Sample records for halophilic archaeon haloquadratum

  1. Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi.

    PubMed

    Cuebas-Irizarry, Mara F; Irizarry-Caro, Ricardo A; López-Morales, Carol; Badillo-Rivera, Keyla M; Rodríguez-Minguela, Carlos M; Montalvo-Rodríguez, Rafael

    2017-11-21

    We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi . A 2349 bp region ( Hqrw_2071 ) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3-4 M KCl. However, specific activity values were two-fold higher in the presence of 3-4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41%) to alpha-glucosidases and alpha-xylosidases of Halorubrum . Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group.

  2. Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi.

    PubMed

    Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria

    2011-04-29

    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16-20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies.

  3. Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi

    PubMed Central

    Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria

    2011-01-01

    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies. PMID:21559517

  4. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  5. Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus.

    PubMed

    Liu, Guangxiu; Zhang, Manxiao; Mo, Tianlu; He, Lian; Zhang, Wei; Yu, Yi; Zhang, Qi; Ding, Wei

    2015-11-27

    This work reports the (13)C-assisted metabolic flux analysis of Haladaptatus paucihalophilus, a halophilic archaeon possessing an intriguing osmoadaption mechanism. We showed that the carbon flow is through the oxidative tricarboxylic acid (TCA) cycle whereas the reductive TCA cycle is not operative in H. paucihalophilus. In addition, both threonine and the citramalate pathways contribute to isoleucine biosynthesis, whereas lysine is synthesized through the diaminopimelate pathway and not through the α-aminoadipate pathway. Unexpected, the labeling patterns of glycine from the cells grown on [1-(13)C]pyruvate and [2-(13)C]pyruvate suggest that, unlike all the organisms investigated so far, in which glycine is produced exclusively from the serine hydroxymethyltransferase (SHMT) pathway, glycine biosynthesis in H. paucihalophilus involves different pathways including SHMT, threonine aldolase (TA) and the reverse reaction of glycine cleavage system (GCS), demonstrating for the first time that other pathways instead of SHMT can also make a significant contribution to the cellular glycine pool. Transcriptional analysis confirmed that both TA and GCS genes were transcribed in H. paucihalophilus, and the transcriptional level is independent of salt concentrations in the culture media. This study expands our understanding of amino acid biosynthesis and provides valuable insights into the metabolism of halophilic archaea. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Environmental genomics of "Haloquadratum walsbyi" in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species

    PubMed Central

    Legault, Boris A; Lopez-Lopez, Arantxa; Alba-Casado, Jose Carlos; Doolittle, W Ford; Bolhuis, Henk; Rodriguez-Valera, Francisco; Papke, R Thane

    2006-01-01

    Background Mature saturated brine (crystallizers) communities are largely dominated (>80% of cells) by the square halophilic archaeon "Haloquadratum walsbyi". The recent cultivation of the strain HBSQ001 and thesequencing of its genome allows comparison with the metagenome of this taxonomically simplified environment. Similar studies carried out in other extreme environments have revealed very little diversity in gene content among the cell lineages present. Results The metagenome of the microbial community of a crystallizer pond has been analyzed by end sequencing a 2000 clone fosmid library and comparing the sequences obtained with the genome sequence of "Haloquadratum walsbyi". The genome of the sequenced strain was retrieved nearly complete within this environmental DNA library. However, many ORF's that could be ascribed to the "Haloquadratum" metapopulation by common genome characteristics or scaffolding to the strain genome were not present in the specific sequenced isolate. Particularly, three regions of the sequenced genome were associated with multiple rearrangements and the presence of different genes from the metapopulation. Many transposition and phage related genes were found within this pool which, together with the associated atypical GC content in these areas, supports lateral gene transfer mediated by these elements as the most probable genetic cause of this variability. Additionally, these sequences were highly enriched in putative regulatory and signal transduction functions. Conclusion These results point to a large pan-genome (total gene repertoire of the genus/species) even in this highly specialized extremophile and at a single geographic location. The extensive gene repertoire is what might be expected of a population that exploits a diverse nutrient pool, resulting from the degradation of biomass produced at lower salinities. PMID:16820057

  7. Draft genome sequence of the extremely halophilic archaeon Haladaptatus cibarius type strain D43(T) isolated from fermented seafood.

    PubMed

    Lee, Hae-Won; Kim, Dae-Won; Lee, Mi-Hwa; Kim, Byung-Yong; Cho, Yong-Joon; Yim, Kyung June; Song, Hye Seon; Rhee, Jin-Kyu; Seo, Myung-Ji; Choi, Hak-Jong; Choi, Jong-Soon; Lee, Dong-Gi; Yoon, Changmann; Nam, Young-Do; Roh, Seong Woon

    2015-01-01

    An extremely halophilic archaeon, Haladaptatus cibarius D43(T), was isolated from traditional Korean salt-rich fermented seafood. Strain D43(T) shows the highest 16S rRNA gene sequence similarity (98.7 %) with Haladaptatus litoreus RO1-28(T), is Gram-negative staining, motile, and extremely halophilic. Despite potential industrial applications of extremely halophilic archaea, their genome characteristics remain obscure. Here, we describe the whole genome sequence and annotated features of strain D43(T). The 3,926,724 bp genome includes 4,092 protein-coding and 57 RNA genes (including 6 rRNA and 49 tRNA genes) with an average G + C content of 57.76 %.

  8. Metabolism of halophilic archaea

    PubMed Central

    Falb, Michaela; Müller, Kerstin; Königsmaier, Lisa; Oberwinkler, Tanja; Horn, Patrick; von Gronau, Susanne; Gonzalez, Orland; Pfeiffer, Friedhelm; Bornberg-Bauer, Erich

    2008-01-01

    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature. Electronic supplementary material The online version of this article (doi:10.1007/s00792-008-0138-x) contains supplementary material, which is available to authorized users. PMID:18278431

  9. d-Xylose Degradation Pathway in the Halophilic Archaeon Haloferax volcanii

    PubMed Central

    Johnsen, Ulrike; Dambeck, Michael; Zaiss, Henning; Fuhrer, Tobias; Soppa, Jörg; Sauer, Uwe; Schönheit, Peter

    2009-01-01

    The pathway of d-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198–6207). Here we report a comprehensive study of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following 13C-labeling patterns of proteinogenic amino acids after growth on [13C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that d-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate α-ketoglutarate, involving d-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and α-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal d-xylose degradation pathway that differs from the classical d-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to α-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus. PMID:19584053

  10. The PL6-Family Plasmids of Haloquadratum Are Virus-Related.

    PubMed

    Dyall-Smith, Mike; Pfeiffer, Friedhelm

    2018-01-01

    Plasmids PL6A and PL6B are both carried by the C23 T strain of the square archaeon Haloquadratum walsbyi , and are closely related (76% nucleotide identity), circular, about 6 kb in size, and display the same gene synteny. They are unrelated to other known plasmids and all of the predicted proteins are cryptic in function. Here we describe two additional PL6-related plasmids, pBAJ9-6 and pLT53-7, each carried by distinct isolates of Haloquadratum walsbyi that were recovered from hypersaline waters in Australia. A third PL6-like plasmid, pLTMV-6, was assembled from metavirome data from Lake Tyrell, a salt-lake in Victoria, Australia. Comparison of all five plasmids revealed a distinct plasmid family with strong conservation of gene content and synteny, an average size of 6.2 kb (range 5.8-7.0 kb) and pairwise similarities between 61-79%. One protein (F3) was closely similar to a protein carried by betapleolipoviruses while another (R6) was similar to a predicted AAA-ATPase of His 1 halovirus (His1V_gp16). Plasmid pLT53-7 carried a gene for a FkbM family methyltransferase that was not present in any of the other plasmids. Comparative analysis of all PL6-like plasmids provided better resolution of conserved sequences and coding regions, confirmed the strong link to haloviruses, and showed that their sequences are highly conserved among examples from Haloquadratum isolates and metagenomic data that collectively cover geographically distant locations, indicating that these genetic elements are widespread.

  11. Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui†

    PubMed Central

    Johnsen, Ulrike; Schönheit, Peter

    2004-01-01

    During growth of the halophilic archaeon Haloarcula marismortui on d-xylose, a specific d-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to d-xylose, d-ribose was oxidized at similar kinetic constants, whereas d-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)—coding for a 39.9-kDA protein—was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui. PMID:15342590

  12. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques.

    PubMed

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea

    2017-04-05

    The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.

  13. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE PAGES

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...

    2016-12-27

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  14. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  15. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica.

    PubMed

    Squillaci, Giuseppe; Finamore, Rosario; Diana, Paola; Restaino, Odile Francesca; Schiraldi, Chiara; Arbucci, Salvatore; Ionata, Elena; La Cara, Francesco; Morana, Alessandra

    2016-01-01

    We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.

  16. Halorubrum depositum sp. nov., a Novel Halophilic Archaeon Isolated from a Salt Deposit.

    PubMed

    Chen, Shaoxing; Sun, Siqi; Xu, Yao; Lv, Jinting; Chen, Linan; Liu, Liu

    2018-06-01

    A non-motile, pleomorphic rod-shaped or oval, red-pigmented (nearly scarlet), extremely halophilic archaeon, strain Y78 T , was isolated from a salt deposit of Yunnan salt mine, China. Analysis of the 16S rRNA gene sequence showed that it was phylogenetically related to species of the genus Halorubrum, with a close relationship to Halorubrum rutilum YJ-18-S1 T (98.6%), Halorubrum yunnanense Q85 T (98.3%), and Halorubrum lipolyticum 9-3 T (98.1%). The temperature, NaCl, and pH ranges for growth were 25-50 °C, 12-30% (w/v), and 6.5-9.0, respectively. Mg 2+ was required for growth. The polar lipids of strain Y78 T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and a sulfated diglycosyl diether. The DNA G+C content was 66.6 mol%. DNA-DNA hybridization values between strain Y78 T and two closely related species of the genus Halorubrum were far below 70%. Based on the data presented in this study, strain Y78 T represents a novel species for which the name Halorubrum depositum sp. nov. is proposed; the type strain is Y78 T (= CGMCC 1.15456 T  = JCM 31272 T ).

  17. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  18. Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei.

    PubMed

    Oren, Aharon; Hallsworth, John E

    2014-10-01

    Heterotrophic prokaryotic communities that inhabit saltern crystallizer ponds are typically dominated by two species, the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber, regardless of location. These organisms behave as 'microbial weeds' as defined by Cray et al. (Microb Biotechnol 6: 453-492, 2013) that possess the biological traits required to dominate the microbiology of these open habitats. Here, we discuss the enigma of the less abundant Haloferax mediterranei, an archaeon that grows faster than any other, comparable extreme halophile. It has a wide window for salt tolerance, can grow on simple as well as on complex substrates and degrade polymeric substances, has different modes of anaerobic growth, can accumulate storage polymers, produces gas vesicles, and excretes halocins capable of killing other Archaea. Therefore, Hfx. mediterranei is apparently more qualified as a 'microbial weed' than Haloquadratum and Salinibacter. However, the former differs because it produces carotenoid pigments only in the lower salinity range and lacks energy-generating retinal-based, light-driven ion pumps such as bacteriorhodopsin and halorhodopsin. We discuss these observations in relation to microbial weed biology in, and the open-habitat ecology of, hypersaline systems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars.

    PubMed

    Oren, Aharon; Elevi Bardavid, Rahel; Mana, Lily

    2014-01-01

    In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.

  20. The Function of Gas Vesicles in Halophilic Archaeaand Bacteria: Theories and Experimental Evidence

    PubMed Central

    Oren, Aharon

    2012-01-01

    A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp.) possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea) and dispersal of endospores (for the anaerobic spore-forming Bacteria). Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms. PMID:25371329

  1. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity*

    PubMed Central

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H.-J.

    2015-01-01

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542

  2. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.

    PubMed

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H-J

    2015-12-04

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum.

    PubMed

    Gao, Ruichang; Shi, Tong; Liu, Xiangdong; Zhao, Mengqin; Cui, Henglin; Yuan, Li

    2017-03-01

    Because proteases play an important role in the fermentation of fish sauce, the purification and characterisation of an extracellular protease from the halophilic archaeon Halogranum rubrum was investigated. The molecular mass of the protease was estimated to be approximately 47 kDa based on sodium dodecyl sulfate-polyacrylamide gel electropheresis (SDS-PAGE) and native-PAGE analysis. The optimum conditions for catalytic activity were pH 8.0 and 50°C. The protease showed alkaline stability (pH 7.0-10.0). The protease also exhibited novel catalytic ability over a broad range of salinity (NaCl 0-3 mol L -1 ). Calcium ion enhanced the proteolytic activity of the enzyme. The K m and V max values of the purified protease for casein were calculated to be 4.89 mg mL -1 and 1111.11 U mL -1 , respectively. The protease was strongly inhibited by ethylenediamine tetraacetic acid (EDTA) and phenylmethanesulfonyl fluoride (PMSF). Meanwhile, the protease was stable in the presence of Triton X-100, isopropanol, ethanol or dithio-bis-nitrobenzoic (DTNB), but was inhibited by sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO) or methanol. MALDI -TOF/TOF MS analysis revealed that the protease shared some functional traits with protease produced by Halogranum salarium. Furthermore, it exhibited high hydrolytic activity on silver carp myosin protein. The protease is an alkaline and salt-tolerant enzyme that hydrolyses silver carp myosin with high efficiency. These excellent characteristics make this protease an attractive candidate for industrial use in low-salt fish sauce fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake.

