Sample records for halogen exchange reaction

  1. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: A Review

    PubMed Central

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-01-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical, and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter, or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article. PMID:29755967

  2. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review

    NASA Astrophysics Data System (ADS)

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-04-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.

  3. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…

  4. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    PubMed

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  5. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  6. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  7. Investigation of a lithium-halogen exchange flow process for the preparation of boronates by using a cryo-flow reactor.

    PubMed

    Newby, James A; Huck, Lena; Blaylock, D Wayne; Witt, Paul M; Ley, Steven V; Browne, Duncan L

    2014-01-03

    Conducting low-temperature organometallic reactions under continuous flow conditions offers the potential to more accurately control exotherms and thus provide more reproducible and scalable processes. Herein, progress towards this goal with regards to the lithium-halogen exchange/borylation reaction is reported. In addition to improving the scope of substrates available on a research scale, methods to improve reaction profiles and expedite purification of the products are also described. On moving to a continuous system, thermocouple measurements have been used to track exotherms and provide a level of safety for continuous processing of organometallic reagents. The use of an in-line continuous liquid-liquid separation device to circumvent labour intensive downstream off-line processing is also reported. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Role of Halogens in High-Grade Metamorphism and Anatexis

    NASA Astrophysics Data System (ADS)

    Aranovich, L.; Safonov, O.

    2016-12-01

    We review factors controlling the distribution of the two major halogens, F and Cl, in high-grade metamorphic rocks; their compositional correlations and partitioning between minerals; experimental data on stability and phase equilibria of the halogen-bearing minerals; the influence of halogens on Fe-Mg exchange reactions; and the means of estimating concentrations/activity of halogen species concentration/ activity in the fluid phase ("chlorimetry and fluorimetry") via calculation of equilibrium conditions for mineral assemblages containing halogen-bearing phases. Clear negative correlation between the F content and XFe=Fe/(Fe+Mg) suggests that natural biotite and amphibole obey the Fe-F avoidance rule. A strong positive correlation exists between K and Cl in amphibole. A scattering of points on the XFe -Cl and TiO2- Cl diagrams indicate the possible involvement of an exotic Cl-rich phase (fluid or melt) during the formation of Cl-bearing biotite and amphibole. Fluorine and Cl substituting for OH-groups substantially stabilize minerals relative to dehydration and melting. They should also strongly affect partitioning of Fe and Mg between biotite, amphibole and anhydrous minerals. This effect is quantified for Fe-Mg exchange reactions involving biotite (Zhu and Sverjensky, 1992), but remains to be evaluated for amphibole. Calculations based on recent thermodynamic systematics show that the relatively Mg-rich, Cl-poor biotite (for example, XFe = 0.4 and about 0.2 wt.% Cl) may coexist with a fairly Cl-rich fluid, i.e. total Cl/(Cl+H2O) from 0.1-0.3, depending on the assemblage, under granulite facies P-T conditions. Alkali (and Ca) metasomatism caused by interaction of high grade rocks with halogen-bearing fluids has major impact on the subsolidus phase transformations and melting processes during high-grade metamorphism and anatexis. For example, an increase in sodium content in plagioclase (Pl) by 20 mol% due to infiltration of Na- fluid into the quartz (Qtz

  9. Tropospheric Halogen Chemistry

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    Halogens are very reactive chemicals that are known to play an important role in anthropogenic stratospheric ozone depletion chemistry, first recognized by Molina and Rowland (1974). However, they also affect the chemistry of the troposphere. They are of special interest because they are involved in many reaction cycles that can affect the oxidation power of the atmosphere indirectly by influencing the main oxidants O3 and its photolysis product OH and directly, e.g., by reactions of the Cl radical with hydrocarbons (e.g., CH4).Already by the middle of the nineteenth century, Marchand (1852) reported the presence of bromine and iodine in rain and other natural waters. He also mentions the benefits of iodine in drinking water through the prevention of goitres and cretinism. In a prophetic monograph "Air and Rain: The Beginnings of a Chemical Climatology," Smith (1872) describes measurements of chloride in rain water, which he states to originate partly from the oceans by a process that he compares with the bursting of "soap bubbles" which produces "small vehicles" that transfer small spray droplets of seawater to the air. From deviations of the sulfate-to-chloride ratio in coastal rain compared to seawater, Smith concluded that chemical processes occur once the particles are airborne.For almost a century thereafter, however, atmospheric halogens received little attention. One exception was the work by Cauer (1939), who reported that iodine pollution has been significant in Western and Central Europe due to the inefficient burning of seaweed, causing mean gas phase atmospheric concentrations as high as or greater than 0.5 μg m-3. In his classical textbook Air Chemistry and Radioactivity, Junge (1963) devoted less than three pages to halogen gas phase chemistry, discussing chlorine and iodine. As reviewed by Eriksson (1959a, b), the main atmospheric source of halogens is sea salt, derived from the bursting of bubbles of air which are produced by ocean waves and other

  10. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    PubMed

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  11. Density functional theory study of the reaction mechanism for competitive carbon-hydrogen and carbon-halogen bond activations catalyzed by transition metal complexes.

    PubMed

    Yang, Xinzheng; Hall, Michael B

    2009-03-12

    Carbon-hydrogen and carbon-halogen bond activations between halobenzenes and metal centers were studied by density functional theory with the nonempirical meta-GGA Tao-Perdew-Staroverov-Scuseria functional and an all-electron correlation-consistent polarized valence double-zeta basis set. Our calculations demonstrate that the hydrogen on the metal center and halogen in halobenzene could exchange directly through a kite-shaped transition state. Transition states with this structure were previously predicted to have high energy barriers (J. Am. Chem. Soc. 2005, 127, 279), and this prediction misled others in proposing a mechanism for their recent experimental study (J. Am. Chem. Soc. 2006, 128, 3303). Furthermore, other halo-carbon activation pathways were found in the detailed mechanism for the competitive reactions between cationic titanium hydride complex [Cp*((t)Bu(3)P=N)TiH](+) and chlorobenzene under different pressure of H(2). These pathways include the ortho-C-H and Ti-H bond activations for the formation and release of H(2) and the indirect C-Cl bond activation via beta-halogen elimination for the movement of the C(6)H(4) ring and the formation of a C-N bond in the observed final product. A new stable isomer of the observed product with a similar total energy and an unexpected bridging between the Cp* ring and the metal center by a phenyl ring is also predicted.

  12. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  13. Halogenated boron-dipyrromethenes: synthesis, properties and applications.

    PubMed

    Lakshmi, Vellanki; Rao, Malakalapalli Rajeswara; Ravikanth, Mangalampalli

    2015-03-07

    Boron-dipyrromethene dyes (BODIPYs) containing halogens at pyrrole carbons are very useful synthons for the synthesis of a variety of BOIDPYs for a wide range of applications. Among the functional groups, halogens are the functional groups which can be regiospecifically introduced at any desired pyrrole carbon of the BODIPY framework by adopting appropriate synthetic strategies. The halogenated BODIPYs can undergo facile nucleophilic substitution reactions to prepare several interesting BODIPY based compounds. This review describes the synthesis, properties and potential applications of halogenated BODIPYs containing one to six halogens at the pyrrole carbons of the BODIPY core as well as properties and applications of some of the substituted BODIPYs derived from halogenated BODIPYs.

  14. Adsorption of halogens on metal surfaces

    NASA Astrophysics Data System (ADS)

    Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N.

    2018-06-01

    This paper presents a review of the experimental and theoretical investigations of halogen interaction with metal surfaces. The emphasis was placed on the recent measurements performed with a scanning tunneling microscope in combination with density functional theory calculations. The surface structures formed on metal surface after halogen interaction are classified into three groups: chemisorbed monolayer, surface halide, bulk-like halide. Formation of monolayer structures is described in terms of surface phase transitions. Surface halide phases are considered to be intermediates between chemisorbed halogen and bulk halide. The modern theoretical approaches in studying the dynamics of metal halogenation reactions are also presented.

  15. Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Sarwar, G.

    2017-12-01

    In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen

  16. Evidence for Interfacial Halogen Bonding.

    PubMed

    Swords, Wesley B; Simon, Sarah J C; Parlane, Fraser G L; Dean, Rebecca K; Kellett, Cameron W; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-05-10

    A homologous series of donor-π-acceptor dyes was synthesized, differing only in the identity of the halogen substituents about the triphenylamine (TPA; donor) portion of each molecule. Each Dye-X (X=F, Cl, Br, and I) was immobilized on a TiO2 surface to investigate how the halogen substituents affect the reaction between the light-induced charge-separated state, TiO2 (e(-) )/Dye-X(+) , with iodide in solution. Transient absorption spectroscopy showed progressively faster reactivity towards nucleophilic iodide with more polarizable halogen substituents: Dye-F < Dye-Cl < Dye-Br < Dye-I. Given that all other structural and electronic properties for the series are held at parity, with the exception of an increasingly larger electropositive σ-hole on the heavier halogens, the differences in dye regeneration kinetics for Dye-Cl, Dye-Br, and Dye-I are ascribed to the extent of halogen bonding with the nucleophilic solution species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Halogen-Mediated Conversion of Hydrocarbons to Commodities.

    PubMed

    Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier

    2017-03-08

    Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.

  18. Analytical and biological characterization of halogenated gemfibrozil produced through chlorination of wastewater.

    PubMed

    Bulloch, Daryl N; Lavado, Ramon; Forsgren, Kristy L; Beni, Szabolcs; Schlenk, Daniel; Larive, Cynthia K

    2012-05-15

    The cholesterol-lowering pharmaceutical gemfibrozil is a relevant environmental contaminant because of its frequency of detection in U.S. wastewaters at concentrations which have been shown to disrupt endocrine function in aquatic species. The treatment of gemfibrozil solutions with sodium hypochlorite yielded a 4'-chlorinated gemfibrozil analog (chlorogemfibrozil). In the presence of bromide ion, as is often encountered in municipal wastewater, hypobromous acid generated through a halogen exchange reaction produced an additional 4'-brominated gemfibrozil product (bromogemfibrozil). Standards of chloro- and bromogemfibrozil were synthesized, isolated and characterized using mass spectrometry and NMR spectroscopy. Mass spectrometry was used to follow the in situ halogenation reaction of gemfibrozil in deionized water and wastewater matrices, and to measure levels of gemfibrozil (254 ± 20 ng/L), chlorogemfibrozil (166 ± 121 ng/L), and bromogemfibrozil (50 ± 11 ng/L) in advanced primary wastewater treatment effluent treated by chlorination. Chlorogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of 11-ketotestosterone at 55.1 μg/L and bromogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of testosterone at 58.8 μg/L in vivo in Japanese medaka in a 21 day exposure. These results indicated that aqueous exposure to halogenated degradates of gemfibrozil enhanced the antiandrogenicity of the parent compound in a model fish species, demonstrating that chlorination may increase the toxicity of pharmaceutically active compounds in surface water.

  19. Halogen Chemistry at North American Coastal Sites

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Pikelnaya, O.; Laskin, A.; Sumner, A.; Jobson, B. T.; Finley, B.; Lawler, M.; Saltzman, E. S.; Pszenny, A. A.; Deegan, B.

    2007-12-01

    In recent years observational evidence has emerged that reactive halogen species (RHS), such as chlorine atoms, and bromine and iodine oxides, are present in coastal areas. Their chemistry can be significant as they catalytically destroy O3; oxidize hydrocarbons, dimethylsulfide, and S(IV); and modify NOx and HOx cycling. Despite their potential importance our observational database on RHS is still very limited. Most observations of RHS thus far have been made in clean areas and very few observations along the North American coast have been made. Here we will review our current understanding of RHS chemistry in both clean and polluted environments. Recent observations at coastal areas around the world will be discussed. We will also give an overview of an experiment performed by our group in Malibu, CA in October 2006 and present initial results. A suite of trace gases and environmental parameters, including halogen molecules, halogen oxides, Cl + VOC reaction products, aerosol composition, O3, NOx, CO, VOCs, meteorology, and radiation, were measured during a three week period. In addition, Cl + VOC reaction products were measured at two locations in urban Los Angeles. Clear evidence for the presence of various halogen species on the California coast was found. Observations during periods with relatively clean marine air and during times where our site was in the outflow of Los Angeles show the impact of pollution on coastal atmospheric chemistry. Our observations will be compared to earlier studies of halogen chemistry at coastal areas to further advance our understanding of halogen chemistry.

  20. Dissociative Photoionization of 1-Halogenated Silacyclohexanes: Silicon Traps the Halogen.

    PubMed

    Bodi, Andras; Sigurdardottir, Katrin Lilja; Kvaran, Ágúst; Bjornsson, Ragnar; Arnason, Ingvar

    2016-11-23

    The threshold photoelectron spectra and threshold photoionization mass spectra of 1-halogenated-1-silacyclohexanes, for the halogens X = F, Cl, Br, and I, have been obtained using synchrotron vacuum ultraviolet radiation and photoelectron photoion coincidence spectroscopy. As confirmed by a similar ionization onset and density functional theory molecular orbitals, the ionization to the ground state is dominated by electron removal from the silacyclohexane ring for X = F, Cl, and Br, and from the halogen lone pair for X = I. The breakdown diagrams show that the dissociative photoionization mechanism is also different for X = I. Whereas the parent ions decay by ethylene loss for X = F to Br in the low-energy regime, the iodine atom is lost for X = I. The first step is followed by a sequential ethylene loss at higher internal energies in each of the compounds. It is argued that the tendency of silicon to lower bond angles stabilizes the complex cation in which C 2 H 4 is η 2 -coordinated to it, and which precedes ethylene loss. Together with the relatively strong silicon-halogen bonds and the increased inductive effect of the silacyclohexane ring in stabilizing the cation, this explains the main differences observed in the fragmentation of the halogenated silacyclohexane and halogenated cyclohexane ions. The breakdown diagrams have been modeled taking into account slow dissociations at threshold and the resulting kinetic shift. The 0 K appearance energies have been obtained to within 0.08 eV for the ethylene loss for X = F to Br (10.56, 10.51, and 10.51 eV, respectively), the iodine atom loss for X = I (10.11 eV), the sequential ethylene loss for X = F to I (12.29, 12.01, 11.94, and 11.86 eV, respectively), and the minor channels of H loss for X = F (10.56 eV) and propylene loss in X = Cl (also at 10.56 eV). The appearance energies for the major channels likely correspond to the dissociative photoionization reaction energy.

  1. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-04

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  2. Synthesis of Thieno[3,2-b]indoles via Halogen Dance and Ligand-Controlled One-Pot Sequential Coupling Reaction.

    PubMed

    Hayashi, Yuki; Okano, Kentaro; Mori, Atsunori

    2018-02-16

    A two-pot synthesis of thieno[3,2-b]indole from 2,5-dibromothiophene is described. A halogen dance of 2,5-dibromothiophene was performed with LDA, and subsequent Negishi coupling was performed with 2-iodoaniline derivatives to provide the corresponding coupling products. The resulting two bromo groups have different reactivities, which were utilized for the one-pot Suzuki-Miyaura coupling/intramolecular Buchwald-Hartwig amination to produce thieno[3,2-b]indole via an assisted tandem catalysis that involved in situ ligand exchange.

  3. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  4. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, Paul K.; Abney, Kent D.; Kinkead, Scott A.

    1997-01-01

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10' positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron.

  5. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Halogen scrubbers and other halogen... Routing to a Fuel Gas System or a Process § 65.154 Halogen scrubbers and other halogen reduction devices. (a) Halogen scrubber and other halogen reduction device equipment and operating requirements. (1) An...

  6. Halogenation of cobalt dicarbollide

    DOEpatents

    Hurlburt, P.K.; Abney, K.D.; Kinkead, S.A.

    1997-05-20

    A method for selectively adding chlorine, bromine, or iodine to cobalt dicarbollide anions by means of electrophilic substitution reactions. Halogens are added only to the B10 and B10{prime} positions of the anion. The process involves use of hypohalous acid or N-halosuccinimide or gaseous chlorine in the presence of iron. 1 fig.

  7. A new halogen-free chemical oscillator: the reaction between permanganate ion and ninhydrin in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovít; Nagy, Arpád

    1987-07-01

    The reaction between permanganate ion and ninhydrin in the presence of phosphoric acid in aqueous solution shows sustained oscillations in a continuously stirred tank reactor (CSTR). It exhibits a kinetic bistability between an oscillatory and a stationary state. Our new oscillating system seems to be a second permanganate chemical oscillator, thus broadening the small group of non-halogen-based chemical oscillators.

  8. α-Halogenated oxaphosphinanes: Synthesis, unexpected reactions and evaluation as inhibitors of cancer cell proliferation.

    PubMed

    Babouri, Rachida; Rolland, Marc; Sainte-Catherine, Odile; Kabouche, Zahia; Lecouvey, Marc; Bakalara, Norbert; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc

    2015-11-02

    This paper describes the preparation and the biological evaluation of α-halogenated oxaphosphinanes. These halogen derivatives were synthetized from a short and stereoselective synthetic sequence starting by previously described hydroxy-precursors 1 and 2 with respectively a glucose and mannose-like configuration. The in vitro biological tests of these unnatural halogenated phosphinosugars, on several cell lines, highlighted, for some of them, their antiproliferative and anti migration and invasion properties at nanomolar concentration. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  10. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  11. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  12. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  13. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  14. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  15. Iodine(III) Derivatives as Halogen Bonding Organocatalysts.

    PubMed

    Heinen, Flemming; Engelage, Elric; Dreger, Alexander; Weiss, Robert; Huber, Stefan M

    2018-03-26

    Hypervalent iodine(III) derivatives are known as versatile reagents in organic synthesis, but there is only one previous report on their use as Lewis acidic organocatalysts. Herein, we present first strong indications for the crucial role of halogen bonding in this kind of catalyses. To this end, the solvolysis of benzhydryl chloride and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone served as benchmark reactions for halide abstraction and the activation of neutral compounds. Iodolium compounds (cyclic diaryl iodonium species) were used as activators or catalysts, and we were able to markedly reduce or completely switch off their activity by sterically blocking one or two of their electrophilic axes. Compared with previously established bidentate cationic halogen bond donors, the monodentate organoiodine derivatives used herein are at least similarly active (in the Diels-Alder reaction) or even decidedly more active (in benzhydryl chloride solvolysis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  17. Post-synthetic halide conversion and selective halogen capture in hybrid perovskites† †Electronic supplementary information (ESI) available. CCDC 1048945–1048947. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01135c

    PubMed Central

    Solis-Ibarra, D.; Smith, I. C.

    2015-01-01

    Reaction with halogen vapor allows us to post-synthetically exchange halides in both three- (3D) and two-dimensional (2D) organic–inorganic metal-halide perovskites. Films of 3D Pb–I perovskites cleanly convert to films of Pb–Br or Pb–Cl perovskites upon exposure to Br2 or Cl2 gas, respectively. This gas–solid reaction provides a simple method to produce the high-quality Pb–Br or Pb–Cl perovskite films required for optoelectronic applications. Reactivity with halogens can be extended to the organic layers in 2D metal-halide perovskites. Here, terminal alkene groups placed between the inorganic layers can capture Br2 gas through chemisorption to form dibromoalkanes. This reaction's selectivity for Br2 over I2 allows us to scrub Br2 to obtain high-purity I2 gas streams. We also observe unusual halogen transfer between the inorganic and organic layers within a single perovskite structure. Remarkably, the perovskite's crystallinity is retained during these massive structural rearrangements. PMID:29218171

  18. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  19. Chemical Action of Halogenated Agents in Fire Extinguishing

    NASA Technical Reports Server (NTRS)

    Belles, Frank E.

    1955-01-01

    The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.

  20. Analysis of Halogen-Mercury Reactions in Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paula Buitrago; Geoffrey Silcox; Constance Senior

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury

  1. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  2. Electroreduction of Halogenated Organic Compounds

    NASA Astrophysics Data System (ADS)

    Rondinini, Sandra; Vertova, Alberto

    The electroreductive cleavage of the carbon-halogen bond in halogenated organic compounds has been extensively studied for more than 70 years, since it is prodromal to a large variety of synthetic applications in organic electrochemistry. Over the years the research interest have progressively included the environmental applications, since several organic halocompounds are known to have (or have had) a serious environmental impact because of their (present or past) wide use as cleaning agents, herbicides, cryogenic fluids, reagents (e.g. allyl and vinyl monomers) for large production materials, etc. Recent studies have also demonstrated the wide spread out- and in-door-presence of volatile organic halides, although at low level, in connexion with residential and non-residential (e.g. stores, restaurants and transportation) activities. In this context, the detoxification of emissions to air, water and land by the selective removal of the halogen group represents a valid treatment route, which, although not leading to the complete mineralization of the pollutants, produces less harmful streams to be easily treated by electrochemical or conventional techniques. The electroreduction process is analysed and discussed in terms of electrode material, reaction medium, cell design and operation, and of substrate classification.

  3. Hydrogen/Chlorine exchange reactions of gaseous carbanions.

    PubMed

    Chen, Hao; Cooks, R Graham; Meurer, Eduardo C; Eberlin, Marcos N

    2005-12-01

    Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.

  4. Synthesis of Polyfunctional Diorganomagnesium and Diorganozinc Reagents through In Situ Trapping Halogen-Lithium Exchange of Highly Functionalized (Hetero)aryl Halides in Continuous Flow.

    PubMed

    Ketels, Marthe; Ganiek, Maximilian A; Weidmann, Niels; Knochel, Paul

    2017-10-02

    We report a halogen-lithium exchange performed in the presence of various metal salts (ZnCl 2 , MgCl 2 ⋅LiCl) on a broad range of sensitive bromo- or iodo(hetero)arenes using BuLi or PhLi as the exchange reagent and a commercially available continuous-flow setup. The resulting diarylmagnesium or diarylzinc species were trapped with various electrophiles, resulting in the formation of polyfunctional (hetero)arenes in high yields. This method enables the functionalization of (hetero)arenes containing highly sensitive groups such as an isothiocyanate, nitro, azide, or ester. A straightforward scale-up was possible without further optimization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Individual Differences in Reactions to Inequitable Exchanges.

    ERIC Educational Resources Information Center

    Ellis, Barbara B.; Penner, Louis A.

    1983-01-01

    Investigates the role of sociopathic tendencies in reactions to inequitable exchanges in 273 males and females classified as high or low in sociopathy. Subjects read narratives of inequitable exchanges and assumed the role of the exploiter and the role of the victim in each. (Author/RH)

  6. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  7. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  8. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  9. FORMATE—PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS II.

    PubMed Central

    Oster, M. O.; Wood, N. P.

    1964-01-01

    Oster, M. O. (A. & M. College of Texas, College Station), and N. P. Wood. Formate-pyruvate exchange reaction in Streptococcus faecalis. II. Reaction conditions for cell extracts. J. Bacteriol. 87:104–113. 1964.—In contrast to intact cells of Streptococcus faecalis, no stimulation of the formate-pyruvate exchange reaction was observed in cell extracts when yeast extract was added to the reaction mixture. A heated extract of Micrococcus lactilyticus, vitamin K5, ferrous sulfate, and ferrous ammonium sulfate stimulated an active exchange by protecting the system from oxygen. Tetrahydrofolate, 2,3-dimercaptopropanol, and sodium sulfide provided partial protection, whereas ascorbate, glutathione, sodium hydrosulfite, ammonium sulfide, and sodium bisulfite gave insufficient protection or were inhibitory. Oxidation-reduction (O-R) indicators were not inhibitory and were used to estimate the O-R potentials of reaction mixtures. A potential at least as negative as −125 mv was estimated to be necessary to preserve or initiate formate-pyruvate exchange activity. The reaction operated over a narrow pH range when strict anaerobic conditions were not maintained but, when the system was suitably poised, the pH range was broader. The influence of high phosphate concentrations was less under strictly anaerobic conditions, and orthophosphate could be replaced by small amounts of pyrophosphate. Effect of temperature, time, and amount of extract is presented. Addition of reduced benzyl viologen and hydrogen-saturated palladium in the buffer during 8 hr of dialysis prevented inactivation of extracts. Recovery of activity could be obtained after ammonium sulfate treatment when a combination of palladium chloride, neutral red, and hydrogen bubbling were used. PMID:14102842

  10. Halogen lamp experiment, HALEX

    NASA Technical Reports Server (NTRS)

    Schmitt, G.; Stapelmann, J.

    1986-01-01

    The main purpose of the Halogen Lamp Experiment (HALEX) was to investigate the operation of a halogen lamp during an extended period in a microgravity environment and to prove its behavior in space. The Mirror Heating Facilities for Crystal Growth and Material Science Experiments in space relies on one or two halogen lamps as a furnace to melt the specimens. The HALEX aim is to verify: full power operation of a halogen lamp for a period of about 60 hours; achievement of about 10% of its terrestrial life span; and operation of the halogen lamp under conditions similar to furnace operation.

  11. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  12. Scaling Hydrologic Exchange Flows and Biogeochemical Reactions from Bedforms to Basins

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2015-12-01

    River water moves in and out of the main channel along pathways that are perpendicular to the channel's main axis that flow across or beneath the ground surface. These hydrologic exchange flows (HEFs) are difficult to measure, yet no less important than a river's downstream flow, or exchanges with the atmosphere and deeper groundwater (Harvey and Gooseff, 2015, WRR). There are very few comprehensive investigations of exchange fluxes to understand patterns with river size and relative importance of specific types of exchanges. We used the physically based model NEXSS to simulate multiple scales of hyporheic flow and their cumulative effects on solute reaction in large basins (on the order of Chesapeake Bay basin or larger). Our goal was to explain where and when particular types of hyporheic flow are important in enhancing key biogeochemical reactions, such as organic carbon respiration and denitrification. Results demonstrate that hyporheic flux (expressed per unit area of streambed) varies surprisingly little across the continuum of first-order streams to eighth-order rivers, and vertical exchange beneath small bedforms dominates in comparison with lateral flow beneath gravel bars and meanders. Also, the river's entire volume is exchanged many times with hyporheic flow within a basin, and the turnover length (after one entire river volume is exchanged) is strongly influenced by hydrogeomorphic differences between physiographic regions as well as by river size. The cumulative effects on biogeochemical reactions were assessed using a the reaction significance factor, RSF, which computes the cumulative potential for hyporheic reactions using a dimensionless index that balances reaction progress in a single hyporheic flow path against overall processing efficiency of river turnover through hyporheic flow paths of that type. Reaction significance appears to be strongly dominated by hydrologic factors rather than biogeochemical factors, and seems to be dominated by

  13. Photoproduction of halogens using platinized TiO2

    NASA Technical Reports Server (NTRS)

    Reichman, B.; Byvik, C. E.

    1981-01-01

    Unlike electrolysis of halide salt solutions, technique using powdered titanium dioxide catalyst requires no external power other than ultraviolet radiation source. Semiconductor powders photocatalyze and photosynthesize many useful reactions; applications are production of halogen molecules, oxidation of hazardous materials in wastewater, and conversion of carbon monoxide to carbon dioxide.

  14. Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Beberwyck, Brandon James

    Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be

  15. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  16. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  17. Importance of reactive halogens in the tropical marine atmosphere using WRF-chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; Apel, Eric; Saiz-Lopez, Alfonso; von Glasow, Roland

    2017-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens participate in catalytic reaction cycles that efficiently destroy O3, change the HOX and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. Up to 34% of O3 loss in the tropical East Pacific is due to I and Br combined. Recent studies have highlighted the key role that heterogeneous chemistry plays in explaining observations of BrO and IO abundances in the tropical troposphere. The main objective of this study is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. Our reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. Heterogeneous recycling reactions involving sea-salt aerosol and other particles have been included into the model, along with oceanic emissions of important OVOCs and halocarbons. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present the tropospheric impacts of halogens (BrO, IO) in the tropospheric chemistry of relevant species (O3, OH and OVOCS). Sensitivity runs are made in order to study the impact of heterogeneous chemistry in the iodine and bromine species partitioning. A comparison between the online calculation of Very Short Lived Halocarbons (VSLH) oceanic emissions with prescribed oceanic emissions is

  18. Investigation of reactive halogens in the Arctic using a mobile instrumental laboratory

    NASA Astrophysics Data System (ADS)

    Custard, K.; Shepson, P. B.; Stephens, C. R.

    2011-12-01

    Custard, K kcustard@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Shepson, P pshepson@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Stephens, C thompscr@purdue.edu Chemistry Department, Purdue University, West Lafayette, IN, USA Investigation of the chemistry of reactive halogens in ice-covered regions is important because of its significant impact on atmospheric composition. Halogens in the Arctic react with ozone and gaseous elemental mercury to sometimes completely deplete them from the ambient atmosphere, at least during polar springtime. There is much uncertainty about the sources and concentrations of these atmospheric halogens in the Arctic, particularly with respect to chlorine. To gain a better understanding of them, we have developed a method to simultaneously measure the concentrations of BrOx and ClOx radicals using a flowtube method. The method involves reaction of the halogen atom with a halogenated alkene, to produce a multiply halogenated characteristic ketone product, which is then detected via GC/ECD. The system was deployed at Barrow, AK, using a mobile instrumental laboratory so that measurements could be made from multiple locations along the sea ice. In this paper we will discuss laboratory evaluation of the flowtube method, and present preliminary data from Barrow, AK, during the spring 2011 deployment.

  19. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2004-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and

  20. A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Kanaya, Y.; Takahashi, M.; Akimoto, H.

    2003-09-01

    A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that

  1. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  2. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  3. Selenocysteine in thiol/disulfide-like exchange reactions.

    PubMed

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  4. Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?

