X, C n H 2n-2 NO 2 X and C n H 2n-1 NOX 2 (X = Cl, Br; n = 16, 18, 22) was detected in drinking water with high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS) method. Compounds of this type were never mentioned among disinfection by-products. Tandem mass spectrometry allowed referring them to halohydrines or dihalogenated fatty amides, the products of conjugated electrophilic addition of halogens to the double bonds of unsaturated fatty amides. The proposed structures were confirmed by conducting aqueous chlorination with standard solution of oleamide. These compounds may be considered as a brand new class of disinfection by products, while their toxicities require special study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Blood donor hemovigilance: impact for donor and recipient safety].

    PubMed

    Hauser, L; Beyloune, A; Simonet, M; Bierling, P

    2013-05-01

    Since its creation in 1993, hemovigilance has an important place for blood safety. The part concerning donors, as the name suggests, targeted on improvement of donor's safety covers in fact the two points of the transfusion chain with serious adverse events in donor, epidemiologic survey for recipients and post-donation information on the two sides. Organized management and close collaboration between the actors of the transfusion chain are necessary to ensure the effectiveness of the system. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGES

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  11. Retrieval Algorithms for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.; Gordley, Larry L.

    2009-01-01

    The Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) provided high quality measurements of key middle atmosphere constituents, aerosol characteristics, and temperature for 14 years (1991-2005). This report is an outline of the Level 2 retrieval algorithms, and it also describes the great care that was taken in characterizing the instrument prior to launch and throughout its mission life. It represents an historical record of the techniques used to analyze the data and of the steps that must be considered for the development of a similar experiment for future satellite missions.

  12. Quality of life of liver donors following donor hepatectomy.

    PubMed

    Chandran, Biju; Bharathan, Viju Kumar; Shaji Mathew, Johns; Amma, Binoj Sivasankara Pillai Thankamony; Gopalakrishnan, Unnikrishnan; Balakrishnan, Dinesh; Menon, Ramachandran Narayana; Dhar, Puneet; Vayoth, Sudheer Othiyil; Surendran, Sudhindran

    2017-03-01

    Although morbidity following living liver donation is well characterized, there is sparse data regarding health-related quality of life (HRQOL) of donors. HRQOL of 200 consecutive live liver donors from 2011-2014 performed at an Indian center were prospectively collected using the SF-36 version 2, 1 year after surgery. The effect of donor demographics, operative details, post-operative complications (Clavien-Dindo and 50-50 criteria), and recipient mortality on the quality-of-life (QOL) scoring was analyzed. Among 200 donors (female/male=141:59), 77 (38.5%) had complications (14.5%, 16.5%, 4.5%, and 3.5%, Clavien-Dindo grades I-IV, respectively). The physical composite score (PCS) of donors 1 year after surgery was less than ideal (48.75±9.5) while the mental composite score (MCS) was good (53.37±6.16). Recipient death was the only factor that showed a statistically significant correlation with both PCS (p<0.001) and MCS (p=0.05). Age above 50 years (p<0.001), increasing body mass index (BMI) (p=0.026), and hospital stay more than 14 days ( p= 0.042) negatively affected the physical scores while emergency surgery (p<0.001) resulted in lower mental scores. Gender, postoperative complications, type of graft, or fulfillment of 50-50 criteria did not influence HRQOL. On asking the hypothetical question whether the donors would be willing to donate again, 99% reiterated there will be no change in their decision. Recipient death, donation in emergency setting, age above 50, higher BMI, and prolonged hospital stay are factors that lead to impaired HRQOL following live liver donation. Despite this, 99% donors did not repent the decision to donate.

  13. Never Declared Brain Dead Potential Organ Donors-An Additional Source of Donor Organs?

    PubMed

    Webster, Patricia A; Markham, Lori E

    2018-03-01

    Patients never declared brain dead may represent an additional source of donor organs. To determine the number of likely brain dead potential donors who are never declared brain dead and to compare them with brain dead and donation after cardiac death potential organ donors. This study was a retrospective chart review of all catastrophically brain-injured patients referred to a single-organ procurement organization (OPO) over a 4-year period. This study identified 159 likely brain dead potential organ donors, 902 brain dead potential organ donors, and 357 potential donation after circulatory death donors over a 4-year period. None. This study did not predetermine outcome measures before data collection because the study group, likely brain dead potential organ donors, had not previously been described. Likely brain dead potential donors were significantly older than brain dead potential donors ( P < .0001) but were otherwise not different demographically. They were more likely to be a late referral to the OPO ( P < .0001) and less likely to be in the donor registry ( P < .0001). The most commonly identified factors associated with a failure to declare brain death were an unwillingness to continue supportive care by the family, premention of donation, a nontimely imminent death referral, known prior objection to donation, terminal instability, and a lack of cooperation with the OPO.