    PubMed

    Mehrshad, Maliheh; Amoozegar, Mohammad Ali; Makhdoumi, Ali; Rasooli, Mehrnoosh; Asadi, Basaer; Schumann, Peter; Ventosa, Antonio

    2015-08-01

    An extremely halophilic archaeon, strain DA50T, was isolated from a brine sample of Urmia lake, a hypersaline environment in north-west Iran. Strain DA50T was orange-pigmented, motile, pleomorphic and required at least 2.5 M NaCl but not MgCl2 for growth. Optimal growth was achieved at 4.0 M NaCl and 0.3 M MgCl2. The optimum pH and temperature for growth were pH 7.0 and 45 °C, while it was able to grow over a pH range of 6.5-8.0 and a temperature range of 25-50 °C. Analysis of 16S rRNA gene sequences revealed that strain DA50T is a member of the family Halobacteriaceae, showing a low level of similarity with other members of this family. Highest similarities, 94.4, 94.0 and 93.9 %, were obtained with the 16S rRNA gene sequences of the type strains of Natrialba aegyptia, Halobiforma lacisalsi and Halovivax asiaticus, respectively. Polar lipid analyses revealed that strain DA50T contains phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Four unidentified glycolipids and two minor phospholipids were also observed. The only quinone present was MK-8(II-H2). The G+C content of its DNA was 62.3 mol%. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain DA50T is thus considered to represent a novel species of a new genus within the family Halobacteriaceae, order Halobacteriales, for which the name Halovarius luteus gen. nov., sp. nov. is proposed. The type strain of Halovarius luteus is DA50T ( = IBRC-M 10912T = CECT 8510T).

  6. Hans Georg Trüper (1936–2016) and His Contributions to Halophile Research

    PubMed Central

    Oren, Aharon

    2016-01-01

    Prof. Hans Georg Trüper, one of the most important scientists in the field of halophile research, passed away on 9 March 2016 at the age of 79. I here present a brief obituary with special emphasis on Prof. Trüper’s contributions to our understanding of the halophilic prokaryotes and their adaptations to life in hypersaline environments. He has pioneered the study of the halophilic anoxygenic phototrophic sulfur bacteria of the Ectothiorhodospira—Halorhodospira group. Some of the species he and his group isolated from hypersaline and haloalkaline environments have become model organisms for the study of the mechanisms of haloadaptation: the functions of three major organic compounds – glycine betaine, ectoine, and trehalose – known to serve as “compatible solutes” in halophilic members of the Bacteria domain, were discovered during studies of these anoxygenic phototrophs. Prof. Trüper’s studies of hypersaline alkaline environments in Egypt also led to the isolation of the first known extremely halophilic archaeon (Natronomonas pharaonis). The guest editors dedicate this special volume of Life to the memory of Prof. Hans Georg Trüper. PMID:27187481

  7. Haloprofundus marisrubri gen. nov., sp. nov., an extremely halophilic archaeon isolated from a brine-seawater interface.

    PubMed

    Zhang, Guishan; Gu, Jingang; Zhang, Ruifu; Rashid, Mamoon; Haroon, Mohamed Fauzi; Xun, Weibing; Ruan, Zhiyong; Dong, Xiuzhu; Stingl, Ulrich

    2017-01-01

    We isolated a Gram-stain-negative, pink-pigmented, motile, pleomorphic, extremely halophilic archaeon from the brine-seawater interface of Discovery Deep in the Saudi Arabian Red Sea. This strain, designated SB9T, was capable of growth within a wide range of temperatures and salinity, but required MgCl2. Cells lysed in distilled water, but at 7.0 % (w/v) NaCl cell lysis was prevented. The major polar lipids from strain SB9T were phosphatidylglycerol, phosphatidylglycerolphosphate methyl ester, sulfated mannosyl glucosyl diether, mannosyl glucosyl diether, an unidentified glycolipid and two unidentified phospholipids. The major respiratory quinones of strain SB9T were menaquinones MK8 (66 %) and MK8 (VIII-H2) (34 %). Analysis of the 16S rRNA gene sequence revealed that strain SB9T was closely related to species in the genera Halogranum and Haloplanus; in particular, it shared highest sequence similarity with the type strain of Halogranum rubrum (93.4 %), making it its closest known relative. The unfinished draft genome of strain SB9Twas 3 931 127 bp in size with a total G+C content of 62.53 mol% and contained 3917 ORFs, 50 tRNAs and eight rRNAs. Based on comparisons with currently available genomes, the highest average nucleotide identity value was 83 % to Halogranum salarium B-1T (GenBank accession no. GCA_000283335.1). These data indicate that this new isolate cannot be classified into any recognized genera of the family Haloferacaceae, and therefore strain SB9T is considered to be a representative of a novel species of a new genus within this family, for which the name Haloprofundus marisrubri gen. nov., sp. nov. is proposed. The type strain of Haloprofundus marisrubri is SB9T (=JCM 19565T=CGMCC 1.14959T).

  8. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.

    PubMed

    Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-10-01

    2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Natronolimnobius aegyptiacus sp. nov., an extremely halophilic alkalithermophilic archaeon isolated from the athalassohaline Wadi An Natrun, Egypt.

    PubMed

    Zhao, Baisuo; Hu, Qingping; Guo, Xiaomeng; Liao, Ziya; Sarmiento, Felipe; Mesbah, Noha M; Yan, Yanchun; Li, Jun; Wiegel, Juergen

    2018-02-01

    An obligately aerobic extremely halophilic alkalithermophilic archaeon, strain JW/NM-HA 15 T , was isolated from the sediments of Wadi An Natrun in Egypt. Phylogenetic analysis based on 16S rRNA and rpoB' gene sequences indicated that it belongs to the family Natrialbaceae of the order Natrialbales. The closest relatives were Natronolimnobius baerhuensis IHC-005 T and Natronolimnobius innermongolicus N-1311 T (95.3 and 94.5 % 16S rRNA gene sequence similarity, respectively). Genome relatedness between strain JW/NM-HA 15 T and its neighbours was evaluated using average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity with the values of 75.7-85.0, 18.1-20.0, and 70.2-71.0%, respectively. Cells were obligately aerobic, rod-shaped, non-motile, Gram-stain-negative and chemo-organotrophic. The strain grew in the presence of 2.57 M to saturating Na + (optimum 3.25-4.60 M Na + ), at pH 55 °C 7.5-10.5 (optimum pH 55 °C 9.0-9.5), and at 30-56 °C (optimum 52 °C). The major polar lipids consisted of phosphatidylglycerol, methylated phosphatidylglycerolphosphate and two phospholipids. The complete genome size of strain JW/NM-HA 15 T is approximately 3.93 Mb, with a DNA G+C content of 64.1 mol%. On the basis of phylogenetic features, genomic relatedness, phenotypic and chemotaxonomic data, strain JW/NM-HA 15 T was thus considered to represent a novel species within the genus Natronolimnobius, for which the name Natronolimnobius aegyptiacus sp. nov. is proposed. The type strain is JW/NM-HA 15 T (=ATCC BAA-2088 T =DSM 23470 T ).

  10. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake

    PubMed Central

    Naziri, Davood; Hamidi, Masoud; Hassanzadeh, Salar; Tarhriz, Vahideh; Maleki Zanjani, Bahram; Nazemyieh, Hossein; Hejazi, Mohammd Amin; Hejazi, Mohammad Saeid

    2014-01-01

    Purpose: Carotenoids are of great interest in many scientific disciplines because of their wide distribution, diverse functions and interesting properties. The present report describes a new natural source for carotenoid production. Methods: Halorubrum sp., TBZ126, an extremely halophilic archaeon, was isolated from Urmia Lack following culture of water sample on marine agar medium and incubation at 30 °C. Then single colonies were cultivated in broth media. After that the cells were collected and carotenoids were extracted with acetone-methanol (7:3 v/v). The identification of carotenoids was performed by UV-VIS spectroscopy and confirmed by thin layer chromatography (TLC) in the presence of antimony pentachloride (SbCl5). The production profile was analyzed using liquid-chromatography mass spectroscopy (LC-MS) techniques. Phenotypic characteristics of the isolate were carried out and the 16S rRNA gene was amplified using polymerase chain reaction (PCR). Results: LC-MS analytical results revealed that produced carotenoids are bacterioruberin, lycopene and β-carotene. Bacterioruberin was found to be the predominant produced carotenoid. 16S rRNA analysis showed that TBZ126 has 100% similarity with Halorubrum chaoviator Halo-G*T (AM048786). Conclusion: Halorubrum sp. TBZ126, isolated from Urmia Lake has high capacity in the production of carotenoids. This extremely halophilic archaeon could be considered as a prokaryotic candidate for carotenoid production source for future studies. PMID:24409411

  11. Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Nevskaya, N. A.; Kljashtorny, V. G.; Vakhrusheva, A. V.; Garber, M. B.; Nikonov, S. V.

    2017-07-01

    The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA-protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.

  12. Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analyses.

    PubMed

    Gudhka, Reema K; Neilan, Brett A; Burns, Brendan P

    2015-01-01

    Halococcus hamelinensis was the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome of H. hamelinensis consisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of the H. hamelinensis genome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome of H. hamelinensis also revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes of H. hamelinensis against various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.

  13. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    PubMed

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  14. Halophilic mechanism of the enzymatic function of a moderately halophilic dihydrofolate reductase from Haloarcula japonica strain TR-1.

    PubMed

    Miyashita, Yurina; Ohmae, Eiji; Ikura, Teikichi; Nakasone, Kaoru; Katayanagi, Katsuo

    2017-05-01

    Dihydrofolate (DHF) reductase coded by a plasmid of the extremely halophilic archaeon Haloarcula japonica strain TR-1 (HjDHFR P1) shows moderate halophilicity on enzymatic activity at pH 6.0, although there is no significant effect of NaCl on its secondary structure. To elucidate the salt-activation and -inactivation mechanisms of this enzyme, we investigated the effects of pH and salt concentration, deuterium isotope effect, steady-state kinetics, and rapid-phase ligand-binding kinetics. Enzyme activity was increased eightfold by the addition of 500 mM NaCl at pH 6.0, fourfold by 250 mM at pH 8.0, and became independent of salt concentration at pH 10.0. Full isotope effects observed at pH 10.0 under 0-1000 mM NaCl indicated that the rate of hydride transfer, which was the rate-determining step at the basic pH region, was independent of salt concentration. Conversely, rapid-phase ligand-binding experiments showed that the amplitude of the DHF-binding reaction increased and the tetrahydrofolate (THF)-releasing rate decreased with increasing NaCl concentration. These results suggested that the salt-activation mechanism of HjDHFR P1 is via the population change of the anion-unbound and anion-bound conformers, which are binding-incompetent and -competent conformations for DHF, respectively, while that of salt inactivation is via deceleration of the THF-releasing rate, which is the rate-determining step at the neutral pH region.

  15. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes

    PubMed Central

    Grosjean, Henri; Gaspin, Christine; Marck, Christian; Decatur, Wayne A; de Crécy-Lagard, Valérie

    2008-01-01

    Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation. PMID:18844986

  16. Halophilic & halotolerant prokaryotes in humans.

    PubMed

    Seck, El Hadji; Dufour, Jean-Charles; Raoult, Didier; Lagier, Jean-Christophe

    2018-05-04

    Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).

  17. Structural changes in halophilic and non-halophilic proteases in response to chaotropic reagents.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2014-08-01

    Halophilic enzymes have been established for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation at high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. The present study targets an important aspect in understanding protein-urea/GdmCl interactions using proteases from halophilic Bacillus sp. EMB9 and non-halophilic subtilisin (Carlsberg) from Bacillus licheniformis as model systems. While, halophilic protease containing 1 % (w/v) NaCl (0.17 M) retained full activity towards urea (8 M), non-halophilic protease lost about 90 % activity under similar conditions. The secondary and tertiary structure were lost in non-halophilic but preserved for halophilic protein. This effect could be due to the possible charge screening and shielding of the protein surface by Ca(2+) and Na(+) ions rendering it stable against denaturation. The dialyzed halophilic protease almost behaved like the non-halophilic counterpart. Incorporation of NaCl (up to 5 %, w/v or 0.85 M) in dialyzed EMB9 protease containing urea/GdmCl, not only helped regain of proteolytic activity but also evaded denaturing action. Deciphering the basis of this salt modulated stability amidst a denaturing milieu will provide guidelines and templates for engineering stable proteins/enzymes for biotechnological applications.