    PubMed

    Hai, Faisal I; Tadkaew, Nichanan; McDonald, James A; Khan, Stuart J; Nghiem, Long D

    2011-05-01

    This study investigated the relationship between physicochemical properties (namely halogen content and hydrophobicity) of halogenated trace organics and their removal efficiencies by a laboratory scale membrane bioreactor (MBR) under stable operating conditions. The reported results demonstrated a combined effect of halogen content and hydrophobicity on the removal. Compounds with high halogen content (>0.3) were well removed (>85%) when they possessed high hydrophobicity (Log D>3.2), while those with lower Log D values were also well removed if they had low halogen content (<0.1). General indices such as the BIOWIN index (which is based on only biodegradation) or a more specific index such as the halogen content (which captures a chemical aspect) appeared insufficient to predict the removal efficiency of halogenated compounds in MBR. Experimental data confirmed that the ratio of halogen content and Log D, which incorporates two important physico-chemical properties, is comparatively more suitable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Symmetry and the geometric phase in ultracold hydrogen-exchange reactions

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Hazra, J.; Balakrishnan, N.; Kendrick, B. K.

    2017-08-01

    Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

  6. Effect of halogenated impurities on lifetime of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Yamawaki, Hayato; Suzuki, Kunihiko; Kubota, Tomohiro; Watabe, Takeyoshi; Ishigaki, Ayumi; Nakamura, Rina; Inoue, Hideko; Nakashima, Harue; Horikoshi, Nozomi; Nowatari, Hiromi; Kataishi, Riho; Hamada, Toshiki; Sasaki, Toshiki; Suzuki, Tsunenori; Seo, Satoshi

    2016-09-01

    We investigated a correlation between lifetime and the halogen element concentration in an organic light-emitting diode (OLED) and conducted experiments and simulations to discuss degradation mechanisms due to the halogen. OELD is generally formed of high-purity materials. Since the synthesis of high-purity materials takes time and cost, quantitative understanding of the kind, amount, and influence of impurities in OLED devices is expected. The results of combustion ion chromatography show that, if the chlorine concentration in the host material is more than several parts per million, the lifetime of the device is drastically reduced. The chlorine element, which is derived from the chlorinated by-product of the host material, is found to be transferred from the chloride to other materials (e.g., an emissive dopant) according to the results of LC-MS analysis. In addition, the electron transport layer including such impurities is also found to adversely affect the lifetime. The results of TOF-SIMS analysis suggest that the dissociated chlorine element diffuse to the light-emitting layer side when the device is driven. The results of simulations (Gaussian 09) and electrochemical analyses (cyclic voltammetry and electrolysis) reveal that the halogen element is easy to dissociate from halide by excitation or reduction. The halogen element can repeat reactions with the peripheral materials by excitation or reduction and cause damages, e.g., generate radicals or further reaction products due to the radicals. The results of simulation suggest that, such compounds have low energy level and become quenchers.

  7. Valence-bond study of the /H2, D2/ exchange reaction mechanism.

    NASA Technical Reports Server (NTRS)

    Freihaut, B.; Raff, L. M.

    1973-01-01

    The exchange reaction of H2 with D2 to form 2 HD is important in that it is fundamentally the simplest four-body exchange reaction and should therefore represent a model system on which various theories of reactions dynamics might be tested. A number of theoretical and experimental investigations carried out on this system are reviewed. It is concluded that a Y yields T yields Y mechanism for the (H2, D2) exchange is not a low energy pathway that would make theory compatible with the shock-tube experiments of Bauer and Ossa (1966) and of Burcat and Lifshits (1967).

  8. Individual breathing reactions measured in hemoglobin by hydrogen exchange methods.

    PubMed Central

    Englander, S W; Calhoun, D B; Englander, J J; Kallenbach, N R; Liem, R K; Malin, E L; Mandal, C; Rogero, J R

    1980-01-01

    Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach. PMID:7248462

  9. Geometric phase effects in ultracold hydrogen exchange reaction

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2016-10-14

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H 2 product or in the D+H 2more » $$(v=4,j=0)\\,\\to $$ HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. In conclusion, experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.« less

  10. Selenocysteine in Thiol/Disulfide-Like Exchange Reactions

    PubMed Central

    Marino, Stefano M.

    2013-01-01

    Abstract Significance: Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. Recent Advances: The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. Critical Issues: We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. Future Directions: It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec. Antioxid. Redox Signal. 18, 1675–1689. PMID:23121622

  11. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  12. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  13. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites.

    PubMed

    Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M

    1995-05-11

    The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed

  14. Impact of enhanced ozone deposition and halogen chemistry on model performance

    EPA Science Inventory

    In this study, an enhanced ozone deposition scheme due to the interaction of iodide in sea-water and atmospheric ozone and the detailed chemical reactions of organic and inorganic halogen species are incorporated into the hemispheric Community Multiscale Air Quality model. Prelim...

  15. On the physical nature of halogen bonds: a QTAIM study.

    PubMed

    Syzgantseva, Olga A; Tognetti, Vincent; Joubert, Laurent

    2013-09-12

    In this article, we report a detailed study on halogen bonds in complexes of CHCBr, CHCCl, CH2CHBr, FBr, FCl, and ClBr with a set of Lewis bases (NH3, OH2, SH2, OCH2, OH(-), Br(-)). To obtain insight into the physical nature of these bonds, we extensively used Bader's Quantum Theory of Atoms-in-Molecules (QTAIM). With this aim, in addition to the examination of the bond critical points properties, we apply Pendás' Interacting Quantum Atoms (IQA) scheme, which enables rigorous and physical study of each interaction at work in the formation of the halogen-bonded complexes. In particular, the influence of primary and secondary interactions on the stability of the complexes is analyzed, and the roles of electrostatics and exchange are notably discussed and compared. Finally, relationships between QTAIM descriptors and binding energies are inspected.

  16. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  17. Halogen Chemistry in the CMAQ Model

    EPA Science Inventory

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  18. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  19. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    PubMed

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  20. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  1. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  2. Halogen degassing during ascent and eruption of water-poor basaltic magma

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  3. Syntheses of halogen derivatives of L-tryptophan, L-tyrosine and L-phenylalanine labeled with hydrogen isotopes.

    PubMed

    Pająk, Małgorzata; Pałka, Katarzyna; Winnicka, Elżbieta; Kańska, Marianna

    2016-01-01

    Halogenated, labeled with tritium and doubly with deuterium and tritium, derivatives of L-tryptophan, i.e. 5'-bromo-[2-(3)H]-, 5'-bromo-[2-(2)H/(3)H]-, 5'-fluoro-[2-(3)H]-5'-fluoro-[2-(2)H/(3)H]-, 6'-fluoro-[2-(3)H]-, 6'-fluoro-[2-(2)H/(3)H]-L-tryptophan, as well as, L-tyrosine, i.e. 3'-fluoro-[2-(3)H]-, 3'-fluoro-[2-(2)H/(3)H]-, 3'-chloro-[2-(3)H]-, and 3'-chloro-[2-(2)H/(3)H]-L-tyrosine, and also L-phenylalanine, i.e. 2'-fluoro-[(3S)-(3)H]-, 2'-fluoro-[(3S)-(2)H/(3) H]-, 2'-chloro-[(3S)-(3)H]-, 2'-chloro-[(3S)-(2)H/(3)H]-, 4'-chloro-[(3S)-(3)H]-, and 4'-chloro-[(3S)-(2)H/(3)H]-L-phenylalanine were synthesized using enzymatic methods. Isotopomers of L-tryptophan were synthesized by coupling of halogenated indoles with S-methyl-L-cysteine carried out in deuteriated or tritiated incubation media. Labeled halogenated derivatives of L-tyrosine were obtained by the enzymatically supported exchange between halogenated L-tyrosine and isotopic water. Labeled halogenated isotopologues of L-Phe were synthesized by the enzymatic addition of ammonia to halogenated cinnamic acid. As a source of hydrogen tritiated water (HTO) and heavy water (D2O) with addition of HTO were used. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    PubMed

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Halogen bonding in solution: thermodynamics and applications.

    PubMed

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  6. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    PubMed

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  7. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  8. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  9. What’s New in Enzymatic Halogenations

    PubMed Central

    Fujimori, Danica Galoniæ; Walsh, Christopher T.

    2007-01-01

    Summary The halogenation of thousands of natural products occurs during biosynthesis and often confers important functional properties. While haloperoxidases had been the default paradigm for enzymatic incorporation of halogens, via X+ equivalents into organic scaffolds, a combination of microbial genome sequencing, enzymatic studies and structural biology have provided deep new insights into enzymatic transfer of halide equivalents in three oxidation states. These are: (1) the halide ions (X−) abundant in nature, (2) halogen atoms (X•), and (3) the X+ equivalents. The mechanism of halogen incorporation is tailored to the electronic demands of specific substrates and involves enzymes with distinct redox coenzyme requirements. PMID:17881282

  10. Free Radical Halogenation, Selectivity, and Thermodynamics: The Polanyi Principle and Hammond's Postulate

    ERIC Educational Resources Information Center

    Scala, Alfred A.

    2004-01-01

    The underlying ideas of the Polanyi principle and Hammond's postulate in relation to the simple free halogenation reactions and their selectivity and thermodynamics is presented. The results indicate that the chlorine atom exhibits a slightly less selectivity in the liquid phase as compared to in the gas phase.

  11. Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites

    Treesearch

    Gamini P. Mendis; Sydney G. Weiss; Matthew Korey; Charles R. Boardman; Mark Dietenberger; Jeffrey P. Youngblood; John A. Howarter

    2016-01-01

    Sustainable, non-halogenated flame retardants are desired for a variety of industry applications. Lignin, as an industrially processed wood derivative, has been examined as a potential sustainable flame retardant additive to polymer systems. Here, the lignin is phosphorylated using a pyridine-catalysed esterification reaction with diphenyl phosphoryl chloride to...

  12. Halogenated arsenenes as Dirac materials

    NASA Astrophysics Data System (ADS)

    Tang, Wencheng; Sun, Minglei; Ren, Qingqiang; Wang, Sake; Yu, Jin

    2016-07-01

    Arsenene is the graphene-like arsenic nanosheet, which has been predicted very recently [S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angewandte Chemie, 127 (2015) 3155-3158]. Using first-principles calculations, we systematically investigate the structures and electronic properties of fully-halogenated arsenenes. Formation energy analysis reveals that all the fully-halogenated arsenenes except iodinated arsenene are energetically favorable and could be synthesized. We have revealed the presence of Dirac cone in fully-halogenated arsenene compounds. They may have great potential applications in next generation of high-performance devices.

  13. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    PubMed

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  14. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  15. Metal halogen battery construction with improved technique for producing halogen hydrate

    DOEpatents

    Fong, Walter L.; Catherino, Henry A.; Kotch, Richard J.

    1983-01-01

    An improved electrical energy storage system comprising, at least one cell having a positive electrode and a negative electrode separated by aqueous electrolyte, a store means wherein halogen hydrate is formed and stored as part of an aqueous material having a liquid level near the upper part of the store, means for circulating electrolyte through the cell, conduit means for transmitting halogen gas formed in the cell to a hydrate forming apparatus associated with the store, said hydrate forming apparatus including, a pump to which there is introduced quantities of the halogen gas and chilled water, said pump being located in the store and an outlet conduit leading from the pump and being substantially straight and generally vertically disposed and having an exit discharge into the gas space above the liquid level in the store, and wherein said hydrate forming apparatus is highly efficient and very resistant to plugging or jamming. The disclosure also relates to an improved method for producing chlorine hydrate in zinc chlorine batteries.

  16. Remarkable effect of halogenation of aromatic compounds on efficiency of nanowire formation through polymerization/crosslinking by high-energy single particle irradiation

    NASA Astrophysics Data System (ADS)

    Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu

    2018-01-01

    Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.

  17. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  18. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  19. Structural Perspective on Enzymatic Halogenation

    PubMed Central

    2008-01-01

    Simple halogen substituents frequently afford key structural features that account for the potency and selectivity of natural products, including antibiotics and hormones. For example, when a single chlorine atom on the antibiotic vancomycin is replaced by hydrogen, the resulting antibacterial activity decreases by up to 70% (HarrisC. M.; KannanR.; KopeckaH.; HarrisT. M.J. Am. Chem. Soc.1985, 107, 6652−6658). This Account analyzes how structure underlies mechanism in halogenases, the molecular machines designed by nature to incorporate halogens into diverse substrates. Traditional synthetic methods of integrating halogens into complex molecules are often complicated by a lack of specificity and regioselectivity. Nature, however, has developed a variety of elegant mechanisms for halogenating specific substrates with both regio- and stereoselectivity. An improved understanding of the biological routes toward halogenation could lead to the development of novel synthetic methods for the creation of new compounds with enhanced functions. Already, researchers have co-opted a fluorinase from the microorganism Streptomyces cattleya to produce 18F-labeled molecules for use in positron emission tomography (PET) (DengH.; CobbS. L.; GeeA. D.; LockhartA.; MartarelloL.; McGlincheyR. P.; O’HaganD.; OnegaM.Chem. Commun.2006, 652−654). Therefore, the discovery and characterization of naturally occurring enzymatic halogenation mechanisms has become an active area of research. The catalogue of known halogenating enzymes has expanded from the familiar haloperoxidases to include oxygen-dependent enzymes and fluorinases. Recently, the discovery of a nucleophilic halogenase that catalyzes chlorinations has expanded the repertoire of biological halogenation chemistry (DongC.; HuangF.; DengH.; SchaffrathC.; SpencerJ. B.; O’HaganD.; NaismithJ. H.Nature2004, 427, 561−56514765200). Structural characterization has provided a basis toward a mechanistic understanding of the specificity

  20. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea

  1. Independent Evolution of Six Families of Halogenating Enzymes.

    PubMed

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  2. Independent Evolution of Six Families of Halogenating Enzymes

    PubMed Central

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity. PMID:27153321

  3. Electron capture rates in stars studied with heavy ion charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  4. Halogen-bonding-triggered supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  5. Moving Towards a State of the Art Charge-Exchange Reaction Code

    NASA Astrophysics Data System (ADS)

    Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory

    2017-09-01

    Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.

  6. Influence of Antimony-Halogen Additives on Flame Propagation.

    PubMed

    Babushok, Valeri I; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T

    2017-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO 2 , and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O 2 +M=SbO 2 +M; SbO+H=Sb+OH; SbO+O=Sb+O 2 ; SbO+OH+M=HOSbO+M; SbO 2 +H 2 O=HOSbO+OH; HOSbO+H=SbO+H 2 O; SbO+O+M=SbO 2 +M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF 3 Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently).

  7. Influence of Antimony-Halogen Additives on Flame Propagation*

    PubMed Central

    Babushok, Valeri I.; Deglmann, Peter; Krämer, Roland; Linteris, Gregory T.

    2016-01-01

    A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium calculations with a set of possible Sb-Br-C-H-O species, and these are used to develop the species and reactions in a detailed kinetic model for antimony flame inhibition. The complete thermodynamic data set and kinetic mechanism are presented. Laminar burning velocity simulations are used to validate the mechanism against available data in the literature, as well as to explore the relative performance of the antimony-halogen compounds. Further analysis of the premixed flame simulations has unraveled the catalytic radical recombination cycle of antimony. It includes (primarily) the species Sb, SbO, SbO2, and HOSbO, and the reactions: Sb+O+M=SbO+M; Sb+O2+M=SbO2+M; SbO+H=Sb+OH; SbO+O=Sb+O2; SbO+OH+M=HOSbO+M; SbO2+H2O=HOSbO+OH; HOSbO+H=SbO+H2O; SbO+O+M=SbO2+M. The inhibition cycles of antimony are shown to be more effective than those of bromine, and intermediate between the highly effective agents CF3Br and trimethylphosphate. Preliminary examination of a Sb/Br gas-phase system did not show synergism in the gas-phase catalytic cycles (i.e., they acted essentially independently). PMID:28133390

  8. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  9. Passivation of quartz for halogen-containing light sources

    DOEpatents

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  10. Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell.

    PubMed

    Parlane, Fraser G L; Mustoe, Chantal; Kellett, Cameron W; Simon, Sarah J; Swords, Wesley B; Meyer, Gerald J; Kennepohl, Pierre; Berlinguette, Curtis P

    2017-11-24

    The interactions between a surface-adsorbed dye and a soluble redox-active electrolyte species in the dye-sensitized solar cell has a significant impact on the rate of regeneration of photo-oxidized dye molecules and open-circuit voltage of the device. Dyes must therefore be designed to encourage these interfacial interactions, but experimentally resolving how such weak interactions affect electron transfer is challenging. Herein, we use X-ray absorption spectroscopy to confirm halogen bonding can exist at the dye-electrolyte interface. Using a known series of triphenylamine-based dyes bearing halogen substituents geometrically positioned for reaction with halides in solution, halogen bonding was detected only in cases where brominated and iodinated dyes were photo-oxidized. This result implies that weak intermolecular interactions between photo-oxidized dyes and the electrolyte can impact device photovoltages. This result was unexpected considering the low concentration of oxidized dyes (less than 1 in 100,000) under full solar illumination.

  11. Examining the reaction of monetary policy to exchange rate changes: A nonlinear ARDL approach

    NASA Astrophysics Data System (ADS)

    Manogaran, Lavaneesvari; Sek, Siok Kun

    2017-04-01

    Previous studies showed the exchange rate changes can have significant impacts on macroeconomic performance. Over fluctuation of exchange rate may lead to economic instability. Hence, monetary policy rule tends to react to exchange rate changes. Especially, in emerging economies where the policy-maker tends to limit the exchange rate movement through interventions. In this study, we seek to investigate how the monetary policy rule reacts to exchange rate changes. The nonlinear autoregressive distributed lag (NARDL) model is applied to capture the asymmetric effect of exchange rate changes on monetary policy reaction function (interest rate). We focus the study in ASEAN5 countries (Indonesia, Malaysia, Philippines, Thailand and Singapore). The results indicated the existence of asymmetric effect of exchange rates changes on the monetary reaction function for all ASEAN5 countries in the long-run. Where, in majority of the cases the monetary policy is reacting to the appreciation and depreciation of exchange rate by raising the policy rate. This affirms the intervention of policymakers with the `fear of floating' behavior.

  12. Reactivity of some halogenated alkanes of 13X molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fevrier, D.; Vernet, J.L.; Mignon, P.

    1977-12-01

    The decomposition and transhalogenation products of trichlorofluoromethane (F 11), dichlorodifluoromethane (F-12), dichlorofluoromethane (F-21), chlorodifluoromethane (F-22), trichlorotrifluoroethane (F-113), and bromotrifluoromethane (F-13B1) in air on 13X molecular sieve at 150/sup o/ and 320/sup o/C were analyzed. All compounds decomposed to some extent except F-13B1 and F-113 at 150/sup o/C. The decomposition product was carbon dioxide except from F-21 and F-22, which decomposed more readily than the other Freons because of their hydrogen atoms and which yielded carbon monoxide. The sieves were not regenerated by sweeping with water in nitrogen, although adsorbed halogens were displaced and formed strong acids. Halogenated hydracids formed alongmore » with carbon dioxide by reaction with constitutional water of the sieves are probably responsible for the destruction of the sieve. Diagram, graphs, tables, and 17 references.« less

  13. A stochastic modeling of isotope exchange reactions in glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.

  14. A study of various synthetic routes to produce a halogen-labeled traction fluid

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Zimmer, H.

    1978-01-01

    Several synthetic routes were studied for the synthesis of the compound 1, 1, 3-trimethyl-1, 3-dicyclohexyl-2 chloropropane. This halogen-labeled fluid would be of use in the study of high traction lubricants under elastohydrodynamic lubrication conditions using infrared emission spectroscopy. The synthetic routes included: dimerization of alpha-methylstyrene, methanol addition to alpha-methylstyrene, a Wittig reaction, and an organometallic approach. Because of steric hindrance and competing reactions, none of these routes were successful.

  15. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  16. Induction and prevention of micronuclei and chromosomal aberrations in cultured human lymphocytes exposed to the light of halogen tungsten lamps.

    PubMed

    D'Agostini, F; Caimo, A; De Filippi, S; De Flora, S

    1999-07-01

    Previous studies have shown that the light emitted by halogen tungsten lamps contains UV radiation in the UV-A, UV-B and UV-C regions, induces mutations and irreparable DNA damage in bacteria, enhances the frequency of micronuclei in cultured human lymphocytes and is potently carcinogenic to the skin of hairless mice. The present study showed that the light emitted by an uncovered, traditional halogen lamp induces a significant, dose-related and time-related increase not only in micronuclei but also in chromosome-type aberrations, such as breaks, and even more in chromatid-type aberrations, such as isochromatid breaks, exchanges and isochromatid/chromatid interchanges, all including gaps or not, in cultured human lymphocytes. All these genotoxic effects were completely prevented by shielding the same lamp with a silica glass cover, blocking UV radiation. A new model of halogen lamp, having the quartz bulb treated in order to reduce the output of UV radiation, was considerably less genotoxic than the uncovered halogen lamp, yet induction of chromosomal alterations was observed at high illuminance levels.

  17. Understanding and Practical Use of Ligand and Metal Exchange Reactions in Thiolate-Protected Metal Clusters to Synthesize Controlled Metal Clusters.

    PubMed

    Niihori, Yoshiki; Hossain, Sakiat; Sharma, Sachil; Kumar, Bharat; Kurashige, Wataru; Negishi, Yuichi

    2017-05-01

    It is now possible to accurately synthesize thiolate (SR)-protected gold clusters (Au n (SR) m ) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Au n (SR) m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atomic Force Microscopy Nanomechanical Mapping Visualizes Interfacial Broadening between Networks Due to Chemical Exchange Reactions.

    PubMed

    He, Changfei; Shi, Shaowei; Wu, Xuefei; Russell, Thomas P; Wang, Dong

    2018-06-06

    The interfacial broadening between two different epoxy networks having different moduli was nanomechanically mapped. The interfacial broadening of the two networks produced an interfacial zone having a gradient in the concentration and, hence, properties of the original two networks. This interfacial broadening of the networks leads to the generation of a new network with a segmental composition corresponding to a mixture of the original two network segments. The intermixing of the two, by nature of the exchange reactions, was on the segmental level. By mapping the time dependence of the variation in the modulus at different temperatures, the kinetics of the exchange reaction was measured and, by varying the temperature, the activation energy of the exchange reaction was determined.

  19. Experimental and computational evidence of halogen bonds involving astatine

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Maurice, Rémi; Teze, David; Graton, Jérôme; Champion, Julie; Montavon, Gilles; Galland, Nicolas

    2018-03-01

    The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.

  20. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, Ben L.; Harvey, Judson W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid‐flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment‐water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near‐surface sediments across a range in fluid‐flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid‐flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid‐flow and sediment conditions.

  1. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    NASA Astrophysics Data System (ADS)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  2. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    PubMed

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  3. The halogen bond: Nature and applications

    NASA Astrophysics Data System (ADS)

    Costa, Paulo J.

    2017-10-01

    The halogen bond, corresponding to an attractive interaction between an electrophilic region in a halogen (X) and a nucleophile (B) yielding a R-X⋯B contact, found applications in many fields such as supramolecular chemistry, crystal engineering, medicinal chemistry, and chemical biology. Their large range of applications also led to an increased interest in their study using computational methods aiming not only at understanding the phenomena at a fundamental level, but also to help in the interpretation of results and guide the experimental work. Herein, a succinct overview of the recent theoretical and experimental developments is given starting by discussing the nature of the halogen bond and the latest theoretical insights on this topic. Then, the effects of the surrounding environment on halogen bonds are presented followed by a presentation of the available method benchmarks. Finally, recent experimental applications where the contribution of computational chemistry was fundamental are discussed, thus highlighting the synergy between the lab and modeling techniques.

  4. Magnesium Bisamide-Mediated Halogen Dance of Bromothiophenes.

    PubMed

    Yamane, Yoshiki; Sunahara, Kazuhiro; Okano, Kentaro; Mori, Atsunori

    2018-03-16

    A magnesium bisamide-mediated halogen dance of bromothiophenes is described. The thienylmagnesium species generated in situ is more stable than the corresponding thienyllithium species, which was applied to trap the transient anion species with several electrophiles, such as allyl iodide, phenyl isocyanate, and tributylstannyl chloride. The utility of the magnesium bisamide-mediated halogen dance is useful in the concise synthesis of a medicinally advantageous compound via a one-pot, ester-directed halogen dance/Negishi cross coupling.

  5. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  6. Reactive Resonances in N+N2 Exchange Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.

    2003-01-01

    Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.

  7. Halogenated Peptides as Internal Standards (H-PINS)

    PubMed Central

    Mirzaei, Hamid; Brusniak, Mi-Youn; Mueller, Lukas N.; Letarte, Simon; Watts, Julian D.; Aebersold, Ruedi

    2009-01-01

    As the application for quantitative proteomics in the life sciences has grown in recent years, so has the need for more robust and generally applicable methods for quality control and calibration. The reliability of quantitative proteomics is tightly linked to the reproducibility and stability of the analytical platforms, which are typically multicomponent (e.g. sample preparation, multistep separations, and mass spectrometry) with individual components contributing unequally to the overall system reproducibility. Variations in quantitative accuracy are thus inevitable, and quality control and calibration become essential for the assessment of the quality of the analyses themselves. Toward this end, the use of internal standards cannot only assist in the detection and removal of outlier data acquired by an irreproducible system (quality control) but can also be used for detection of changes in instruments for their subsequent performance and calibration. Here we introduce a set of halogenated peptides as internal standards. The peptides are custom designed to have properties suitable for various quality control assessments, data calibration, and normalization processes. The unique isotope distribution of halogenated peptides makes their mass spectral detection easy and unambiguous when spiked into complex peptide mixtures. In addition, they were designed to elute sequentially over an entire aqueous to organic LC gradient and to have m/z values within the commonly scanned mass range (300–1800 Da). In a series of experiments in which these peptides were spiked into an enriched N-glycosite peptide fraction (i.e. from formerly N-glycosylated intact proteins in their deglycosylated form) isolated from human plasma, we show the utility and performance of these halogenated peptides for sample preparation and LC injection quality control as well as for retention time and mass calibration. Further use of the peptides for signal intensity normalization and retention time

  8. Self-exchange reactions of radical anions in n-hexane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werst, D. W.; Chemistry

    The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.

  9. Halogens in chondritic meteorites and terrestrial accretion

    NASA Astrophysics Data System (ADS)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  10. Why Seemingly Trivial Events Sometimes Evoke Strong Emotional Reactions: The Role of Social Exchange Rule Violations.

    PubMed

    Leary, Mark R; Diebels, Kate J; Jongman-Sereno, Katrina P; Fernandez, Xuan Duong

    2015-01-01

    People sometimes display strong emotional reactions to events that appear disproportionate to the tangible magnitude of the event. Although previous work has addressed the role that perceived disrespect and unfairness have on such reactions, this study examined the role of perceived social exchange rule violations more broadly. Participants (N = 179) rated the effects of another person's behavior on important personal outcomes, the degree to which the other person had violated fundamental rules of social exchange, and their reactions to the event. Results showed that perceptions of social exchange rule violations accounted for more variance in participants' reactions than the tangible consequences of the event. The findings support the hypothesis that responses that appear disproportionate to the seriousness of the eliciting event are often fueled by perceived rule violations that may not be obvious to others.

  11. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance.

    PubMed

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-03-31

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  12. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance

    PubMed Central

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-01-01

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology. PMID:20479964

  13. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  14. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  15. Why Seemingly Trivial Events Sometimes Evoke Strong Emotional Reactions: The Role of Social Exchange Rule Violations

    PubMed Central

    Leary, Mark R.; Diebels, Kate J.; Jongman-Sereno, Katrina P.; Fernandez, Xuan Duong

    2015-01-01

    ABSTRACT People sometimes display strong emotional reactions to events that appear disproportionate to the tangible magnitude of the event. Although previous work has addressed the role that perceived disrespect and unfairness have on such reactions, this study examined the role of perceived social exchange rule violations more broadly. Participants (N = 179) rated the effects of another person’s behavior on important personal outcomes, the degree to which the other person had violated fundamental rules of social exchange, and their reactions to the event. Results showed that perceptions of social exchange rule violations accounted for more variance in participants’ reactions than the tangible consequences of the event. The findings support the hypothesis that responses that appear disproportionate to the seriousness of the eliciting event are often fueled by perceived rule violations that may not be obvious to others. PMID:26331429

  16. Unexpected autumnal halogen activity in the lower troposphere at Neumayer III/Antarctica

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Schmitt, Stefan; Weller, Rolf; Schaefer, Thomas; Platt, Ulrich

    2017-04-01

    The influence of Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) on the lower polar troposphere has been subject of intense research for several decades. Ozone Depletion Events (ODEs) caused by the catalytic reaction of tropospheric ozone with inorganic halogen species or the oxidation of gaseous elemental mercury are well observed phenomena that occur during the respective springtime in both Arctic and Antarctica. Chlorine atoms also react more efficiently with hydrocarbons than e.g. OH radicals and all reactive halogen species can furthermore influence the atmospheric sulphur or nitrate cycles. While an autocatalytic release mechanism from salty surfaces, the so called bromine explosion, has been identified to rapidly increase inorganic bromine mixing ratios many aspects of atmospheric halogen chemistry in polar regions remains unclear. Since January 2016, we are operating an active Long Path DOAS instrument at Neumayer III on the Antarctic Ekström shelf ice designed for autonomous measurements. This instrument is able to detect a wide range of trace gases absorbing in the UV/Vis including ClO, BrO, OClO, IO, I2, OIO, ozone, NO2, H2O, O4, and SO2 at a temporal resolution of 5-30 minutes. The analysis of the first year of observations shows several surprising findings which give new insights into polar halogen chemistry. E.g. we observe surprisingly strong bromine activity in late summer and autumn (in addition to well-known springtime events) with mixing ratios often higher than 20 pptv. We could even observe peak mixing ratios of 110 pptv. The observed BrO levels could be the result of local/regional chemistry rather than long-range transport and modulated by the stability of the boundary layer. Also, there are hints for NOx - driven halogen activation. Furthermore, chlorine monoxide (ClO) and OClO mixing ratios of several ten pptv could be detected on a number of days, however the source mechanism for reactive chlorine remains unclear. We will give an

  17. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    NASA Astrophysics Data System (ADS)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  18. Nitroxyl Radical plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer

    PubMed Central

    Wu, Adam; Mader, Elizabeth A.; Datta, Ayan; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.