  14. Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property.

    PubMed

    Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2015-02-07

    An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10(-3) cm(2) V(-1) s(-1) and an electron mobility of 1.40 × 10(-3) cm(2) V(-1) s(-1).

  15. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    PubMed

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-05-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  16. Influence of kinship on donors' mental burden in living donor liver transplantation.

    PubMed

    Erim, Yesim; Beckmann, Mingo; Kroencke, Sylvia; Sotiropoulos, Georgios C; Paul, Andreas; Senf, Wolfgang; Schulz, Karl-Heinz

    2012-08-01

    In the context of living donor liver transplantation (LDLT), German transplantation law stipulates that donor candidates should primarily be relatives of the recipients or persons with distinct and close relationships. In this study, we investigated the influence of the relationship between the donor and the recipient on the donor's emotional strain before transplantation. Donors were categorized according to the following subgroups: (1) parents donating for their children, (2) children donating for their parents, (3) siblings, (4) spouses, (5) other relatives, and (6) nonrelatives. The sample consisted of 168 donor candidates. Anxiety (F = 2.8, P = 0.02), depression (F = 2.6, P = 0.03), and emotional quality of life (F = 3.1, P = 0.01) differed significantly according to the relationship between the donor and the recipient. In comparison with healthy controls, parents donating for their children were significantly less stressed before LDLT and demonstrated fewer anxiety (P < 0.01) and depression symptoms (P < 0.05). Adult children donating for their parents demonstrated the highest mental burden and the lowest emotional quality of life. However, this was not due to the responsibility of these children for their own families because differences between donors with children and donors without children could not be ascertained. This group should be given special attention before LDLT and during follow-up visits, and psychological help should be provided when it is necessary. Copyright © 2012 American Association for the Study of Liver Diseases.

  17. EVOLUTION OF AN ANALYTICAL METHOD FOR HALOGENATED FURANONES IN DRINKING WATER

    EPA Science Inventory

    A unified method of detection for seven halogenated furanones present in drinking waters at the ng/L level has been developed. The use of GC/ECD makes this method amenable to manyenvironmental laboratories and water treatment plants in the United States. Detection limits observe...

  18. Preparation, IR spectroscopy, and time-of-flight mass spectrometry of halogenated and methylated Si(111)

    NASA Astrophysics Data System (ADS)

    Salingue, Nils; Hess, Peter

    2011-09-01

    The preparation of chlorine-, bromine-, and iodine-terminated silicon surfaces (Si(111):Cl, Br, and I) using atomically flat Si(111)-(1×1):H is described. The halogenated surfaces were obtained by photochemically induced radical substitution reactions with the corresponding dihalogen in a Schlenk tube by conventional inert gas chemistry. The nucleophilic substitution of the Si-Cl functionality with the Grignard reagent (CH3MgCl) resulted in the unreconstructed methylated Si(111)-(1×1):CH3 surface. The halogenated and methylated silicon surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and laser-induced desorption of monolayers (LIDOM). Calibration of the desorption temperature via analysis of time-of-flight (TOF) distributions as a function of laser fluence allowed the determination of the originally emitted neutral fragments by TOF mass spectrometry using electron-impact ionization. The halogens were desorbed atomically and as SiX n (X = Cl, Br) clusters. The methyl groups mainly desorbed as methyl and ethyl fragments and a small amount of +SiCH3.

  19. The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.

    2014-01-01

    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.

  20. Socioeconomic status and ethnicity of deceased donor kidney recipients compared to their donors.

    PubMed

    Adler, J T; Hyder, J A; Elias, N; Nguyen, L L; Markmann, J F; Delmonico, F L; Yeh, H

    2015-04-01

    Public perception and misperceptions of socioeconomic disparities affect the willingness to donate organs. To improve our understanding of the flow of deceased donor kidneys, we analyzed socioeconomic status (SES) and racial/ethnic gradients between donors and recipients. In a retrospective cohort study, traditional demographic and socioeconomic factors, as well as an SES index, were compared in 56,697 deceased kidney donor and recipient pairs transplanted between 2007 and 2012. Kidneys were more likely to be transplanted in recipients of the same racial/ethnic group as the donor (p < 0.001). Kidneys tended to go to recipients of lower SES index (50.5% of the time, p < 0.001), a relationship that remained after adjusting for other available markers of donor organ quality and SES (p < 0.001). Deceased donor kidneys do not appear to be transplanted from donors of lower SES to recipients of higher SES; this information may be useful in counseling potential donors and their families regarding the distribution of their organ gifts. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. [Search for non-relative donor by the Russian register of bone marrow donors].