  18. Effects of halophilic peptide fusion on solubility, stability, and catalytic performance of D-phenylglycine aminotransferase.

    PubMed

    Javid, Hossein; Jomrit, Juntratip; Chantarasiri, Aiya; Isarangkul, Duangnate; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2014-05-01

    D-Phenylglycine aminotransferase (D-PhgAT) from Pseudomonas stutzeri ST-201 is useful for enzymatic synthesis of enantiomerically pure D-phenylglycine. However, its low protein solubility prevents its application at high substrate concentration. With an aim to increase the protein solubility, the N-terminus of D-PhgAT was genetically fused with short peptides (A1 α- helix, A2 α-helix, and ALAL, which is a hybrid of A1 and A2) from a ferredoxin enzyme of a halophilic archaeon, Halobacterium salinarum. The fused enzymes A1-D-PhgAT, A2-D-PhgAT, and ALAL-D-PhgAT displayed a reduced pI and increased in solubility by 6.1-, 5.3-, and 8.1- fold in TEMP (pH 7.6) storage, respectively, and 5-, 4.5-, and 5.9-fold in CAPSO (pH 9.5) reaction buffers, respectively, compared with the wild-type enzyme (WT-D-PhgAT). In addition, all the fused D-PhgAT displayed higher enzymatic reaction rates than the WT-DPhgAT at all concentrations of L-glutamate monosodium salt used. The highest rate, 23.82 ± 1.47 mM/h, was that obtained from having ALAL-D-PhgAT reacted with 1,500 mM of the substrate. Moreover, the halophilic fusion significantly increased the tolerance of D-PhgAT in the presence of NaCl and KCl, being slightly in favor of KCl, where under the same condition at 3.5 M NaCl or KCl all halophilic-fused variants showed higher activity than WT-D-PhgAT.

  19. Unique Features of Halophilic Proteins.

    PubMed

    Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao

    2017-01-01

    Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.

  20. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    NASA Astrophysics Data System (ADS)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  1. The Halophile protein database.

    PubMed

    Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj

    2014-01-01

    Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/ © The Author(s) 2014. Published by Oxford University Press.

  2. Halophiles, coming stars for industrial biotechnology.

    PubMed

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Halophilic microbial communities in deteriorated buildings.

    PubMed

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata

    2015-10-01

    Halophilic microorganisms were traditionally isolated from an aquatic environment. There has been little research conducted into halophiles inhabiting the terrestrial environment in which historic monuments deteriorate. Salt efflorescence deposited on the walls is an observed phenomenon on the surface of historic buildings, and would favour the growth of halophiles. However, some conditions have to be fulfilled in order for efflorescence to occur: (1) the presence of salts, (2) porosity, (3) a source of water. Salt crystallization influences the material structure (cracking, detachment, material loss), but active growth of halophilic microorganisms may be a serious threat to historic materials as well, leading to aesthetical changes such as coloured biofilms, orange to pink or even violet stains. This is why it is important to investigate halophilic microorganisms, taking into consideration both the environmental conditions they need to grow in, material characteristics they inhabit, the mechanisms they possess to cope with osmotic stress, and the methods that should be applied for their identification.

  4. Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins.

    PubMed

    Zhang, Guangya; Ge, Huihua

    2013-10-01

    Understanding of proteins adaptive to hypersaline environment and identifying them is a challenging task and would help to design stable proteins. Here, we have systematically analyzed the normalized amino acid compositions of 2121 halophilic and 2400 non-halophilic proteins. The results showed that halophilic protein contained more Asp at the expense of Lys, Ile, Cys and Met, fewer small and hydrophobic residues, and showed a large excess of acidic over basic amino acids. Then, we introduce a support vector machine method to discriminate the halophilic and non-halophilic proteins, by using a novel Pearson VII universal function based kernel. In the three validation check methods, it achieved an overall accuracy of 97.7%, 91.7% and 86.9% and outperformed other machine learning algorithms. We also address the influence of protein size on prediction accuracy and found the worse performance for small size proteins might be some significant residues (Cys and Lys) were missing in the proteins. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Engineering substrate promiscuity in halophilic alcohol dehydrogenase (HvADH2) by in silico design.

    PubMed

    Cassidy, Jennifer; Bruen, Larah; Rosini, Elena; Molla, Gianluca; Pollegioni, Loredano; Paradisi, Francesca

    2017-01-01

    An alcohol dehydrogenase from the halophilic archaeon Haloferax volcanii (HvADH2) has been engineered by rational design to broaden its substrate scope towards the conversion of a range of aromatic substrates, including flurbiprofenol, that is an intermediate of the non-steroidal anti-inflammatory drug, flurbiprofen. Wild-type HvADH2 showed minimal activity with flurbiprofenol (11.1 mU/mg). A homology model of HvADH2 was built and docking experiments with this substrate revealed that the biphenyl rings of flurbiprofenol formed strong interactions with residues F85 and F108, preventing its optimal binding in the active site. Mutations at position 85 however did not increase activity. Site directed mutagenesis at position F108 allowed the identification of three variants showing a significant (up to 2.3-fold) enhancement of activity towards flurbiprofenol, when compared to wild-type HvADH2. Interestingly, F108G variant did not show the classic inhibition in the presence of (R)-enantiomer when tested with rac-1-phenylethanol, underling its potential in racemic resolution of secondary alcohols.

  6. Salty sisters: The women of halophiles

    PubMed Central

    Baxter, Bonnie K.; Gunde-Cimerman, Nina; Oren, Aharon

    2014-01-01

    A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery. PMID:24926287

  7. Halophiles and their enzymes: negativity put to good use.

    PubMed

    DasSarma, Shiladitya; DasSarma, Priya

    2015-06-01

    Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. Recent efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Halophiles and their enzymes: Negativity put to good use

    PubMed Central

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. On-going efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered. PMID:26066288

  9. [Experimental interaction of halophilic prokaryotes and opportunistic bacteria in brine].

    PubMed

    Selivanova, E A; Nemtseva, N V

    2013-01-01

    Study the effect of extremely halophilic archaea and moderately halophilic bacteria on preservation of opportunistic bacteria in brine. 17 strains of moderately halophilic bacteria and 2 strains of extremely halophilic archaea were isolated from continental hypersaline lake Razval of Sol-Iletsk area of Orenburg Region. Identification of pure cultures of prokaryotes was carried out taking into account their phenotype properties and based on determination of 16S RNA gene sequence. The effect of halophilic prokaryote on elimination of Escherichia coli from brine was evaluated during co-cultivation. Antagonistic activity of cell extracts of the studied microorganisms was evaluated by photometric method. A more prolonged preservation of an E. coli strain in brine in the presence of live cells of extremely halophilic archaea Halorubrum tebenquichense and moderately halophilic bacteria Marinococcus halophilus was established. Extracts of cells of extremely halophilic archaea and moderately halophilic bacteria on the contrary displayed antagonistic activity. The protective effect of live cells of halophilic prokaryotes and antagonistic activity of their cell extracts change the period of conservation of opportunistic bacteria in brine that regulates inter-microbial interactions and changes the period of self-purification that reflects the sanitary condition of a hypersaline water body.

  10. EFFECTS OF ULTRAVIOLET RADIATION ON THE MODERATE HALOPHILE HALOMONAS ELONGATA AND THE EXTREME HALOPHILE HALOBACTERIUM SALINARUM

    EPA Science Inventory

    Both the moderately halophilic bacterium, Halomonas elongata, and the extremely halophilic archaea, Halobacterium salinarum, can be found in hypersaline environments (e.g., salterns). On complex media, H. elongata grows over a salt range of 0.05-5.2 M, whereas, H. salinarum multi...

  11. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  12. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  13. Insights into the sequence parameters for halophilic adaptation.

    PubMed

    Nath, Abhigyan

    2016-03-01

    The sequence parameters for halophilic adaptation are still not fully understood. To understand the molecular basis of protein hypersaline adaptation, a detailed analysis is carried out, and investigated the likely association of protein sequence attributes to halophilic adaptation. A two-stage strategy is implemented, where in the first stage a supervised machine learning classifier is build, giving an overall accuracy of 86 % on stratified tenfold cross validation and 90 % on blind testing set, which are better than the previously reported results. The second stage consists of statistical analysis of sequence features and possible extraction of halophilic molecular signatures. The results of this study showed that, halophilic proteins are characterized by lower average charge, lower K content, and lower S content. A statistically significant preference/avoidance list of sequence parameters is also reported giving insights into the molecular basis of halophilic adaptation. D, Q, E, H, P, T, V are significantly preferred while N, C, I, K, M, F, S are significantly avoided. Among amino acid physicochemical groups, small, polar, charged, acidic and hydrophilic groups are preferred over other groups. The halophilic proteins also showed a preference for higher average flexibility, higher average polarity and avoidance for higher average positive charge, average bulkiness and average hydrophobicity. Some interesting trends observed in dipeptide counts are also reported. Further a systematic statistical comparison is undertaken for gaining insights into the sequence feature distribution in different residue structural states. The current analysis may facilitate the understanding of the mechanism of halophilic adaptation clearer, which can be further used for rational design of halophilic proteins.

  14. Salt-Bridge Energetics in Halophilic Proteins

    PubMed Central

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K.

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic

  15. Salt-bridge energetics in halophilic proteins.

    PubMed

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  16. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria.

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1972-01-01

    Four previously unrecognized strains of extremely halophilic bacteria that utilize carbohydrates have been isolated. Gas production proved an unreliable index of carbohydrate metabolism; therefore, carbohydrate utilization was measured by determining acid formation and sugar disappearance during growth. By these procedures, carbohydrate utilization was readily detected. The results suggest that carbohydrate dissimilation by extremely halophilic bacteria may be more common than previously thought and that the apparent rarity of carbohydrate-metabolizing halophiles may be an artifact of the isolation procedures used.

  17. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes.

    PubMed

    Hamedi, Javad; Mohammadipanah, Fatemeh; Ventosa, Antonio

    2013-01-01

    More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.

  18. Salt-dependent properties of proteins from extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Based on information concerning the interaction of salts and macromolecules the literature of the enzymes of halophilic bacteria and their constituents is examined. Although in halophilic systems the salt requirement of enzyme activity is variable the enzymes investigated show a time-dependent inactivation at lower salt concentrations especially in the absence of salt. The studies described show that in some halophilic systems the effect of salt may be restricted to a small region on the protein molecule. The concept of the hydrophobic bond to consider certain solvent-dependent phenomena is introduced. It is shown that some halophilic enzymes are unable to maintain their structure without the involvement of hydrophobic interactions that are usually not supported by water. A table lists indices of hydrophobicity and polarity for various halophilic and nonhalophilic proteins.

  19. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    PubMed

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  20. Screening and isolation of halophilic bacteria producing industrially important enzymes

    PubMed Central

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S.P., Singh; S.K., Khare

    2012-01-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3–20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology. PMID:24031991

  1. Stability of halophilic proteins: from dipeptide attributes to discrimination classifier.

    PubMed

    Zhang, Guangya; Huihua, Ge; Yi, Lin

    2013-02-01

    To investigate the molecular features responsible for protein halophilicity is of great significance for understanding the structure basis of protein halo-stability and would help to develop a practical strategy for designing halophilic proteins. In this work, we have systematically analyzed the dipeptide composition of the halophilic and non-halophilic protein sequences. We observed the halophilic proteins contained more DA, RA, AD, RR, AP, DD, PD, EA, VG and DV at the expense of LK, IL, II, IA, KK, IS, KA, GK, RK and AI. We identified some macromolecular signatures of halo-adaptation, and thought the dipeptide composition might contain more information than amino acid composition. Based on the dipeptide composition, we have developed a machine learning method for classifying halophilic and non-halophilic proteins for the first time. The accuracy of our method for the training dataset was 100.0%, and for the 10-fold cross-validation was 93.1%. We also discussed the influence of some specific dipeptides on prediction accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand.