    2009-01-01

    Bimolecular rate constants have been measured for reactions that involve hydrogen atom transfer (HAT) from hydroxylamines to nitroxyl radicals, using the stable radicals TEMPO• (2,2,6,6-tetramethylpiperidine-1-oxyl radical), 4-oxo-TEMPO• (2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl radical), di-tert-butylnitroxyl (tBu2NO•), and the hydroxylamines TEMPO-H, 4-oxo-TEMPO-H, 4-MeO-TEMPO-H (2,2,6,6-tetramethyl-N-hydroxy-4-methoxy-piperidine), and tBu2NOH. The reactions have been monitored by UV-vis stopped-flow methods, using the different optical spectra of nitroxyl radicals. The HAT reactions all have |ΔGo| ≤ 1.4 kcal mol−1 and therefore are close to self-exchange reactions. The reaction of 4-oxo-TEMPO• + TEMPO-H → 4-oxo-TEMPO-H + TEMPO• occurs with k2H,MeCN = 10 ± 1 M−1 s−1 in MeCN at 298 K (K2H,MeCN = 4.5 ± 1.8). Surprisingly, the rate constant for the analogous deuterium atom transfer reaction is much slower: k2D,MeCN = 0.44 ± 0.05 M−1 s−1 with k2H,MeCN/k2D,MeCN = 23 ± 3 at 298 K. The same large kinetic isotope effect (KIE) is found in CH2Cl2, 23 ± 4, suggesting that the large KIE is not caused by solvent dynamics or hydrogen bonding to solvent. The related reaction of 4-oxo-TEMPO• with 4-MeO-TEMPO-H(D) also has a large KIE, k3H/k3D = 21 ± 3 in MeCN. For these three reactions, the EaD – EaH values, between 0.3 ± 0.6 and 1.3 ± 0.6 kcal mol−1, and the log(AH/AD) values, between 0.5 ± 0.7 and 1.1 ± 0.6, indicate that hydrogen tunneling plays an important role. The related reaction of tBu2NO• + TEMPO-H(D) in MeCN has a large KIE, 16 ± 3 in MeCN, and very unusual isotopic activation parameters, EaD – EaH = −2.6 ± 0.4 and log(AH/AD) = 3.1 ± 0.6. Computational studies, using POLYRATE, also indicate substantial tunneling in the (CH3)2NO• + (CH3)2NOH model reaction for the experimental self-exchange processes. Additional calculations on TEMPO(•/H), tBu2NO(•/H), and Ph2NO(•/H) self-exchange reactions reveal why the

  19. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    DTIC Science & Technology

    2013-04-01

    DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were

  20. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  1. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  2. A new class of halogen bonds that avoids the σ-hole

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Ma, Ning; Wang, Weizhou

    2012-04-01

    A new class of halogen bonds of the type X = Hal⋯Y has been investigated by using the density functional theory calculations. The strength of this new class of halogen bonds is in the range of 90-120 kcal/mol, which is greatly larger than that of the conventional halogen bond of the type X-Hal⋯Y. The geometry of this new class of halogen bonds is not determined by the halogen's positive σ-hole. Natural bond orbital analysis shows it is the n → π∗ interaction that determines the geometry of this new class of halogen bonds. Experimental results are in good agreement with the theoretical predictions.

  3. Preparation, IR spectroscopy, and time-of-flight mass spectrometry of halogenated and methylated Si(111)

    NASA Astrophysics Data System (ADS)

    Salingue, Nils; Hess, Peter

    2011-09-01

    The preparation of chlorine-, bromine-, and iodine-terminated silicon surfaces (Si(111):Cl, Br, and I) using atomically flat Si(111)-(1×1):H is described. The halogenated surfaces were obtained by photochemically induced radical substitution reactions with the corresponding dihalogen in a Schlenk tube by conventional inert gas chemistry. The nucleophilic substitution of the Si-Cl functionality with the Grignard reagent (CH3MgCl) resulted in the unreconstructed methylated Si(111)-(1×1):CH3 surface. The halogenated and methylated silicon surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and laser-induced desorption of monolayers (LIDOM). Calibration of the desorption temperature via analysis of time-of-flight (TOF) distributions as a function of laser fluence allowed the determination of the originally emitted neutral fragments by TOF mass spectrometry using electron-impact ionization. The halogens were desorbed atomically and as SiX n (X = Cl, Br) clusters. The methyl groups mainly desorbed as methyl and ethyl fragments and a small amount of +SiCH3.

  4. Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3

    NASA Astrophysics Data System (ADS)

    Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.

    2016-04-01

    We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

  5. Nonsymmetrical 3,4-dithienylmaleimides by cross-coupling reactions with indium organometallics: synthesis and photochemical studies.

    PubMed

    Mosquera, Angeles; Férnandez, M Isabel; Canle Lopez, Moisés; Pérez Sestelo, José; Sarandeses, Luis A

    2014-10-27

    The synthesis and photochemical study of novel nonsymmetrical 1,2-dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium-catalyzed cross-coupling reactions of 5-susbtituted-2-methyl-3-thiophenyl indium reagents with 3,4-dichloromaleimides. The required organoindium reagents were prepared from 2-methyl-3,5-dibromothiophene by a selective (C-5) coupling reaction with triorganoindium compounds (R3 In) and subsequent metal-halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3 In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON-OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    PubMed

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  8. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  9. Investigating Planetary Volatile Accretion Mechanisms Using the Halogens

    NASA Astrophysics Data System (ADS)

    Ballentine, C. J.; Clay, P. L.; Burgess, R.; Busemann, H.; Ruzié, L.; Joachim, B.; Day, J. M.

    2014-12-01

    Depletion of the volatile elements in the Earth relative to the CI chondrites is roughly correlated with volatility, or decreasing condensation temperature. For the heavy halogen group elements (Cl, Br and I), volatility alone does not account for their apparent depletion, which early data has suggested is far greater than predicted [1-2]. Such depletion has been used to argue for the preferential loss of halogens by, amongst other processes, impact-driven erosive loss from Earth's surface [2]. Little consensus exists as to why the halogens should exhibit such preferential behavior during accretionary processes. Early efforts to constrain halogen abundance and understand their behavior in both Earth and planetary materials [3-6] have been hampered by their typically low abundance (ppb level) in most geologic materials. We present the results of halogen analysis of 23 chondrite samples, selected to represent diverse groups and petrologic type. Halogen abundances were measured by neutron irradiation noble gas mass spectrometry (NI-NGMS). Significant concentration heterogeneity is observed within some samples. However, a single Br/Cl and I/Cl ratio of 1.9 ± 0.2 (x 10-3) and 335 ± 10 (x 10-6) can be defined for carbonaceous chondrites with a good correlation between Br and Cl (R2 = 0.97) and between I and Cl (R2 = 0.84). Ratios of I/Cl overlap with terrestrial estimates of Bulk Silicate Earth and Mid Ocean Ridge Basalts. Similarly, good correlations are derived for enstatite (E) chondrites and a sulfide- and halogen- rich subset of E-chondrites. Chlorine abundances of CI (Orgueil) in this study are lower by factor of ~ 3 than the value of ~ 700 ppm Cl (compilation in [1]). Our results are similar to early discarded low values for Ivuna and Orgueil from [5,6] and agree more closely with values for CM chondrites. Halogens may not be as depleted in Earth as previously suggested, or a high degree of heterogeneity in the abundance of these volatile elements in

  10. Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions.

    PubMed

    Chattaraj, Pratim K; Ayers, Paul W; Melin, Junia

    2007-08-07

    Ayers, Parr, and Pearson recently showed that insight into the hard/soft acid/base (HSAB) principle could be obtained by analyzing the energy of reactions in hard/soft exchange reactions, i.e., reactions in which a soft acid replaces a hard acid or a soft base replaces a hard base [J. Chem. Phys., 2006, 124, 194107]. We show, in accord with the maximum hardness principle, that the hardness increases for favorable hard/soft exchange reactions and decreases when the HSAB principle indicates that hard/soft exchange reactions are unfavorable. This extends the previous work of the authors, which treated only the "double hard/soft exchange" reaction [P. K. Chattaraj and P. W. Ayers, J. Chem. Phys., 2005, 123, 086101]. We also discuss two different approaches to computing the hardness of molecules from the hardness of the composing fragments, and explain how the results differ. In the present context, it seems that the arithmetic mean of fragment softnesses is the preferable definition.

  11. Exciting baryon resonances in isobar charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodriguez-Sanchez, J. L.; Vargas, J.; Alavarez-Pol, H.; Aumann, T.; Atkinson, J.; Ayyad, Y.; Beceiro, S.; Boretzky, K.; Chatillon, A.; Cortina, D.; Diaz, P.; Estrade, A.; Geissel, H.; Lenske, H.; Litvinov, Y.; Mostazo, M.; Paradela, C.; Pietri, S.; Prochazka, A.; Takechi, M.; Vidaña, I.; Weick, H.; Winfield, J.

    2017-11-01

    Isobaric charge-exchange reactions induced by different tin isotopes have been investigated at GSI. The high-resolving power of the FRS spectrometer made it possible to separate elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component was associated to the in-medium excitation of nucleon resonances such as the Delta and Roper resonances. These data are expected to contribute to better understand the in-medium properties of baryon resonances but also to investigate the abundance of protons and neutrons at the nuclear periphery.

  12. Noble gas isotopes and halogens in volatile-rich inclusions in diamonds

    NASA Technical Reports Server (NTRS)

    Burgess, Raymond; Turner, Grenville

    1994-01-01

    Application of the (40)Ar-(39)Ar method and noble gas studies to diamonds has increased our understanding of their age relationships to the host kimberlite or lamproite, and of the source and composition of volatile-rich fluids in the upper mantle. The properties of diamond (inert, high mechanical strength and low gas diffusivities) means they are especially useful samples for studying gases trapped deep within the earth (less than 150 km) as they are unlikely to have undergone loss or exchange of entrapped material since formation. Volatile-rich fluids (H2O-CO2) are important agents for metasomatic processes in the upper mantle, and the noble gases and halogens preferentially partition into this phase leading to a strong geochemical coherence between these groups of elements. The abundances of the halogens in the major reservoirs of the Earth shows a marked progression from chlorine, concentrated in the oceans, through to iodine which, through its affinity to organic material, is concentrated mainly in sediments. Abundances in the upper mantle are low. This is particularly true for iodine which is of special interest in view of its potential significance as an indicator of sediment recycling and by way of its link to (129)Xe amomalies in the mantle through the low extinct isotope (129)I. Extensions of the (40)Ar-(39)Ar technique enable measurements of halogens and other elements (K, Ca, Ba, U) by production of noble gas isotopes from these species during neutron irradiation. Samples analyzed in this way include 15 coated stones from an unknown source in Zaire, 3 boarts from the Jwaneng and 1 boart from the Orapa kimberlites, both in Botswana.

  13. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  14. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations.

    PubMed

    Comba, Peter; Wunderlich, Steffen

    2010-06-25

    When the dichloroiron(II) complex of the tetradentate bispidine ligand L=3,7-dimethyl-9-oxo-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate methyl ester is oxidized with H(2)O(2), tBuOOH, or iodosylbenzene, the high-valent Fe=O complex efficiently oxidizes and halogenates cyclohexane. Kinetic D isotope effects and the preference for the abstraction of tertiary over secondary carbon-bound hydrogen atoms (quantified in the halogenation of adamantane) indicate that C-H activation is the rate-determining step. The efficiencies (yields in stoichiometric and turnover numbers in catalytic reactions), product ratios (alcohol vs. bromo- vs. chloroalkane), and kinetic isotope effects depend on the oxidant. These results suggest different pathways with different oxidants, and these may include iron(IV)- and iron(V)-oxo complexes as well as oxygen-based radicals.

  15. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  16. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  17. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  18. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  19. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  20. Hyperbranched Polycarbosilanes via Nucleophilic Substitution Reactions

    NASA Astrophysics Data System (ADS)

    Interrante, L.; Shen, Q.

    Nucleophilic substitution reactions involving organomagnesium (Grignard) [1] and organolithium reagents have been used extensively for many years to form Si—C bonds (see Reaction Scheme 12.1). However, their use for the construction of hyperbranched polymers whose backbone contains, as a major structural component, silicon—carbon bonds, i.e., polycarbosilanes [2] is relatively more recent. (12.1) begin{array}{l} {{R}}_3 {{SiX + MR'}} to {{R}}_3 {{SiR' + MX}} \\ left({{{R,R' = alkyl}} {{or aryl;}} {{M = Mg(X),}} {{Li,}} {{Na}};{{X = halogen, OR''}}} right) \\ This chapter focuses on the application of such nucleophilic substitution reactions toward the synthesis of hyperbranched polycarbosilanes, with particular emphasis on those preparations that have resulted in relatively well characterized products. These syntheses are organized by the type of ABn monomer unit used (see Section 1.2), where A and B refer to the (C)X and (Si)Xn, respectively, functional ends of the monomer unit and where the nature of the coupling reaction leads to entirely or primarily Si—C bond formation. In most cases, these are “one-pot” reactions that employ monomers that bear halogen or alkoxy groups on the C and Si ends of the unit. Indeed, hyperbranched polycarbosilanes have been described, in general, as “obtained in one synthetic step via a random, one-pot polymerization of multifunctional monomers of AB n type” [2]. Treatment of the ABn monomer with either elemental Mg or an organolithium reagent, ideally (but not always) forms a complexed carbanion (the nucleophile) by reaction with the C-X end of the monomer unit, resulting in an intermediate of the type, (XxM)CSiXn, where M = Mg or Li, X = halogen or alkoxy, and x = 1 (Mg) or 0 (Li). Self-coupling of this reagent via reactions of the type shown in Reaction Scheme 12.1 leads to oligomeric and polymeric products that are connected primarily through Si—C bonds and yield an inorganic MXx by-product.

  1. Scientific conferences: A big hello to halogen bonding

    NASA Astrophysics Data System (ADS)

    Erdelyi, Mate

    2014-09-01

    Halogen bonding connects a wide range of subjects -- from materials science to structural biology, from computation to crystal engineering, and from synthesis to spectroscopy. The 1st International Symposium on Halogen Bonding explored the state of the art in this fast-growing field of research.

  2. The loss rates of O+ in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Shen, C.

    2014-03-01

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  3. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  4. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  5. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shuiqin; Zhang, Lujia; Cui, Dongbin; Yao, Zhiqiang; Gao, Bei; Lin, Jinping; Wei, Dongzhi

    2016-10-01

    The use of halogen bond is widespread in drug discovery, design, and clinical trials, but is overlooked in drug biosynthesis. Here, the role of halogen bond in the nitrilase-catalyzed synthesis of ortho-, meta-, and para-chlorophenylacetic acid was investigated. Different distributions of halogen bond induced changes of substrate binding conformation and affected substrate selectivity. By engineering the halogen interaction, the substrate selectivity of the enzyme changed, with the implication that halogen bond plays an important role in biosynthesis and should be used as an efficient and reliable tool in enzymatic drug synthesis.

  6. Tropospheric impacts of volcanic halogen emissions: first simulations of reactive halogen chemistry in the Eyjafjallajökull eruption plume

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda

    2013-04-01

    Volcanic plumes are regions of high chemical reactivity. Instrumented research aircraft that probed the 2010 Icelandic Eyjafjallajökull eruption plume identified in-plume ozone depletion and reactive halogens (Cl, BrO), the latter also detected by satellite. These measurements add to growing evidence that volcanic plumes support rapid reactive halogen chemistry, with predicted impacts including depletion of atmospheric oxidants and mercury deposition. However, attempts to simulate volcanic plume halogen chemistry and predict impacts are subject to considerable uncertainties. e.g. in rate constants for HOBr reactive uptake (see this session: EGU2013-6076), or in the high-temperature initialisation. Model studies attempting to replicate volcanic plume halogen chemistry are restricted by a paucity of field data that is required both for model tuning and verification, hence reported model 'solutions' are not necessarily unique. To this end, the aircraft, ground-based and satellite studies of the Eyjafjallajökull eruption provide a valuable combination of datasets for improving our understanding of plume chemistry and impacts. Here, PlumeChem simulations of Eyjafjallajökull plume reactive halogen chemistry and impacts are presented and verified by observations for the first time. Observed ozone loss, a function of plume strength and age, is quantitatively reproduced by the model. Magnitudinal agreement to reported downwind BrO and Cl is also shown. The model predicts multi-day impacts, with reactive bromine mainly as BrO, HOBr and BrONO2 during daytime, and Br2 and BrCl at night. BrO/SO2 is reduced in more dispersed plumes due to enhanced partitioning to HOBr, of potential interest to satellite studies of BrO downwind of volcanoes. Additional predicted impacts of Eyjafjallajökull volcanic plume halogen chemistry include BrO-mediated depletion of HOx that reduces the rate of SO2 oxidation to H2SO4, hence the formation of sulphate aerosol. The model predicts NOx is

  7. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional {sup 31}P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K{sub eq}, the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process couldmore » be realized.« less

  8. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    DOE PAGES

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; ...

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K *,a₂/f₂), (K *,ρ/ω), (K *₂,a₂/f₂), and (K *₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds inmore » the search for strangeonia, hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.« less

  9. Halogen bonding based recognition processes: a world parallel to hydrogen bonding.

    PubMed

    Metrangolo, Pierangelo; Neukirch, Hannes; Pilati, Tullio; Resnati, Giuseppe

    2005-05-01

    Halogen bonding is the noncovalent interaction between halogen atoms (Lewis acids) and neutral or anionic Lewis bases. The main features of the interaction are given, and the close similarity with the hydrogen bonding will become apparent. Some heuristic principles are presented to develop a rational crystal engineering based on halogen bonding. The focus is on halogen-bonded supramolecular architectures given by halocarbons. The potential of the interaction is shown by useful applications in the field of synthetic chemistry, material science, and bioorganic chemistry.

  10. Aromatic fluorine compounds. XI. Replacement of chlorine by fluorine in halopyridines

    USGS Publications Warehouse

    Finger, G.C.; Starr, L.D.; Dickerson, D.R.; Gutowsky, H.S.; Hamer, J.

    1963-01-01

    The ??-halogenated pyridines react with potassium fluoride in various solvents to give replacement of the ??-halogen by fluorine. A 50% yield of 2-fluoropyridine was obtained from 2-chloropyridine by heating with potassium fluoride in dimethyl sulfone or tetramethylene sulfone for twenty-one days; 2-bromopyridine gave a similar yield with a heating period of only seven days. The ??-halogens of the polyhalopyridines undergo the exchange reaction more readily than do the halogens of the ??-monohalopyridines. The proposed structures of the fluoropyridines are supported by alternate syntheses and by n.m.r. studies.

  11. Geometric phase effects in ultracold hydrogen exchange reactions

    NASA Astrophysics Data System (ADS)

    Naduvalath, Balakrishnan; Croft, James F. E.; Hazra, Jisha; Kendrick, Brian K.

    2017-04-01

    Electronically non-adiabatic effects play an important role in many chemical reactions. The geometric phase, also known as the Berry's phase, arises from the adiabatic transport of the electronic wave function around a conical intersection between two electronic potential energy surfaces. It is shown that in ultracold collisions of H and D atoms with vibrationally excited HD, inclusion of the geometric phase leads to constructive and destructive interferences between non-reactive and exchange components of the wave function. This results in strong enhancement or suppression of reactivity depending on the final rovibrational levels of the scattered HD molecules. The effect is illustrated for non-rotating and rotationally excited HD molecules in the v = 4 vibrational level for which the H+HD and D+HD reactions occur through a barrierless path. This work was supported in part by NSF Grant PHY-1505557 (N.B.), ARO MURI Grant No. W911NF-12-1-0476 (N.B.), and DOE LDRD Grant No. 20170221ER (B.K.).

  12. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

    PubMed Central

    Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B

    1985-01-01

    A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371

  13. Structures and electronic states of halogen-terminated graphene nano-flakes

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Iyama, Tetsuji

    2015-12-01

    Halogen-functionalized graphenes are utilized as electronic devices and energy materials. In the present paper, the effects of halogen-termination of graphene edge on the structures and electronic states of graphene flakes have been investigated by means of density functional theory (DFT) method. It was found that the ionization potential (Ip) and electron affinity of graphene (EA) are blue-shifted by the halogen termination, while the excitation energy is red-shifted. The drastic change showed a possibility as electronic devices such as field-effect transistors. The change of electronic states caused by the halogen termination of graphene edge was discussed on the basis of the theoretical results.

  14. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  15. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  16. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOEpatents

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  17. Halogen speciation in volcanic plumes - Development of compact denuder sampling techniques with in-situ derivatization followed by gas chromatography-mass spectrometry and their application at Mt. Etna, Mt. Nyiragongo and Mt. Nyamulagira in 2015.

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2016-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulfur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometer at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2as an intermediate product. The reaction of HBr to BrO involves heterogeneous reactions involving aerosol particles, while Br2 reacts directly with O3 to form BrO in a UV radiation induced mechanism. Due to the lack of analytical approaches for the species analysis of halogens (HBr, Br2, Br, BrCl, HOBr) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their speciation and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study a gas diffusion denuder sampling method using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (Rüdiger et al., 2015) was characterized by reaction chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding

  18. Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface.

    PubMed

    Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao

    2018-01-09

    Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.

  19. Chemistry, Characterization and Processing of IMC Curing Polymers.

    DTIC Science & Technology

    1983-07-01

    example, nitronium hexafluorosilicate (Ref- erence 110), nitronium hexafluorophosphate (Reference 111) and nitronium trifluorometh- anesulfonate(triflate...CCLtoo) "C The dilithio compound underwent lithium -halogen exchange instead of displacement with bromophenylacetylene (Reference 129) due to the...positive character of the bromine on l-bromo-2-phenylacetylene. The reaction product of the lithium -bromine exchange reaction ൭ was identified as 1,4

  20. The unique role of halogen substituents in the design of modern agrochemicals.

    PubMed

    Jeschke, Peter

    2010-01-01

    The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.

  1. Kinetics and mechanisms of some atomic oxygen reactions

    NASA Technical Reports Server (NTRS)

    Cvetanovic, R. J.

    1987-01-01

    Mechanisms and kinetics of some reactions of the ground state of oxygen atoms, O(3P), are briefly summarized. Attention is given to reactions of oxygen atoms with several different types of organic and inorganic compounds such as alkanes, alkenes, alkynes, aromatics, and some oxygen, nitrogen, halogen and sulfur derivatives of these compounds. References to some recent compilations and critical evaluations of reaction rate constants are given.

  2. Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.

    PubMed

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-05-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.

  3. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation

    PubMed Central

    2017-01-01

    Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution. PMID:28581720

  4. Extending Halogen-based Medicinal Chemistry to Proteins

    PubMed Central

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B.; Smith, Brian J.; Menting, John G.; Whittaker, Jonathan; Lawrence, Michael C.; Meuwly, Markus; Weiss, Michael A.

    2016-01-01

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-TyrB26]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (TyrB16, PheB24, PheB25, 3-I-TyrB26, and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-TyrB26]insulin analog (determined as an R6 zinc hexamer). Given that residues B24–B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a “micro-receptor” complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such “halogen engineering” promises to extend principles of medicinal chemistry to proteins. PMID:27875310

  5. Double Charge Exchange Reactions and Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  6. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    PubMed

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  7. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  8. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  9. Halogens are key cofactors in building of collagen IV scaffolds outside the cell.

    PubMed

    Brown, Kyle L; Hudson, Billy G; Voziyan, Paul A

    2018-05-01

    The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.

  10. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.

    PubMed

    Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel

    2016-11-04

    Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reactions and Spectroscopy of Excited Nitrenes

    DTIC Science & Technology

    1992-10-05

    eighteen month period is described. In the first project. reactions of halogen amines with excess H or D atams were studied as sources c -,, t, Žd NF and...NC1. The reaction of H /D with nit- rogen trichloride was scaled .;ent and product densities about 100 times greater than those of previous • .-. nts...an investigation of the reaction of NFC1 2 with H atoms. This work was performed with additional support from a second AFOSR sup- ported grant (AFOSR

  12. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  13. The relation between molecular structure and biological activity among mononitrophenols containing halogens

    USGS Publications Warehouse

    Applegate, Vernon C.; Johnson, B.G.H.; Smith, Manning A.

    1966-01-01

    The results of tests of the biological activity of certain nitrophenols containing halogen are reported. Some of these are shown to be significantly more toxic to larvae of the sea lamprey (Petromyzon marinus L.) than to fishes. It is proposed that the death of lamprey larvae exposed to these compounds results from an acute hypotension (shock) with concomitant circulatory and respiratory failure. Rainbow trout (Salmo gairdneri), on the other hand, appear to die, at higher concentrations of the toxin, due to a chemically-caused mechanical interference with respiration through the gills. A systematic series of studies of mononitrophenols containing halogens disclosed that those phenols having the nitro group in the para-position and a halogen atom or group in the meta-position are generally more toxic to lampreys than to fish. The halogens or halogen groups used in this study were fluorine, chlorine, bromine, and trifluormethyl. The same substituents in other positions only occasionally gave rise to selectively toxic compounds. The relationship between the selectively active class of nitrophenols containing halogens and other related structures is discussed.

  14. Substituent Effects on the [N-I-N](+) Halogen Bond.

    PubMed

    Carlsson, Anna-Carin C; Mehmeti, Krenare; Uhrbom, Martin; Karim, Alavi; Bedin, Michele; Puttreddy, Rakesh; Kleinmaier, Roland; Neverov, Alexei A; Nekoueishahraki, Bijan; Gräfenstein, Jürgen; Rissanen, Kari; Erdélyi, Máté

    2016-08-10

    We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.

  15. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  16. Double-chamber electrode for spectrochemical determination of chlorine and other halogens

    USGS Publications Warehouse

    de Paiva, Azevedo; Specht, A.W.; Harner, R.S.

    1954-01-01

    A double-chamber, graphite electrode, suitable for d.c. arc determination of halogens by means of the alkaline earth halide bands, is described. An upper chamber holds the alkaline earth compound and an interconnected, lower chamber holds the halogen compound. This arrangement assures that there will be an abundance of alkaline earths in the arc by the time the halogen is volatilized from the lower chamber, and thereby promotes maximum emission of the alkaline earth halide bands. ?? 1954.

  17. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    PubMed Central

    Parker, Kimberly M.; Mitch, William A.

    2016-01-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  18. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  19. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions.

    PubMed

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-10-01

    Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br 2 , BrCl, HOBr, BrO, and BrONO 2 ) while being unreactive to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB-other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br 2 , Cl 2 , and I 2 . In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values <44% for plume ages <1 min, which is consistent with the assumed plume age at the sampling sites. Graphical abstract Illustration of the measurement procedure for the determination of reactive halogen species in volcanic plumes.

  20. Microsomal oxidation of tribromoethylene and reactions of tribromoethylene oxide.

    PubMed

    Yoshioka, Tadao; Krauser, Joel A; Guengerich, F Peter

    2002-11-01

    Halogenated olefins are of interest because of their widespread use in industry and their potential toxicity to humans. Epoxides are among the enzymatic oxidation products and have been studied in regard to their toxicity. Most of the attention has been given to chlorinated epoxides, and we have previously studied the reactions of the mono-, di-, tri-, and tetrachloroethylene oxides. To further test some hypotheses concerning the reactivity of these compounds, we prepared tribromoethylene (TBE) oxide and compared it to trichloroethylene (TCE) oxide and other chlorinated epoxides. TBE oxide reacted with H(2)O about 3 times faster than did TCE oxide. Several hydrolysis products of TBE oxide were the same as formed from TCE oxide, i.e., glyoxylic acid, CO, and HCO(2)H. Br(2)CHCO(2)H was formed from TBE oxide; the yield was higher than for Cl(2)CHCO(2)H formed in the hydrolysis of TCE oxide. The yield of tribromoacetaldehyde was < 0.4% in aqueous buffer (pH 7.4). In rat liver microsomal incubations containing TBE and NADPH, Br(2)CHCO(2)H was a major product, and tribromoacetaldehyde was a minor product. These results are consistent with schemes previously developed for halogenated epoxides, with migration of bromine being more favorable than for chlorine. Reaction of TBE oxide with lysine yielded relatively more N-dihaloacetyllysine and less N-formyllysine than in the case of TCE oxide. This same pattern was observed in the products of the reaction of TBE oxide with the lysine residues in bovine serum albumin. We conclude that the proposed scheme of hydrolysis of halogenated epoxides follows the expected halide order and that this can be used to rationalize patterns of hydrolysis and reactivity of other halogenated epoxides.

  1. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  2. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis.

    PubMed

    Pereira, L S F; Pedrotti, M F; Vecchia, P Dalla; Pereira, J S F; Flores, E M M

    2018-06-20

    A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L -1  NH 4 OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 μg g -1 and 0.07-59 μg g -1 , respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  4. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  5. RESIDUAL RISK ASSESSMENT: HALOGENATED SOLVENTS

    EPA Science Inventory

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Halogenated Solvent Degreasing Facilities. These assessments utilize existing models and d...