    PubMed

    Zaretskaia, Iu M; Khamaganova, E G; Aleshchenko, S M; Murashova, L A

    2002-01-01

    To select maximally HLA compatible donor for hematological patients who need transplantation of bone marrow from non-relative donor. 75 patients with hematological malignancy were observed. All of them have indications to non-relative transplantation of the bone marrow. Methods of polymerase chain reaction with sequence-specific primers and classic microlymphocytotoxic test were used. Typing of HLA antigens of class I and alleles of class II loci enabled search for non-relative donor for transplantation of bone marrow in accordance with the requirements of the European Federation of Immunogenetics. Most of the patients (86.6%) had at least one potential HLA-A, -B, -DR compatible donor. Half of the patients had potential donors typed at the allele level by class II loci. This diminishes time of HLA compatible donor selection. DNA typing enables the search for the non-relative donors meeting modern requirements. This allowed 5 non-relative bone marrow transplantations.

  2. Correlation between donor age and organs transplanted per donor: our experience in Japan.

    PubMed

    Ashikari, J; Omiya, K; Konaka, S; Nomoto, K

    2014-05-01

    The shortage of available organs for transplantation is a worldwide issue. To maximize the number of transplantations, increasing the number of organs transplanted per donor (OTPD) is widely recognized as an important factor for improving the shortage. In Japan, we have had 211 donors, 1112 organs transplanted, and 924 recipients receiving the transplants, resulting in 4.4 ± 1.4 recipients receiving transplants per donor and 5.3 ± 1.6 OTPD as of February 2013. Because donor age is a well-recognized factor of donor suitability, we analyzed the correlation between donor age group and OTPD. Only the age group 60 to 69 years and the age group 70 to 79 years were significantly different (P < .05) from adjacent age groups. We estimate that a donor under age 70 years has the potential to donate 4.6 to 6.7 organs. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The impact of disclosure on donor gamete participants: donors, intended parents and offspring.

    PubMed

    Greenfeld, Dorothy A

    2008-06-01

    The present review examines recent publications that provide insight into how the trend toward nonanonymity and disclosure in gamete donation impacts donors, intended parents, and their donor-conceived children. Recent findings show an increase in donor programs that offer open-identity between donors and offspring. The psychological needs of gamete donors and their attitudes toward disclosure are increasingly given consideration. Qualitative research on how parents of donor gamete offspring make decisions about disclosure reveals that even when couples initially disagree about disclosing to offspring, most ultimately come to a united disclosure decision. The literature on the impact of disclosure on donor gamete offspring has extended to include children conceived through embryo donation and children born as a result of surrogacy. The absence of genetic or gestational link between parents and their child does not have a negative impact on parent-child relationships. Parents through surrogacy tend to disclose the method of family creation to their child, whereas parents through embryo donation tend to be secretive about their child's origins. The trend toward greater openness in gamete donation has been accompanied by an increase in programs offering open-identity donation. In addition, the psychological needs of gamete donors and their attitudes toward disclosure are increasingly being given consideration. Parents of donor gamete offspring give careful thought to their disclosure decisions, and the psychological well being of donor-conceived children does not seem to be impacted by those decisions.

  4. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  5. Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen M. S.

    Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less

  6. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence

    PubMed Central

    Schuler, Benjamin; Lipman, Everett A.; Steinbach, Peter J.; Kumke, Michael; Eaton, William A.

    2005-01-01

    To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. PMID:15699337

  7. Differences in social representation of blood donation between donors and non-donors: an empirical study.

    PubMed

    Guarnaccia, Cinzia; Giannone, Francesca; Falgares, Giorgio; Caligaris, Aldo Ozino; Sales-Wuillemin, Edith

    2015-11-04

    Both donors and non-donors have a positive image of blood donation, so donors and non-donors do not differ regarding their views on donation but do differ in converting their opinion into an active deed of donation. Several studies have identified altruism and empathy as the main factors underlying blood donation. However, a mixture of various motivational factors mould the complex behaviour of donation. This paper presents an exploratory study on differences of social representations of blood donation between blood donors and non-donors, in order to understand the reasons that bring someone to take the decision to become a blood donor. Participants filled in the Adapted Self-Report Altruism Scale, Toronto Empathy Questionnaire and answered a test of verbal association. Descriptive and correlation analyses were carried out on quantitative data, while a prototypic analysis was used for qualitative data. The study was carried out on a convenience sample of 786 individuals, 583 donors (mean age: 35.40 years, SD: 13.01 years; 39.3% female) and 203 non-donors (mean age: 35.10 years, SD: 13.30 years; 67.5% female). Social representations of donors seem to be more complex and articulated than those of non-donors. The terms that appear to be central were more specific in donors (life, needle, blood, help, altruism were the words most associated by non-donors; life, aid, altruism, solidarity, health, love, gift, generosity, voluntary, control, needed, useful, needle were the words most associated by donors). Furthermore, non-donors associated a larger number of terms referring to negative aspects of blood donation. Aspects related to training and the accuracy of any information on blood donation seem to be important in the decision to become a donor and stabilise the behaviour of donation over time, thus ensuring the highest levels of quality and safety in blood establishments.