    PubMed

    Tapingkae, Wanaporn; Tanasupawat, Somboon; Itoh, Takashi; Parkin, Kirk L; Benjakul, Soottawat; Visessanguan, Wonnop; Valyasevi, Ruud

    2008-10-01

    Two Gram-negative, rod-shaped, halophilic archaea, designated strains HIS40-3(T) and HDS3-1, were isolated from anchovy fish sauce (nam-pla) collected from two different locations in Thailand. The two strains were able to grow at 20-60 degrees C (optimum 37-40 degrees C), at 1.7-5.1 M NaCl (optimum 2.6-3.4 M NaCl) and at pH 5.5-8.5 (optimum pH 6.0-6.5). Hypotonic treatment with less than 1.7 M NaCl caused cell lysis. The major polar lipids of the isolates were C(20)C(20) and C(20)C(25) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, two glycolipids and one unidentified lipid. The DNA G+C contents were 64.0-65.4 mol%. In addition to phenotypic and chemotaxonomic characteristics, phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strains HIS40-3(T) and HDS3-1 were related most closely to species of the genus Natrinema. Levels of 16S rRNA gene sequence similarity between strains HIS40-3(T) and HDS3-1 and the type strains of recognized Natrinema species were 99.1-96.6 %. The two novel strains could be distinguished from recognized Natrinema species on the basis of low levels of DNA-DNA relatedness and differences in whole-cell protein patterns and phenotypic properties. Levels of 16S rRNA gene sequence similarity and DNA-DNA relatedness between the two strains were 99.7 and 77.7 %, respectively, suggesting that they should be classified as representing a single species. Based on these taxonomic data, strains HIS40-3(T) and HDS3-1 are considered to represent a novel species of the genus Natrinema, for which the name Natrinema gari sp. nov. is proposed. The type strain is HIS40-3(T) (=BCC 24370(T) =JCM 14663(T) =PCU 303(T)).

  3. Haloplanus salinarum sp. nov., an extremely halophilic archaeon isolated from a solar saltern.

    PubMed

    Hwang, Han-Bit; Kim, Ye-Eun; Koh, Hyeon-Woo; Song, Hye Seon; Roh, Seong Woon; Kim, So-Jeong; Nam, Seung Won; Park, Soo-Je

    2017-11-01

    An extremely halophilic archaeal strain SP28 T was isolated from the Gomso solar saltern, Republic of Korea. Cells of the new strain SP28 T were pleomorphic and Gram stain negative, and produced red-pigmented colonies. These grew in medium with 2.5-4.5 M NaCl (optimum 3.1 M) and 0.05-0.5 M MgCl2 (optimum 0.1 M), at 25-50 °C (optimum 37 °C) and at a pH of 6.5-8.5 (optimum pH 8.0). Mg 2+ was required for growth. A concentration of at least 2 M NaCl was required to prevent cell lysis. Polar lipids included phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one glycolipid chromatographically identical to sulfated mannosyl glucosyl diether. 16S rRNA and rpoB' gene sequence analyses showed that strain SP28 T is closely related to Haloplanus ruber R35 T (97.3 and 94.1 %, 16S rRNA and rpoB' gene sequence similarity, respectively), Haloplanus litoreus GX21 T (97.0 and 92.1 %), Haloplanus salinus YGH66 T (96.0 and 91.9 %), Haloplanus vescus RO5-8 T (95.9 and 90.9 %), Haloplanus aerogenes TBN37 T (95.6 and 90.3 %) and Haloplanus natans RE-101 T (95.3 and 89.8 %). The DNA G+C content of the novel strain SP28 T was 66.2 mol%, which is slightly higher than that of Hpn.litoreus GX21 T (65.8 mol%) and Hpn.ruber R35 T (66.0 mol%). DNA-DNA hybridization values betweenHpn.ruber R35 T and strain SP28 T and between Hpn.litoreus GX21 T and strain SP28 T were about 24.8 and 20.7 %, respectively. We conclude that strain SP28 T represents a novel species of the genus Haloplanus and propose the name Haloplanus salinarum sp. nov. The type strain is SP28 T (=JCM 31424 T =KCCM 43210 T ).

  4. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    PubMed

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  5. An experimental point of view on hydration/solvation in halophilic proteins

    PubMed Central

    Talon, Romain; Coquelle, Nicolas; Madern, Dominique; Girard, Eric

    2014-01-01

    Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution PMID:24600446

  6. An experimental point of view on hydration/solvation in halophilic proteins.

    PubMed

    Talon, Romain; Coquelle, Nicolas; Madern, Dominique; Girard, Eric

    2014-01-01

    Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution.

  7. Osmoadaptative Strategy and Its Molecular Signature in Obligately Halophilic Heterotrophic Protists

    PubMed Central

    Harding, Tommy; Brown, Matthew W.; Simpson, Alastair G.B.; Roger, Andrew J.

    2016-01-01

    Halophilic microbes living in hypersaline environments must counteract the detrimental effects of low water activity and salt interference. Some halophilic prokaryotes equilibrate their intracellular osmotic strength with the extracellular milieu by importing inorganic solutes, mainly potassium. These “salt-in” organisms characteristically have proteins that are highly enriched with acidic and hydrophilic residues. In contrast, “salt-out” halophiles accumulate large amounts of organic solutes like amino acids, sugars and polyols, and lack a strong signature of halophilicity in the amino acid composition of cytoplasmic proteins. Studies to date have examined halophilic prokaryotes, yeasts, or algae, thus virtually nothing is known about the molecular adaptations of the other eukaryotic microbes, that is, heterotrophic protists (protozoa), that also thrive in hypersaline habitats. We conducted transcriptomic investigations to unravel the molecular adaptations of two obligately halophilic protists, Halocafeteria seosinensis and Pharyngomonas kirbyi. Their predicted cytoplasmic proteomes showed increased hydrophilicity compared with marine protists. Furthermore, analysis of reconstructed ancestral sequences suggested that, relative to mesophiles, proteins in halophilic protists have undergone fewer substitutions from hydrophilic to hydrophobic residues since divergence from their closest relatives. These results suggest that these halophilic protists have a higher intracellular salt content than marine protists. However, absence of the acidic signature of salt-in microbes suggests that Haloc. seosinensis and P. kirbyi utilize organic osmolytes to maintain osmotic equilibrium. We detected increased expression of enzymes involved in synthesis and transport of organic osmolytes, namely hydroxyectoine and myo-inositol, at maximal salt concentration for growth in Haloc. seosinensis, suggesting possible candidates for these inferred organic osmolytes. PMID:27412608

  8. Transposon-mediated random gene disruption with moderate halophilic bacteria and its application for halophilic bacterial siderophore analysis.

    PubMed

    Matsui, Toru; Nishino, Tomohiko

    2016-12-01

    Analytical conditions using chromo azurol S was validated for quantification of siderophore in aqueous samples, followed by the characterization of siderophore derived from newly isolated moderately halophilic bacteria. Conditions with good linearity between the absorbance and the siderophore concentration were obtained at a siderophore concentration less than 20 µM, in the wavelength range between 630 and 660 nm with developing time for at least 2 h. Of the halophilic bacteria isolated from Tunisian soil, Halomonas sp., namely strain 21a was selected as siderophore producing halophiles. The strain produced siderophore significantly in the absence of iron in minimal medium. Siderophore-deficient mutant, namely IIa10, of the strain 21a was obtained from gene disruptant library constructed using transposon complex by electroporation. Genomic sequence analysis of the mutant IIa10 revealed that the transposon-inserted gene was TonB-dependent receptor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Osmoadaptative Strategy and Its Molecular Signature in Obligately Halophilic Heterotrophic Protists.

    PubMed

    Harding, Tommy; Brown, Matthew W; Simpson, Alastair G B; Roger, Andrew J

    2016-08-03

    Halophilic microbes living in hypersaline environments must counteract the detrimental effects of low water activity and salt interference. Some halophilic prokaryotes equilibrate their intracellular osmotic strength with the extracellular milieu by importing inorganic solutes, mainly potassium. These "salt-in" organisms characteristically have proteins that are highly enriched with acidic and hydrophilic residues. In contrast, "salt-out" halophiles accumulate large amounts of organic solutes like amino acids, sugars and polyols, and lack a strong signature of halophilicity in the amino acid composition of cytoplasmic proteins. Studies to date have examined halophilic prokaryotes, yeasts, or algae, thus virtually nothing is known about the molecular adaptations of the other eukaryotic microbes, that is, heterotrophic protists (protozoa), that also thrive in hypersaline habitats. We conducted transcriptomic investigations to unravel the molecular adaptations of two obligately halophilic protists, Halocafeteria seosinensis and Pharyngomonas kirbyi Their predicted cytoplasmic proteomes showed increased hydrophilicity compared with marine protists. Furthermore, analysis of reconstructed ancestral sequences suggested that, relative to mesophiles, proteins in halophilic protists have undergone fewer substitutions from hydrophilic to hydrophobic residues since divergence from their closest relatives. These results suggest that these halophilic protists have a higher intracellular salt content than marine protists. However, absence of the acidic signature of salt-in microbes suggests that Haloc. seosinensis and P. kirbyi utilize organic osmolytes to maintain osmotic equilibrium. We detected increased expression of enzymes involved in synthesis and transport of organic osmolytes, namely hydroxyectoine and myo-inositol, at maximal salt concentration for growth in Haloc. seosinensis, suggesting possible candidates for these inferred organic osmolytes. © The Author 2016

  10. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.

    PubMed

    Maes, Synthia; Props, Ruben; Fitts, Jeffrey P; Smet, Rebecca De; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-03-01

    Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.

  11. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    PubMed

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  12. Halophilic Amylase from a Moderately Halophilic Micrococcus

    PubMed Central

    Onishi, Hiroshi

    1972-01-01

    A moderately halophilic Micrococcus sp., isolated from unrefined solar salt, produced a considerable amount of extracellular dextrinogenic amylase when cultivated aerobically in media containing 1 to 3 m NaCl. The Micrococcus amylase had maximal activity at pH 6 to 7 in 1.4 to 2 m NaCl or KCl at 50 C. Calcium ion and a high concentration of NaCl or KCl were essential for activity and stability of the amylase. The salt response of the amylase depended greatly on the pH and temperature of the enzyme assay. PMID:5058445

  13. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    PubMed

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.

  14. Biosorption of heavy metals by obligate halophilic fungi.

    PubMed

    Bano, Amna; Hussain, Javaid; Akbar, Ali; Mehmood, Khalid; Anwar, Muhammad; Hasni, Muhammad Sharif; Ullah, Sami; Sajid, Sumbal; Ali, Imran

    2018-05-01

    The presence of heavy metals in the environment poses a serious threat to human health. Remediation of this problem using microorganisms has been widely researched to find a sustainable solution. Obligate halophilic fungi comprising Aspergillus flavus, Aspergillus gracilis, Aspergillus penicillioides (sp. 1), Aspergillus penicillioides (sp. 2), Aspergillus restrictus and Sterigmatomyces halophilus were used for the biosorption of cadmium, copper, ferrous, manganese, lead and zinc. The metals were supplemented as salts in potato dextrose broth for the growth of obligate halophilic fungi and incubated for 14 days. The supernatant and biomass were obtained by the acid digestion method. The biosorption was screened by atomic absorption spectroscopy. All tested fungi showed moderate to high adsorption of heavy metals, amongst which A. flavus and S. halophilus showed the best average adsorption of all heavy metals studied, with an average of 86 and 83%, respectively. On average, Fe and Zn are best removed from the liquid media of obligate halophilic fungi, with an average of 85 and 84%, respectively. This pioneering study of biosorption by obligate halophilic fungi using inexpensive media in stagnant conditions provides a cost-effective environmental solution for the removal of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Culturable diversity of halophilic bacteria in foreshore soils

    PubMed Central

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%), Proteobacteria (31%), Bacteriodetes (5%) and Actinobacteria (4%). Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12%) and Shewanella (12%) were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity. PMID:25242943

  16. Culturable diversity of halophilic bacteria in foreshore soils.

    PubMed

    Irshad, Aarzoo; Ahmad, Irshad; Kim, Seung Bum

    2014-01-01

    Halophilic bacteria are commonly found in natural environments containing significant concentration of NaCl such as inland salt lakes and evaporated sea-shore pools, as well as environments such as curing brines, salted food products and saline soils. Dependence on salt is an important phenotypic characteristic of halophilic bacteria, which can be used in the polyphasic characterization of newly discovered microorganisms. In this study the diversity of halophilic bacteria in foreshore soils of Daecheon, Chungnam, and Saemangeum, Jeonbuk, was investigated. Two types of media, namely NA and R2A supplemented with 3%, 5%, 9%, 15%, 20% and 30% NaCl were used. More than 200 halophilic bacteria were isolated and BOX-PCR fingerprinting analysis was done for the typing of the isolates. The BLAST identification results showed that isolated strains were composed of 4 phyla, Firmicutes (60%), Proteobacteria (31%), Bacteriodetes (5%) and Actinobacteria (4%). Isolates were affiliated with 16 genera and 36 species. Bacillus was the dominant genus in the phylum Firmicutes, comprising 24% of the total isolates. Halomonas (12%) and Shewanella (12%) were also found as the main genera. These findings show that the foreshore soil of Daecheon Beach and Saemangeum Sea of Korea represents an untapped source of bacterial biodiversity.