  6. Reduction of halogenated ethanes by green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanesmore » having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.« less

  7. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    PubMed

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Halogenation effects on electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, T. C., E-mail: tcf03@fisica.ufpr.br; Lopes, A. R.; Bettega, M. H. F.

    2016-04-28

    We report differential and integral elastic cross sections for low-energy electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3} molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)]more » and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ{sup ∗} resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.« less

  9. Binding interactions of halogenated bisphenol A with mouse PPARα: In vitro investigation and molecular dynamics simulation.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua

    2018-02-01

    The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  11. Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Elbir, Tolga; Dumanoglu, Yetkin; Sofuoglu, Sait C.

    2014-08-01

    It was recently shown that substantial amounts of halogenated volatile organic compounds (VOCs) are formed in chlorine-bleach-containing household products as a result of reactions of sodium hypochlorite with organic product components. Use of these household products results in elevated indoor air halogenated VOC concentrations. Halogenated VOCs in several chlorine-bleach-containing household products (plain, n = 9; fragranced, n = 4; and surfactant-added, n = 29) from Europe and North America were measured in the present study. Chloroform and carbon tetrachloride were the dominating compounds having average concentrations of 9.5 ± 29.0 (average ± SD) and 23.2 ± 44.3 (average ± SD) mg L-1, respectively. Halogenated VOC concentrations were the lowest in plain bleach, slightly higher in fragranced products and the highest in the surfactant-added products. Investigation of the relationship between the halogenated VOCs and several product ingredients indicated that chlorinated VOC formation is closely related to product composition. Indoor air concentrations from the household use of bleach products (i.e., bathroom, kitchen, and hallway cleaning) were estimated for the two dominating VOCs (chloroform and carbon tetrachloride). Estimated indoor concentrations ranged between 0.5 and 1030 (34 ± 123, average ± SD) μg m-3 and 0.3-1124 (82 ± 194, average ± SD) μg m-3 for chloroform and carbon tetrachloride, respectively, indicating substantial increases compared to background. Results indicated that indoor air concentrations from surfactant-added products were significantly higher (p < 0.01) than other categories. The highest concentrations were from the use of surfactant-added bleach products for bathroom cleaning (92 ± 228 and 224 ± 334 μg m-3, average ± SD for chloroform and carbon tetrachloride, respectively). Associated carcinogenic risks from the use of these products were also estimated. The risk levels may reach to considerably high levels for a

  12. Halogen-free benzoxazine based curable compositions for high TG applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  13. Halogen bonding (X-bonding): A biological perspective

    PubMed Central

    Scholfield, Matthew R; Zanden, Crystal M Vander; Carter, Megan; Ho, P Shing

    2013-01-01

    The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials. PMID:23225628

  14. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  15. Nucleophilic ring opening reactions of aziridines.

    PubMed

    Akhtar, Rabia; Naqvi, Syed Ali Raza; Zahoor, Ameer Fawad; Saleem, Sameera

    2018-05-04

    Aziridine ring opening reactions have gained tremendous importance in the synthesis of nitrogen containing biologically active molecules. During recent years, a great effort has been put forward by scientists toward unique bond construction methodologies via ring opening of aziridines. In this regard, a wide range of chiral metal- and organo-catalyzed desymmetrization reactions of aziridines have been reported with carbon, sulfur, oxygen, nitrogen, halogen, and other nucleophiles. In this review, an outline of methodologies adopted by a number of scientists during 2013-2017 for aziridine ring opening reactions as well as their synthetic applications is described.

  16. Development and application of compact denuder sampling techniques with in situ derivatization followed by gas chromatography-mass spectrometry for halogen speciation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten

    2015-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulphur and halogen containing species. The detailed knowledge of volcanic plume chemistry can give insights into subsurface processes and can be considered as a useful geochemical tool for monitoring of volcanic activity, especially halogen to sulphur ratios (e.g. Bobrowski and Giuffrida, 2012; Donovan et al., 2014). The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable by UV spectrometers at a safe distance. Furthermore it is formed in the plume by a multiphase reaction mechanism under depletion of ozone in the plume. The abundance of BrO changes as a function of the reaction time and therefore distance from the vent as well as the spatial position in the plume. Due to the lack of analytical approaches for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr etc.) there are still uncertainties about the magnitude of volcanic halogen emissions and in particular their specificationtheir species and therefore also in the understanding of the bromine chemistry in volcanic plumes (Bobrowski et al., 2007). In this study, the first application of a 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated gas diffusion denuder (Huang and Hoffmann, 2008) on volcanic gases proved to be suitable to collect selectively gaseous bromine species with oxidation states of +1 or 0 (Br2 and BrO(H)), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with bromine gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. The diffusion denuder technique allows sampling of gaseous compounds exclusively without collecting particulate matter. Choosing a flow rate of 500 mL-min-1 and a denuder length of 0.5 m a nearly quantitative collection efficiency was achieved. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography

  17. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  18. Density functional IR, Raman, and VCD spectra of halogen substituted β-lactams

    NASA Astrophysics Data System (ADS)

    Rode, Joanna E.; Dobrowolski, Jan Cz.

    2003-06-01

    Halogenoazetidinones are important as synthetic intermediates for preparation of halogen β-lactam (2-azetidinone) antibiotics and as building blocks for carbohydrates and amino acids. In this paper, we consider the influence of the halogen atom, substituted at the C4 position of the 2-azetidinone ring, on the geometry, IR, Raman, and vibrational circular dichroism spectra. The vibrational spectra were calculated for the chiral 4-( R)-X-2-azetidinone (X=F, Cl or Br) molecules at the B3PW91/aug-cc-pVTZ level. It was shown that the geometry of the molecules studied do not change much upon the change of the halogen atom. In case of the vibrational spectra, the position but even more the intensities depend strongly on the kind of halogen substituent.

  19. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  20. Multifunctional silicon surfaces: reaction of dichlorocarbene generated from Seyferth reagent with hydrogen-terminated silicon (111) surfaces.

    PubMed

    Liu, Wenjun; Sharp, Ian D; Tilley, T Don

    2014-01-14

    Insertion of dichlorocarbene (:CCl2), generated by decomposition of the Seyferth reagent PhHgCCl2Br, into the Si-H bond of a tertiary silane to form a Si-CCl2H group is an efficient homogeneous, molecular transformation. A heterogeneous version of this reaction, between PhHgCCl2Br and a silicon (111) surface terminated by tertiary Si-H bonds, was studied using a combination of surface-sensitive infrared and X-ray photoelectron spectroscopies. The insertion of dichlorocarbene into surface Si-H bonds parallels the corresponding reaction of silanes in solution, to produce surface-bound dichloromethyl groups (Si-CCl2H) covering ∼25% of the silicon surface sites. A significant fraction of the remaining Si-H bonds on the surface was converted to Si-Cl/Br groups during the same reaction, with PhHgCCl2Br serving as a halogen atom source. The presence of two distinct environments for the chlorine atoms (Si-CCl2H and Si-Cl) and one type of bromine atom (Si-Br) was confirmed by Cl 2p, Br 3d, and C 1s X-ray photoelectron spectroscopy. The formation of reactive, halogen-terminated atop silicon sites was also verified by reaction with sodium azide or the Grignard reagent (CH3MgBr), to produce Si-N3 or Si-Me functionalities, respectively. Thus, reaction of a hydrogen-terminated silicon (111) surface with PhHgCCl2Br provides a facile route to multifunctional surfaces possessing both stable silicon-carbon and labile silicon-halogen sites, in a single pot synthesis. The reactive silicon-halogen groups can be utilized for subsequent transformations and, potentially, the construction of more complex organic-silicon hybrid systems.

  1. Halogenated Natural Products in Dolphins: Brain-Blubber Distribution and Comparison with Halogenated Flame Retardants.

    PubMed

    Barón, E; Hauler, C; Gallistl, C; Giménez, J; Gauffier, P; Castillo, J J; Fernández-Maldonado, C; de Stephanis, R; Vetter, W; Eljarrat, E; Barceló, D

    2015-08-04

    Halogenated natural products (MHC-1, TriBHD, TetraBHD, MeO-PBDEs, Q1, and related PMBPs) and halogenated flame retardants (PBDEs, HBB, Dec 602, Dec 603, and DP) in blubber and brain are reported from five Alboran Sea delphinids (Spain). Both HNPs and HFRs were detected in brain, implying that they are able to surpass the blood-brain barrier and reach the brain, which represents a new finding for some compounds, such as Q1 and PMBPs, MHC-1, TriBHD, TetraBHD, or Dec 603. Moreover, some compounds (TetraBHD, BDE-153, or HBB) presented higher levels in brain than in blubber. This study evidence the high concentrations of HNPs in the marine environment, especially in top predators. It shows the importance of further monitoring these natural compounds and evaluating their potential toxicity, when most studies focus on anthropogenic compounds only. While no bioaccumulation was found for ∑HNPs, ∑HFRs increased significantly with body size for both common and striped dolphins. Studies evaluating BBB permeation mechanisms of these compounds together with their potential neurotoxic effects in dolphins are recommended.

  2. Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-02-01

    We present a detailed dynamical study of the kinetics of O(P3)+NO(Π2) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest A'2 and A″2 potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr∝T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, ΔZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.

  3. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk

    2016-01-01

    The feasibility of using biochar as a sorbent to remove nine halogenated phenols (2,4-dichlorophenol, 2,4-dibromophenol, 2,4-difluorophenol, 2-chlorophenol, 4-chlorophenol, 2-bromophenol, 4-bromophenol, 2-fluorophenol, and 4-fluorophenol) and two pharmaceuticals (triclosan and ibuprofen) from water was examined through a series of batch experiments. Types of biochar, synthesized using various biomasses including fallen leaves, rice straw, corn stalk, used coffee grounds, and biosolids, were evaluated. Compared to granular activated carbon (GAC), most of the biochar samples did not effectively remove halogenated phenols or pharmaceuticals from water. The increase in pH and deprotonation of phenols in biochar systems may be responsible for its ineffectiveness at this task. When pH was maintained at 4 or 7, the sorption capacity of biochar was markedly increased. Considering maximum sorption capacity and properties of sorbents and sorbates, it appears that the sorption capacity of biochar for halogenated phenols is related to the surface area and carbon content of the biochar and the hydrophobicity of halogenated phenols. In the cases of triclosan and ibuprofen, the sorptive capacities of GAC, graphite, and biochars were also significantly affected by pH, according to the point of zero charge (PZC) of sorbents and deprotonation of the pharmaceuticals. Pyrolysis temperature did not affect the sorption capacity of halogenated phenols or pharmaceuticals. Based on the experimental observations, some biochars are good candidates for removal of halogenated phenols, triclosan, and ibuprofen from water and soil.

  4. Temporal dynamics of halogenated organic compounds in Marcellus Shale flowback.

    PubMed

    Luek, Jenna L; Harir, Mourad; Schmitt-Kopplin, Philippe; Mouser, Paula J; Gonsior, Michael

    2018-06-01

    The chemistry of hydraulic fracturing fluids and wastewaters is complex and is known to vary by operator, geologic formation, and fluid age. A time series of hydraulic fracturing fluids, flowback fluids, and produced waters was collected from two adjacent Marcellus Shale gas wells for organic chemical composition analyses using ultrahigh resolution mass spectrometry. Hierarchical clustering was used to compare and extract ions related to different fluid ages and many halogenated organic molecular ions were identified in flowback fluids and early produced waters based on exact mass. Iodinated organic compounds were the dominant halogen class in these clusters and were nearly undetectable in hydraulic fracturing fluid prior to injection. The iodinated ions increased in flowback and remained elevated after ten months of well production. We suggest that these trends are mainly driven by dissolved organic matter reacting with reactive halogen species formed abiotically through oxidizing chemical additives applied to the well and biotically via iodide-oxidizing bacteria. Understanding the implications of these identified halogenated organic compounds will require future investigation in to their structures and environmental fate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cross-reactivity of Halogenated Platinum Salts

    EPA Science Inventory

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  7. Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling

    PubMed Central

    Kapoor, Abhijeet; Travesset, Alex

    2014-01-01

    HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 µs), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 25–40) and SwitchII (residues 59–75) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized. PMID:25272152

  8. Manganese Catalyzed C–H Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species thatmore » transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–Mn V$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  9. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  10. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament

    PubMed Central

    Fornander, Louise H.; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki

    2014-01-01

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction. PMID:24304898

  11. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    PubMed

    Fornander, Louise H; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki

    2014-02-01

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  12. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  13. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  14. Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua

    2018-03-01

    The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.

  15. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  16. Evaluating the potential for halogen bonding in ketosteroid isomerase’s oxyanion hole using unnatural amino acid mutagenesis

    PubMed Central

    Kraut, Daniel A; Churchil, Michael J; Dawson, Phillip E

    2009-01-01

    There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds both in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semi-synthetic enzyme containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond. PMID:19260691

  17. Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride

    NASA Astrophysics Data System (ADS)

    Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.

    2017-03-01

    A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

  18. Hydrogen/deuterium exchange in mass spectrometry.

    PubMed

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  19. A Review of Hydrogen/Halogen Flow Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  20. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  1. A Review of Hydrogen/Halogen Flow Cells

    DOE PAGES

    Cho, Kyu Taek; Tucker, Michael C.; Weber, Adam Z.

    2016-05-17

    Flow batteries provide an energy-storage solution for various grid-related stability and service issues that arise as renewable-energy-generation technologies are adopted. Among the most promising flow-battery systems are those using hydrogen/halogen redox couples, which promise the possibility of meeting the cost target of the US Department of Energy (DOE), due to their fast and reversible kinetics and low materials cost. However, significant critical issues and barriers for their adoption remain. In this review of halogen/hydrogen systems, technical and performance issues, and research and development progress are reviewed. The information in this review can be used as a technical guide for researchmore » and development of related redox-flow-battery systems and other electrochemical technologies.« less

  2. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  3. Halogens, Barium and Uranium in Mantle Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Villa, I. M.; Peverelli, V.; Oglialoro, E.; Pettke, D. T.; Frezzotti, M. L.

    2016-12-01

    Halogens are an underexplored geochemical marker. A way to measure halogens at ng/g levels is measuring Ar, Kr and Xe in irradiated samples [1,2]. We derive absolute halogen amounts from rare gas amounts via scapolite monitor SY [2]. Kr-Xe systematics also yield Ba and U concentrations. We combined irradiation with stepheating on carbonate-sulfate-rich fluid inclusions (FI)-bearing xe­no­liths from El Hierro, Canarias: spinel harzburgite XML-7 and spinel dunite XML-1 [3]. Three components are recognized in the rare gas release. (1) Atmospheric surface contamination occurs up to 1000 °C. (2) FI decrepitation by laboratory heating occurs above 1200 °C [4], corresponding to the release of 80,82Kr and 128Xe in the 1200 and 1400 °C steps. Br whole-rock concentrations are 3-8 ng/g; the molar Br/Cl and I/Cl ratios in the harzburgite FI, 9 E-4 resp. 2 E-4, are identical to those in the dunite FI. This sets the halogens in our FI apart from MORB [2]. Halogen-derived rare gases are closely associated to artificial 131Xe from Ba; Ba has a high affinity of for CO2-rich fluids. Daughter minerals in multiphase FI were identified by Raman micro­spectroscopy [4]. The calculated Ba concentrations are 2-6 µg/g. (3) The third component is U-derived 134,136Xe and 86Kr released in a spike at 1000 °C, decoupled from FI. This requires a different carrier than FI, e.g. Ti oxides. As U concentrations are 10-20 pg/g, the U-bearing phase needs to be below a ppm, invisible by petro­graphy. The 136Xe/134Xe ratio > 1 suggests retention of radio­genic Xe. However, analysis of an unirradiated sample detected no radiogenic Xe. It is likely that Xe-U produced in the core of the McMaster reactor (thermal, epithermal and fast neutrons) has a different isotopic composition from that in textbooks, as proposed by [2].[1] Jeffery & Reynolds (1961) J.Geophys. Res. 66, 3582 [2] Kendrick (2012) Chem. Geol. 292, 116 [3] Oglialoro et al (2015) AGU Fall Meeting abstract V21C-3046 [4] Roedder (1965

  4. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  5. 79/81Br nuclear quadrupole resonance spectroscopic characterization of halogen bonds in supramolecular assemblies.

    PubMed

    Cerreia Vioglio, P; Szell, P M J; Chierotti, M R; Gobetto, R; Bryce, D L

    2018-05-28

    Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81 Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81 Br NQR to characterize the electronic changes in the C-Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance ( d Br···N ). Notably, 79/81 Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81 Br NQR resonances.

  6. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  7. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    PubMed

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  8. Inorganic Halogen Oxidizer Research.

    DTIC Science & Technology

    1978-01-25

    depend on the rate of exchange. Finally, in our experiments we were dealing RI/RD78-125 B-4 -5- with polymeric solid AsF 5 or BF3 phases which on...well be a heterogeneous diffusion controlled reaction and step (5) might be the rate determining step in the above mechanism. It was shown that at...temperatures above -196*C, where a given NF+ salt is still stable in the absence of light, uv irradiation causes a rapid decay RI/RD78-125 B-5 -6- decay of

  9. Modulation of the fibrillogenesis inhibition properties of two transthyretin ligands by halogenation.

    PubMed

    Cotrina, Ellen Y; Pinto, Marta; Bosch, Lluís; Vilà, Marta; Blasi, Daniel; Quintana, Jordi; Centeno, Nuria B; Arsequell, Gemma; Planas, Antoni; Valencia, Gregorio

    2013-11-27

    The amyloidogenic protein transthyretin (TTR) is thought to aggregate into amyloid fibrils by tetramer dissociation which can be inhibited by a number of small molecule compounds. Our analysis of a series of crystallographic protein-inhibitor complexes has shown no clear correlation between the observed molecular interactions and the in vitro activity of the inhibitors. From this analysis, it emerged that halogen bonding (XB) could be mediating some key interactions. Analysis of the halogenated derivatives of two well-known TTR inhibitors has shown that while flufenamic acid affinity for TTR was unchanged by halogenation, diflunisal gradually improves binding up to 1 order of magnitude after iodination through interactions that can be interpreted as a suboptimal XB (carbonyl Thr106: I...O distance 3.96-4.05 Å; C-I...O angle 152-156°) or as rather optimized van der Waals contacts or as a mixture of both. These results illustrate the potential of halogenation strategies in designing and optimizing TTR fibrillogenesis inhibitors.

  10. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  11. Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Bobrowski, Nicole; Liotta, Marcello; Hoffmann, Thorsten

    2017-04-01

    Volcanoes are a potential large source of several reactive atmospheric trace gases including sulfur and halogen containing species. Besides the importance for atmospheric chemistry, the detailed knowledge of halogen chemistry in volcanic plumes can help to get insights into subsurface processes. In this study a gas diffusion denuder sampling method, using a 1,3,5-trimethoxybenzene (1,3,5-TMB) coating for the derivatization of reactive halogen species (RHS), was characterized by dilution chamber experiments. The coating proved to be suitable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, BrO(H) and BrONO2), while being ignorant to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species gives 1-bromo-2,4,6-trimethoxybenzene (1-bromo-2,4,6-TMB) - other halogens give corresponding products. Solvent elution of the derivatized analytes and subsequent analysis with gas chromatography mass spectrometry gives detection limits of 10 ng or less for Br2, Cl2, and I2. In 2015 the method was applied on volcanic gas plumes at Mt. Etna (Italy) giving reactive bromine mixing ratios from 0.8 ppbv to 7.0 ppbv. Total bromine mixing ratios of 4.7 ppbv to 27.5 ppbv were obtained by simultaneous alkaline trap sampling (by a Raschig-tube) followed by analysis with ion chromatography and inductively coupled plasma mass spectrometry. This leads to the first results of in-situ measured reactive bromine to total bromine ratios, spanning a range between 12±1 % and 36±2 %. Our finding is in an agreement with previous model studies, which imply values < 44 % for plume ages < 1 minute, which is consistent with the assumed plume age at the sampling sites.

  12. Halogenated volatile organic compounds from the use of chlorine-bleach-containing household products.

    PubMed

    Odabasi, Mustafa

    2008-03-01

    Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and

  13. Analysis of gaseous SO2, CO2 and halogen species in volcanic plumes using a multirotor Unmanned Aerial Vehicle (UAV).

    NASA Astrophysics Data System (ADS)

    Rüdiger, J.; de Moor, M. J.; Tirpitz, L.; Bobrowski, N.; Gutmann, A.; Hoffmann, T.

    2016-12-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed understanding of volcanic plume chemistry is needed to draw information from gas measurements on subsurface processes. This knowledge is essential for using gas measurements as a monitoring tool for volcanic activity. The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable from safe distance by spectroscopic remote sensing techniques. BrO is not directly emitted, but is formed in the plume by a multiphase reaction mechanism. The abundance of BrO changes as a function of the distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2 as an intermediate product. In this study we present the application of a UAV as a carrier for a remote-controlled sampling system for halogen species (Br2, HBr, BrCl, etc), based on the gas diffusion denuder technique, which allows speciation and enrichment by selective organic reactions. For the analysis of gaseous SO2 and CO2 an in-situ gas monitoring system was additionally mounted. This setup was deployed into the gas plumes of Stromboli Volcano (Italy) and Masaya Volcano (Nicaragua) in 2016, to investigate the halogen chemistry at distant locations in the plume further downwind to the emission source, which are in most cases not accessible by other approaches. The used quadrocopter (0.75 m in diameter) weighs 2.45 kg and lifts a payload of 1.3 kg. Flights into the plume were conducted with ascents of up to 900 m, starting at 500 to 800 m altitude. From telemetrically transmitted SO2 mixing ratios, areas of dense plume were localized to keep the UAV stationary for up to 10 minutes of sampling time. Herein we will present time and spatial resolved gas mixing ratio data for SO2, CO2 and halogen species for a downwind plume age of about 3 to 5 minutes.

  14. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  15. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    NASA Astrophysics Data System (ADS)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  16. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  17. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  18. 40 CFR 721.8675 - Halogenated pyridines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  19. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1975-02-26

    K. 0. Christe and C. J. Schack, Advances Inorg. Chem. Radiochem. 15. "The NF * Radical Cation. Esr Studies of Radiation Effects in NF„+ Salts...and 25°) in a wide variety of polar and nonpolar solvents, such as aqueous solutions, alcohols, ketones , esters, ethers , and aromatic and halogenated... Studies of Radiation Effects in NF, Salts = 4 S. P. Mishra, M. C R. Symons, K. 0. Christe, R. D. Wilson and R. I. Wagner Received. . . August .9

  20. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.

    PubMed

    Lazar, Petr; Chua, Chun Kiang; Holá, Kateřina; Zbořil, Radek; Otyepka, Michal; Pumera, Martin

    2015-08-01

    Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates.

    PubMed

    Pelras, Théophile; Knolle, Wolfgang; Naumov, Sergej; Heymann, Katja; Daikos, Olesya; Scherzer, Tom

    2017-05-17

    The potential of tetrachlorinated and tetrabrominated bisphenol A diacrylates and dimethacrylates for self-initiation of a radical photopolymerization was investigated. The kinetics of the photopolymerization of an acrylic model varnish containing halogenated monomers was studied by real-time FTIR spectroscopy, whereas the formation of reactive species and secondary products was elucidated by laser flash photolysis and product analysis by GC-MS after steady-state photolysis. The interpretation of the experimental data and the analysis of possible reaction pathways were assisted by quantum chemical calculations. It was shown that all halogenated monomers lead to a significant acceleration of the photopolymerization kinetics at a minimum concentration of 5 wt%. Steady-state and laser flash photolysis measurements as well as quantum chemical calculations showed that brominated and chlorinated samples do not follow the same pathway to generate radical species. Whereas chlorinated (meth)acrylates may cleave only at the C-O bonds of the carboxyl groups resulting in acrolein and oxyl radicals for initiation, brominated monomers may cleave either at the C-O bonds or at the C-Br bonds delivering aryl and bromine radicals. The quantum yields for the photolysis of the halogenated monomers were found to be in the order of 0.1 for acrylates and 0.2 for methacrylates (with an estimated error of 25%), independently of the attached Br and Cl halogens. Finally, the trihalogenated bisphenol A di(meth)acrylate radicals and the acrolein radicals were found to show the highest efficiencies for the reaction with another acrylic double bond leading to the formation of a polymer network.

  2. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    NASA Astrophysics Data System (ADS)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  3. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  4. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants.

    PubMed

    Cagnetta, Giovanni; Huang, Jun; Lu, Mengnan; Wang, Bin; Wang, Yujue; Deng, Shubo; Yu, Gang

    2017-10-01

    Mechanochemical activation of metal oxides is studied by a novel methodology based on solid state reaction with a stable radical specie. Such approach corroborates that vacancy formation by high energy ball milling, also in nonreducible oxides, is responsible for electron release on particles' surfaces. This finding suggests a new defect engineering strategy to improve effectiveness of metal oxides as co-milling reagent for halogenated organic pollutant destruction. Results prove that high valent metal doping of a commonly employed co-milling reagent such as CaO determines 2.5 times faster pollutant degradation rate. This enhancement is due to electron-rich defects generated by the dopant; electrons are transferred to the organic pollutant thus causing its mineralization. The proposed strategy can be easily applied to other reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis, structure and reactivity of a terminal magnesium fluoride compound, [TpBut,Me]MgF: hydrogen bonding, halogen bonding and C-F bond formation.

    PubMed

    Rauch, Michael; Ruccolo, Serge; Mester, John Paul; Rong, Yi; Parkin, Gerard

    2016-01-01

    The bulky tris(3- tert -butyl-5-pyrazolyl)hydroborato ligand, [Tp Bu t ,Me ], has been employed to obtain the first structurally characterized example of a molecular magnesium compound that features a terminal fluoride ligand, namely [Tp Bu t ,Me ]MgF, via the reaction of [Tp Bu t ,Me ]MgMe with Me 3 SnF. The chloride, bromide and iodide complexes, [Tp Bu t ,Me ]MgX (X = Cl, Br, I), can also be obtained by an analogous method using Me 3 SnX. The molecular structures of the complete series of halide derivatives, [Tp Bu t ,Me ]MgX (X = F, Cl, Br, I) have been determined by X-ray diffraction. In each case, the Mg-X bond lengths are shorter than the sum of the covalent radii, thereby indicating that there is a significant ionic component to the bonding, in agreement with density functional theory calculations. The fluoride ligand of [Tp Bu t ,Me ]MgF undergoes halide exchange with Me 3 SiX (X = Cl, Br, I) to afford [Tp Bu t ,Me ]MgX and Me 3 SiF. The other halide derivatives [Tp Bu t ,Me ]MgX undergo similar exchange reactions, but the thermodynamic driving forces are much smaller than those involving fluoride transfer, a manifestation of the often discussed silaphilicity of fluorine. In accord with the highly polarized Mg-F bond, the fluoride ligand of [Tp Bu t ,Me ]MgF is capable of serving as a hydrogen bond and halogen bond acceptor, such that it forms adducts with indole and C 6 F 5 I. [Tp Bu t ,Me ]MgF also reacts with Ph 3 CCl to afford Ph 3 CF, thereby demonstrating that [Tp Bu t ,Me ]MgF may be used to form C-F bonds.

  6. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  7. Measurements of 2νββ decay-matrix elements for mass A=64,76 and A=96 through charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Grewe, E.-W.; Frekers, D.

    2006-07-01

    We have used the (d,He2) charge-exchange reaction to obtain GT +-strength distributions in the nuclei 64Cu, 76As and 96Nb. These nuclei are the intermediate nuclei in the second-order perturbative description of the 64Zn double-beta plus ( β+β+) and the 76Ge and 96Zr double-beta minus ( β-β-) decays. By means of charge-exchange reactions on parent and daughter nucleus the double-beta decay matrix element can be deduced. In this contribution the measured excitation energy spectra are presented.

  8. Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof

    DOEpatents

    Miura, Michiko; Wu, Haitao

    2013-05-21

    The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity halogenated, carborane-containing 5,10,15,20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these halogenated, carborane-containing tetraphenylporphyrin compounds in methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.

  9. Structure-Energy Relationships of Halogen Bonds in Proteins.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  10. Elastomer-induced crevice corrosion and stress corrosion cracking of stainless steel heat exchanger plates in sour amine service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.G.; Baron, J.J.; Moffat, T.A.

    1996-08-01

    Types S31600 and S31254 stainless steel heat exchanger plates have suffered crevice corrosion and stress corrosion cracking under gaskets in rich amine service in a sour gas plant. The gasket material, ethylene-propylene-diene monomer (EPDM), has been used successfully for many years at other sour gas plants. Laboratory testing has duplicated the corrosion observed and shown that the mechanism is synergistic sulfide-halide attack. The use of a bromine plus chlorine-activated curing system for the EPDM rubber gaskets provided the necessary halides. Laboratory testing identified some nickel-based superalloys which were resistant to this corrosion and also demonstrated that essentially halogen-free, peroxide-cured EPDMmore » gaskets do not cause attack of S31600 or S31254. The heat exchanger packs were replaced with S31600 plates and peroxide-cured EPDM gaskets having a specified total halogen concentration of 200 ppm maximum. Field operating experience has been excellent.« less

  11. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  12. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  13. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Palhares, Leticia F.