  8. Analytical and biological characterization of halogenated gemfibrozil produced through chlorination of wastewater.

    PubMed

    Bulloch, Daryl N; Lavado, Ramon; Forsgren, Kristy L; Beni, Szabolcs; Schlenk, Daniel; Larive, Cynthia K

    2012-05-15

    The cholesterol-lowering pharmaceutical gemfibrozil is a relevant environmental contaminant because of its frequency of detection in U.S. wastewaters at concentrations which have been shown to disrupt endocrine function in aquatic species. The treatment of gemfibrozil solutions with sodium hypochlorite yielded a 4'-chlorinated gemfibrozil analog (chlorogemfibrozil). In the presence of bromide ion, as is often encountered in municipal wastewater, hypobromous acid generated through a halogen exchange reaction produced an additional 4'-brominated gemfibrozil product (bromogemfibrozil). Standards of chloro- and bromogemfibrozil were synthesized, isolated and characterized using mass spectrometry and NMR spectroscopy. Mass spectrometry was used to follow the in situ halogenation reaction of gemfibrozil in deionized water and wastewater matrices, and to measure levels of gemfibrozil (254 ± 20 ng/L), chlorogemfibrozil (166 ± 121 ng/L), and bromogemfibrozil (50 ± 11 ng/L) in advanced primary wastewater treatment effluent treated by chlorination. Chlorogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of 11-ketotestosterone at 55.1 μg/L and bromogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of testosterone at 58.8 μg/L in vivo in Japanese medaka in a 21 day exposure. These results indicated that aqueous exposure to halogenated degradates of gemfibrozil enhanced the antiandrogenicity of the parent compound in a model fish species, demonstrating that chlorination may increase the toxicity of pharmaceutically active compounds in surface water.

  9. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.

    PubMed

    Coughlin, Jessica E; Henson, Zachary B; Welch, Gregory C; Bazan, Guillermo C

    2014-01-21

    Organic semiconductors incorporated into solar cells using a bulk heterojunction (BHJ) construction show promise as a cleaner answer to increasing energy needs throughout the world. Organic solar cells based on the BHJ architecture have steadily increased in their device performance over the past two decades, with power conversion efficiencies reaching 10%. Much of this success has come with conjugated polymer/fullerene combinations, where optimized polymer design strategies, synthetic protocols, device fabrication procedures, and characterization methods have provided significant advancements in the technology. More recently, chemists have been paying particular attention to well-defined molecular donor systems due to their ease of functionalization, amenability to standard organic purification and characterization methods, and reduced batch-to-batch variability compared to polymer counterparts. There are several critical properties for efficient small molecule donors. First, broad optical absorption needs to extend towards the near-IR region to achieve spectral overlap with the solar spectrum. Second, the low lying highest occupied molecular orbital (HOMO) energy levels need to be between -5.2 and -5.5 eV to ensure acceptable device open circuit voltages. Third, the structures need to be relatively planar to ensure close intermolecular contacts and high charge carrier mobilities. And last, the small molecule donors need to be sufficiently soluble in organic solvents (≥10 mg/mL) to facilitate solution deposition of thin films of appropriate uniformity and thickness. Ideally, these molecules should be constructed from cost-effective, sustainable building blocks using established, high yielding reactions in as few steps as possible. The structures should also be easy to functionalize to maximize tunability for desired properties. In this Account, we present a chronological description of our thought process and design strategies used in the development of highly

  10. [Five years of Fiom KID-DNA Databank: experiences in matching sperm donors and donor-conceived offspring].

    PubMed

    Postema, D; Maas, A J B M

    2016-01-01

    Before the introduction of the Dutch Human Fertilisation (Donor Information) Act (in Dutch: Wet Donorgegevens Kunstmatige Bevruchting) in 2004, approximately 40,000 donor-conceived offspring were born in the Netherlands. The majority is conceived by means of artificial insemination with anonymous donor sperm (in Dutch: kunstmatige inseminatie met anoniem donorzaad - KID). This means that they have little or no access to information about their genetic origins. Through the Fiom KID-DNA Databank, established in 2010 in association with the Canisius Wilhelmina Hospital, it is possible for these donor-conceived offspring and donors to search for one another. DNA profiles are used to match donor-conceived offspring, donors and half-siblings. It is expected that the number of donor-related searches will increase. The experiences with matching and counselling of donor-conceived offspring and donors presented in this paper will help donor-conceived offspring and donors who start a search in the future. Moreover, they provide guidance for forming a meaningful relationship between those involved.