  17. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgunova, Ekaterina, E-mail: ekaterina.morgunova@ki.se; Gray, Fiona C.; MacNeill, Stuart A.

    2009-10-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs. The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from themore » halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R{sub free} = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells.« less

  18. Diversity of halophilic archaea in fermented foods and human intestines and their application.

    PubMed

    Lee, Han-Seung

    2013-12-01

    Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

  19. Biotechnological applications of halophilic lipases and thioesterases.

    PubMed

    Schreck, Steven D; Grunden, Amy M

    2014-02-01

    Lipases and esterases are enzymes which hydrolyze ester bonds between a fatty acid moiety and an esterified conjugate, such as a glycerol or phosphate. These enzymes have a wide spectrum of use in industrial applications where their high activity, broad substrate specificity, and stability under harsh conditions have made them integral in biofuel production, textile processing, waste treatment, and as detergent additives. To date, these industrial applications have mainly leveraged enzymes from mesophilic and thermophilic organisms. However, increasingly, attention has turned to halophilic enzymes as catalysts in environments where high salt stability is desired. This review provides a brief overview of lipases and esterases and examines specific structural motifs and evolutionary adaptations of halophilic lipases. Finally, we examine the state of research involving these enzymes and provide an in-depth look at an exciting algal-based biofuel production system. This system uses a recombinant halophilic lipase to increase oil production efficiency by cleaving algal fatty acids from the acyl carrier protein, which eliminates feedback inhibition of fatty acid synthesis.

  20. Resistance of the Extreme Halophile Halobacterium sp. NRC-1 to Multiple Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gygli, Patrick E.; Prajapati, Surendra; DeVeaux, Linda C.

    2009-03-10

    The model Archaeon Halobacterium sp. NRC-1 is an extreme halophile known for its resistance to multiple stressors, including electron-beam and ultraviolet radiation. It is a well-developed system with a completely sequenced genome and extensive post-genomic tools for the study of a variety of biological processes. To further understand the mechanisms of Halobacterium's, radiation resistance, we previously reported the selection for multiple independent highly resistant mutants using repeated exposure to high doses of 18-20 MeV electrons using a medical S-band Linac. Molecular analysis of the transcriptional profile of several of these mutants revealed a single common change: upregulation of the rfa3more » operon. These genes encode proteins homologous to the subunits of eukaryotic Replication Protein A (RPA), a DNA binding protein with major roles in DNA replication, recombination, and repair. This operon has also been implicated in a somewhat lesser role in resistance of wild type Halobacterium to ultraviolet radiation, suggesting common mechanisms for resistance. To further understand the mechanism of radiation resistance in the mutant strains, we measured the survival after exposure to both electron-beam and ultraviolet radiation, UV-A, B, and C All mutant strains showed increased resistance to electrons when compared with the parent. However, the mutant strains do not display increased UV resistance, and in one case is more sensitive than the parent strain. Thus, the protective role of increased RPA expression within a cell may be specific to the DNA damage caused by the different physical effects induced by high energy electron-beam radiation.« less

  1. Prospects for robust biocatalysis: engineering of novel specificity in a halophilic amino acid dehydrogenase.

    PubMed

    Munawar, Nayla; Engel, Paul C

    2013-01-01

    Heat- and solvent-tolerant enzymes from halophiles, potentially important industrially, offer a robust framework for protein engineering, but few solved halophilic structures exist to guide this. Homology modelling has guided mutations in glutamate dehydrogenase (GDH) from Halobacterium salinarum to emulate conversion of a mesophilic GDH to a methionine dehydrogenase. Replacement of K89, A163 and S367 by leucine, glycine and alanine converted halophilic GDH into a dehydrogenase accepting L-methionine, L-norleucine and L-norvaline as substrates. Over-expression in the halophilic expression host Haloferax volcanii and three-step purification gave ~98 % pure protein exhibiting maximum activity at pH 10. This enzyme also showed enhanced thermostability and organic solvent tolerance even at 70 °C, offering a biocatalyst resistant to harsh industrial environments. To our knowledge, this is the first reported amino acid specificity change engineered in a halophilic enzyme, encouraging use of mesophilic models to guide engineering of novel halophilic biocatalysts for industrial application. Calibrated gel filtration experiments show that both the mutant and the wild-type enzyme are stable hexamers.

  2. Stoichiometric and kinetic analysis of extreme halophilic Archaea on various substrates in a corrosion resistant bioreactor.

    PubMed

    Lorantfy, Bettina; Seyer, Bernhard; Herwig, Christoph

    2014-01-25

    Extreme halophilic Archaea are extremophile species which can thrive in hypersaline environments of up to 3-5 M sodium chloride concentration. Although their ecology and physiology are widely identified on the microbiological level, little emphasis has been laid on quantitative bioprocess development with extreme halophiles. The goal of this study was to establish, on the one hand, a methodological basis for quantitative bioprocess analysis of extreme halophilic Archaea with an extreme halophilic strain as an example. Firstly, as a novel usage, a corrosion resistant bioreactor setup for extreme halophiles has been implemented. Then, paying special attention to total bioprocess quantification approaches, an indirect method for biomass quantification using on-line process signals was introduced. Subsequently, robust quantitative data evaluation methods for halophiles could be developed, providing defined and controlled cultivation conditions in the bioreactor and therefore obtaining suitable quality of on-line as well as off-line datasets. On the other hand, new physiological results of extreme halophiles in bioreactor have also been obtained based on the quantitative methodological tools. For the first time, quantitative data on stoichiometry and kinetics were collected and evaluated on different carbon sources. The results on various substrates were interpreted, with proposed metabolic mechanisms, by linking to the reported primary carbon metabolism of extreme halophilic Archaea. Moreover, results of chemostat cultures demonstrated that extreme halophilic organisms show Monod-kinetics on different sole carbon sources. A diauxic growth pattern was described on a mixture of substrates in batch cultivations. In addition, the methodologies presented here enable one to characterize the utilized strain Haloferax mediterranei (HFX) as a potential new host organism. Thus, this study offers a strong methodological basis as well as a fundamental physiological assessment for

  3. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    PubMed Central

    de Lourdes Moreno, María; Pérez, Dolores; García, María Teresa; Mellado, Encarnación

    2013-01-01

    Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs). On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity. PMID:25371331

  4. Halophilic Nuclease from a Moderately Halophilic Micrococcus varians

    PubMed Central

    Kamekura, Masahiro; Onishi, Hiroshi

    1974-01-01

    The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218

  5. Serogrouping of Halophilic Bdellovibrios from Chesapeake Bay and Environs by Immunodiffusion and Immunoelectrophoresis

    PubMed Central

    Schoeffield, Andrew J.; Falkler, William A.; Desai, Darshana; Williams, Henry N.

    1991-01-01

    Little has been reported on the serological relationship of halophilic bdellovibrios (Bd). Immunodiffusion analysis performed with rabbit or mouse Bd antisera developed against eight halophilic Bd isolates and one terrestrial Bd isolate, when reacted with soluble antigen preparations of 45 isolates of halophilic Bd, allowed separation into seven serogroups, which were distinct from the terrestrial isolate. Soluble antigen preparations of prey bacteria, Vibrio parahaemolyticus P-5 (P-5) and Escherichia coli ML 35 (ML 35), exhibited no reactivity with the antisera by immunodiffusion. Immunoelectrophoresis revealed the presence of three distinct antigens in homologous reactions and one shared antigen in heterologous Bd reactions. Shared antigens were noted between halophilic and terrestrial Bd, in addition to between halophilic Bd strains, indicating the possible existence of an antigen(s) which may be shared among all Bd. Again, no shared antigen was noted when P-5 or ML 35 was allowed by immunoelectrophoresis to react with the antisera. Prey susceptibility testing of the seven distinct groups of halophilic Bd, using 20 test prey, produced essentially identical spectra for each group, indicating that this was not a useful technique in delineating the Bd. While immunoelectrophoresis was able to demonstrate an antigen common to all Bd tested, immunodiffusion was able to delineate strains on the basis of a “serogroup specific” antigen. This suggests that immunological tools may serve as important means to study the taxonomy of halophilic Bd, as well as in the formation of a clearer taxonomic picture of the genus Bdellovibrio. Images PMID:16348597

  6. Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna.

    PubMed

    Burguener, Germán F; Maldonado, Marcos J; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A; Turjanski, Adrián Gustavo

    2014-02-06

    Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations.

  7. Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Stryszewska, Teresa; Kańka, Stanisław; Gutarowska, Beata

    2017-06-24

    The aim of the present study was to obtain insights into the relationship between the chemical (salt content and pH) and physico-mechanical (humidity and compressive strength) properties of mineral-based materials from historic buildings with salt efflorescence and the growth and biodiversity of halophilic microorganisms. Samples were mainly characterized by pH 6.5-8.5 and a moisture content of between 0.12 and 3.3%. Significant variations were also found in the salt content (sulfates, chlorides, and nitrates) of the materials. An SEM/EDS analysis of material surfaces revealed the presence of halite, calcite, gypsum, sodium sulfate, and potassium-sodium sulfate. Culture-dependent and culture-independent (clone library construction) approaches were both applied to detect halophilic microorganisms. Results derived from culturable methods and the materials analysis revealed a correlation between the total halophile count and pH value as well as sulfate content. A correlation was not observed between the concentration of chlorides or nitrates and the number of halophilic microorganisms. The materials studied were inhabited by the culturable halophilic bacteria Halobacillus sp., Virgibacillus sp., and Marinococcus sp. as well as the yeast Sterigmatomyces sp., which was isolated for the first time from mineral materials. Culture-independent techniques revealed the following bacterial species: Salinibacterium, Salinisphaera, Rubrobacter, Rubricoccus, Halomonas, Halorhodospira, Solirubrobacter, Salinicoccus, and Salinibacter. Biodiversity was the highest in materials with high or moderate salinity.

  8. Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings

    PubMed Central

    Otlewska, Anna; Adamiak, Justyna; Stryszewska, Teresa; Kańka, Stanisław; Gutarowska, Beata

    2017-01-01

    The aim of the present study was to obtain insights into the relationship between the chemical (salt content and pH) and physico-mechanical (humidity and compressive strength) properties of mineral-based materials from historic buildings with salt efflorescence and the growth and biodiversity of halophilic microorganisms. Samples were mainly characterized by pH 6.5–8.5 and a moisture content of between 0.12 and 3.3%. Significant variations were also found in the salt content (sulfates, chlorides, and nitrates) of the materials. An SEM/EDS analysis of material surfaces revealed the presence of halite, calcite, gypsum, sodium sulfate, and potassium-sodium sulfate. Culture-dependent and culture-independent (clone library construction) approaches were both applied to detect halophilic microorganisms. Results derived from culturable methods and the materials analysis revealed a correlation between the total halophile count and pH value as well as sulfate content. A correlation was not observed between the concentration of chlorides or nitrates and the number of halophilic microorganisms. The materials studied were inhabited by the culturable halophilic bacteria Halobacillus sp., Virgibacillus sp., and Marinococcus sp. as well as the yeast Sterigmatomyces sp., which was isolated for the first time from mineral materials. Culture-independent techniques revealed the following bacterial species: Salinibacterium, Salinisphaera, Rubrobacter, Rubricoccus, Halomonas, Halorhodospira, Solirubrobacter, Salinicoccus, and Salinibacter. Biodiversity was the highest in materials with high or moderate salinity. PMID:28592721

  9. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Hochstein, L. I.

    1976-01-01

    The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.

  10. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    PubMed Central

    2011-01-01

    Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules. PMID:22192175

  11. Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna

    PubMed Central

    Burguener, Germán F.; Maldonado, Marcos J.; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A.

    2014-01-01

    Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations. PMID:24503991

  12. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    PubMed

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  13. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    PubMed Central

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  14. Taxonomic study of extreme halophilic archaea isolated from the "Salar de Atacama", Chile.

    PubMed

    Lizama, C; Monteoliva-Sánchez, M; Prado, B; Ramos-Cormenzana, A; Weckesser, J; Campos, V

    2001-11-01

    A large number of halophilic bacteria were isolated in 1984-1992 from the Atacama Saltern (North of Chile). For this study 82 strains of extreme halophilic archaea were selected. The characterization was performed by using the phenotypic characters including morphological, physiological, biochemical, nutritional and antimicrobial susceptibility test. The results, together with those from reference strains, were subjected to numerical analysis, using the Simple Matching (S(SM)) coefficient and clustered by the unweighted pair group method of association (UPGMA). Fifteen phena were obtained at an 70% similarity level. The results obtained reveal a high diversity among the halophilic archaea isolated. Representative strains from the phena were chosen to determine their DNA base composition and the percentage of DNA-DNA similarity compared to reference strains. The 16S rRNA studies showed that some of these strains constitutes a new taxa of extreme halophilic archaea.