    The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The

  15. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    PubMed

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  17. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    EPA Science Inventory

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  18. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  19. Experimental challenges for the measurement of the 116Cd(20Ne,20O)116Sn double charge exchange reaction at 15 AMeV

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Acosta, L.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boztosun, I.; Calabrese, S.; Calvo, D.; Chávez Lomelí, E. R.; Deshmukh, N.; de Faria, P. N.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Linares, R.; Longhitano, F.; Lo Presti, D.; Medina, N.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Pinna, F.; Reito, S.; Russo, G.; Santagati, G.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Souliotis, G.; Spatafora, A.; Torresi, D.; Tudisco, S.; Yildirim, A.; Zagatto, V. A. B.;

    2018-05-01

    The knowledge of the nuclear matrix elements (NME) entering in the expression of the half-life of the neutrinoless double beta decay is fundamental for neutrino physics. Information on the nuclear matrix elements can be obtained by measuring the absolute cross section of double charge exchange nuclear reactions. The two processes present some similarities, the initial and final-state wave functions are the same and the transition operators are similar. The experimental measurements of double charge exchange reactions induced by heavy ions present a number of challenging aspects, since such reactions are characterized by very low cross sections. Such difficulties are discussed for the measurement of the 116Cd(20Ne,20O)116Sn reaction at 15 AMeV.

  20. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    PubMed

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  1. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497

  2. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    PubMed

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  3. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 721.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to...

  4. Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells.

    PubMed

    Oyaizu, Kenichi; Hayo, Noriko; Sasada, Yoshito; Kato, Fumiaki; Nishide, Hiroyuki

    2013-12-07

    Electrochemical reversibility and fast bimolecular exchange reaction found for VO(salen) gave rise to a highly efficient redox mediation to enhance the photocurrent of a dye-sensitized solar cell, leading to an excellent photovoltaic performance with a conversion efficiency of 5.4%. A heterogeneous electron-transfer rate constant at an electrode (k0) and a second-order rate constant for an electron self-exchange reaction (k(ex)) were proposed as key parameters that dominate the charge transport property, which afforded a novel design concept for the mediators based on their kinetic aspects.

  5. Energetics of halogen impurities in thorium dioxide

    NASA Astrophysics Data System (ADS)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.

    2017-11-01

    Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.

  6. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less

  7. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  8. Sources of halogens in the environment, influences on human and animal health.

    PubMed

    Fuge, R

    1988-06-01

    Of the halogens, fluorine has the highest crustal abundance (544 mg/kg) while iodine has the lowest (0.25 mg/kg), however, chlorine is by far the most abundant halogen in the cosmos. The geochemistries of the four naturally occurring halogens have some similarities with fluorine, chlorine and bromine being classified as lithophile elements while iodine is more chalcophile in nature. Bromine and iodine behave in a similar fashion in the secondary environment and could be classified as biophile elements being concentrated in organic matter. Chlorine, bromine and iodine are strongly enriched in the sea while iodine and to a lesser extent bromine are further concentrated in the marine algae.Apart from the occurrence of fluorine in fluorite (CaF2) there are few commonly occurring minerals which contain the halogens as essential constituents. In the igneous environment fluorine and chlorine tend to occupy hydroxyl lattice sites in micas, amphiboles, apatites etc., while in sediments clays can contain appreciable quantities of these elements. Bromine and iodine, however, would be unlikely to fit into the lattice sites of common rock-forming minerals.Bromine, like iodine, is probably volatilised from the marine environment and is carried on to land surfaces. This behaviour of iodine and bromine is reflected in the increased I/CI and Br/CI ratios of surface run-off in continental compared with near coastal environments.Limited information on the soil geochemistry of the halogens suggests that the soil contents of chlorine, bromine and iodine are influenced by proximity to the sea. Soil fluorine, however, is generally dependent on its content in the parent material. In some areas pollutant sources of the halogens contribute appreciably to their concentration in the environment.Iodine and chlorine are essential elements for mammals and fluorine has been shown to have beneficial effects on bone and tooth formation. However, excess quantities of dietary fluorine can be harmful

  9. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  10. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  11. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1981-04-21

    International Rocketdyne Division 6633 Canoga Avenue Canoga Park, California 91304 RI/R.D8l1-14O A ’N-NUAL REPORT INORGANIC HALOGEN OXIDIZER RESEARCH (I...March 1980 through 8 February 198L) 21 April 1981 "Contract N00014-79-C-0176 . GO. 95067 . , Office of Naval Research I-- Power Branch , ,, Code 473...Office of Naval Research Power Branch 11 I-ar Ccovie 473 ~ UMBER OF PA’E1 Arlington. VA 22217 . 76" 74 AONIYONING AGENCY NAME III Dw~S~ d, I f,. .f

  12. Halogens and the Chemistry of the Free Troposphere

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    The role of halogens in both the marine boundary layer and the stratosphere has long been recognized, while their role in the free troposphere is often not considered in global chemical models. However, a careful examination of free-tropospheric chemistry constrained by observations using a full chemical data assimilation system shows that halogens do play a significant role in the free troposphere. In particular, the chlorine initiation of methane oxidation in the free troposphere can contribute more than 10%, and in some regions up to 50%, of the total rate of initiation. The initiation of methane oxidation by chlorine is particularly important below the polar vortex and in northern mid-latitudes. Likewise, the hydrolysis of BrONO2 alone can contribute more than 35% of the HNO3 production rate in the free-troposphere.

  13. Auger analysis of films formed on metals in sliding contact with halogenated polymers

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The use of Auger electron spectroscopy (AES) to search for transferred polymer must contend with the fact that there has been no published work on Auger analysis of polymers. Since this is a new area for AES, the Auger spectra of polymers and of halogenated polymers in particular is discussed. It is shown that the Auger spectra of halogenated polymers have certain characteristics that permit an assessment of whether a polymeric transfer film has been established by sliding contact. The discussion is general and the concepts should be useful in considering the Auger analysis of any polymer. The polymers chosen for this study are the halogenated polymers polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polychlorotrifluorethylene (PCTFE).

  14. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  15. Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition

    DOE PAGES

    Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; ...

    2014-12-05

    The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less

  16. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  17. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  18. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  19. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  20. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  1. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  2. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  3. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  4. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  5. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  6. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  7. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  8. 40 CFR 721.8875 - Substituted halogenated pyridinol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8875 Substituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1273) is subject to reporting under this section for the significant new uses described...

  9. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  10. 40 CFR 721.8750 - Halogenated substituted pyridine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...

  11. 40 CFR 721.8850 - Disubstituted halogenated pyridinol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8850 Disubstituted halogenated pyridinol. (a) Chemical substances and significant new uses... pyridinol (PMN P-88-1274) is subject to reporting under this section for the significant new uses described...

  12. Measurements of reactive halogen species as oxidants of mercury over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Coburn, S.; Dix, B. K.; Sinreich, R.; Terschure, A. F.; Edgerton, E. S.; Wu, Y.; Nair, U. S.

    2011-12-01

    The gas-phase reaction of bromine and chlorine radicals with gaseous elemental mercury (GEM) is a source for gaseous oxidized mercury (GOM). It has been established that oxidation by bromine is relevant at high latitudes, and can also occur in mid-latitude regions (Peleg et al. 2007), or in the free troposphere. A subject of ongoing debate concerns the role of free tropospheric bromine vs boundary layer bromine in oxidizing mercury. Here we present measurements of reactive halogen species bromine oxide (BrO) and iodine oxide (IO) along with gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM), and particulate mercury (Hgp) at a coastal location in Gulf Breeze, Fl. The University of Colorado has deployed a research grade Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to measure BrO, IO, as well as formaldehyde (HCHO), glyoxal (CHOCHO), nitrogen dioxide (NO2) and oxygen dimers (O4). Here we present the compilation of the data collected by this instrument over the time period from May 2009 to January 2011, which include the first measurements of BrO, IO, and CHOCHO over the Gulf of Mexico. We also present several case studies for days where significant amounts of reactive halogens were measured, explore the sources and back trajectories of the air masses carrying these compounds, and relate our observations to mercury data collected at a nearby SEARCH network site.

  13. Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers

    PubMed Central

    2013-01-01

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4′-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results. PMID:24215390

  14. Combined diffraction and density functional theory calculations of halogen-bonded cocrystal monolayers.

    PubMed

    Sacchi, Marco; Brewer, Adam Y; Jenkins, Stephen J; Parker, Julia E; Friščić, Tomislav; Clarke, Stuart M

    2013-12-03

    This work describes the combined use of synchrotron X-ray diffraction and density functional theory (DFT) calculations to understand the cocrystal formation or phase separation in 2D monolayers capable of halogen bonding. The solid monolayer structure of 1,4-diiodobenzene (DIB) has been determined by X-ray synchrotron diffraction. The mixing behavior of DIB with 4,4'-bipyridyl (BPY) has also been studied and interestingly is found to phase-separate rather than form a cocrystal, as observed in the bulk. DFT calculations are used to establish the underlying origin of this interesting behavior. The DFT calculations are demonstrated to agree well with the recently proposed monolayer structure for the cocrystal of BPY and 1,4-diiodotetrafluorobenzene (DITFB) (the perfluorinated analogue of DIB), where halogen bonding has also been identified by diffraction. Here we have calculated an estimate of the halogen bond strength by DFT calculations for the DITFB/BPY cocrystal monolayer, which is found to be ∼20 kJ/mol. Computationally, we find that the nonfluorinated DIB and BPY are not expected to form a halogen-bonded cocrystal in a 2D layer; for this pair of species, phase separation of the components is calculated to be lower energy, in good agreement with the diffraction results.

  15. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  16. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  17. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Sun, Yin-Yin; Bai, Hongcun; Li, Miao-Miao; Li, Jian-Li; Yin, Bing

    2015-06-01

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M2(CN)5]-1 (M = Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca2(CN)5]-1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.

  18. Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry-Global Climate System: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M.; Keene, W. C.; Easter, Richard C.

    Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permittingmore » the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading

  19. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    PubMed

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-11-02

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigation of Solvent Hydron Exchange in the Reaction Catalyzed by the Antibiotic Resistance Protein, Cfr.

    PubMed

    Bauerle, Matthew R; Grove, Tyler L; Booker, Squire J

    2018-05-22

    Cfr is a radical S-adenosylmethionine (RS) methylase that appends methyl groups to C8 and C2 of adenosine 2503 in 23S ribosomal RNA. Methylation of C8 confers resistance to several classes of antibiotics that bind in or near the peptidyl transferase center of the bacterial ribosome, including the synthetic antibiotic linezolid. The Cfr reaction requires the action of five conserved cysteines, three of which ligate a required [4Fe-4S] cluster cofactor. The two remaining cysteines play a more intricate role in the reaction, one of which (Cys338) becoming transiently methylated during catalysis. The function of the second (Cys105) has not been rigorously established; however, in the related RlmN reaction, it (Cys118) initiates resolution of a key protein-nucleic acid cross-linked intermediate by abstracting the proton from the carbon center (C2) undergoing methylation. We previously proposed that, unlike RlmN, Cfr would utilize a polyprotic base during resolution of the protein-nucleic acid cross-linked intermediate during C8 methylation, and, like RlmN, use a monoprotic base during C2 methylation. We based this proposal on the fact that solvent hydrons could exchange into the product during C8 methylation, but not during C2 methylation. Herein, we show that Cys105 of Cfr has a similar function to that of Cys118 of RlmN while methylating C8 of A2503, and provide evidence for one molecule of water that is in close contact with it, which provides the exchangeable protons during catalysis.

  1. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  2. Impact of enhanced ozone deposition and halogen chemistry on tropospheric ozone over the Northern Hemisphere

    EPA Science Inventory

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen ch...

  3. Comparing colour discrimination and proofreading performance under compact fluorescent and halogen lamp lighting.

    PubMed

    Mayr, Susanne; Köpper, Maja; Buchner, Axel

    2013-01-01

    Legislation in many countries has banned inefficient household lighting. Consequently, classic incandescent lamps have to be replaced by more efficient alternatives such as halogen and compact fluorescent lamps (CFL). Alternatives differ in their spectral power distributions, implying colour-rendering differences. Participants performed a colour discrimination task - the Farnsworth-Munsell 100 Hue Test--and a proofreading task under CFL or halogen lighting of comparable correlated colour temperatures at low (70 lx) or high (800 lx) illuminance. Illuminance positively affected colour discrimination and proofreading performance, whereas the light source was only relevant for colour discrimination. Discrimination was impaired with CFL lighting. There were no differences between light sources in terms of self-reported physical discomfort and mood state, but the majority of the participants correctly judged halogen lighting to be more appropriate for discriminating colours. The findings hint at the colour-rendering deficiencies associated with energy-efficient CFLs. In order to compare performance under energy-efficient alternatives of classic incandescent lighting, colour discrimination and proofreading performance was compared under CFL and halogen lighting. Colour discrimination was impaired under CFLs, which hints at the practical drawbacks associated with the reduced colour-rendering properties of energy-efficient CFLs.

  4. Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.

    PubMed

    Read, Katie A; Mahajan, Anoop S; Carpenter, Lucy J; Evans, Mathew J; Faria, Bruno V E; Heard, Dwayne E; Hopkins, James R; Lee, James D; Moller, Sarah J; Lewis, Alastair C; Mendes, Luis; McQuaid, James B; Oetjen, Hilke; Saiz-Lopez, Alfonso; Pilling, Michael J; Plane, John M C

    2008-06-26

    Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.

  5. Virucidal properties of metal oxide nanoparticles and their halogen adducts.

    PubMed

    Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George

    2010-04-01

    Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.

  6. Red cell exchange to mitigate a delayed hemolytic transfusion reaction in a patient transfused with incompatible red blood cells.

    PubMed

    Irani, Mehraboon S; Karafin, Matthew S; Ernster, Luke

    2017-02-01

    A red cell exchange was performed to prevent a potentially fatal hemolytic transfusion reaction in a patient with anti-e who was transfused with e-antigen unscreened red blood cells during liver transplant surgery. A 64-year-old woman with cirrhosis due to hepatitis C was scheduled to receive a liver transplant. She had a previously documented anti-e, an antibody to the Rh(e)-antigen that is known to cause delayed hemolytic transfusion reactions. Pre-operatively and intra-operatively, she had massive hemorrhage which required transfusion of 34 e-antigen unscreened red blood cells (RBCs) most of which were incompatible. The hemoglobin dropped from 9.1 g/dL on post-operative day (POD)1 to 6.6 g/dL on POD6, with no evidence of blood loss. The bilirubin also increased from 5.0 mg/dL on POD 1 to 11.0 mg/dL on POD 6. As she was also becoming more hemodynamically unstable, a red cell exchange with 10 units of e-negative RBCs was performed on POD 6. She improved clinically and was extubated the following day. A few residual transfused e-positive red cells were detected after the red cell exchange until POD 13. This case illustrates how a red cell exchange can mitigate the potentially harmful effects of a delayed hemolytic transfusion reaction caused by red cell antibodies. With massive intraoperative blood loss it may not be possible to have antigen-negative RBCs immediately available, particularly for the e-antigen, which is present in 98% of the donor population. The ability to perform such a procedure may be life-saving in such patients. J. Clin. Apheresis 32:59-61, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Self-exchange reaction of [Ni(mnt)2](1-,2-) in nonaqueous solutions.

    PubMed

    Kowert, Bruce A; Fehr, Michael J; Sheaff, Pamela J

    2008-07-07

    The rate constant, k, for the homogeneous electron transfer (self-exchange) reaction between the diamagnetic bis(maleonitriledithiolato)nickel dianion, [Ni(mnt) 2] (2-), and the paramagnetic monoanion, [Ni(mnt) 2] (1-), has been determined in acetone and nitromethane (CH 3NO 2) using (13)C NMR line widths at 22 degrees C (mnt = 1,2-S 2C 2(CN) 2). The values of k (2.91 x 10 (6) M (-1) s (-1) in acetone, 5.78 x 10 (6) M (-1) s (-1) in CH 3NO 2) are faster than those for the electron transfer reactions of other Ni(III,II) couples; the structures of [Ni(mnt) 2] (1-) and [Ni(mnt) 2] (2-) allow for a favorable overlap that lowers the free energy of activation. The values of k are consistent with the predictions of Marcus theory. In addition to k, the spin-lattice relaxation time, T 1e, of [Ni(mnt) 2] (1-) is obtained from the NMR line width analysis; the values are consistent with those predicted by spin relaxation theory.

  8. D/H Exchange Reactions in Salts Extracted from LEW 85320

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K., Jr.

    1993-07-01

    ). Mass balance calculations reveal that absorption of the spiked water is stoichiometric with respect to the formation of CaSO4.2H2O, while within limits of sampling error no net change of weight was observed for the nesquehonite. Assuming that the change in deltaDnesq. is due entirely to exchange (i.e., no absorption), mass balance constraints dictate that less than 5 wt% of water exchanged. These data suggest that nesquehonite retains its original deltaD composition even under conditions of relatively high temperature and humidity. Hydrogen isotope data of water extracted from three generations of nesquehonite on LEW85320 are plotted as a function of the theoretical delta18O composition of water in equilibrium with the carbonate at 0 degrees C (where delta18Onesq. is derived by phosphoric acid digestion of the carbonate, assuming a calcite-CO2 fractionation factor of 1.01012). Our data plot very near the meteoric water line indicating formation from slightly enriched Antarctic meltwater. Water extracted from generations II (,99), salts consisting mostly of hydromagnesite (Mg5(CO3)4(OH)2.4H2O) (Gooding, 1993, personal communication), and III (,102), with mineralogy as yet unknown, is enriched in D (deltaD = -55 and -75 permil, respectively) and plot above the meteoric water line. Both generations precipitated in the Houston curatorial facility. Data suggest either that hydrogen isotopes have exchanged at least partially with local (i.e., Houston) water, or that the exchange reactions differ between structural sites within or among the various generations of efflorescent salts. Hydrogen isotopes extracted from hydrous weathering products can reveal information about the environment of crystal growth. However, hydrogen isotope exchange systematics could be complicated if water within the crystal structure of the mineral is located in multiple sites. Furthermore, these results could have profound implications for curation and long-term storage strategies in curatorial

  9. Chalcogen- and halogen-bonds involving SX2 (X = F, Cl, and Br) with formaldehyde.

    PubMed

    Mo, Lixin; Zeng, Yanli; Li, Xiaoyan; Zhang, Xueying; Meng, Lingpeng

    2016-07-01

    The capacity of SX2 (X = F, Cl, and Br) to engage in different kinds of noncovalent bonds was investigated by ab initio calculations. SCl2 (SBr2) has two σ-holes upon extension of Cl (Br)-S bonds, and two σ-holes upon extension of S-Cl (Br) bonds. SF2 contains only two σ-holes upon extension of the F-S bond. Consequently, SCl2 and SBr2 form chalcogen and halogen bonds with the electron donor H2CO while SF2 forms only a chalcogen bond, i.e., no F···O halogen bond was found in the SF2:H2CO complex. The S···O chalcogen bond between SF2 and H2CO is the strongest, while the strongest halogen bond is Br···O between SBr2 and H2CO. The nature of these two types of noncovalent interaction was probed by a variety of methods, including molecular electrostatic potentials, QTAIM, energy decomposition, and electron density shift maps. Termolecular complexes X2S···H2CO···SX'2 (X = F, Cl, Br, and X' = Cl, Br) were constructed to study the interplay between chalcogen bonds and halogen bonds. All these complexes contained S···O and Cl (Br)···O bonds, with longer intermolecular distances, smaller values of electron density, and more positive three-body interaction energies, indicating negative cooperativity between the chalcogen bond and the halogen bond. In addition, for all complexes studied, interactions involving chalcogen bonds were more favorable than those involving halogen bonds. Graphical Abstract Molecular electrostatic potential and contour map of the Laplacian of the electron density in Cl2S···H2CO···SCl2 complex.

  10. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  11. Rapid and reliable determination of the halogenating peroxidase activity in blood samples.

    PubMed

    Flemmig, Jörg; Schwarz, Pauline; Bäcker, Ingo; Leichsenring, Anna; Lange, Franziska; Arnhold, Jürgen

    2014-12-15

    By combining easy and fast leukocyte enrichment with aminophenyl-fluorescein (APF) staining we developed a method to quickly and specifically address the halogenating activity of the immunological relevant blood heme peroxidases myeloperoxidase and eosinophil peroxidase, respectively. For leukocyte enrichment a two-fold hypotonic lysis procedure of the blood with Millipore water was chosen which represents a cheap, fast and reliable method to diminish the amount of erythrocytes in the samples. This procedure is shown to be suitable both to human and murine blood micro-samples, making it also applicable to small animal experiments with recurring blood sampling. As all types of leukocytes are kept in the sample during the preparation, they can be analysed separately after discrimination during the flow cytometry analysis. This also holds for all heme peroxidase-containing cells, namely neutrophils, eosinophils and monocytes. Moreover additional parameters (e.g. antibody staining) can be combined with the heme peroxidase activity determination to gain additional information about the different immune cell types. Based on previous results we applied APF for specifically addressing the halogenating activity of leukocyte peroxidases in blood samples. This dye is selectively oxidized by the MPO and EPO halogenation products hypochlorous and hypobromous acid. This approach may provide a suitable tool to gain more insights into the immune-physiological role of the halogenating activity of heme peroxidases. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.

    PubMed

    Rablen, Paul R; McLarney, Brett D; Karlow, Brandon J; Schneider, Jean E

    2014-02-07

    High-level electronic structure calculations, including a continuum treatment of solvent, are employed to elucidate and quantify the effects of alkyl halide structure on the barriers of SN2 and E2 reactions. In cases where such comparisons are available, the results of these calculations show close agreement with solution experimental data. Structural factors investigated include α- and β-methylation, adjacency to unsaturated functionality (allyl, benzyl, propargyl, α to carbonyl), ring size, and α-halogenation and cyanation. While the influence of these factors on SN2 reactivity is mostly well-known, the present study attempts to provide a broad comparison of both SN2 and E2 reactivity across many cases using a single methodology, so as to quantify relative reactivity trends. Despite the fact that most organic chemistry textbooks say far more about how structure affects SN2 reactions than about how it affects E2 reactions, the latter are just as sensitive to structural variation as are the former. This sensitivity of E2 reactions to structure is often underappreciated.

  13. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    USGS Publications Warehouse

    Plummer, Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Formation located to the west of the LSC. A two-a record of specific conductance, water temperature, and discharge recorded at 30-min intervals demonstrated an approximately 3-month lag in discharge at Gray Spring. The low groundwater ages of waters from the carbonate rocks support rapid advective transport of contaminants from the LSC vicinity, yet the nearly ubiquitous occurrence of low-level concentrations of halogenated VOCs at the LSC suggests the presence of long-term persistent sources, such as seepage from the closed and sealed landfill, infiltration of VOCs that may persist locally in the epikarst, exchange with low-permeability zones in fractured rock, and upward leakage of older water that may contain elevated concentrations of halogenated VOCs from earlier land use activities.

  14. Comparison of halogen, plasma and LED curing units.

    PubMed

    Nomoto, Rie; McCabe, John F; Hirano, Susumu

    2004-01-01

    This study evaluated the characteristics of two kinds of recently developed light-curing unit; plasma arc and blue light emitting diodes (LED), in comparison with a conventional tungsten-halogen light-curing unit. The light intensity and spectral distribution of light from these light-curing units, the temperature rise of the bovine enamel surface and the depth of cure of composites exposed to each unit were investigated. The light intensity and depth of cure were determined according to ISO standards. The spectral distributions of emitted light were measured using a spectro-radiometer. The temperature increase induced by irradiation was measured by using a thermocouple. Generally, light intensities in the range 400-515 nm emitted from the plasma arc were greater than those from other types. Light in the UV-A region was emitted from some plasma arc units. The required irradiation times were six to nine seconds for the plasma arc units and 40 to 60 seconds for the LED units to create a depth of cure equal to that produced by the tungsten-halogen light with 20 seconds of irradiation. The temperature increased by increasing the irradiation time for every light-curing unit. The temperature increases were 15 degrees C to 60 degrees C for plasma arc units, around 15 degrees C for a conventional halogen unit and under 10 degrees C for LED units. Both the plasma arc and LED units required longer irradiation times than those recommended by their respective manufacturers. Clinicians should be aware of potential thermal rise and UV-A hazard when using plasma arc units.

  15. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  16. Are superhalogens without halogen ligand capable of transcending traditional halogen-based superhalogens? Ab initio case study of binuclear anions based on pseudohalogen ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin-Feng; Sun, Yin-Yin; Li, Miao-Miao

    2015-06-15

    The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M{sub 2}(CN){sub 5}]{sup −1} (M =  Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca{sub 2}(CN){sub 5}]{sup −1} which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green’s function (OVGF) method either overestimatesmore » or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties.« less

  17. Dependence on collision energy of the stereodynamical properties of the 18O + 32O2 exchange reaction

    NASA Astrophysics Data System (ADS)

    Privat, E.; Guillon, G.; Honvault, P.

    2018-06-01

    We report a quantum stereodynamical study of the 18O + 16O16O(v = 0, j = 1) → 18O16O(v‧ = 0, j‧) + 16O oxygen exchange reaction at four different collision energies. We calculated the polarisation moments and generated stereodynamical portraits related to the key vectors involved in this collision process. Ozone complex-forming approaches of reactants are then deduced. The results indicate that different approaches are possible but strongly depend on the collision energy and other parameters of the collision. We also conclude that the reaction globally tends to favour a perpendicular approach with increasing energy.

  18. Two approaches to the clinical dilemma of treating TTP with therapeutic plasma exchange in patients with a history of anaphylactic reactions to plasma.

    PubMed

    Sidhu, Davinder; Snyder, Edward L; Tormey, Christopher A

    2017-06-01

    Thrombotic thrombocytopenic purpura (TTP) is a rare but serious disease caused by autoantibody-mediated deficiency in von Willebrand factor (VWF) cleaving protease, ADAMTS-13. The primary acute treatment is therapeutic plasma exchange (TPE). However, some patients can develop allergic/anaphylactic reactions to the replacement (i.e., donor) plasma over time. Two potential treatment strategies for patients with TTP who demonstrate severe allergic reactions to plasma used for exchange were examined. Two patients with TTP exacerbations who developed severe allergic reactions to donor plasma were identified. One patient's TPE was re-initiated with Octaplas, a lot-batched solvent and detergent treated, type-specific, pooled donor plasma product. The other patient was exchanged with primarily albumin, followed by slow incremental exposures to donor plasma to mitigate exposures and allergic risks. Both patients were assessed for anaphylaxis. Both treatment strategies were successful in preventing any further clinically significant allergic/anaphylactic reactions and facilitated both patients' TTP remissions. Based on our experience with two similar patients with TTP exacerbations and history of anaphylactic reactions to plasma during TPE, we have identified two possible treatment protocols to achieve remission in this clinical dilemma. Substituting Octaplas for standard plasma or, alternatively, using albumin with slowly increasing amounts of standard plasma may help to mitigate the risk of further anaphylactic adverse events. J. Clin. Apheresis 32:158-162, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Volatile halogenated hydrocarbons in foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  20. Temperature analysis during bonding of brackets using LED or halogen light base units.

    PubMed

    Silva, Paulo César Gomes; De Fátima Zanirato Lizarelli, Rosane; Moriyama, Lílian Tan; De Toledo Porto Neto, Sizenando; Bagnato, Vanderlei Salvador

    2005-02-01

    The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance.

  1. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    NASA Astrophysics Data System (ADS)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  2. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  3. Compositional variation in aging volcanic plumes - Analysis of gaseous SO2, CO2 and halogen species in volcanic emissions using an Unmanned Aerial Vehicle (UAV).

    NASA Astrophysics Data System (ADS)

    Rüdiger, Julian; Lukas, Tirpitz; Bobrowski, Nicole; Gutmann, Alexandra; Liotta, Marcello; de Moor, Maarten; Hoffmann, Thorsten

    2017-04-01

    Volcanoes are a large source for several reactive atmospheric trace gases including sulfur and halogen containing species. The detailed understanding of volcanic plume chemistry is needed to draw information from gas measurements on subsurface processes. This knowledge is essential for using gas measurements as a monitoring tool for volcanic activity. The reactive bromine species bromine monoxide (BrO) is of particular interest, because BrO as well as SO2 are readily measurable from safe distance by spectroscopic remote sensing techniques. BrO is not directly emitted, but is formed in the plume by a multiphase reaction mechanism. The abundance of BrO changes as a function of the distance from the vent as well as the spatial position in the plume. The precursor substance for the formation of BrO is HBr with Br2as an intermediate product. In this study we present the application of a UAV as a carrier for a remote-controlled sampling system for halogen species (Br2, HBr, BrCl, etc), based on the gas diffusion denuder technique, which allows speciation and enrichment by selective organic reactions. For the analysis of gaseous SO2 and CO2 an in-situ gas monitoring system was additionally mounted. This setup was deployed into the gas plumes of Stromboli Volcano (Italy), Masaya Volcano (Nicaragua) and Turrialba Volcano (Costa Rica) in 2016, to investigate the halogen chemistry at distant locations in the plume further downwind to the emission source, which are in most cases not accessible by other approaches. Flights into the plume were conducted with ascents of up to 1000 m. From telemetrically transmitted SO2 mixing ratios, areas of dense plume where localized to keep the UAV stationary for up to 10 minutes of sampling time. Additionally, ground based samples were taken at the crater rim (at Masaya and Turrialba) using alkaline traps, denuder and gas sensors for comparison with airborne-collected data. Herein we will present time and spatial resolved gas mixing ratio

  4. Selenium-Mediated Dehalogenation of Halogenated Nucleosides and its Relevance to the DNA Repair Pathway.

    PubMed

    Mondal, Santanu; Manna, Debasish; Mugesh, Govindasamy

    2015-08-03

    Halogenated nucleosides can be incorporated into the newly synthesized DNA of replicating cells and therefore are commonly used in the detection of proliferating cells in living tissues. Dehalogenation of these modified nucleosides is one of the key pathways involved in DNA repair mediated by the uracil-DNA glycosylase. Herein, we report the first example of a selenium-mediated dehalogenation of halogenated nucleosides. We also show that the mechanism for the debromination is remarkably different from that of deiodination and that the presence of a ribose or deoxyribose moiety in the nucleosides facilitates the deiodination. The results described herein should help in understanding the metabolism of halogenated nucleosides in DNA and RNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia.