  11. Pure laparoscopic living donor hepatectomy: Focus on 55 donors undergoing right hepatectomy.

    PubMed

    Suh, K S; Hong, S K; Lee, K W; Yi, N J; Kim, H S; Ahn, S W; Yoon, K C; Choi, J Y; Oh, D; Kim, H

    2018-02-01

    Although laparoscopic donor hepatectomy is increasingly common, few centers with substantial experience have reported the results of pure laparoscopic donor right hepatectomy (PLDRH). Here, we report the experiences of 60 consecutive liver donors undergoing pure laparoscopic donor hepatectomy (PLDH), with most undergoing right hepatectomy. None of the 60 donors who underwent PLDH had intraoperative complications and none required transfusions, reoperation, or conversion to open hepatectomy. Forty-five donors who underwent PLDRH between November 2015 and December 2016 were compared with 42 who underwent conventional donor right hepatectomy (CDRH) between May 2013 and February 2014. The total operation time was longer (330.7 vs 280.0 minutes; P < .001) and the percentage with multiple bile duct openings was higher (53.3% vs 26.2%; P = .010) in the PLDRH group. However, the length of postoperative hospital stay (8.4 vs 8.2 days; P = .495) and rate of complications (11.9% vs 8.9%; P = .733) and re-hospitalizations (4.8% vs 4.4%; P = 1.000) were similar in both groups. PLDH, including PLDRH, is feasible when performed by a highly experienced surgeon and transplant team. Further evaluation, including long-term results, may support these preliminary findings of comparative outcomes for donors undergoing PLDRH and CDRH. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. The blood donor identity survey: a multidimensional measure of blood donor motivations.

    PubMed

    France, Christopher R; Kowalsky, Jennifer M; France, Janis L; Himawan, Lina K; Kessler, Debra A; Shaz, Beth H

    2014-08-01

    Evidence indicates that donor identity is an important predictor of donation behavior; however, prior studies have relied on diverse, unidimensional measures with limited psychometric support. The goals of this study were to examine the application of self-determination theory to blood donor motivations and to develop and validate a related multidimensional measure of donor identity. Items were developed and administered electronically to a sample of New York Blood Center (NYBC) donors (n=582) and then to a sample of Ohio University students (n=1005). Following initial confirmatory factor analysis (CFA) on the NYBC sample to identify key items related to self-determination theory's six motivational factors, a revised survey was administered to the university sample to reexamine model fit and to assess survey reliability and validity. Consistent with self-determination theory, for both samples CFAs indicated that the best fit to the data was provided by a six-motivational-factor model, including amotivation, external regulation, introjected regulation, identified regulation, integrated regulation, and intrinsic regulation. The Blood Donor Identity Survey provides a psychometrically sound, multidimensional measure of donor motivations (ranging from unmotivated to donate to increasing levels of autonomous motivation to donate) that is suitable for nondonors as well as donors with varying levels of experience. Future research is needed to examine longitudinal changes in donor identity and its relationship to actual donation behavior. © 2014 AABB.

  13. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  14. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-07

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.

  15. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    PubMed

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  16. S-adenosyl-L-methionine analogs as enhanced methyl donors: Towards novel epigenetic regulators

    NASA Astrophysics Data System (ADS)

    Jerbi, Jihène; Springborg, Michael; den-Haan, Helena; Cerón-Carrasco, José P.

    2017-12-01

    Many efforts have been devoted to discover molecules able to halt methylation processes in DNA. However, less is known about the application of methyl promoters in the framework of hypomethylation diseases. Herein, we used molecular dynamics and ab initio calculations to assess the methylation ability of the parent S-adenosyl-L-methionine cofactor (SAM) and a series of analogues. Two molecules deposited in the PubChem database are shown to be promising candidates for increasing the methyl transfer rate of the original SAM. The reported data might be consequently used to guide further steps into the search of more efficient methyl donor-based drugs.

  17. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    PubMed Central

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  18. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John

    2014-04-01

    Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.

  19. The influence of ocean halogen and sulfur emissions in the air quality of a coastal megacity: The case of Los Angeles

    EPA Science Inventory

    The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens...

  20. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    PubMed

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  2. The effect of whole-blood donor adverse events on blood donor return rates.