  15. Halophilic archaebacteria from the Kalamkass oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintseva, I.S.; Belyaev, S.S.; Borzenkov, I.A.

    1995-01-01

    Two strains of halophilic archaebacteria, growing in a medium containing from 10 to 25% NaCl, were isolated from the brines of the Kalamkass (Mangyshlak) oil field. Both strains are extremely halophilic archaebacteria according to the complex of their phenotypic properties. Strain M-11 was identified as Haloferax mediterranei on the basis of the composition of polar lipids and DNA-DNA homology. The composition of polar lipids and 16S rRNA sequence of strain M-18 allowed us to assign it to the genus Haloferax. This strain differs from the approved species of the genus Haloferax, H. volcanii, and H. mediterranei. However, to describe itmore » as a new species, additional investigations are necessary. 13 refs., 3 figs.« less

  16. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    PubMed Central

    Adamiak, Justyna; Bonifay, Vincent; Otlewska, Anna; Sunner, Jan A.; Beech, Iwona B.; Stryszewska, Teresa; Kańka, Stanisław; Oracz, Joanna; Żyżelewicz, Dorota; Gutarowska, Beata

    2017-01-01

    The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity. PMID:29321766

  17. Dimethyl sulfoxide reduction by a hyperhermophilic archaeon Thermococcus onnurineus NA1 via a cysteine-cystine redox shuttle.

    PubMed

    Choi, Ae Ran; Kim, Min-Sik; Kang, Sung Gyun; Lee, Hyun Sook

    2016-01-01

    A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.

  18. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding

    PubMed Central

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

  19. Haladaptatus pallidirubidus sp. nov., a halophilic archaeon isolated from saline soil samples in Yunnan and Xinjiang, China.

    PubMed

    Liu, Bing-Bing; Zhao, Wan-Yu; Chu, Xiao; Hozzein, Wael N; Prabhu, Deene Manik; Wadaan, Mohammed A M; Tang, Shu-Kun; Zhang, Li-Li; Li, Wen-Jun

    2014-11-01

    Two extremely halophilic archaea, designated YIM 90917 and YIM 93656(T), were isolated from saline soils in Yunnan province and Lup nur region in Xinjiang province, western China, respectively. Colonies of the two strains were observed to be pink-pigmented. The cells were found to be Gram-stain negative, coccoid and non-motile. The organisms were found to be aerobic and could grow in an NaCl range of 6-35 % (optimum 18 %), temperatures ranging from 25 to 50 °C (optimum 37-42 °C), pH range from 6.0-8.5 (optimum pH 7.0-7.5) and Mg(2+) range from 0 to 1.5 M (optimum 0.5-1.0 M); Mg(2+) was not necessary for growth. Cells were not observed to lyse in distilled water. Strains YIM 90917 and YIM 93656(T) showed the highest 16S rRNA gene sequence similarities to Haladaptatus cibarius JCM 15962(T) (97.6 and 97.9 %, respectively). In addition, the DNA-DNA hybridizations of strains YIM 90917 and YIM 93656(T) with type strains H. cibarius JCM 15962(T), Haladaptatus litoreus JCM 15771(T) and Haladaptatus paucihalophilus JCM 13897(T) were 37.2 and 38.2 %, 36.6 and 39.0 % and 27.9 and 27.7 %, respectively. The DNA G+C contents of strains YIM 90917 and YIM 93656(T) were determined to be 56.0 and 57.4 mol%. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and other four unidentified glycolipids. On the basis of physiological, chemotaxonomic data and phylogenetic analysis, the strains YIM 90917 and YIM 93656(T) can be classified as a novel species of the genus Haladaptatus, for which the name Haladaptatus pallidirubidus sp. nov. is proposed. The type strain is YIM 93656(T) (=JCM 17504(T) = CCTCC AB2010454(T)).

  20. Improvement of halophilic cellulase production from locally isolated fungal strain.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2015-07-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett-Burman design and the Face Centered Central Composite Design (FCCCD). Plackett-Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization.

  1. Improvement of halophilic cellulase production from locally isolated fungal strain

    PubMed Central

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Jamal, Parveen; Gumba, Rizo Edwin

    2014-01-01

    Halophilic cellulases from the newly isolated fungus, Aspergillus terreus UniMAP AA-6 were found to be useful for in situ saccharification of ionic liquids treated lignocelluloses. Efforts have been taken to improve the enzyme production through statistical optimization approach namely Plackett–Burman design and the Face Centered Central Composite Design (FCCCD). Plackett–Burman experimental design was used to screen the medium components and process conditions. It was found that carboxymethylcellulose (CMC), FeSO4·7H2O, NaCl, MgSO4·7H2O, peptone, agitation speed and inoculum size significantly influence the production of halophilic cellulase. On the other hand, KH2PO4, KOH, yeast extract and temperature had a negative effect on enzyme production. Further optimization through FCCCD revealed that the optimization approach improved halophilic cellulase production from 0.029 U/ml to 0.0625 U/ml, which was approximately 2.2-times greater than before optimization. PMID:26150755

  2. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Grossi, Vincent; Schaeffer, Philippe; Oger, Philippe M

    2015-01-01

    The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80 MPa. We analyzed the membrane lipids of T. barophilus by high performance liquid chromatography-mass spectrometry as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C) the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol) is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol. Reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of apolar lipids having an irregular polyisoprenoid carbon skeleton (unsaturated lycopane derivatives), suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other Archaea harboring a mixture of di- and tetraether lipids.

  3. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02

    NASA Astrophysics Data System (ADS)

    Li, T. T.; Qu, A.; Yuan, X. N.; Tan, F. X.; Li, X. W.; Wang, T.; Zhang, L. H.

    2017-07-01

    Moderate halophilic bacteria are of halophilic bacteria whose suitable growth of NaCl is 5-10%. When the moderate halophilic bacteria response to high osmotic stress, the intracellular will synthesize small organic molecule compatible solutes. Ectoine, which is the major synthetic osmotic compatible solutes for moderate halophilic bacteria, can help microbial enzymes, nucleic acids and the whole cell resist to hypertonic, high temperature, freezing and other inverse environment. In order to increase the Ectoine production of Moderate halophilic bacteria Halomonas sp. H02, the Ectoine fermentation medium component was optimized by Plackett-Burman (PB) and Response Surface Methodology (RSM) based on the principle of non-complete equilibrium The results of PB experiments showed that the three main influencing factors of Moderate halophilic bacteria Halomonas sp. H02 synthesis Ectoine culture medium were C5H8NNaO4 concentration, NaCl concentration and initial pH. According to the center point of the steepest climbing experiment, the central combination design experiment was used to show that the model is consistent with the actual situation. The optimum combination of three influencing factors were C5H8NNaO4 41 g/L, NaCl 87.2 g/L and initial pH 5.9, and the predicted amount of Ectoine was 1835.8 mg/L, increased by 41.6%.

  4. Moderately halophilic gram-positive cocci from hypersaline environments.

    PubMed

    Ventosa, A; Ramos-Cormenzana, A; Kocur, M

    1983-01-01

    38 strains of moderately halophilic Gram-positive, catalase-positive cocci were isolated from saline soils and the ponds of a solar saltern in Alicante (Spain). They were divided into three biochemically distinct groups. On the basis of the characteristics investigated the 25 strains of group I corresponded to Planococcus halophilus; the ten strains of group II were morphologically and biochemically similar to the species Sporosarcina halophila; group III, comprising three strains, differed strikingly from the previous groups in certain biochemical tests. These strains differed from the planococci and micrococci so far described and were tentatively designated as Planococcus sp. The results have shown that moderately halophilic Gram-positive, motile cocci, are frequent inhabitants of hypersaline environments. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  5. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    PubMed

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  6. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.

    PubMed

    Turk, Martina; Méjanelle, Laurence; Sentjurc, Marjeta; Grimalt, Joan O; Gunde-Cimerman, Nina; Plemenitas, Ana

    2004-02-01

    The halophilic melanized yeast-like fungi Hortaea werneckii, Phaeotheca triangularis, and the halotolerant Aureobasidium pullulans, isolated from salterns as their natural environment, were grown at different NaCl concentrations and their membrane lipid composition and fluidity were examined. Among sterols, besides ergosterol, which was the predominant one, 23 additional sterols were identified. Their total content did not change consistently or significantly in response to raised NaCl concentrations in studied melanized fungi. The major phospholipid classes were phosphatidylcholine and phosphatidylethanolamine, followed by anionic phospholipids. The most abundant fatty acids in phospholipids contained C16 and C18 chain lengths with a high percentage of C18:2Delta9,12. Salt stress caused an increase in the fatty acid unsaturation in the halophilic H. werneckii and halotolerant A. pullulans but a slight decrease in halophilic P. triangularis. All the halophilic fungi maintained their sterol-to-phospholipid ratio at a significantly lower level than did the salt-sensitive Saccharomyces cerevisiae and halotolerant A. pullulans. Electron paramagnetic resonance (EPR) spectroscopy measurements showed that the membranes of all halophilic fungi were more fluid than those of the halotolerant A. pullulans and salt-sensitive S. cerevisiae, which is in good agreement with the lipid composition observed in this study.

  7. Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles.

    PubMed

    Mengele, R; Sumper, M

    1992-04-25

    The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.

  8. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). Inmore » order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  9. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk-proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to subunit composition, enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  10. Comparison of Membrane ATPases from Extreme Halophiles Isolated from Ancient Salt Deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to sub unit composition. enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  11. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK.

    PubMed

    Kiran, Kondepudi Kanthi; Chandra, T S

    2008-01-01

    A moderately halophilic alkalitolerant Bacillus sp. Strain TSCVKK, with an ability to produce extracellular halophilic, alkalitolerant, surfactant, and detergent-stable alpha-amylase was isolated from soil samples obtained from a salt-manufacturing industry in Chennai. The culture conditions for higher amylase production were optimized with respect to NaCl, substrate, pH, and temperature. Maximum amylase production of 592 mU/ml was achieved in the medium at 48 h with 10% NaCl, 1% dextrin, 0.4% yeast extract, 0.2% tryptone, and 0.2% CaCl(2) at pH 8.0 at 30 degrees C. The enzyme activity in the culture supernatant was highest with 10% NaCl at pH 7.5 and 55 degrees C. The amylase that was partially purified by acetone precipitation was highly stable in various surfactants and detergents. Glucose, maltose, and maltooligosaccharides were the main end products of starch hydrolysis indicating that it is an alpha-amylase.

  12. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  13. A simple laser-based device for simultaneous microbial culture and absorbance measurement

    NASA Astrophysics Data System (ADS)

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2013-07-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.

  14. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    PubMed Central

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  15. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Grossi, Vincent; Schaeffer, Philippe; Oger, Philippe M.

    2015-01-01

    The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80 MPa. We analyzed the membrane lipids of T. barophilus by high performance liquid chromatography–mass spectrometry as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C) the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol) is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol. Reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of apolar lipids having an irregular polyisoprenoid carbon skeleton (unsaturated lycopane derivatives), suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other Archaea harboring a mixture of di- and tetraether lipids. PMID:26539180

  16. Bipyrimidine Signatures as a Photoprotective Genome Strategy in G + C-rich Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2016-09-02

    Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional photoprotective strategy. The predominant forms of UV-induced DNA damage are cyclobutane pyrimidine dimers, most notoriously thymine dimers (T^Ts), which form at adjacent Ts. We tested whether the high G + C content seen in halophilic archaea serves a photoprotective function through limiting T nucleotides, and thus T^T lesions. However, this speculation overlooks the other bipyrimidine sequences, all of which capable of forming photolesions to varying degrees. Therefore, we designed a program to determine the frequencies of the four bipyrimidine pairs (5' to 3': TT, TC, CT, and CC) within genomes of halophilic archaea and four other randomized sample groups for comparison. The outputs for each sampled genome were weighted by the intrinsic photoreactivities of each dinucleotide pair. Statistical methods were employed to investigate intergroup differences. Our findings indicate that the UV-resistance seen in halophilic archaea can be attributed in part to a genomic strategy: high G + C content and the resulting bipyrimidine signature reduces the genomic photoreactivity.