    PubMed

    Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul

    2014-01-01

    The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.

  6. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... into a plastic, resin matrix, or pelletized so humans are not reasonally likely to be exposed. (2) The...

  7. 40 CFR 721.4484 - Halogenated indane (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated indane (generic name). 721.4484 Section 721.4484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... into a plastic, resin matrix, or pelletized so humans are not reasonally likely to be exposed. (2) The...

  8. Novel halogen chemistry in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, J. M.; Saiz-Lopez, A.; Shillito, J. A.

    2003-12-01

    This paper will report the first observations of I2 in the marine boundary layer, made by Differential Optical Absorption (DOAS) spectroscopy during a field campaign at Mace Head (Ireland) in the summer of 2002. Very large I2 concentrations correlating with low tide indicate that the source is emission from macro-algae. Simple scaling suggests that this coastal emission could approach 2 Tg per year, making it a major contribution to the global iodine budget. During the same campaign, DOAS observations were also made of the halogen oxides IO, OIO and BrO. The pulses of IO and BrO that were measured at sunrise are strong evidence for heterogeneous processing on sea-salt aerosol producing high levels of IBr during the night. Simple modelling shows that the observed concentrations of the halogen radicals will play important roles in ozone depletion, the oxidation of dimethyl sulfide, and the formation of new particles in the marine boundary layer.

  9. Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions

    PubMed Central

    2015-01-01

    Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605

  10. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sathe, Ajay A.

    Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth

  11. Tailoring topological states in silicene using different halogen-passivated Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Derakhshan, Vahid; Moghaddam, Ali G.; Ceresoli, Davide

    2018-03-01

    We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface using density functional theory calculations. Our results show that the Dirac character of low-energy excitations in silicene is almost preserved in the presence of a silicon substrate passivated by various halogens. Nevertheless, the combined effects of symmetry breaking due to both direct and van der Waals interactions between silicene and the substrate, charge transfer from suspended silicene into the substrate, and, finally, the hybridization which leads to the charge redistribution result in a gap in the spectrum of the embedded silicene. We further take the spin-orbit interaction into account and obtain the resulting modification in the gap. The energy gaps with and without spin-orbit coupling vary significantly when different halogen atoms are used for the passivation of the Si surface, and for the case of iodine, they become on the order of 100 meV. To examine the topological properties, we calculate the projected band structure of silicene from which the Berry curvature and Z2 invariant based on the evolution of Wannier charge centers are obtained. As a key finding, it is shown that silicene on halogenated Si substrates has a topological insulating state which can survive even at room temperature for the substrates with iodine and bromine at the surface. Therefore, these results suggest that we can have a reliable, stable, and robust silicene-based two-dimensional topological insulator using the considered substrates.

  12. A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xiu-Liang; Wang, Kecheng; Wang, Bin

    A base-resistant porphyrin metal–organic framework (MOF), namely PCN-602 has been constructed with 12-connected [Ni 8(OH) 4(H 2O) 2Pz 12] (Pz = pyrazolate) cluster and a newly designed pyrazolate-based porphyrin ligand, 5,10,15,20-tetrakis(4-(pyrazolate-4-yl)phenyl)porphyrin under the guidance of the reticular synthesis strategy. Besides its robustness in hydroxide solution, PCN-602 also shows excellent stability in aqueous solutions of F –, CO 3 2–, and PO 4 3– ions. Interestingly, the Mn 3+-porphyrinic PCN-602, as a recyclable MOF catalyst, presents high catalytic activity for the C–H bond halogenation reaction in a basic system, significantly outperforming its homogeneous counterpart. For the first time, a porphyrinic MOFmore » was thus used as an efficient catalyst in a basic solution with coordinating anions, to the best of our knowledge.« less

  13. Method for selective dehalogenation of halogenated polyaromatic compounds

    DOEpatents

    Farcasiu, Malvina; Petrosius, Steven C.

    1994-01-01

    A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.

  14. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α.

    PubMed

    Winiewska, Maria; Kucińska, Katarzyna; Makowska, Małgorzata; Poznański, Jarosław; Shugar, David

    2015-10-01

    The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A kinetics investigation of several reactions involving chlorine containing compounds

    NASA Technical Reports Server (NTRS)

    Davis, D. D.

    1978-01-01

    The technique of flash photolysis-resonance fluorescence was utilized to study nine reactions of stratospheric importance. The tropospheric degradation reactions of seven halogenated hydrocarbons were studied to assess their possible influx into the stratosphere. There are reactions of either Cl, OH, or O(3P) species with hydrogenated species, O3 or chlorinated compounds. Apart from the kinetic measurements, the quantum yield for the production of O(1D) from O3 in the crucial wavelength region of 293 to 316.5 nm was studied by utilizing a narrow wavelength laser as the photolysis source. The product formation was monitored by measuring the fluorescence of NO2 formed through O(1D) reaction with N2O followed by NO reaction with O3 to give NO2.

  16. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    PubMed

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  17. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion.

    PubMed

    Brammer, Lee

    2017-10-13

    The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203 rd Faraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10-12 th July, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.

  18. Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53

    PubMed Central

    2012-01-01

    The destabilizing p53 cancer mutation Y220C creates a druggable surface crevice. We developed a strategy exploiting halogen bonding for lead discovery to stabilize the mutant with small molecules. We designed halogen-enriched fragment libraries (HEFLibs) as starting points to complement classical approaches. From screening of HEFLibs and subsequent structure-guided design, we developed substituted 2-(aminomethyl)-4-ethynyl-6-iodophenols as p53-Y220C stabilizers. Crystal structures of their complexes highlight two key features: (i) a central scaffold with a robust binding mode anchored by halogen bonding of an iodine with a main-chain carbonyl and (ii) an acetylene linker, enabling the targeting of an additional subsite in the crevice. The best binders showed induction of apoptosis in a human cancer cell line with homozygous Y220C mutation. Our structural and biophysical data suggest a more widespread applicability of HEFLibs in drug discovery. PMID:22439615

  19. Room-Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects.

    PubMed

    Xiao, Lu; Wu, Yishi; Yu, Zhenyi; Xu, Zhenzhen; Li, Jinbiao; Liu, Yanping; Yao, Jiannian; Fu, Hongbing

    2018-02-06

    Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two β-iminoenamine-BF 2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH 2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH 2 and S-2I⋅⋅⋅I-Ph-NH 2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH 2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH 2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH 2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH 2 ensures red RTP from S-2CN/I-Ph-NH 2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organohalide respiration in pristine environments: implications for the natural halogen cycle.

    PubMed

    Atashgahi, Siavash; Häggblom, Max M; Smidt, Hauke

    2018-03-01

    Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide-respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY.

    PubMed

    El Hage, Krystel; Pandyarajan, Vijay; Phillips, Nelson B; Smith, Brian J; Menting, John G; Whittaker, Jonathan; Lawrence, Michael C; Meuwly, Markus; Weiss, Michael A

    2016-12-30

    Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (Tyr B26 ) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated the use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomistic simulations of 3-[iodo-Tyr B26 ]insulin to predict its structural features, and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog, as a dimer and hexamer, exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings (Tyr B16 , Phe B24 , Phe B25 , 3-I-Tyr B26 , and their symmetry-related mates) at this interface adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-[iodo-Tyr B26 ]insulin analog (determined as an R 6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-Tyr B26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-Tyr B26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding as follows: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient σ-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika; Marty, Bernard

    2006-07-01

    Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.

  3. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    NASA Astrophysics Data System (ADS)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D.; DeYoung, Paul A.; Blum, Arlene; Stapleton, Heather M.; Peaslee, Graham F.

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography-Mass Spectrometry (GC-MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC-MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  4. Phosphorus-containing nucleophiles in reactions with polyfluorinated organic compounds

    NASA Astrophysics Data System (ADS)

    Furin, Georgii G.

    1993-03-01

    The review presents a compilation of new expelimental data on the reactions of phosphorus-containing nucleophiles [triphenylphosphine, trialkylphosphines, trialkyl phosphites, phosphorus tris(diethylamide), etc.] with perfluorinated olefins and aromatic and heterocyclic compounds, leading to substances both with and without a phosphorus atom. It is shown that the interaction of phosphorus tris(diethylamide) and trialkylphosphines with organic polyfluoro-compounds and perfluoroolefins leads to the formation of phosphoranes, the decomposition of which is accompanied by the generation of aryl and alkenyl anions. The reactions of these anions with C-electrophiles and compounds containing mobile halogen atoms are examined. In addition, the pathways in the Arbuzov reaction involving a series of unsaturated perfluorinated compounds are analysed. Possible applications of these reactions in organic synthesis are demonstrated. The bibliography includes 120 references.

  5. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.

    PubMed

    Westaway, Kenneth C; Fang, Yao-ren; MacMillar, Susanna; Matsson, Olle; Poirier, Raymond A; Islam, Shahidul M

    2008-10-16

    Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found

  6. Room Temperature Halogenation of Polyimide Film Surface using Chlorine Trifluoride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Kosuga, Takahiro; Koike, Kunihiko; Aida, Toshihiro; Takeuchi, Takashi; Aihara, Masahiko

    2004-02-01

    In order to develop a new application of chlorine trifluoride gas, the halogenation of a polyimide film surface at room temperature and at atmospheric pressure is studied for the first time. The polyimide film surface after exposure to the chlorine trifluoride gas shows a decreased water contact angle with increasing chlorine trifluoride gas concentration and exposure period. Since both X-ray photoelectron spectroscopy and infrared absorption spectroscopy simultaneously showed the formation of a carbon-chlorine bond and carbon-fluorine bond, it is concluded that the chlorine trifluoride gas can easily and safely perform the halogenation of the polyimide film surface under the stated conditions using a low-cost process and equipment.

  7. Large Plasmids from Soil Bacteria Enriched on Halogenated Alkanoic Acids

    PubMed Central

    Hardman, David J.; Gowland, Peter C.; Slater, J. Howard

    1986-01-01

    Four Pseudomonas species and two Alcaligenes species were isolated from soil with a capacity to grow on halogenated alkanoic acids. They were shown to contain one of five large plasmids. The plasmids had molecular weights ranging from 98,800 to 190,000. They were associated with the ability to utilize the halogenated substrates 2-monochloropropionic acid and 2-monochloroacetic acid and with resistance towards one or more of the heavy metals mercury, selenium, and tellurium. The largest plasmid, pUU204, was shown to be unstable in continuous-flow culture when the organism was supplied with succinate as the sole carbon source. The dehalogenase gene associated with pUU204 appeared to be readily transferred to an incP group plasmid, R68-45. PMID:16346975

  8. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.

    PubMed

    Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu

    2013-08-21

    Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.

  9. C-I···π Halogen Bonding Driven Supramolecular Helix of Bilateral N-Amidothioureas Bearing β-Turns.

    PubMed

    Cao, Jinlian; Yan, Xiaosheng; He, Wenbin; Li, Xiaorui; Li, Zhao; Mo, Yirong; Liu, Maili; Jiang, Yun-Bao

    2017-05-17

    We report the first example of C-I···π halogen bonding driven supramolecular helix in highly dilute solution of micromolar concentration, using alanine based bilateral I-substituted N-amidothioureas that contain helical fragments, the β-turn structures. The halogen bonding interactions afford head-to-tail linkages that help to propagate the helicity of the helical fragments. In support of this action of the halogen bonding, chiral amplification was observed in the supramolecular helix formed in acetonitrile solution. The present finding provides alternative tools in the design of self-assembling macromolecules.

  10. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  11. Halogen and LED light curing of composite: temperature increase and Knoop hardness.

    PubMed

    Schneider, L F; Consani, S; Correr-Sobrinho, L; Correr, A B; Sinhoreti, M A

    2006-03-01

    This study assessed the Knoop hardness and temperature increase provided by three light curing units when using (1) the manufacturers' recommended times of photo-activation and (2) standardizing total energy density. One halogen--XL2500 (3M/ESPE)--and two light-emitting diode (LED) curing units--Freelight (3M/ESPE) and Ultrablue IS (DMC)--were used. A type-K thermocouple registered the temperature change produced by the composite photo-activation in a mold. Twenty-four hours after the photo-activation procedures, the composite specimens were submitted to a hardness test. Both temperature increase and hardness data were submitted to ANOVA and Tukey's test (5% significance). Using the first set of photo-activation conditions, the halogen unit produced a statistically higher temperature increase than did both LED units, and the Freelight LED resulted in a lower hardness than did the other curing units. When applying the second set of photo-activation conditions, the two LED units produced statistically greater temperature increase than did the halogen unit, whereas there were no statistical differences in hardness among the curing units.

  12. Cross-reactivity of Halogenated Platinum Salts | Science ...

    EPA Pesticide Factsheets

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitization to one Pt compound may result in hypersensitivity reactions to other Pt compounds. We investigated the potential for this type of cross-reactivity using a mouse model of Pt hypersensitivity. Mice were sensitized through application of 100 µL 1% ammonium hexachloroplatinate (AHCP) in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by intratracheal aspiration (IA) with saline or 100 µg AHCP or 100 g ammonium tetrachloroplatinate (ATCP) in saline. Before and immediately after dosing, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP. All mice dosed with AHCP demonstrated significant increases in total serum IgE, suggesting the animals were sensitized. An immediate airway response (IAR) was observed in mice sensitized and challenged with AHCP. Dose-dependent increases in Mch responsiveness occurred in mice sensitized and challenged with AHCP. Bronchoalveolar lavage fluid (BALF) harvested from mice sensitized and challenged with AHCP contained an avera

  13. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  14. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  15. The formation of Kuiper-belt binaries through exchange reactions.

    PubMed

    Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke

    2004-02-05

    Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit.

  16. Synthesis and characterization of an octaimidazolium-based polyhedral oligomeric silsesquioxanes ionic liquid by an ion-exchange reaction.

    PubMed

    Tan, Jinglin; Ma, Depeng; Sun, Xingrong; Feng, Shengyu; Zhang, Changqiao

    2013-04-07

    Preparation of POSS-min-DS, an octaimidazolium-based polyhedral oligomeric silsesquioxanes (POSS) room temperature ionic liquid, by an ion-exchange reaction between POSS and sodium dodecyl sulfate was reported. Octaimidazolium-based POSS was synthesized with more than 98% yield within 3 h. POSS-min-DS and octaimidazolium-based POSS were confirmed by (1)H, (13)C, and (29)Si NMR, FT-IR and elemental analysis.

  17. s-Triazine and tri-s-triazine based organic-inorganic hybrid gels prepared from chlorosilanes by exchange reactions.

    PubMed

    El-Gamel, Nadia E A; Schwarz, Marcus; Brendler, Erica; Kroke, Edwin

    2006-12-07

    Hybrid polymers [(DeltaO3)4Si3]n and [(DeltaO3)SiMe]n (where Delta = C6N7 or C3N3) have been prepared by a novel sol-gel process based on exchange reactions of MeSiCl3 or SiCl4 with C6N7(OSiMe3)3 and C3N3(OSiMe3)3.

  18. Temperature Dependence of Dissociative Electron Attachment to Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Christophorou, Loucas G.

    1996-10-01

    Most of the gas mixtures currently in use for plasma processing of semiconductors involve halogenated hydrocarbons such as the strongly electronegative gases CCl4 and CFCl_3, the weakly electronegative gas CF_2Cl2 and the very weakly electronegative gases CHF3 and CF_4. Many dissociation processes are known to occur for these molecules. One of these dissociation reactions which is particularly effective for the strongly electronegative hydrocarbons is dissociative electron attachment. Even for weakly electron attaching gases, molecular dissociation via dissociative electron attachment at low energies can be an efficient dissociation process if the gas temperature is higher than ambient. Dissociative electron attachment is known to increase with increasing temperature above room temperature for many such compounds. In this paper, we report our measurements on the increases of the total electron attachment rate constant for CF_2Cl2 with increasing gas temperature from room temperature to about 600 K. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.

  19. Time-Resolved Structural Analysis of Cation Exchange Reactions in Birnessite Using Synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J. C.; Lee, Y.; Komarneni, S.

    2002-12-01

    Birnessite ((Na,Ca,Mn2+) Mn7O142.8H2O) is a layered Mn-oxide with a 7.2Å spacing between the Mn octahedral sheets. Since birnessite is an abundant phase in soils, desert varnishes, and ocean nodules, it plays a significant role in soil and groundwater chemistry. Experiments by Golden et al. (1986,1987) have demonstrated that Na-buserite (hydrated birnessite) readily exchanges Na+ for a variety of other cations, including K+, Mg2+, Ca2+, Ba2+, Ni2+, and Sr2+. In light of its high cation exchange capacity, birnessite is industrially important for ion and molecular sieves and cathodic materials. In addition, birnessite serves as a precursor in the synthesis of todorokite, which has a 3x3 tunnel structure and is used as an octahedral sieve. We monitored cation-exchange reactions in birnessite by time-resolved X-ray powder diffraction with a simple flow-through cell at the National Synchrotron Light Source. The flow-through cell was developed by Lee and Parise at SUNY-Stony Brook, and this work represents its first application to Mn oxides. A series of synthetic Na-birnessite samples were saturated with chloride solutions containing dissolved K+, Mg2+, and Ba2+, ranging from 0.1M to 0.001M. Powder X-ray diffraction patterns were collected every ~ 3 minutes. The synchrotron experiments revealed that complete cation exchange occurs within three hours, and significant modifications of the arrangements of interlayer cations and water molecules accompany the exchange. Specifically, the replacement of Na by Mg resulted in the continuous growth of a discrete buserite-like phase with a 10Å layer spacing, while replacement of Na by K and Ba retained the 7Å spacing. K replacement of Na resulted in gradually decreasing peak intensity and peak merging. The Ba exchange yielded an abrupt decrease in diffraction intensities followed by a more gradual lattice change over the last 2 hours. Rietveld analysis led to the first determination of the structure of Ba-birnessite in space

  20. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  1. The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates.

    PubMed

    Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman

    2017-10-13

    Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

  2. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  3. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry

    2017-11-01

    Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.

  4. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  5. Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines

    PubMed Central

    Schmidt, Elmar; Andrä, Michal; Duhs, Marcel-Antoine; Linder, Igor

    2009-01-01

    Summary A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines. PMID:19936264

  6. Synthesis of observations of halogen-containing gases, ozone, and gaseous elemental mercury in the tropospheric plume of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Kern, C.; Lopez, T. M.; Werner, C. A.; Roberts, T. J.; Aiuppa, A.; Wang, B.

    2011-12-01

    Volcanoes are strong natural sources of halogen-containing acid gases and mercury. Most halogens are emitted from volcanoes as relatively non-reactive hydrogen halide gases, but recent field and modeling studies have shown that these species can be rapidly transformed into reactive forms via heterogeneous in-plume reactions. In order to further examine the chemical reactions that occur in volcanic plumes and their atmospheric impacts, we made ground and aircraft-based measurements of the composition of the tropospheric plume emitted from Redoubt Volcano, Alaska, which injected over 1 Tg of SO2, plus other gases and aerosols, into the subarctic free troposphere during 2009 and 2010. To our knowledge, our data include the first detailed study of ozone in a volcanic plume as well as the first measurements of HBr, HI, gaseous elemental mercury (GEM), and BrO in the plume of an Alaskan volcano. The composition of the plume was measured on June 20, 2010 using base-treated filter packs at the crater rim and by an instrumented fixed-wing aircraft on June 21 and August 19, 2010. The aircraft was used to track the chemical evolution of the plume up to ~30 km downwind (2 hours plume travel time) from the volcano. The airborne data from June 21 reveals rapid chemical ozone destruction in the plume as well as the strong influence chemical heterogeneity in background air had on plume composition. Airborne measurements on August 19 revealed several ppbv of ozone depletion near the center of the plume at a location ~5 km (20 minutes plume travel time) downwind and spectroscopic retrievals from traverses made under the plume show that BrO was present at a similar location. Simulations with the PlumeChem model reproduce the main features of the observed ozone deficits and evolution with time. The field measurements and model results suggest that autocatalytic release of reactive bromine and the formation of BrO can explain ozone destruction in the plume. Thus, volcanic eruptions in

  7. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  8. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf])

    NASA Astrophysics Data System (ADS)

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J.; Cisneros, G. Andrés

    2018-01-01

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  9. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]).

    PubMed

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J; Cisneros, G Andrés

    2018-01-14

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17 O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO 4 ]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf] - anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  10. Halogenated Solvent Cleaning: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the Maximum Achievable Control Technology (MACT) standards for halogenated solvent cleaner. Find the rule history information, federal register citations, legal authority, and additional resources.

  11. Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK's C-terminal peptide.

    PubMed

    Wang, Juan; Guo, Yunjie; Zhang, Xue

    2018-02-01

    Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca 2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK's C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5-peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide's aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5-peptide binding affinity can be improved considerably by optimizing their combination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions.

    PubMed

    Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting

    2017-08-01

    Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.

  13. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

  14. MAX phase – Alumina composites via elemental and exchange reactions in the Ti{sub n+1}AC{sub n} systems (A=Al, Si, Ga, Ge, In and Sn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuskelly, Dylan, E-mail: dylan.cuskelly@uon.edu.au; Richards, Erin; Kisi, Erich, E-mail: Erich.Kisi@newcastle.edu.au

    2016-05-15

    Extension of the aluminothermal exchange reaction synthesis of M{sub n+1}AX{sub n} phases to systems where the element ‘A’ is not the reducing agent was investigated in systems TiO{sub 2}–A–Al–C for A=Al, Si, Ga, Ge, In and Sn as well as Cr{sub 2}O{sub 3}–Ga–Al–C. MAX phase-Al{sub 2}O{sub 3} composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63–96% without optimisation of starting ratios. Optimisation in the Ti–Si–C system gave a MAX phase component with >98% Ti{sub 3}SiC{sub 2}. - Graphical abstract: A range of Ti{sub n+1}AX{submore » n} phases with different A elements were synthesised directly from the M oxide via exchange reactions. The process has now been shown to be general in all the systems marked in green in the table. - Highlights: • Ti{sub n+1}AC{sub n} phases were produced via a single step exchange reaction. • 3 MAX phase systems were successful via this method for the first time. • Cr{sub 2}GeC was also able to be produced via an exchange reaction. • The interconversion reaction in MAX phases is more general than previously thought.« less

  15. Simple (17) O NMR method for studying electron self-exchange reaction between UO2 (2+) and U(4+) aqua ions in acidic solution.

    PubMed

    Bányai, István; Farkas, Ildikó; Tóth, Imre

    2016-06-01

    (17) O NMR spectroscopy is proven to be suitable and convenient method for studying the electron exchange by following the decrease of (17) O-enrichment in U(17) OO(2+) ion in the presence of U(4+) ion in aqueous solution. The reactions have been performed at room temperature using I = 5 M ClO4 (-) ionic medium in acidic solutions in order to determine the kinetics of electron exchange between the U(4+) and UO2 (2+) aqua ions. The rate equation is given as R = a[H(+) ](-2)  + R', where R' is an acid independent parallel path. R' depends on the concentration of the uranium species according to the following empirical rate equation: R' = k1 [UO(2 +) ](1/2) [U(4 +) ](1/2)  + k2 [UO(2 +) ](3/2) [U(4 +) ](1/2) . The mechanism of the inverse H(+) concentration-dependent path is interpreted as equilibrium formation of reactive UO2 (+) species from UO2 (2+) and U(4+) aqua ions and its electron exchange with UO2 (2+) . The determined rate constant of this reaction path is in agreement with the rate constant of UO2 (2+) -UO2 (+) , one electron exchange step calculated by Marcus theory, match the range given experimentally of it in an early study. Our value lies in the same order of magnitude as the recently calculated ones by quantum chemical methods. The acid independent part is attributed to the formation of less hydrolyzed U(V) species, i.e. UO(3+) , which loses enrichment mainly by electron exchange with UO2 (2+) ions. One can also conclude that (17) O NMR spectroscopy, or in general NMR spectroscopy with careful kinetic analysis, is a powerful tool for studying isotope exchange reactions without the use of sophisticated separation processes. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  17. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  18. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  19. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  20. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  1. Reactive trajectories of the Ru2+/3+ self-exchange reaction and the connection to Marcus' theory.

    PubMed

    Tiwari, Ambuj; Ensing, Bernd

    2016-12-22

    Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru 2+ and Ru 3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

  2. Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.

    DTIC Science & Technology

    1982-10-15

    nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly

  3. Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)-oxalate complexes.

    PubMed

    Jin, Xiaoyan; Yan, Yu; Shi, Wenjing; Bi, Shuping

    2011-12-01

    The structures and water-exchange reactions of aqueous aluminum-oxalate complexes are investigated using density functional theory. The present work includes (1) The structures of Al(C(2)O(4))(H(2)O)(4)(+) and Al(C(2)O(4))(2)(H(2)O)(2)(-) were optimized at the level of B3LYP/6-311+G(d,p). The geometries obtained suggest that the Al-OH(2) bond lengths trans to C(2)O(4)(2-) ligand in Al(C(2)O(4))(H(2)O)(4)(+) are much longer than the Al-OH(2) bond lengths cis to C(2)O(4)(2-). For Al(C(2)O(4))(2)(H(2)O)(2)(-), the close energies between cis and trans isomers imply the coexistence in aqueous solution. The (27)Al NMR and (13)C NMR chemical shifts computed with the consideration of sufficient solvent effect using HF GIAO method and 6-311+G(d,p) basis set are in agreement with the experimental values available, indicating the appropriateness of the applied models; (2) The water-exchange reactions of Al(III)-oxalate complexes were simulated at the same computational level. The results show that water exchange proceeds via dissociative pathway and the activation energy barriers are sensitive to the solvent effect. The energy barriers obtained indicate that the coordinated H(2)O cis to C(2)O(4)(2-) in Al(C(2)O(4))(H(2)O)(4)(+) is more labile than trans H(2)O. The water-exchange rate constants (k(ex)) of trans- and cis-Al(C(2)O(4))(2)(H(2)O)(2)(-) were estimated by four methods and their respective characteristics were explored; (3) The significance of the study on the aqueous aluminum-oxalate complexes to environmental chemistry is discussed. The influences of ubiquitous organic ligands in environment on aluminum chemistry behavior can be elucidated by extending this study to a series of Al(III)-organic system.

  4. Investigating convergence of the reaction γp → π±Δ and tensor meson a2 exchange at high energy

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Geel; Kong, Kook-Jin

    2017-06-01

    A Regge approach to the reaction processes γp →π-Δ++ and γp →π+Δ0 is presented for the description of existing data up to Eγ = 16 GeV. The model consists of the t-channel π (139) + ρ (775) +a2 (1320) exchanges which are reggeized from the relevant Born amplitude. Discussion is given on the minimal gauge prescription for the π exchange to render convergent the divergence of the u-channel Δ-pole in the former process. A new Lagrangian is constructed for the a2 NΔ coupling in this work and applied to the process for the first time with the coupling constant deduced from the duality plus vector dominance. It is shown that, while the π exchange dominates over the process, the role of the a2 exchange is crucial rather than the ρ in reproducing the cross sections for total, differential, and photon polarization asymmetry to agree with data at high energy.

  5. Substitution and addition reactions of •OH with p-substituted-phenols

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Galicia-Jiménez, Eduardo; Mendoza, Edith; Schuler, Robert H.

    2017-04-01

    The directing effect of a hydroxyl group on the substitution and addition reactions of •OH to the substituted and free positions in aromatic rings of p-substituted-phenols were studied in aqueous solutions containing either K3Fe(CN)6 as an oxidant of the substituted hydroxycyclohexadienyl radical initially formed or using ascorbic acid. The results showed that the attack of the •OH to the substituted position (ipso position) was followed by elimination of the substituent producing hydroquinone. The addition reaction of the •OH to the free position on the ring produced 4-substituent-catechol and 4-substituent-resorcinol derivatives. Identification and quantification of the radiolytic products were carried out using high performance liquid chromatography. The results of the yields are given for the p-halogen-phenols (p-X-Ph) p-F-Ph, p-Cl-Ph, p-Br-Ph and p-I-Ph. Other compounds, p-nitro-Ph, p-OH-benzoic acid, p-OH-benzonitrile, p-OH-benzaldehyde, p-OH-anisole and p-OH-benzyl alcohol (represented as p-Z-Ph), were only studied using K3Fe(CN)6 as the oxidant. The results show that the p-X-Ph are attacked by the •OH at the ipso position to the halogen in the proportion 1:0.53:0.46:0.11 for F>Cl>Br>I. The •OH attacked at the ipso position to the p-Z-Phs through a substitution reaction, which depended on the substituent group. Thus, the strongly deactivating groups produced less hydroquinone, indicating less substitution reaction than the strongly activating groups.