    PubMed

    Newman, Bruce H; Newman, Daniel T; Ahmad, Raffat; Roth, Arthur J

    2006-08-01

    Some blood donation-related adverse events (AEs) can negatively impact the blood donor return rate (BDRR) and decrease donor retention. One-thousand randomly selected whole-blood donors were interviewed 3 weeks after a 525-mL index whole-blood donation for seven AEs. The number of return visits and duration of follow-up were recorded for each of the 1000 donors. A negative binomial regression analysis was used to determine the contribution of the four most common AEs to the BDRR, and interactions between these AEs were also evaluated. The four most common AEs were bruise alone (15.1%), sore arm "alone" (7.0%), fatigue "alone" (5.1%), and donor reaction "alone" (4.2%), where "alone" is defined to also include donors who had a bruise but no other AE. The estimated BDRR for donations without AEs was 1.32 visits per year. The estimated BDRRs for the four most common AEs were: bruise alone, 1.32 visits per year; sore arm alone, 1.30 visits per year (2% reduction in BDRR); fatigue alone, 1.06 visits per year (20% reduction in BDRR); and donor reaction alone, 0.87 visits per year (34% reduction in BDRR). The BDRR for donor reaction, fatigue, and sore arm together was 0.20 visits per year (85% reduction in BDRR). Donor reaction had the most negative impact on the BDRR. There appears to be a synergistic effect between donor reaction, fatigue, and sore arm. Theoretically, amelioration of some AEs has the potential to improve BDRRs.

  3. Halogenation effects on electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, T. C., E-mail: tcf03@fisica.ufpr.br; Lopes, A. R.; Bettega, M. H. F.

    2016-04-28

    We report differential and integral elastic cross sections for low-energy electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3} molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)]more » and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ{sup ∗} resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.« less

  4. Selecting the best haploidentical donor.

    PubMed

    McCurdy, Shannon R; Fuchs, Ephraim J

    2016-10-01

    The substantial evidence of the safety of human leukocyte antigen (HLA)-haploidentical (haplo) blood or marrow transplantation (BMT) has led to its increasing utilization. When prioritizing HLA-matched grafts, patients frequently have few or no donors from whom to choose. However, a given patient may have multiple suitable haplo donors. Therefore factors other than HLA-match become critical for selecting the best donor. We recommend a donor selection algorithm based on the donor-specific antibodies, ABO match, donor age, donor sex, and cytomegalovirus (CMV) serostatus match. Despite provocative initial evidence, further studies are warranted to determine whether there is any benefit to selecting a haplo donor based on the number of HLA-mismatches, natural killer cell alloreactivity, or the presence of non-inherited maternal HLA antigens. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Monomer Release from Resin Based Dental Materials Cured With LED and Halogen Lights

    PubMed Central

    Ak, Asli Topaloglu; Alpoz, A. Riza; Bayraktar, Oguz; Ertugrul, Fahinur

    2010-01-01

    Objectives: To measure the release of TEGDMA and BisGMA from two commercially available composite resins; Filtek Z 250 (3M ESPE, Germany), Leaddent (Leaddent, Germany) and two fissure sealants; Helioseal F (3M ESPE, Germany) Enamel Loc (Premiere Rev, USA) over 1, 3 and 7 days after polymerization with standard quartz-tungsten halogen Coltolux II (QHL) (Coltene Switzerland) and a standard blue light emitting diode Elipar Freelight 2 (3M ESPE, Germany). Methods: 9 samples of each material were placed in disc shaped specimens in 1 mm of thickness and 10 mm in diameter (n=36). Each material was polymerized using LED for 20 s (n=12), 40 s (n=12) and halogen for 40 s (n=12), respectively. High Performance Liquid Chromatography (HPLC) was used to measure the amount of monomers released over 1, 3 and 7 days. Data was analyzed using one way ANOVA and Bonferroni test for multiple comparisons with a significance level of .05. Results: LED 20 sec group showed the highest release of monomers at 1, 3 and 7 days in sealant groups. Halogen 40 sec group resulted highest release of monomers for Leaddent at all time intervals (P<.05) Conclusions: Efficiency of the curing unit and applying the recommended curing time of the light activated resin based dental materials is very important to protect the patient from potential hazards of residual monomers. PMID:20046478

  6. Hot topics in liver transplantation: organ allocation--extended criteria donor--living donor liver transplantation.

    PubMed

    Müllhaupt, Beat; Dimitroulis, Dimitrios; Gerlach, J Tilman; Clavien, Pierre-Alain

    2008-01-01

    Liver transplantation has become the mainstay for the treatment of end-stage liver disease, hepatocellular cancer and some metabolic disorders. Its main drawback, though, is the disparity between the number of donors and the patients needing a liver graft. In this review we will discuss the recent changes regarding organ allocation, extended donor criteria, living donor liver transplantation and potential room for improvement. The gap between the number of donors and patients needing a liver graft forced the transplant community to introduce an objective model such as the modified model for end-stage liver disease (MELD) in order to obtain a transparent and fair organ allocation system. The use of extended criteria donor livers such as organs from older donors or steatotic grafts is one possibility to reduce the gap between patients on the waiting list and available donors. Finally, living donor liver transplantation has become a standard procedure in specialized centers as another possibility to reduce the donor shortage. Recent data clearly indicate that center experience is of major importance in achieving good results. Great progress has been made in recent years. However, further research is needed to improve results in the future.

  7. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  8. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  10. Lung donor treatment protocol in brain dead-donors: A multicenter study.