  17. Bipyrimidine Signatures as a Photoprotective Genome Strategy in G + C-rich Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2016-01-01

    Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional photoprotective strategy. The predominant forms of UV-induced DNA damage are cyclobutane pyrimidine dimers, most notoriously thymine dimers (T^Ts), which form at adjacent Ts. We tested whether the high G + C content seen in halophilic archaea serves a photoprotective function through limiting T nucleotides, and thus T^T lesions. However, this speculation overlooks the other bipyrimidine sequences, all of which capable of forming photolesions to varying degrees. Therefore, we designed a program to determine the frequencies of the four bipyrimidine pairs (5’ to 3’: TT, TC, CT, and CC) within genomes of halophilic archaea and four other randomized sample groups for comparison. The outputs for each sampled genome were weighted by the intrinsic photoreactivities of each dinucleotide pair. Statistical methods were employed to investigate intergroup differences. Our findings indicate that the UV-resistance seen in halophilic archaea can be attributed in part to a genomic strategy: high G + C content and the resulting bipyrimidine signature reduces the genomic photoreactivity. PMID:27598206

  18. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    PubMed

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  19. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    PubMed

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  20. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    PubMed Central

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  1. Response of Haloalkaliphilic Archaeon Natronococcus Jeotgali RR17 to Hypergravity

    NASA Astrophysics Data System (ADS)

    Thombre, Rebecca S.; Bhalerao, Aniruddha R.; Shinde, Vinaya D.; Dhar, Sunil Kumar; Shouche, Yogesh S.

    2017-06-01

    The survival of archaeabacteria in extreme inhabitable environments on earth that challenge organismic survival is ubiquitously known. However, the studies related to the effect of hypergravity on the growth and proliferation of archaea are unprecedented. The survival of organisms in hypergravity and rocks in addition to resistance to cosmic radiations, pressure and other extremities is imperative to study the possibilities of microbial travel between planets and endurance in hyperaccelerative forces faced during ejection of rocks from planets. The current investigation highlights the growth of an extremophilic archaeon isolated from a rocky substrate in hypergravity environment. The haloalkaliphilic archaeon, Natronococcus jeotgali RR17 was isolated from an Indian laterite rock, submerged in the Arabian sea lining Coastal Maharashtra, India. The endolithic haloarchaeon was subjected to hypergravity from 56 - 893 X gusing acceleration generated by centrifugal rotation. The cells of N. jeotgali RR17 proliferated and demonstrated good growth in hypergravity (223 X g). This is the first report on isolation of endolithic haloarchaeon N. jeotgali RR17 from an Indian laterite rock and its ability to proliferate in hypergravity. The present study demonstrates the ability of microbial life to survive and proliferate in hypergravity. Thus the inability of organismic growth in hypergravity may no longer be a limitation for astrobiology studies related to habitability of substellar objects, brown dwarfs and other planetary bodies in the universe besides planet earth.

  2. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.

    PubMed

    Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E

    2014-01-01

    Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.

  3. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-04-25

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations.

  4. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-01-01

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30–85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations. PMID:27109617

  5. Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf.

    PubMed

    Al-Awadhi, H; Sulaiman, Rasha H D; Mahmoud, Huda M; Radwan, S S

    2007-11-01

    Green animate materials from the intertidal zone of the Arabian Gulf coast accommodated more alkaliphilic and halophilic bacteria than inanimate materials. The alkaliphilic oil-utilizing bacteria, as identified by their 16S ribonucleic acid sequences, belonged to the following genera arranged in decreasing frequences: Marinobacter, Micrococcus, Dietzia, Bacillus, Oceanobacillus, and Citricoccus. The halophilic oil-utilizing bacteria belonged to the genera: Marinobacter, Georgenia, Microbacterium, Stappia, Bacillus, Isoptericola, and Cellulomonas. Most isolates could grow on a wide range of pure n-alkanes and aromatic compounds, as sole sources of carbon and energy. Quantitative gas liquid chromatographic analysis showed that individual isolates attenuated crude oil and representative pure hydrocarbons in culture. The optimum pH for most of the alkaliphilic genera was pH 10, and the optimum salinity for the halophiles ranged between 2.5 and 5% NaCl (w/v). It was concluded that as far as their microbial makeup is concerned, oily alkaline and saline intertidal areas of the Kuwaiti coasts have a self-cleaning potential.

  6. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    PubMed

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  7. Survey of metal tolerance in moderately halophilic eubacteria.

    PubMed Central

    Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F

    1989-01-01

    The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2802612

  8. Survey of metal tolerance in moderately halophilic eubacteria.

    PubMed

    Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F

    1989-09-01

    The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater.

    PubMed

    Capodici, Marco; Corsino, Santo Fabio; Torregrossa, Michele; Viviani, Gaspare

    2018-02-15

    Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L -1 ), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation.

    PubMed

    Sinha, Rajeshwari; Khare, Sunil K

    2014-01-01

    Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants.

  11. Astrobiological studies with extremely halophilic Archaea

    NASA Astrophysics Data System (ADS)

    Fendrihan, S.; Lotter, H. Stan

    2007-08-01

    Extremely halophilic Archaea were isolated and characterized by both classical and modern molecular biological methods from hypersaline and haloalkaline lakes, salted soils, solar salterns and rock salt deposits (1). The survival of these micro-organisms after embedding in laboratory-made halite was investigated. Their presence in fluid inclusions was demonstrated by staining with the BacLight LIVE/DEAD kit and observation of their fluorescence by microscopy. Following resuspension of cells from halite crystals, a survival of about 0.5 - 4% according to colony forming units was obtained. In previous studies which focussed on the resistance of halophilic archaea to UV radiation or the space environment, survival of a dose of 110 J/m2 (using liquid cultures) and up to 10 000 J/m2 at a range of 200 - 400 nm was reported, when dried Haloarcula sp. in a single layer were exposed on the Biopan facility (2). We exposed a few haloarchaeal strains to a Martian UV simulator lamp with a range of 200 - 400 nm and an intensity of 41.2 W/m2, obtaining a viability of about 51- 67% of cells following different exposure times. Other studies focus on the detection of haloarchaea in halite by Raman microspectroscopy and by NIR-FT-Raman spectroscopy, which are considered to be important future tools for Mars exploration (3). Using the Dilor XY Raman spectrometer with laser excitation at 514.5 nm, equipped with a confocal microscope BX40 (Olympus Corp., Japan) and a Bruker IFS 66 + FRA106 with laser excitation at 1064 nm (Bruker, Germany), instruments, we obtained characteristic carotenoid peaks contained by these microorganisms. 1. Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler G., Gerbl F. Stan Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Review. Environ. Sci. Biotechnol. 5: 203-218. 2. Mancinelli R. L., White M. R., Rothschild L. J. (1998) Biopan survival I : exposure of the osmophiles Synechococcus sp. (Nägeli) and

  12. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen

    NASA Technical Reports Server (NTRS)

    Mathrani, I. M.; Boone, D. R.; Mah, R. A.; Fox, G. E.; Lau, P. P.

    1988-01-01

    Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.

  13. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov.

    PubMed

    Seck, E H; Diop, A; Armstrong, N; Delerce, J; Fournier, P-E; Raoult, D; Khelaifia, S

    2018-05-01

    Bacillus salis strain ES3 T (= CSUR P1478 = DSM 100598) is the type strain of B. salis sp. nov. It is an aerobic, Gram-positive, moderately halophilic, motile and spore-forming bacterium. It was isolated from commercial table salt as part of a broad culturomics study aiming to maximize the culture conditions for the in-depth exploration of halophilic bacteria in salty food. Here we describe the phenotypic characteristics of this isolate, its complete genome sequence and annotation, together with a comparison with closely related bacteria. Phylogenetic analysis based on 16S rRNA gene sequences indicated 97.5% similarity with Bacillus aquimaris, the closest species. The 8 329 771 bp long genome (one chromosome, no plasmids) exhibits a G+C content of 39.19%. It is composed of 18 scaffolds with 29 contigs. Of the 8303 predicted genes, 8109 were protein-coding genes and 194 were RNAs. A total of 5778 genes (71.25%) were assigned a putative function.

  14. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms. PMID:29033920

  15. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  16. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    PubMed Central

    Winter, Jody A; Christofi, Panayiotis; Morroll, Shaun; Bunting, Karen A

    2009-01-01

    Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in

  17. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology.

    PubMed

    Chuprom, Julalak; Bovornreungroj, Preeyanuch; Ahmad, Mehraj; Kantachote, Duangporn; Dueramae, Sawitree

    2016-06-01

    A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples ( budu ) and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT) approach determined gelatin was the best nitrogen source. Based on Plackett - Burman (PB) experimental design; gelatin, MgSO 4 ·7H 2 O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD) determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL) was obtained, compared with that produced in the original medium (17.80 U/mL). Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL).

  18. ATP Synthesis in the Extremely Halophilic Bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other

  19. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation

    PubMed Central

    Sinha, Rajeshwari; Khare, Sunil K.

    2014-01-01

    Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants. PMID:24782853

  20. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier

    PubMed Central

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-01-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. PMID:23929527

  1. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Diversity of halophilic archaea from six hypersaline environments in Turkey.

    PubMed

    Ozcan, Birgul; Ozcengiz, Gulay; Coleri, Arzu; Cokmus, Cumhur

    2007-06-01

    The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.

  3. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier.

    PubMed

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-10-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Workshop on Viability of Halophilic Bacteria in Salt Deposits

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The significance of finding viable extreme halophiles in halites associated with Permian-aged sedimentary deposits is considered. Issues related to the microbiology and geochemistry of the halite environment are addressed. Recommendations that related the significance of this phenomenon to NASA's interest in planetary exploration and the early evolution of life are provided.

  5. Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France).

    PubMed

    Tapilatu, Yosmina H; Grossi, Vincent; Acquaviva, Monique; Militon, Cécile; Bertrand, Jean-Claude; Cuny, Philippe

    2010-03-01

    Little information exists about the ability of halophilic archaea present in hypersaline environments to degrade hydrocarbons. In order to identify the potential actors of hydrocarbon degradation in these environments, enrichment cultures were prepared using samples collected from a shallow crystallizer pond with no known contamination history in Camargue, France, with n-alkanes provided as source of carbon and energy. Five alkane-degrading halophilic archaeal strains were isolated: one (strain MSNC 2) was closely related to Haloarcula and three (strains MSNC 4, MSNC 14, and MSNC 16) to Haloferax. Biodegradation assays showed that depending on the strain, 32 to 95% (0.5 g/l) of heptadecane was degraded after 30 days of incubation at 40 degrees C in 225 g/l NaCl artificial medium. One of the strains (MSNC 14) was also able to degrade phenanthrene. This work clearly shows for the first time the potential role of halophilic archaea belonging to the genera Haloarcula and Haloferax in the degradation of hydrocarbons in both pristine and hydrocarbon-contaminated hypersaline environments.

  6. Genome Sequence of a Hyperthermophilic Archaeon, Thermococcus nautili 30-1, That Produces Viral Vesicles.

    PubMed

    Oberto, Jacques; Gaudin, Marie; Cossu, Matteo; Gorlas, Aurore; Slesarev, Alexeï; Marguet, Evelyne; Forterre, Patrick

    2014-03-27

    Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.

  7. Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon Metallosphaera sedula▿

    PubMed Central

    Auernik, Kathryne S.; Kelly, Robert M.

    2010-01-01

    Hydrogen served as a competitive inorganic energy source, impacting the CuFeS2 bioleaching efficiency of the extremely thermoacidophilic archaeon Metallosphaera sedula. Open reading frames encoding key terminal oxidase and electron transport chain components were triggered by CuFeS2. Evidence of heterotrophic metabolism was noted after extended periods of bioleaching, presumably related to cell lysis. PMID:20190092

  8. Characterization of Halophilic Bacterial Communities in Turda Salt Mine (Romania)

    NASA Astrophysics Data System (ADS)

    Carpa, Rahela; Keul, Anca; Muntean, Vasile; Dobrotă, Cristina

    2014-09-01

    Halophilic organisms are having adaptations to extreme salinity, the majority of them being Archaean, which have the ability to grow at extremely high salt concentrations, (from 3 % to 35 %). Level of salinity causes natural fluctuations in the halophilic populations that inhabit this particular habitat, raising problems in maintaining homeostasis of the osmotic pressure. Samples such as salt and water taken from Turda Salt Mine were analyzed in order to identify the eco-physiological bacterial groups. Considering the number of bacteria of each eco-physiological group, the bacterial indicators of salt quality (BISQ) were calculated and studied for each sample. The phosphatase, catalase and dehydrogenases enzymatic activities were quantitatively determined and the enzymatic indicators of salt quality (EISQ) were calculated. Bacterial isolates were analyzed using 16S rRNA gene sequence analysis. Universal bacterial primers, targeting the consensus region of the bacterial 16S rRNA gene were used. Analysis of a large fragment, of 1499 bp was performed to improve discrimination at the species level.

  9. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times

    PubMed Central

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival. PMID:26226005

  10. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times.

    PubMed

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-07-28

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival-halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages-remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.