  6. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    PubMed

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Formation of halogenated acetones in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Wittmer, Julian; Krause, Torsten; Schöler, Heinz Friedrich; Kamilli, Katharina; Held, Andreas; Zetzsch, Cornelius; Ofner, Johannes; Atlas, Elliot

    2015-04-01

    Western Australia is a semi-/arid region that is heavily influenced by climate change and agricultural land use. The area is known for its saline lakes with a wide range of hydrogeochemical parameters and consists of ephemeral saline and saline groundwater fed lakes with a pH range from 2.5 to 7.1. In 2012 a novel PTFE-chamber was setup directly on the lakes. The 1.5 m³ cubic chamber was made of UV transparent PTFE foil to permit photochemistry while preventing dilution of the air due to lateral wind transport. This experimental setup allows linking measured data directly to the chemistry of and above the salt lakes. Air samples were taken using stainless steel canisters and measured by GC-MS/ECD. Sediment, crust and water samples were taken for investigation of potential VOC and VOX emissions in the laboratory using GC-MS. Several lakes were investigated and canister samples were taken over the day to see diurnal variations. The first samples were collected at 6 a.m. and from this time every 2 hours a canister was filled with chamber air. Concentrations of chloroacetone up to 15 ppb and of bromoacetone up to 40 ppb in the air samples were detected. The concentrations vary over the day and display their highest values around noon. Soil and water samples showed a variety of highly volatile and semi-volatile VOC/VOX but no halogenated acetones. An abiotic formation of these VOC/VOX seems conclusive due to iron-catalysed reactions below the salt crust [1]. The salt crust is the interface through which VOC/VOX pass from soil/groundwater to the atmosphere where they were photochemically altered. This explains the finding of halo acetones only in the air samples and not in water and soil samples measured in the laboratory. The main forming pathway for these haloacetones is the direct halogenation due to atomic chlorine and bromine above the salt lakes [2]. A minor pathway is the atmospheric degradation of chloropropane and bromopropane [3]. These halopropanes were found

  8. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less

  9. A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds.

    PubMed

    Wang, Changwei; Danovich, David; Shaik, Sason; Mo, Yirong

    2017-04-11

    Typical hydrogen and halogen bonds exhibit red-shifts of their vibrational frequencies upon the formation of hydrogen and halogen bonding complexes (denoted as D···Y-A, Y = H and X). The finding of blue-shifts in certain complexes is of significant interest, which has led to numerous studies of the origins of the phenomenon. Because charge transfer mixing (i.e., hyperconjugation in bonding systems) has been regarded as one of the key forces, it would be illuminating to compare the structures and vibrational frequencies in bonding complexes with the charge transfer effect "turned on" and "turned off". Turning off the charge transfer mixing can be achieved by employing the block-localized wave function (BLW) method, which is an ab initio valence bond (VB) method. Further, with the BLW method, the overall stability gained in the formation of a complex can be analyzed in terms of a few physically meaningful terms. Thus, the BLW method provides a unified and physically lucid way to explore the nature of red- and blue-shifting phenomena in both hydrogen and halogen bonding complexes. In this study, a direct correlation between the total stability and the variation of the Y-A bond length is established based on our BLW computations, and the consistent roles of all energy components are clarified. The n(D) → σ*(Y-A) electron transfer stretches the Y-A bond, while the polarization due to the approach of interacting moieties reduces the HOMO-LUMO gap and results in a stronger orbital mixing within the YA monomer. As a consequence, both the charge transfer and polarization stabilize bonding systems with the Y-A bond stretched and red-shift the vibrational frequency of the Y-A bond. Notably, the energy of the frozen wave function is the only energy component which prefers the shrinking of the Y-A bond and thus is responsible for the associated blue-shifting. The total variations of the Y-A bond length and the corresponding stretching vibrational frequency are thus

  10. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    NASA Astrophysics Data System (ADS)

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  11. Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China

    NASA Astrophysics Data System (ADS)

    Kim, Jooil; Li, Shanlan; Kim, Kyung-Ryul; Stohl, Andreas; Mühle, Jens; Kim, Seung-Kyu; Park, Mi-Kyung; Kang, Dong-Jin; Lee, Gangwoong; Harth, Christina M.; Salameh, Peter K.; Weiss, Ray F.

    2010-06-01

    High-frequency in-situ measurements of a wide range of halogenated compounds including chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorinated compounds (PFCs), sulfur hexafluoride (SF6), and other chlorinated and brominated compounds have been made at Gosan (Jeju Island, Korea). Regional emissions of HCFC-22 (CHClF2) calculated from inverse modeling were combined with interspecies correlation methods to estimate national emissions for China, a major emitter of industrial halogenated gases. Our results confirm the signs of successful phase-out of primary ozone-depleting species such as CFCs, halons and many chlorinated or brominated compounds, along with substantial emissions of replacement HCFCs. Emissions derived for HFCs, PFCs, and SF6 were compared to published estimates and found to be a significant fraction of global totals. Overall, Chinese emissions of the halogenated compounds discussed here represent 19(14-17)% and 20(15-26)% of global emissions when evaluated in terms of their Ozone Depletion Potentials and 100-year Global Warming Potentials, respectively.

  12. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent

  13. Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates.

    PubMed

    Li, Yingjie; Qiao, Xianliang; Zhang, Ya-Nan; Zhou, Chengzhi; Xie, Huaijun; Chen, Jingwen

    2016-10-01

    The occurrence of sulfonamide antibiotics (SAs) in estuarine waters urges insights into their environmental fate for ecological risk assessment. Although many studies focused on the photochemical behavior of SAs, yet the effects of halide ions relevant to estuarine and marine environments on their photodegradation have been poorly understood. Here, we investigated the effects of halide ions on the photodegradation of SAs with sulfapyridine, sulfamethazine, and sulfamethoxazole as representative compounds. Results showed that halide ions did not significantly impact the photodegradation of sulfapyridine and sulfamethoxazole, while they significantly promoted the photodegradation of sulfamethazine. Further experiments found that ionic strength applied with NaClO4 significantly enhanced the photodegradation of the SAs, which was attributed to the decreased quenching rate constant of the triplet-excited SAs ((3)SA(∗)). Compared with ionic strength, specific Cl(-) effects retarded the photodegradation of the SAs. Our study found that triplet-excited sulfamethazine can oxidize halide ions to produce halogen radicals, subsequently leading to the halogenation of sulfamethazine, which was confirmed by the identification of both chlorinated and brominated intermediates. These results indicate that halide ions play an important role in the photochemical behavior of some SAs in estuarine waters and seawater. The occurrence of halogenation for certain organic pollutants can be predicted by comparing the oxidation potentials of triplet-excited contaminants with those of halogen radicals. Our findings are helpful in understanding the photochemical behavior and assessing the ecological risks of SAs and other organic pollutants in estuarine and marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pharmacological evaluation of halogenated and non-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles as D(2) and 5-HT(2A) receptor ligands.

    PubMed

    Tomić, Mirko; Vasković, Djurdjica; Tovilović, Gordana; Andrić, Deana; Penjišević, Jelena; Kostić-Rajačić, Sladjana

    2011-05-01

    Five groups of previously synthesized and initially screened non-substituted and 4-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles were estimated for their in-vitro binding affinities at the rat D(2) , 5-HT(2A) , and α(1) -adrenergic receptors. Among all these compounds, 2-methoxyphenyl and 2-chlorophenyl piperazines demonstrate the highest affinities for the tested receptors. The effects of 4-halogenation of benzimidazoles reveal that substitution with bromine may greatly increase the affinity of the compounds for the studied receptors, while the effect of substitution with chlorine is less remarkable. Most of the tested components show 5-HT(2A)/D(2) pK(i) binding ratios slightly above or less than 1, while only 4-chloro-6-(2-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}ethyl)-1H-benzimidazole expresses an appropriate higher binding ratio (1.14), which was indicated for atypical neuroleptics. This compound exhibits a non-cataleptic action in rats and prevents d-amphetamine-induced hyperlocomotion in mice, which suggest its atypical antipsychotic potency. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of halogen and hydrogen bonds for stabilization of antithyroid drugs with hypohalous acids (HOX, X = I, Br, and Cl) adducts

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim

    2017-11-01

    The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.

  16. Engineering of new-to-nature halogenated indigo precursors in plants.

    PubMed

    Fräbel, Sabine; Wagner, Bastian; Krischke, Markus; Schmidts, Volker; Thiele, Christina M; Staniek, Agata; Warzecha, Heribert

    2018-03-01

    Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study

  17. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM

    PubMed Central

    Benziman, Moshe; Heller, N.

    1964-01-01

    Benziman, Moshe (The Hebrew University of Jerusalem, Jerusalem, Israel), and N. Heller. Oxaloacetate decarboxylation and oxaloacetate-carbon dioxide exchange in Acetobacter xylinum. J. Bacteriol. 88:1678–1687. 1964.—Extracts of Acetobacter xylinum, prepared by sonic treatment, were shown to catalyze the decarboxylation of oxaloacetate (OAA) to pyruvate and CO2, and the exchange of C14-carbon dioxide into the β-carboxyl of OAA. Fractionation of the extracts with ammonium sulfate resulted in a 10-fold increase of the specific activity of the enzyme system catalyzing the CO2 exchange and OAA decarboxylation reactions. The purified preparation catalyzed the exchange of pyruvate-3-C14 into OAA. Similar pH curves with a pH optimum of 5.6 were obtained for the CO2 exchange and OAA decarboxylation reactions. Both reactions require the presence of Mn2+ or Mg2+ ions. OAA decarboxylation was more strongly inhibited than the exchange of CO2 by dialysis or metal-chelating agents. Avidin did not inhibit either reaction. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP), guanosine diphosphate (GDP), pyrophosphate, or inorganic phosphate did not promote OAA decarboxylation and the CO2-exchange reaction catalyzed by the purified preparation. The purified preparation failed to catalyze the carboxylation of phosphoenolpyruvate in the presence of GDP, ADP, or inorganic phosphate, and that of pyruvate in the presence of ATP or GTP, even when supplemented with an OAA-trapping system. A scheme for OAA decarboxylation which could account for the observed exchange reactions and for the failure to obtain net fixation of CO2 is proposed. The relation between the exchange reaction and the synthesis of cellulose from pyruvate by A. xylinum is discussed. PMID:14240957

  18. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers.

    PubMed

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J

    2014-01-07

    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  19. Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.

    PubMed

    Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

    2014-03-28

    The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

  20. Calculating constants of the rates of the reactions of excitation, ionization, and atomic exchange: A model of a shock oscillator with a change of the Hamiltonian of the system

    NASA Astrophysics Data System (ADS)

    Tsyganov, D. L.

    2017-11-01

    A new model for calculating the rates of reactions of excitation, ionization, and atomic exchange is proposed. Diatomic molecule AB is an unstructured particle M upon the exchange of elastic-vibrational (VT) energy, i.e., a model of a shock forceful oscillator with a change in Hamiltonian (SFOH). The SFOH model is based on the quantum theory of strong perturbations. The SFOH model allows generalization in simulating the rates of the reactions of excitation, ionization, and atomic exchange in the vibrational-vibrational (VV) energy exchange of diatomic molecules, and the exchange of VV- and VT-energy of polyatomic molecules. The rate constants of the excitation of metastables A 3Σ u +, B 3Π g , W 3Δ u , B'3Σ u -, a'3Σ u -, and the ionization of a nitrogen molecules from ground state X2Σ g + upon a collision with a heavy structureless particle (a nitrogen molecule), are found as examples.

  1. Halogenated peptides as internal standards (H-PINS): introduction of an MS-based internal standard set for liquid chromatography-mass spectrometry.

    PubMed

    Mirzaei, Hamid; Brusniak, Mi-Youn; Mueller, Lukas N; Letarte, Simon; Watts, Julian D; Aebersold, Ruedi

    2009-08-01

    As the application for quantitative proteomics in the life sciences has grown in recent years, so has the need for more robust and generally applicable methods for quality control and calibration. The reliability of quantitative proteomics is tightly linked to the reproducibility and stability of the analytical platforms, which are typically multicomponent (e.g. sample preparation, multistep separations, and mass spectrometry) with individual components contributing unequally to the overall system reproducibility. Variations in quantitative accuracy are thus inevitable, and quality control and calibration become essential for the assessment of the quality of the analyses themselves. Toward this end, the use of internal standards cannot only assist in the detection and removal of outlier data acquired by an irreproducible system (quality control) but can also be used for detection of changes in instruments for their subsequent performance and calibration. Here we introduce a set of halogenated peptides as internal standards. The peptides are custom designed to have properties suitable for various quality control assessments, data calibration, and normalization processes. The unique isotope distribution of halogenated peptides makes their mass spectral detection easy and unambiguous when spiked into complex peptide mixtures. In addition, they were designed to elute sequentially over an entire aqueous to organic LC gradient and to have m/z values within the commonly scanned mass range (300-1800 Da). In a series of experiments in which these peptides were spiked into an enriched N-glycosite peptide fraction (i.e. from formerly N-glycosylated intact proteins in their deglycosylated form) isolated from human plasma, we show the utility and performance of these halogenated peptides for sample preparation and LC injection quality control as well as for retention time and mass calibration. Further use of the peptides for signal intensity normalization and retention time

  2. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    DOEpatents

    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.

    2000-01-01

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  3. Modeling multicomponent ion exchange equilibrium utilizing hydrous crystalline silicotitanates by a multiple interactive ion exchange site model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Z.; Anthony, R.G.; Miller, J.E.

    1997-06-01

    An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less

  4. SYNTHESIS AND STUDY OF HALOGENATED BENZYLAMIDES OF SOME ISOCYCLIC AND HETEROCYCLIC ACIDS AS POTENTIAL ANTICONVULSANTS.

    PubMed

    Strupińska, Marzanna; Rostafińska-Suchar, Grażyna; Pirianowicz-Chaber, Elżbieta; Grabczuk, Mateusz; Józwenko, Magdalena; Kowalczyk, Hubert; Szuba, Joanna; Wójcicka, Monika; Chen, Tracy; Mazurek, Aleksander P

    2015-01-01

    A series of potential anticonvulsants have been synthesized. There are eight fluorobenzylamides and three chlorobenzylamides of isocyclic or heterocyclic acids. Two not halogenated benzylamides were also synthesized to compare the effect of halogenation. The aim of the research performed was to evaluate whether halogenation of the mother structure is able to improve its anticonvulsant activity. The compounds were tested in Anticonvulsant Screening Project (ASP) of Antiepileptic Drug Development Program (ADDP) of NIH. Compound 1 showed MES ED50 = 80.32 mg/kg, PI = 3.16. Compound 7 showed CKM ED50 = 56.72 mg/kg. Compound 8 showed MES ED50 = 34.23 mg/kg and scPTZ ED50 > 300 mg/kg, PI = 8.53.Compound 13 showed 6Hz ED50 = 78.96, PI = 3.37. The results indicate that fluorination does not improve activity, whereas chlorination in our experiment even reduces it.

  5. Metal Fluorides, Metal Chlorides and Halogenated Metal Oxides as Lewis Acidic Heterogeneous Catalysts. Providing Some Context for Nanostructured Metal Fluorides.

    PubMed

    Lennon, David; Winfield, John M

    2017-01-28

    Aspects of the chemistry of selected metal fluorides, which are pertinent to their real or potential use as Lewis acidic, heterogeneous catalysts, are reviewed. Particular attention is paid to β-aluminum trifluoride, aluminum chlorofluoride and aluminas γ and η, whose surfaces become partially fluorinated or chlorinated, through pre-treatment with halogenating reagents or during a catalytic reaction. In these cases, direct comparisons with nanostructured metal fluorides are possible. In the second part of the review, attention is directed to iron(III) and copper(II) metal chlorides, whose Lewis acidity and potential redox function have had important catalytic implications in large-scale chlorohydrocarbons chemistry. Recent work, which highlights the complexity of reactions that can occur in the presence of supported copper(II) chloride as an oxychlorination catalyst, is featured. Although direct comparisons with nanostructured fluorides are not currently possible, the work could be relevant to possible future catalytic developments in nanostructured materials.

  6. Computational insights into the photocyclization of diclofenac in solution: effects of halogen and hydrogen bonding.

    PubMed

    Bani-Yaseen, Abdulilah Dawoud

    2016-08-21

    The effects of noncovalent interactions, namely halogen and hydrogen bonding, on the photochemical conversion of the photosensitizing drug diclofenac (DCF) in solution were investigated computationally. Both explicit and implicit solvent effects were qualitatively and quantitatively assessed employing the DFT/6-31+G(d) and SQM(PM7) levels of theory. Full geometry optimizations were performed in solution for the reactant DCF, hypothesized radical-based intermediates, and the main product at both levels of theories. Notably, in good agreement with previous experimental results concerning the intermolecular halogen bonding of DCF, the SQM(PM7) method revealed different values for d(ClO, Å) and ∠(C-ClO, °) for the two chlorine-substituents of DCF, with values of 2.63 Å/162° and 3.13 Å/142° for the trans and cis orientations, respectively. Employing the DFT/6-31+G(d) method with implicit solvent effects was not conclusive; however, explicit solvent effects confirmed the key contribution of hydrogen and halogen bonding in stabilizing/destabilizing the reactant and hypothesized intermediates. Interestingly, the obtained results revealed that a protic solvent such as water can increase the rate of photocyclization of DCF not only through hydrogen bonding effects, but also through halogen bonding. Furthermore, the atomic charges of atoms majorly involved in the photocyclization of DCF were calculated using different methods, namely Mulliken, Hirshfeld, and natural bond orbital (NBO). The obtained results revealed that in all cases there is a notable nonequivalency in the noncovalent intermolecular interactions of the two chlorine substituents of DCF and the radical intermediates with the solvent, which in turn may account for the discrepancy of their reactivity in different media. These computational results provide insight into the importance of halogen and hydrogen bonding throughout the progression of the photochemical conversion of DCF in solution.

  7. Theoretical investigation on the molecular structure, Infrared, Raman and NMR spectra of para-halogen benzenesulfonamides, 4-X-C 6H 4SO 2NH 2 (X = Cl, Br or F)

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa

    2009-02-01

    In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.

  8. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  9. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for the... substance may cause internal organ effects (kidney and blood). The requirements of this section do not apply... processors of this substance as specified in § 721.125 (a), (b), (c), (d), (f), (g), (h), and (i). (2...

  10. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.

    PubMed

    Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R

    2016-07-12

    In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.

  11. Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.

    2008-10-01

    A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

  12. Abnormal synergistic effects between Lewis acid-base interaction and halogen bond in F3B···NCX···NCM

    NASA Astrophysics Data System (ADS)

    Tang, Qingjie; Li, Qingzhong

    2015-12-01

    An abnormal synergistic effect was found between the Lewis acid-base interaction and halogen bond in triads F3B···NCX···NCM (X and M are halogen atoms), where the strong Lewis acid-base interaction between F3B and NCX has a larger enhancement than the weak halogen bond between NCX and NCM. This is in contrast with the traditional cooperative effect. It is interesting that the alkali-metal substituent as well as the heavier halogen atom play a more remarkable role in the enhancement of the interaction F3B···NCX than that of NCX···NCM, particularly, the alkali-metal substituent makes the abnormal synergistic effect be the traditional cooperative one.

  13. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  14. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  15. A Simple Base-Mediated Halogenation of Acidic sp2 C-H Bonds under Non-Cryogenic Conditions

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2009-01-01

    A new method has been developed for in situ halogenation of acidic sp2 carbon-hydrogen bonds in heterocycles and electron-deficient arenes. Either selective monohalogenation or one-step exhaustive polyhalogenation is possible for substrates possessing several C-H bonds that are flanked by electron-withdrawing groups. For the most acidic arenes, such as pentafluorobenzene, K3PO4 base can be employed instead of BuLi for metalation/halogenation sequences. PMID:19102661

  16. Halogens in normal- and enriched-basalts from Central Indian Ridge (18-20°S): Testing the E-MORB subduction origin hypothesis

    NASA Astrophysics Data System (ADS)

    Ruzie, L.; Burgess, R.; Hilton, D. R.; Ballentine, C. J.

    2012-12-01

    Basalts emitted along oceanic ridges have often been subdivided into two categories: the Normal-MORB and the Enriched-MORB, anomalously enriched in highly incompatible elements. Donnelly et al. (2004) proposed that the formation of enriched sources is related to two stages of melting. The first one occurs in subduction zones where the mantle wedge is enriched by the addition of low-degree melts of subducted slab. The second stage of melting occurs beneath ocean ridges. Because of their incompatibility, relatively high concentrations and distinct elemental compositions in surface reservoirs, the heavy halogens (Cl, Br, I) are good tracers to detect the slab contribution in E-MORB sources. However, the halogen systematics in mantle reservoirs remains poorly constrained mainly because of their very low abundance in materials of interest. An innovative halogen analytical technique, developed at the University of Manchester, involving neutron irradiation of samples to convert halogens to noble gases provides detection limits unmatched by any other technique studies [Johnson et al. 2000]. For the first time Cl, Br and I can now be determined in appropriate samples. We focus on the content of halogens in the glassy margins of basalts erupted along the CIR from 18-20°S and the off-axis Gasitao Ridge. Our set of samples contains both N- and E-MORB and is fully described in terms of major and trace elements, as well as 3He/4He ratios and water concentrations [Murton et al., 2005; Nauret et al., 2006; Füri et al., 2011; Barry et al., in prep.]. The halogen concentration range is between 10 and 140 ppm for Cl, 30 and 500 ppb for Br and 0.8 and 10 ppb for I. The higher concentrations are found in E-MORB samples from the northern part of ridge axis. Comparing our data with previous halogen studies, our sample suites fall within the range of N-MORB from East Pacific Ridge (EPR) and Mid-Atlantic Ridge (MAR) [Jambon et al. 1995; Deruelle et al. 1992] and in the lower range of E

  17. Low-Level detections of halogenated volatile organic compounds in groundwater: Use in vulnerability assessments

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Eberts, S.M.; Bexfield, L.M.; Brown, C.J.; Fahlquist, L.S.; Katz, B.G.; Landon, M.K.

    2008-01-01

    Concentrations of halogenated volatile organic compounds (VOCs) were determined by gas chromatography (GC) with an electron-capture detector (GC-ECD) and by gas chromatography with mass spectrometry (GC-MS) in 109 groundwater samples from five study areas in the United States. In each case, the untreated water sample was used for drinking-water purposes or was from a monitoring well in an area near a drinking-water source. The minimum detection levels (MDLs) for 25 VOCs that were identified in GC-ECD chromatograms, typically, were two to more than four orders of magnitude below the GC-MS MDLs. At least six halogenated VOCs were detected in all of the water samples analyzed by GC-ECD, although one or more VOCs were detected in only 43% of the water samples analyzed by GC-MS. In nearly all of the samples, VOC concentrations were very low and presented no known health risk. Most of the low-level VOC detections indicated post-1940s recharge, or mixtures of recharge that contained a fraction of post-1940s water. Concentrations of selected halogenated VOCs in groundwater from natural and anthropogenic atmospheric sources were estimated and used to recognize water samples that are being impacted by nonatmospheric sources. A classification is presented to perform vulnerability assessments at the scale of individual wells using the number of halogenated VOC detections and total dissolved VOC concentrations in samples of untreated drinking water. The low-level VOC detections are useful in vulnerability assessments, particularly for samples in which no VOCs are detected by GC-MS analysis.

  18. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    PubMed

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  19. Shear bond strength of a bracket-bonding system cured with a light-emitting diode or halogen-based light-curing unit at various polymerization times

    PubMed Central

    Gupta, Sanjay Prasad; Shrestha, Basanta Kumar

    2018-01-01

    Purpose To determine and compare the shear bond strength (SBS) of bracket-bonding system cured with light-emitting diode (LED) and halogen-based light-curing unit at various polymerization times. Materials and methods Ninety six human maxillary premolar teeth extracted for orthodontic purpose were divided into four groups, according to the light-curing unit and exposure times used. In the halogen group, the specimens were light cured for 20 and 40 seconds. In the LED group, the specimens were light cured for 5 and 10 seconds. Stainless steel brackets were bonded with Enlight bonding system, stored in distilled water at 37°C for 24 hours and then submitted to SBS testing in a universal testing machine at a crosshead speed of 0.5 mm/minute. Adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the teeth determined by stereomicroscope at 10× magnification. Results The highest mean SBS was obtained with the halogen 40 seconds (18.27 MPa) followed by halogen 20 seconds (15.36 MPa), LED 10 seconds (14.60 MPa) and least with LED 5 seconds (12.49 MPa) group. According to analysis of variance (ANOVA) and Tukey’s multiple-comparison test, SBS of halogen 20 seconds group was not significantly different from halogen 40 seconds group, LED 5 seconds group and LED 10 seconds group, whereas halogen 40 seconds group was significantly different from LED 5 seconds and LED 10 seconds group. The method of light curing did not influence the ARI, with score 2 being predominant. Conclusion Polymerization with both halogen and LED resulted in SBS values that were clinically acceptable for orthodontic treatment in all groups. Hence, for bonding orthodontic brackets, photoactivation with halogen for 20 seconds and LED for 5 seconds is suggested. PMID:29692633

  20. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    NASA Astrophysics Data System (ADS)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  1. Effect of halogenated substituents on the metabolism and estrogenic effects of the equine estrogen, equilenin.

    PubMed

    Liu, Xuemei; Zhang, Fagen; Liu, Hong; Burdette, Joanna E; Li, Yan; Overk, Cassia R; Pisha, Emily; Yao, Jiaqin; van Breemen, Richard B; Swanson, Steven M; Bolton, Judy L

    2003-06-01

    Estrogen replacement therapy has been correlated with an increased risk for developing breast and endometrial cancers. One potential mechanism of estrogen carcinogenesis involves metabolism of estrogens to 2- and 4-hydroxylated catechols, which are further oxidized to electrophilic/redox active o-quinones that have the potential to both initiate and promote the carcinogenic process. Previously, we showed that the equine estrogens, equilin and equilenin, which are major components of the estrogen replacement formulation Premarin (Wyeth-Ayerst), are primarily metabolized to the catechol, 4-hydroxyequilenin. This catechol was found to autoxidize to an o-quinone causing oxidation and alkylation of DNA in vitro and in vivo. To block catechol formation from equilenin, 4-halogenated equilenin derivatives were synthesized. These derivatives were tested for their ability to bind to the estrogen receptor, induce estrogen sensitive genes, and their potential to form catechol metabolites. We found that the 4-fluoro derivatives were more estrogenic than the 4-chloro and 4-bromo derivatives as demonstrated by a higher binding affinity for estrogen receptors alpha and beta, an enhanced induction of alkaline phosphatase activity in Ishikawa cells, pS2 expression in S30 cells, and PR expression in Ishikawa cells. Incubation of these compounds with tyrosinase in the presence of GSH showed that the halogenated equilenin compounds formed less catechol GSH conjugates than the parent compounds, equilenin and 17beta-hydroxyequilenin. In addition, these halogenated compounds showed less cytotoxicity in the presence of tyrosinase than the parent compounds in S30 cells. Also, as stated above, the 4-fluoro derivatives showed similar estrogenic effects as compared with parent compounds; however, they were less toxic in S30 cells as compared to equilenin and 17beta-equilenin. Because 17beta-hydroxy-4-halogenated equilenin derivatives showed higher estrogenic effects than the halogenated

  2. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  3. Hydration of the Atlantis Massif: Halogen, Noble Gas and In-Situ δ18O Constraints

    NASA Astrophysics Data System (ADS)

    Williams, M. J.; Kendrick, M. A.; Rubatto, D.

    2017-12-01

    A combination of halogen (Cl, Br, I), noble gases (He, Ne, Ar, Kr and Xe) and in situ oxygen isotope analysis have been utilized to investigate the fluid-mobile element record of hydration and alteration processes at the Atlantis Massif (30°N on the Mid-Atlantic Ridge). The sample suite investigated includes serpentinite, talc-amphibole ± chlorite schist and hydrated gabbro recovered by seafloor drilling undertaken at sites on a transect across the Atlantis Massif during IODP Expedition 357. Serpentine mesh and veins analysed in-situ by SHRIMP SI exhibit δ18O from 6‰ down to ≈0‰, suggesting serpentinization temperatures of 150 to >280°C and water/rock ratios >5. Differences of 1.5-2.5‰ are observed between adjacent generations of serpentine, but the δ18O range is similar at each investigated drilling site. Halogen and noble gas abundances in serpentinites, talc-amphibole schist and hydrated gabbro have been measured by noble gas mass spectrometry of both irradiated and non-irradiated samples. Serpentinites contain low abundances of halogens and noble gases (e.g. 70-430 ppm Cl, 4.7-12.2 x 10-14 mol/g 36Ar) relative to other seafloor serpentinites. The samples have systematically different Br/Cl and I/Cl ratios related to their mineralogy. Serpentinites retain mantle-like Br/Cl with a wide variation in I/Cl that stretches toward seawater values. Talc-amphibole schists exhibit depletion of Br and I relative to Cl with increasing Cl abundances, suggesting tremolite exerts strong control on halogen abundance ratios. Serpentinites show no evidence of interaction with halogen-rich sedimentary pore fluids. Iodine abundances are variable across serpentinites, and are decoupled from Br and Cl; iodine enrichment (up to 530 ppb) is observed within relatively oxidised and clay-bearing samples. Serpentinized harzburgites exhibit distinct depletion of Kr and Xe relative to atmospheric 36Ar in seawater. Oxygen isotope compositions and low abundances of both halogens

  4. Halogen content in Lesser Antilles arc volcanic rocks : exploring subduction recycling

    NASA Astrophysics Data System (ADS)

    Thierry, Pauline; Villemant, Benoit; Caron, Benoit

    2016-04-01

    Halogens (F, Cl, Br and I) are strongly reactive volatile elements which can be used as tracers of igneous processes, through mantle melting, magma differentiation and degassing or crustal material recycling into mantle at subduction zones. Cl, Br and I are higly incompatible during partial melting or fractional cristallization and strongly depleted in melts by H2O degassing, which means that no Cl-Br-I fractionation is expected through magmatic differenciation [current thesis]. Thus, Cl/Br/I ratios in lavas reflect the halogen content of their mantle sources. Whereas these ratios seemed quite constant (e.g. Cl/Br =300 as seawater), recent works suggest significant variations in arc volcanism [1,2]. In this work we provide high-precision halogen measurements in volcanic rocks from the recent activity of the Lesser Antilles arc (Montserrat, Martinique, Guadeloupe, Dominique). Halogen contents of powdered samples were determined through extraction in solution by pyrohydrolysis and analysed by Ion Chromatography for F and Cl and high performance ICP-MS (Agilent 8800 Tripe Quad) for Cl, Br and I [3,4]. We show that lavas - and mantle sources - display significant vraiations in Cl/Br/I ratios along the Lesser Antilles arc. These variations are compared with Pb, Nd and Sr isotopes and fluid-mobile elements (Ba, U, Sr, Pb etc.) compositions which vary along the arc from a nothern ordinary arc compositions to a southern 'crustal-like' composition [5,6]. These characteristics are attributed to subducted sediments recycling into the mantle wedge, whose contribution vary along the arc from north to south [7,8]. The proportion of added sediments is also related to the distance to the trench as sediment melting and slab dehydration may occur depending on the slab depth [9]. Further Cl-Br-I in situ measurements by LA-ICP-MS in Lesser Antilles arc lavas melt inclusions will be performed, in order to provide better constraints on the deep halogen recycling cycle from crust to

  5. THE EXCHANGE OF DEUTERIUM WITH METHANOL OVER RANEY NICKEL CATALYST AND THE EFFECT OF CERTAIN NITRO COMPOUNDS UPON THE EXCHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A.; Stewart, B.B.