    PubMed

    Miñambres, Eduardo; Pérez-Villares, Jose Miguel; Chico-Fernández, Mario; Zabalegui, Arturo; Dueñas-Jurado, Jose María; Misis, Maite; Mosteiro, Fernando; Rodriguez-Caravaca, Gil; Coll, Elisabeth

    2015-06-01

    The shortage of lung donors for transplantation is the main limitation among patients awaiting this type of surgery. We previously demonstrated that an intensive lung donor-treatment protocol succeeded in increasing the lung procurement rate. We aimed to validate our protocol for centers with or without lung transplant programs. A quasi-experimental study was performed to compare lung donor rate before (historical group, 2010 to 2012) and after (prospective group, 2013) the application of a lung management protocol for donors after brain death (DBDs) in six Spanish hospitals. Lung donor selection criteria remained unchanged in both periods. Outcome measures for lung recipients were early survival and primary graft dysfunction (PGD) rates. A total of 618 DBDs were included: 453 in the control period and 165 in the protocol period. Donor baseline characteristics were similar in both periods. Lung donation rate in the prospective group was 27.3%, more than twice that of the historical group (13%; p < 0.001). The number of lungs retrieved, grafts transplanted, and transplants performed more than doubled over the study period. No differences in early recipients' survival between groups were observed (87.6% vs. 84.5%; p = 0.733) nor in the rate of PGD. Implementing our intensive lung donor-treatment protocol increases lung procurement rates. This allows more lung transplants to be performed without detriment to either early survival or PGD rate. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  12. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch.

    PubMed

    Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2018-02-05

    Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The influence of the donor-recipient relationship on related donor reactions to stem cell donation.

    PubMed

    Labott, S; Pfammatter, A

    2014-06-01

    Previous research has begun to delineate the complicated reactions experienced by bone marrow and stem cell donors. The purpose of this study was to examine the influence of the donor-recipient relationship on the related donor's emotional reactions. Twenty-eight adult stem cell donors completed questionnaires before donation, 30 days post stem cell infusion, and 1 year after infusion. Questionnaires addressed the donor-recipient relationship, depression, mood, guilt and responsibility, self-esteem, ambivalence about donation and reactions to the donation itself. Results indicated that most donors reported little ambivalence about donation, and their reactions to the donation itself were generally positive. Closer and more positive donor-recipient relationships were associated with less anticipated guilt and responsibility if the transplant did not work. The relationships between the donor and the recipient did not change over time. Mood disturbance and depression were low overall, not related to the donor-recipient relationship, and did not significantly change over time. These results indicate that related stem cell donors are generally without significant emotional distress, and are comfortable with the donation process. Further, a more positive relationship with the recipient may help donors to avoid feeling guilty and responsible if the transplant does not work.

  14. Induction and prevention of micronuclei and chromosomal aberrations in cultured human lymphocytes exposed to the light of halogen tungsten lamps.

    PubMed

    D'Agostini, F; Caimo, A; De Filippi, S; De Flora, S

    1999-07-01

    Previous studies have shown that the light emitted by halogen tungsten lamps contains UV radiation in the UV-A, UV-B and UV-C regions, induces mutations and irreparable DNA damage in bacteria, enhances the frequency of micronuclei in cultured human lymphocytes and is potently carcinogenic to the skin of hairless mice. The present study showed that the light emitted by an uncovered, traditional halogen lamp induces a significant, dose-related and time-related increase not only in micronuclei but also in chromosome-type aberrations, such as breaks, and even more in chromatid-type aberrations, such as isochromatid breaks, exchanges and isochromatid/chromatid interchanges, all including gaps or not, in cultured human lymphocytes. All these genotoxic effects were completely prevented by shielding the same lamp with a silica glass cover, blocking UV radiation. A new model of halogen lamp, having the quartz bulb treated in order to reduce the output of UV radiation, was considerably less genotoxic than the uncovered halogen lamp, yet induction of chromosomal alterations was observed at high illuminance levels.

  15. Achieving donor management goals before deceased donor procurement is associated with more organs transplanted per donor.

    PubMed

    Malinoski, Darren J; Daly, Michael C; Patel, Madhukar S; Oley-Graybill, Chrystal; Foster, Clarence E; Salim, Ali

    2011-10-01

    There is a national shortage of organs available for transplantation. Implementation of preset donor management goals (DMGs) to improve outcomes is recommended, but uniform practices and data are lacking. We hypothesized that meeting DMGs before organ procurement would result in more organs transplanted per donor (OTPD). The eight organ procurement organization in United Network for Organ Sharing Region 5 selected 10 critical care end points as DMGs. Each organ procurement organization submitted retrospective data from 40 standard criteria donors. "DMGs met" was defined as achieving any eight DMGs before procurement. The primary outcome was ≥4 OTPD. Binary logistic regression was used to determine independent predictors of ≥4 OTPD with a p<0.05. Three hundred twenty standard criteria donors had 3.6±1.6 OTPD. Donors with DMGs met had more OTPD (4.4 vs. 3.3, p<0.001) and were more likely to have ≥4 OTPD (70% vs. 39%, p<0.001). Independent predictors of ≥4 OTPD were age (odds ratio [OR]=0.94), serum creatinine (OR=0.65), thyroid hormone use (OR=2.0), "DMGs met" (OR=4.4), and achieving the following individual DMGs: central venous pressure 4 mm Hg to 10 mm Hg (OR=1.9), ejection fraction>50% (OR=4.0), Pao2:FIO2>300 (OR=4.6), and serum sodium 135 to 160 mEq/L (OR=3.4). Meeting DMGs before procurement resulted in more OTPD. Donor factors and critical care end points are independent predictors of organ yield. Prospective studies are needed to determine the true impact of each DMG on the number and function of transplanted organs.

  16. Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way.

    PubMed

    Yang, Lingang; Cui, Chuanfeng; Wang, Lingzhi; Lei, Juying; Zhang, Jinlong

    2016-07-27

    The rational design and controlled synthesis of a smart device with flexibly tailored response ability is all along desirable for bioapplication but long remains a considerable challenge. Here, a pH-stimulated valve system with a visualized "on-off" mode is constructed through a dual-shell fluorescence resonance energy transfer (FRET) strategy. The dual shells refer to carbon dots and fluorescent molecules embedded polymethacrylic acid (F-PMAA) layers successively coating around a SiO2 core (ca. 120 nm), which play the roles as energy donor and acceptor, respectively. The total thickness of the dual-shell in the solid composite is ca. 10 nm. The priorities of this dual-shell FRET nanovalve stem from three facts: (1) the thin shell allows the formation of efficient FRET system without chemical bonding between energy donor and acceptor; (2) the maximum emission wavelength of CD layer is tunable in the range of 400-600 nm, thus providing a flexible energy donor for a wide variety of energy acceptors; (3) the outer F-PMAA shell with a pH-sensitive swelling-shrinking (on-off) behavior functions as a valve for regulating the FRET process. As such, a sensitive and stable pH ratiometric sensor with a working pH range of 3-6 has been built by simply encapsulating pH-responsive fluorescein isothiocyanate (FITC) into PMAA; a pH-dependent swelling-shrinking shuttle carrier with a finely controllable molecule-release behavior has been further fabricated using rhodamine B isothiocyanate (RBITC) as the energy donor and model guest molecule. Significantly, the controlled releasing process is visually self-monitorable.

  17. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…

  18. Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.

    PubMed

    Poe, Ambata M; Della Pelle, Andrea M; Subrahmanyam, Ayyagari V; White, William; Wantz, Guillaume; Thayumanavan, S

    2014-03-18

    A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.

  19. Theoretical study of solvent effects on the electronic coupling matrix elements in rigidly linked donor-acceptor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, R.J.; Newton, M.D.; Kumar, K.

    1995-12-07

    The recently developed generalized Mulliken-Hush approach for the calculation of the electronic coupling matrix element for electron-transfer processes is applied to two rigidly linked donor-bridge-acceptor systems having dimethoxyanthracene as the donor and a dicarbomethoxycyclobutene unit as the acceptor. The dependence of the electronic coupling matrix element as a function of bridge type is examined with and without solvent molecules present. For clamp-shaped bridge structures solvent can have a dramatic effect on the electronic coupling matrix element. The behavior with variation of solvent is in good agreement with that observed experimentally for these systems. 23 refs., 2 tabs.

  20. A Solution-Processable Molecule using Thieno[3,2-b]thiophene as Building Block for Efficient Organic Solar Cells.

    PubMed

    Wei, Huan; Chen, Weichao; Han, Liangliang; Wang, Ting; Bao, Xichang; Li, Xiaoyun; Liu, Jie; Zhou, Yuanhang; Yang, Renqiang

    2015-08-01

    A solution-processed acceptor-π-donor-π-acceptor (A-π-D-π-A) type small molecule, namely DCATT, has been designed and synthesized for the application as donor material in organic solar cells. The fused aromatic unit thieno[3,2-b]thiophene (TT) flanked with thiophene is applied as π bridge, while 4,8-bisthienyl substituted benzodithiophene (BDT) and 2-ethylhexyl cyanoacetate are chosen as the central building block and end group, respectively. Introduction of fused ring to the small molecule enhances the conjugation length of the main chain, and gives a strong tendency to form π-π stacking with a large overlapping area which favors to high charge carrier transport. Small-molecule organic solar cells based on blends of DCATT and fullerene acceptor exhibit power conversion efficiencies as high as 5.20 % under the illumination of AM 1.5G, 100 mW cm(-2) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.