    Deuterium gas exchanges slowly with liquid methanol over Raney nickel catalyst at 35 deg . The reaction is zero order with respect to deuterium pressure and has a low activation energy. The influences of catalyst weight, catalyst treatment, and of the presence of certain nitro compounds were studied. Since active Raney nickel can liberate hydrogen directly, a method for determining the origin of hydrogen which undergoes exchange with the deuterium gas was developed. It was shown that the exchanged hydrogen does originate from the hydroxyl hydrogen of methanol. The results are discussed in the light of the mechanism of catalyticmore » exchange and catalytic hydrogenation reactions. (auth)« less

  6. MAX phase – Alumina composites via exchange reaction in the M{sub n+1}AlC{sub n} systems (M=Ti, V, Cr, Nb, or Ta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuskelly, Dylan T., E-mail: Dylan.cuskelly@uon.edu.au; Kisi, Erich H.; Sugo, Heber O.

    2016-01-15

    MAX phases have been produced for the first time via an exchange reaction between the M-element oxide and Al leading to an M–Al–C–Al{sub 2}O{sub 3} composite in the V–Al–C, Cr–Al–C, Nb–Al–C and Ta–Al–C systems in addition to the previously known Ti–Al–C system. The reduction reaction was first investigated by forming the binary M–X carbide and then proven to be generic across all M–Al–C systems with the production of the M{sub 2}AlC phase in each case. The work was extended to the other M{sub 3}AlC{sub 2} and M{sub 4}AlC{sub 3} phases in the respective systems, and was successful in 4 ofmore » the 5 cases with moderate yield. - Graphical abstract: A range of M{sub n+1}AX{sub n} phases (M-octahedra with X centres and A layers) were synthesised directly from the M oxide via exchange reactions for the 5 M-elements shown. - Highlights: • Ten M{sub n+1}AlC{sub n} phases were produced from M-oxides via a single step exchange reaction. • Eight of these MAX phases had not been produced via this method before. • Al was found to be a suitable reducing agent in all cases. • The process was also discovered to work under SHS and MASHS conditions.« less

  7. Dehalogenation of persistent halogenated organic compounds: A review of computational studies and quantitative structure-property relationships.

    PubMed

    Luo, Jin; Hu, Jiwei; Wei, Xionghui; Fu, Liya; Li, Lingyun

    2015-07-01

    Dehalogenation is one of the highly important degradation reactions for halogenated organic compounds (HOCs) in the environment, which is also being developed as a potential type of the remediation technologies. In combination with the experimental results, intensive efforts have recently been devoted to the development of efficient theoretical methodologies (e.g. multi-scale simulation) to investigate the mechanisms for dehalogenation of HOCs. This review summarizes the structural characteristics of neutral molecules, anionic species and excited states of HOCs as well as their adsorption behavior on the surface of graphene and the Fe cluster. It discusses the key physiochemical properties (e.g. frontier orbital energies and thermodynamic properties) calculated at various levels of theory (e.g. semiempirical, ab initio, density functional theory (DFT) and the periodic DFT) as well as their connections to the reactivity and reaction pathway for the dehalogenation. This paper also reviews the advances in the linear and nonlinear quantitative structure-property relationship models for the dehalogenation kinetics of HOCs and in the mathematical modeling of the dehalogenation processes. Furthermore, prospects of further expansion and exploration of the current research fields are described in this article. Published by Elsevier Ltd.

  8. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    PubMed

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  9. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ombaka, L.M.; Ndungu, P.G.; Department of Applied Chemistry, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF{sub 3} and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF{sub 3} catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF{sub 3} catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and aremore » less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF{sub 3} and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF{sub 3} catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.« less

  10. Long-term Studies of Marine Halogen Release

    NASA Astrophysics Data System (ADS)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  11. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  12. Two-dimensional free-energy surface on the exchange reaction of alkyl chloride/chloride using the QM/MM-MC method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohisa, M.; Yamataka, H.; Dupuis, Michel

    2007-12-05

    Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl- + RCl (R = Me and t-Bu) surrounded by one hundred H2O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R = t-Bu on the free-energy surfacemore » is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R = Me system that proceeds as a typical SN2 reaction. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  13. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  14. Halogenated fatty amides - A brand new class of disinfection by-products.

    PubMed

    Kosyakov, Dmitry S; Ul'yanovskii, Nikolay V; Popov, Mark S; Latkin, Tomas B; Lebedev, Albert T

    2017-12-15

    An array of similar halogenated nitrogen-containing compounds with elemental composition C n H 2n NO 2 X, C n H 2n-2 NO 2 X and C n H 2n-1 NOX 2 (X = Cl, Br; n = 16, 18, 22) was detected in drinking water with high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS) method. Compounds of this type were never mentioned among disinfection by-products. Tandem mass spectrometry allowed referring them to halohydrines or dihalogenated fatty amides, the products of conjugated electrophilic addition of halogens to the double bonds of unsaturated fatty amides. The proposed structures were confirmed by conducting aqueous chlorination with standard solution of oleamide. These compounds may be considered as a brand new class of disinfection by products, while their toxicities require special study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Retrieval Algorithms for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Thompson, Robert E.; Gordley, Larry L.

    2009-01-01

    The Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) provided high quality measurements of key middle atmosphere constituents, aerosol characteristics, and temperature for 14 years (1991-2005). This report is an outline of the Level 2 retrieval algorithms, and it also describes the great care that was taken in characterizing the instrument prior to launch and throughout its mission life. It represents an historical record of the techniques used to analyze the data and of the steps that must be considered for the development of a similar experiment for future satellite missions.

  16. Practical Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heterocyclic Halides and Aryl or Heteroaryl Magnesium Reagents.

    PubMed

    Kuzmina, Olesya M; Steib, Andreas K; Fernandez, Sarah; Boudot, Willy; Markiewicz, John T; Knochel, Paul

    2015-05-26

    The reaction scope of iron- and cobalt-catalyzed cross-coupling reactions in the presence of isoquinoline (quinoline) in the solvent mixture tBuOMe/THF has been further investigated. Various 2-halogenated pyridine, pyrimidine, and triazine derivatives were arylated under these mild conditions in excellent yields. The presence of isoquinoline allows us to perform Fe-catalyzed cross-coupling reactions between 6-chloroquinoline and aryl magnesium reagents. Furthermore, it was found that the use of 10% N,N-dimethylquinoline-8-amine increases the yields of some Co-catalyzed cross-coupling reactions with chloropyridines bearing electron-withdrawing substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. EVOLUTION OF AN ANALYTICAL METHOD FOR HALOGENATED FURANONES IN DRINKING WATER

    EPA Science Inventory

    A unified method of detection for seven halogenated furanones present in drinking waters at the ng/L level has been developed. The use of GC/ECD makes this method amenable to manyenvironmental laboratories and water treatment plants in the United States. Detection limits observe...

  18. Imidazole C-2 Hydrogen/Deuterium Exchange Reaction at Histidine for Probing Protein Structure and Function with MALDI Mass Spectrometry

    PubMed Central

    Hayashi, Naoka; Kuyama, Hiroki; Nakajima, Chihiro; Kawahara, Kazuki; Miyagi, Masaru; Nishimura, Osamu; Matsuo, Hisayuki; Nakazawa, Takashi

    2015-01-01

    We present a mass spectrometric method for analyzing protein structure and function, based on the imidazole C-2 or histidine Cε1 hydrogen/deuterium (H/D) exchange reaction, which is intrinsically second order with respect to the concentrations of the imidazolium cation and OD− in D2O. The second-order rate constant (k2) of this reaction was calculated from the pH-dependency of the pseudo-first-order rate constant (kφ) obtained from the change of average mass ΔMr (0 ≤ ΔMr < 1) of a peptide fragment containing a defined histidine residue at incubation time (t) such that kφ = − [ln(1−ΔMr)]/t. We preferred using k2 rather than kφ because k2max (maximal value of k2) was empirically related to pKa as illustrated with a Brønsted plot: logk2max=-0.7pKa+α (α is an arbitrary constant), so that we could analyze the effect of structure on the H/D-exchange rate in terms of log(k2max/k2) representing the deviation of k2 from k2max. In the catalytic site of bovine ribonuclease A, His12 showed much larger change in log(k2max/k2) compared with His119 upon binding with cytidine 3′-monophosphate, as anticipated from the X-ray structures and the possible change in solvent accessibility. However, there is a need of considering the hydrogen bonds of the imidazole group with non-dissociable groups to interpret an extremely slow H/D exchange rate of His48 in partially solvent-exposed situation. PMID:24606199

  19. The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.

    2014-01-01

    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.

  20. Control of DNA strand displacement kinetics using toehold exchange.

    PubMed

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  1. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1996-02-06

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  2. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1996-01-01

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  3. Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory.

    PubMed

    George, Janine; Deringer, Volker L; Dronskowski, Richard

    2014-05-01

    Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.

  4. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  5. Ligand Exchange Kinetics of Environmentally Relevant Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasci, Adele Frances

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb tomore » mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.« less

  6. Intrinsic Chemiluminescence Generation during Advanced Oxidation of Persistent Halogenated Aromatic Carcinogens.

    PubMed

    Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan

    2015-07-07

    The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.

  7. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    PubMed Central

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  8. Catalyst-free activation of methylene chloride and alkynes by amines in a three-component coupling reaction to synthesize propargylamines.

    PubMed

    Rawat, Vikas S; Bathini, Thulasiram; Govardan, S; Sreedhar, Bojja

    2014-09-14

    Propargylamines are synthesized via metal-free activation of the C-halogen bond of dihalomethanes and the C-H bond of terminal alkynes in a three-component coupling without catalyst or additional base and under mild reaction conditions. The dihalomethanes are used both as solvents as well as precursors for the methylene fragment (C1) in the final product. The scope of the reaction and the influence of various reaction variables has been investigated. A plausible reaction mechanism is proposed and the involvement of various intermediates that can be generated in situ in the process is discussed. The metal-free conditions also make this protocol environmentally benign and atom economical.

  9. Metal cation exchange reactions of ore minerals in Fe-Mn crusts of the Marcus Wake Rise (Pacific Ocean) in aqueous-salt solutions

    NASA Astrophysics Data System (ADS)

    Novikov, G. V.; Bogdanova, O. Yu.; Melnikov, M. E.; Drozdova, A. N.; Lobus, N. V.; Shulga, N. A.

    2017-12-01

    It is shown that the reaction ability of metal cations of ore minerals in Fe-Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43-0.60 and 2.08-2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.

  10. The influence of ocean halogen and sulfur emissions in the air quality of a coastal megacity: The case of Los Angeles

    EPA Science Inventory

    The oceans are the main source of natural halogen and sulfur compounds, which have a significant influence on the oxidizing capacity of the marine atmosphere; however, their impact on the air quality of coastal cities is currently unknown. We explore the effect of marine halogens...

  11. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    PubMed

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  13. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  14. Monomer Release from Resin Based Dental Materials Cured With LED and Halogen Lights

    PubMed Central

    Ak, Asli Topaloglu; Alpoz, A. Riza; Bayraktar, Oguz; Ertugrul, Fahinur

    2010-01-01

    Objectives: To measure the release of TEGDMA and BisGMA from two commercially available composite resins; Filtek Z 250 (3M ESPE, Germany), Leaddent (Leaddent, Germany) and two fissure sealants; Helioseal F (3M ESPE, Germany) Enamel Loc (Premiere Rev, USA) over 1, 3 and 7 days after polymerization with standard quartz-tungsten halogen Coltolux II (QHL) (Coltene Switzerland) and a standard blue light emitting diode Elipar Freelight 2 (3M ESPE, Germany). Methods: 9 samples of each material were placed in disc shaped specimens in 1 mm of thickness and 10 mm in diameter (n=36). Each material was polymerized using LED for 20 s (n=12), 40 s (n=12) and halogen for 40 s (n=12), respectively. High Performance Liquid Chromatography (HPLC) was used to measure the amount of monomers released over 1, 3 and 7 days. Data was analyzed using one way ANOVA and Bonferroni test for multiple comparisons with a significance level of .05. Results: LED 20 sec group showed the highest release of monomers at 1, 3 and 7 days in sealant groups. Halogen 40 sec group resulted highest release of monomers for Leaddent at all time intervals (P<.05) Conclusions: Efficiency of the curing unit and applying the recommended curing time of the light activated resin based dental materials is very important to protect the patient from potential hazards of residual monomers. PMID:20046478

  15. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch.

    PubMed

    Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2018-02-05

    Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  17. Reaction Decoder Tool (RDT): extracting features from chemical reactions.

    PubMed

    Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M

    2016-07-01

    Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.

  18. Modulation of the reaction cycle of the Na+:Ca2+, K+ exchanger.

    PubMed

    Vedovato, Natascia; Rispoli, Giorgio

    2007-09-01

    Ca(2+) concentration in retinal photoreceptor rod outer segment (OS) strongly affects the generator potential kinetics and the receptor light adaptation. The response to intense light stimuli delivered in the dark produce potential changes exceeding 40 mV: since the Ca(2+) extrusion in the OS is entirely controlled by the Na(+):Ca(2+), K(+) exchanger, it is important to assess how the exchanger ion transport rate is affected by the voltage and, in general, by intracellular factors. It is indeed known that the cardiac Na(+):Ca(2+) exchanger is regulated by Mg-ATP via a still unknown metabolic pathway. In the present work, the Na(+):Ca(2+), K(+) exchanger regulation was investigated in isolated OS, recorded in whole-cell configuration, using ionic conditions that activated maximally the exchanger in both forward and reverse mode. In all species examined (amphibia: Rana esculenta and Ambystoma mexicanum; reptilia: Gecko gecko), the forward (reverse) exchange current increased about linearly for negative (positive) voltages and exhibited outward (inward) rectification for positive (negative) voltages. Since hyperpolarisation increases Ca(2+) extrusion rate, the recovery of the dark level of Ca(2+) (and, in turn, of the generator potential) after intense light stimuli results accelerated. Mg-ATP increased the size of forward and reverse exchange current by a factor of approximately 2.3 and approximately 2.6, respectively, without modifying their voltage dependence. This indicates that Mg-ATP regulates the number of active exchanger sites and/or the exchanger turnover number, although via an unknown mechanism.

  19. Theoretical investigation of two-particle two-hole effects on spin-isospin excitations through charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Fukui, Tokuro; Minato, Futoshi

    2017-11-01

    Background: Coherent one-particle one-hole (1p1h) excitations have given us effective insights into general nuclear excitations. However, the two-particle two-hole (2p2h) excitation beyond 1p1h is now recognized as critical for the proper description of experimental data of various nuclear responses. Purpose: The spin-flip charge-exchange reactions 48Ca(p ,n )48Sc are investigated to clarify the role of the 2p2h effect on their cross sections. The Fermi transition of 48Ca via the (p ,n ) reaction is also investigated in order to demonstrate our framework. Methods: The transition density is calculated microscopically with the second Tamm-Dancoff approximation, and the distorted-wave Born approximation is employed to describe the reaction process. A phenomenological one-range Gaussian interaction is used to prepare the form factor. Results: For the Fermi transition, our approach describes the experimental behavior of the cross section better than the Lane model, which is the conventional method. For spin-flip excitations including the GT transition, the 2p2h effect decreases the magnitude of the cross section and does not change the shape of the angular distribution. The Δ l =2 transition of the present reaction is found to play a negligible role. Conclusions: The 2p2h effect will not change the angular-distributed cross section of spin-flip responses. This is because the transition density of the Gamow-Teller response, the leading contribution to the cross section, is not significantly varied by the 2p2h effect.

  20. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Urann, B. M.; Le Roux, V.; Hammond, K.; Marschall, H. R.; Lee, C.-T. A.; Monteleone, B. D.

    2017-07-01

    The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth's upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4-31 µg/g F and 0.14-0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1-9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that

  1. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  2. Fluorination of 1,2,3-, 1,2,4-, and 1,3,5-trihalobenzenes with potassium fluoride in dimethyl sulfone

    USGS Publications Warehouse

    Shiley, R.H.; Dickerson, D.R.; Finger, G.C.

    1972-01-01

    Three trifluorobenzenes were prepared by reaction of the corresponding trichlorobenzenes with potassium fluoride or pottassium fluoride-cesium fluoride mixtures in dimethyl sulfone. Molar yields were 12.8% for 1,2,3-, 8.3% for 1,2,4-, and 56.2% for 1,3,5-. Improved yields of the 1,2,3- (23.9%) and the 1,2,4- (34.0%) trifluorobenzenes were obtained from certain partially fluorinated intermediates. Several chlorofluorobenzene intermediates were obtained in goods yields by careful control of the reaction variables. The instability of the polyfluorobenzenes in the halogen-exchange reaction medium explains, in part, why only limited yields of the polyfluorobenzenes are obtained by using this method. ?? 1972.

  3. A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation.

    PubMed

    Asahi, Takashi; Wu, Xiaohong; Shimoda, Hiroshi; Hisaka, Shinsuke; Harada, Etsuko; Kanno, Tomomi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2016-01-01

    Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.

  4. Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems.

    PubMed

    Parker, Kimberly M; Reichwaldt, Elke S; Ghadouani, Anas; Mitch, William A

    2016-08-16

    The transport of microcystin, a hepatotoxin produced by cyanobacteria (e.g., Microcystis aeruginosa), to estuaries can adversely affect estuarine and coastal ecosystems. We evaluated whether halogen radicals (i.e., reactive halogen species (RHS)) could significantly contribute to microcystin photodegradation during transport within estuaries. Experiments in synthetic and natural water samples demonstrated that the presence of seawater halides increased quantum yields for microcystin indirect photodegradation by factors of 3-6. Additional experiments indicated that photoproduced RHS were responsible for this effect. Despite the fact that dissolved organic matter (DOM) concentrations decreased in more saline waters, the calculated photochemical half-life of microcystin decreased 6-fold with increasing salinity along a freshwater-estuarine transect due to the halide-associated increase in quantum yield. Modeling of microcystin photodegradation along this transect indicated that the time scale for RHS-mediated microcystin photodegradation is comparable to the time scale of transport. Microcystin concentrations decline by ∼98% along the transect when considering photodegradation by RHS, but only by ∼54% if this pathway were ignored. These results suggest the importance of considering RHS-mediated photodegradation in future models of microcystin fate in freshwater-estuarine systems.

  5. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... Compliance Requirements § 63.2465 What requirements must I meet for process vents that emit hydrogen halide... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you must...

  6. Reaction to Halogens and Interhalogens with 4-Halo-1,1,2-trifluorobut-1-enes: Rearrangement of 3-Membered Halonium to 5-Membered Trifluorotetramethylene Halonium Ion Intermediates and Comparison of Open-Chloronium Fluorosubstituted Ions to Flurocarbocations from Protons (Preprint)

    DTIC Science & Technology

    2008-02-28

    were found to be open-ion (A or E), unsymmetrical (B or D), or symmetrical C depending on the halogen electrophile and on the position and number of...Rearranged products 4 (Structures A-E) 1 Z = Cl 2 Z = Br 3 Z = I XY = Cl2, Br2, BrCl ICl, IBr Scheme 1 Y on the fluorine atoms of 5 shield the carbon nucleus...and 3) WITH HALOGEN ELECTROPHILES IN METHYLENE CHLORIDE F F F Z XY CH2Cl2 CF2CFZ Y X CF2CFZ X Y CF2CFY X Z + + M aM Rearranged Run Alkene (Z

  7. Halogen occultation experiment intergrated test plan

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Butterfield, A. J.

    1986-01-01

    The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2.

  8. Kinetic Methods for Understanding Linker Exchange in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Morabito, Joseph V.

    Exchange reactions have enabled a new level of control in the rational, stepwise preparation of metal-organic framework (MOF) materials. However, their full potential is limited by a lack of understanding of the molecular mechanisms by which they occur. This dissertation describes our efforts to understand this important class of reactions in two parts. The first reports our use of a linker exchange process to encapsulate guest molecules larger than the limiting pore aperture of the MOF. The concept is demonstrated, along with evidence for guest encapsulation and its relation to a dissociative linker exchange process. The second part describes our development of the first quantitative kinetic method for studying MOF linker exchange reactions and our application of this method to understand the solvent dependence of the reaction of ZIF-8 with imidazole. This project involved the collection of the largest set of rate data available on any MOF linker exchange reaction. The combination of this dataset with small molecule encapsulation experiments allowed us to formulate a mechanistic model that could account for all the observed kinetic and structural data. By comparison with the kinetic behavior of complexes in solution, we were able to fit the kinetic behavior of ZIF-8 into the broader family of coordination compounds. Aside from the specific use that our kinetic data may have in predicting the reactivity of ZIF linker exchange, we hope that the conceptual bridges made between MOFs and related metal?organic compounds can help reveal underlying patterns in behavior and advance the field.

  9. Time dependence of composite shrinkage using halogen and LED light curing.

    PubMed

    Uhl, Alexander; Mills, Robin W; Rzanny, Angelika E; Jandt, Klaus D

    2005-03-01

    The polymerization shrinkage of light cured dental composites presents the major drawback for these aesthetically adaptable restorative materials. LED based light curing technology has recently become commercially available. Therefore, the aim of the present study was to investigate if there was a statistically significant difference in linear and volumetric composite shrinkage strain if a LED LCU is used for the light curing process rather than a conventional halogen LCU. The volumetric shrinkage strain was determined using the Archimedes buoyancy principle after 5, 10, 20, 40 s of light curing and after 120 s following the 40 s light curing time period. The linear shrinkage strain was determined with a dynamic mechanical analyzer for the composites Z100, Spectrum, Solitaire2 and Definite polymerized with the LCUs Trilight (halogen), Freelight I (LED) and LED63 (LED LCU prototype). The changes in irradiance and spectra of the LCUs were measured after 0, 312 and 360 min of duty time. In general there was no considerable difference in shrinkage of the composites Z100, Spectrum or Solitaire2 when the LED63 was used instead of the Trilight. There was, however, a statistically significant difference in shrinkage strain when the composite Definite was polymerized with the LED63 instead of the Trilight. The spectrum of the Trilight changed during the experiment considerably whereas the LED63 showed an almost constant light output. The Freelight I dropped considerably in irradiance and had to be withdrawn from the study because of technical problems. The composites containing only the photoinitiator camphorquinone showed similar shrinkage strain behaviour when a LED or halogen LCU is used for the polymerization. The irradiance of some LED LCUs can also decrease over time and should therefore be checked on a regular basis.

  10. Zinc halogen battery electrolyte composition with lead additive

    DOEpatents

    Henriksen, Gary L.

    1981-01-01

    This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.

  11. Halogen bonds in clathrate cages: A real space perspective.

    PubMed

    Guevara-Vela, José Manuel; Ochoa-Resendiz, David; Costales, Aurora; Hernández-Lamoneda, Ramón; Martin Pendas, Angel

    2018-06-22

    In this paper we present real space analyses of the nature of the dihalogen-water cage interactions in the 5^{12} and 5^{12}6^2 clathrate cages containing chlorine and bromine, respectively. Our Quantum Theory of Atoms in Molecules and Interacting Quantum Atoms results provide strong indications that halogen bonding is present even though the lone pairs of water molecules are already engaged in hydrogen bonding interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I...π/N/S halogen bond and other assisting interactions.

    PubMed

    Wang, Hui; Jin, Wei Jun

    2017-04-01

    The halogen-bonded cocrystal of 1,4-diiodotetrafluorobenzene (1,4-DITFB) with the butterfly-shape non-planar heterocyclic compound phenothiazine (PHT) was successfully assembled by the conventional solution-based method. X-ray single-crystal diffraction analysis reveals a 3:2 stoichiometric ratio for the cocrystal (1,4-DITFB/PHT), and the cocrystal structure is constructed via C-I...π, C-I...N and C-I...S halogen bonds as well as other assisting interactions (e.g. C-H...F/S hydrogen bond, C-H...H-C and C-F...F-C bonds). The small shift of the 1,4-DITFB vibrational band to lower frequencies in FT-IR and Raman spectroscopies provide evidence to confirm the existence of the halogen bond. In addition, the non-planarity of the PHT molecule in the cocrystal results in PHT emitting weak phosphorescence and relatively strong delayed fluorescence. Thus, a wide range of delayed fluorescence and weak phosphorescence could play a significant role in selecting a proper π-conjugated system to engineer functional cocrystal and luminescent materials by halogen bonds.

  13. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    PubMed

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  14. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of

  15. Time dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1989-01-01

    The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.

  16. Synthesis and characterization of lead-free tin silver nanosolders and their application to halogen free nanosolder pastes

    NASA Astrophysics Data System (ADS)

    Wernicki, Evan

    Solder paste is a key material used in attaching electronic components to printed circuit boards (PCBs). Commonly used lead-based solders, such as eutectic Sn/37Pb, are currently being replaced by lead-free alloy materials due to health and environmental concerns associated with lead. Many solder pastes, both lead-containing and lead-free, contain halogens which act as activators to remove surface oxide and enhance surface wetting, posing further environmental concern from the halogen species. Difficulties in obtaining reliable joints can occur since lead-free solder material candidates have higher melting temperatures (30-50 °C) than that of lead-based solders. Differences in material properties between the numerous materials used in assembly and packaging processes can lead to component damage during manufacturing. Furthermore, designs that include more electrical interconnects in smaller areas give rise for the need for new materials to allow this trend to continue. A surfactant-assisted chemical reduction method was used to synthesize Sn/Ag alloy nanoparticles with a target composition range of 3.5-5 wt% Ag that served as the lead-free solder material within a nanosolder paste. Structure and size characterization via SEM and TEM showed Sn-Ag nanosolders size average approximately 19 nm. Differential scanning calorimetry (DSC) measurements of the nanosolder samples containing 4.5 wt% Ag showed an endothermic peak at 222.5 °C and an onset of 219.2 °C, indicating up to 17.5 °C melting temperature depression when compared to the bulk liquidus value of 240 °C. Composition of the nanosolder material was confirmed using energy dispersive x-ray spectroscopy (EDS) and structures formed were analyzed via x-ray diffraction (XRD). Both halogen-free and halogen-containing flux materials were combined with the nanosolder material, respectively, with varying preparation parameters to form a design of experiments (DoE) for nanosolder paste preparation. Solder pastes

  17. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  18. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.

    PubMed

    Hanzon, Drew W; Traugutt, Nicholas A; McBride, Matthew K; Bowman, Christopher N; Yakacki, Christopher M; Yu, Kai

    2018-02-14

    Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.

  19. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs.

    PubMed

    Kucerova-Chlupacova, Marta; Vyskovska-Tyllova, Veronika; Richterova-Finkova, Lenka; Kunes, Jiri; Buchta, Vladimir; Vejsova, Marcela; Paterova, Pavla; Semelkova, Lucia; Jandourek, Ondrej; Opletalova, Veronika

    2016-10-27

    Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes ) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.

  20. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish.

    PubMed

    Godfrey, Amy; Hooser, Blair; Abdelmoneim, Ahmed; Horzmann, Katharine A; Freemanc, Jennifer L; Sepúlveda, Maria S

    2017-12-01

    Endocrine disrupting chemicals (EDCs) can alter thyroid function and adversely affect growth and development. Halogenated compounds, such as perfluorinated chemicals commonly used in food packaging, and brominated flame retardants used in a broad range of products from clothing to electronics, can act as thyroid disruptors. Due to the adverse effects of these compounds, there is a need for the development of safer next generation chemicals. The objective of this study was to test the thyroid disruption potential of old use and next generation halogenated chemicals. Zebrafish embryos were exposed to three old use compounds, perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and two next generation chemicals, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxdie (DOPO) and perfluorobutyric acid (PFBA). Sub-chronic (0-6days post fertilization (dpf)) and chronic (0-28dpf) exposures were conducted at 1% of the concentration known to kill 50% (LC 50 ) of the population. Changes in the surface area of the swim bladder as well as in expression levels of genes involved in the thyroid control of swim bladder inflation were measured. At 6dpf, zebrafish exposed to all halogenated chemicals, both old use and next generation, had smaller posterior swim bladder and increased expression in the gene encoding thyroid peroxidase, tpo and the genes encoding two swim bladder surfactant proteins, sp-a and sp-c. These results mirrored the effects of thyroid hormone-exposed positive controls. Fish exposed to a TPO inhibitor (methimazole, MMI) had a decrease in tpo expression levels at 28dpf. Effects on the anterior swim bladder at 28dpf, after exposure to MMI as well as both old and new halogenated chemicals, were the same, i.e., absence of SB in ∼50% of fish, which were also of smaller body size. Overall, our results suggest thyroid disruption by the halogenated compounds tested via the swim bladder surfactant system. However