  11. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart.

    PubMed

    Tokunaga, Hiroko; Maeda, Junpei; Arakawa, Tsutomu; Tokunaga, Masao

    2017-06-01

    Effects of a water-miscible organic solvent, methanol, on the structure and activity of halophilic β-lactamase derived from Chromohalobacter sp.560 (HaBla), were investigated by means of circular dichroism (CD) measurement and enzymatic activity determination. Beta-lactamase activity was enhanced about 1.2-fold in the presence of 10-20% methanol. CD measurement of HaBla revealed different structures depending on the methanol concentration: native-like active form (Form I) in 10-20% methanol and methanol-induced inactive form at higher concentration (Form II in 40-60% and Form III in 75-80% methanol). Incubation of HaBla with 40% methanol led to the complete loss of activity within ~80 min accompanied by the formation of Form II, whose activity was recovered promptly up to ~80% of full activity upon dilution of the methanol concentration to 10%. In addition, when the protein concentration was sufficiently high (e.g., 0.7 mg/ml), HaBla activity of Form III in 75% methanol could be recovered in the same way (with slightly slower recovery rate), upon dilution of the methanol concentration. In contrast, non-halophilic β-lactamase from Escherichia coli K12 strain MG1655 (EcBla) was irreversibly denatured in the presence of 40% methanol. HaBla showed remarkable ability to renature from the methanol-induced inactive states.

  12. Analysis of metagenomic data reveals common features of halophilic viral communities across continents.

    PubMed

    Roux, Simon; Enault, Francois; Ravet, Viviane; Colombet, Jonathan; Bettarel, Yvan; Auguet, Jean-Christophe; Bouvier, Thierry; Lucas-Staat, Soizick; Vellet, Agnès; Prangishvili, David; Forterre, Patrick; Debroas, Didier; Sime-Ngando, Telesphore

    2016-03-01

    Microbial communities from hypersaline ponds, dominated by halophilic archaea, are considered specific of such extreme conditions. The associated viral communities have accordingly been shown to display specific features, such as similar morphologies among different sites. However, little is known about the genetic diversity of these halophilic viral communities across the Earth. Here, we studied viral communities in hypersaline ponds sampled on the coast of Senegal (8-36% of salinity) using metagenomics approach, and compared them with hypersaline viromes from Australia and Spain. The specificity of hyperhalophilic viruses could first be demonstrated at a community scale, salinity being a strong discriminating factor between communities. For the major viral group detected in all samples (Caudovirales), only a limited number of halophilic Caudovirales clades were highlighted. These clades gather viruses from different continents and display consistent genetic composition, indicating that they represent related lineages with a worldwide distribution. Non-tailed hyperhalophilic viruses display a greater rate of gene transfer and recombination, with uncharacterized genes conserved across different kind of viruses and plasmids. Thus, hypersaline viral communities around the world appear to form a genetically consistent community that are likely to harbour new genes coding for enzymes specifically adapted to these environments. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. A Novel Denitrifying Extreme Halophile That Grows in a Simple Mineral Salts Medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Oremland, R. S.; Gherna, R.; Cote, R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    An extremely halophilic bacterium (strain CH-1) was isolated from a saltern adjacent to San Francisco Bay. It grew in a mineral salts medium with ammonium and glucose as sole sources of nitrogen and carbon as well as energy, respectively Cells lysed at less than 10% NaCl and growth was most rapid in medium containing 20% NaCl. Cells were pieomorphic ranging from disc to ovoid-shaved and used a variety of carbohydrates as sole carbon sources. the utilization of certain carbon sources was controlled by temperature with some used at 37 degrees but not 45 C. CH-1 grew between 30 degrees and 50 C with the optimum at 45 C in the presence of 20% NaCl. CH-1 contained 2,3-di-O-isoprenyl glcerol diethers and was sensitive to aphidicofin. The major polar lipid was glucosyl-mannosyl-alucosyl diether, which is diagnostic of the Haloarcula. Thus CH-1 is an extreme halophile and a member of this genus. Among the novel characteristics of this organism was its ability to grow anaerobically in synthetic medium when nitrate was present which was only reduced to nitrous oxide. This organism should prove useful for studying denitrification and carbohydrate metabolism in the extreme halophiles; and to be a valuable resource for generic studies.

  14. The effects of space relevant environmental factors on halophilic Archaea

    NASA Astrophysics Data System (ADS)

    Leuko, Stefan; Moeller, Ralf; Rettberg, Petra

    Within the last 50 years, space technology has provided tools for transporting terrestrial (microbial) life beyond Earth's protective shield in order to study its responses to selected conditions of space. Microorganisms are ubiquitous and can be found in almost every environment on Earth. They thrive and survive in a broad spectrum of environments and are true masters in adapting to rapidly changing external conditions. Although microorganisms cannot actively grow under the harsh conditions of outer space or other known planets, some microorganisms might be able to survive for a time in space or other planets as dormant, inactive spores or in similar desiccation-resistant resting states, e.g., enclosed in halite crystals or biofilms. Halite crystals are the realm of halophilic Archaea as they have adapted to life at extreme salt concentrations. They can stay entrapped in such crystals for millions of years without losing viability and therefore the family Halobacteriaceae belongs to the group of microorganisms which may survive space travel or may even be found on other planets. Several members of this family have been utilized in space relevant experiments where they were exposed to detrimental environmental conditions such as UV-C radiation, vacuum, temperature cycles (+60(°) C and -25(°) C) and heavy iron bombardment (150 MeV He, 500 MeV Ar and 500 MeV Fe ions). The viability was evaluated by colony forming unit (cfu) counts as well as with the LIFE/DEAD kit. Results revealed that UV-C radiation (up to 1.000 J/m (2) ) has a considerable effect on the viability, whereas the other tested parameters inflict little damage onto the organisms. Repair of UV-C inflicted damage is efficient and several DNA damage repair genes are up-regulated following exposure. Halophilic archaea display a strong resistance against heavy iron bombardment, with dosages of up to 2.000 Gy 500 MeV Fe ions needed to establish a visible effect on the vitality. Genomic integrity after

  15. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2015-01-01

    Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.

  16. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    PubMed

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  17. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors.

    PubMed

    Shen, Tianlin; Stieglmeier, Michaela; Dai, Jiulan; Urich, Tim; Schleper, Christa

    2013-07-01

    Nitrification inhibitors have been used for decades to improve nitrogen fertilizer utilization in farmland. However, their effect on ammonia-oxidizing Archaea (AOA) in soil is little explored. Here, we compared the impact of diverse inhibitors on nitrification activity of the soil archaeon Ca. Nitrososphaera viennensis EN76 and compared it to that of the ammonia-oxidizing bacterium (AOB) Nitrosospira multiformis. Allylthiourea, amidinothiourea, and dicyandiamide (DCD) inhibited ammonia oxidation in cultures of both N. multiformis and N. viennensis, but the effect on N. viennensis was markedly lower. In particular, the effective concentration 50 (EC50) of allylthiourea was 1000 times higher for the AOA culture. Among the tested nitrification inhibitors, DCD was the least potent against N. viennensis. Nitrapyrin had at the maximal soluble concentration only a very weak inhibitory effect on the AOB N. multiformis, but showed a moderate effect on the AOA. The antibiotic sulfathiazole inhibited the bacterium, but barely affected the archaeon. Only the NO-scavenger carboxy-PTIO had a strong inhibitory effect on the archaeon, but had little effect on the bacterium in the concentrations tested. Our results reflect the fundamental metabolic and cellular differences of AOA and AOB and will be useful for future applications of inhibitors aimed at distinguishing activities of AOA and AOB in soil environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  19. Exploration, antifungal and antiaflatoxigenic activity of halophilic bacteria communities from saline soils of Howze-Soltan playa in Iran.

    PubMed

    Jafari, Samaneh; Aghaei, Seyed-Soheil; Afifi-Sabet, Hossein; Shams-Ghahfarokhi, Masoomeh; Jahanshiri, Zahra; Gholami-Shabani, Mohammadhassan; Shafiei-Darabi, Seyedahmad; Razzaghi-Abyaneh, Mehdi

    2018-01-01

    In the present study, halophilic bacteria communities were explored in saline soils of Howze-Soltan playa in Iran with special attention to their biological activity against an aflatoxigenic Aspergillus parasiticus NRRL 2999. Halophilic bacteria were isolated from a total of 20 saline soils using specific culture media and identified by 16S rRNA sequencing in neighbor-joining tree analysis. Antifungal and antiaflatoxigenic activities of the bacteria were screened by a nor-mutant A. parasiticus NRRL 2999 using visual agar plate assay and confirmed by high-performance liquid chromatography. Among a total of 177 halophilic bacteria belonging to 11 genera, 121 isolates (68.3%) inhibited A. parasiticus growth and/or aflatoxin production. The most potent inhibitory bacteria of the genera Bacillus, Paenibacillus and Staphylococcus were distributed in three main phylogenetic clusters as evidenced by 16S rRNA sequence analysis. A. parasiticus growth was inhibited by 0.7-92.7%, while AFB 1 and AFG 1 productions were suppressed by 15.1-98.9 and 57.0-99.6%, respectively. Taken together, halophilic bacteria identified in this study may be considered as potential sources of novel bioactive metabolites as well as promising candidates to develop new biocontrol agents for managing toxigenic fungi growth and subsequent aflatoxin contamination of food and feed in practice.

  20. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm)

    PubMed Central

    Echigo, Akinobu; Hino, Miki; Fukushima, Tadamasa; Mizuki, Toru; Kamekura, Masahiro; Usami, Ron

    2005-01-01

    Background Generally, extremophiles have been deemed to survive in the extreme environments to which they had adapted to grow. Recently many extremophiles have been isolated from places where they are not expected to grow. Alkaliphilic microorganisms have been isolated from acidic soil samples with pH 4.0, and thermophiles have been isolated from samples of low temperature. Numerous moderately halophilic microorganisms, defined as those that grow optimally in media containing 0.5–2.5 Molar (3–15%) NaCl, and halotolerant microorganisms that are able to grow in media without added NaCl and in the presence of high NaCl have been isolated from saline environments such as salterns, salt lakes and sea sands. It has tacitly been believed that habitats of halophiles able to grow in media containing more than 20% (3.4 M) are restricted to saline environments, and no reports have been published on the isolation of halophiles from ordinary garden soil samples. Results We demonstrated that many halophilic bacteria that are able to grow in the presence of 20% NaCl are inhabiting in non-saline environments such as ordinary garden soils, yards, fields and roadways in an area surrounding Tokyo, Japan. Analyses of partial 16S rRNA gene sequences of 176 isolates suggested that they were halophiles belonging to genera of the family Bacillaceae, Bacillus (11 isolates), Filobacillus (19 isolates), Gracilibacillus (6 isolates), Halobacillus (102 isolates), Lentibacillus (1 isolate), Paraliobacillus (5 isolates) and Virgibacillus (17 isolates). Sequences of 15 isolates showed similarities less than 92%, suggesting that they may represent novel taxa within the family Bacillaceae. Conclusion The numbers of total bacteria of inland soil samples were in a range from 1.4 × 107/g to 1.1 × 106/g. One tenth of the total bacteria was occupied by endospore-forming bacteria. Only very few of the endospore-forming bacteria, roughly 1 out of 20,000, are halophilic bacteria. Most of the

  1. A Novel Halophilic Lipase, LipBL, Showing High Efficiency in the Production of Eicosapentaenoic Acid (EPA)

    PubMed Central

    Pérez, Dolores; Martín, Sara; Fernández-Lorente, Gloria; Filice, Marco; Guisán, José Manuel; Ventosa, Antonio; García, María Teresa; Mellado, Encarnación

    2011-01-01

    Background Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity. Methods and Findings A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested. Conclusions In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from

  2. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum.

    PubMed

    Kis-Papo, Tamar; Weig, Alfons R; Riley, Robert; Peršoh, Derek; Salamov, Asaf; Sun, Hui; Lipzen, Anna; Wasser, Solomon P; Rambold, Gerhard; Grigoriev, Igor V; Nevo, Eviatar

    2014-05-09

    The Dead Sea is one of the most hypersaline habitats on Earth. The fungus Eurotium rubrum (Eurotiomycetes) is among the few species able to survive there. Here we highlight its adaptive strategies, based on genome analysis and transcriptome profiling. The 26.2 Mb genome of E. rubrum shows, for example, gains in gene families related to stress response and losses with regard to transport processes. Transcriptome analyses under different salt growth conditions revealed, among other things differentially expressed genes encoding ion and metabolite transporters. Our findings suggest that long-term adaptation to salinity requires cellular and metabolic responses that differ from short-term osmotic stress signalling. The transcriptional response indicates that halophilic E. rubrum actively counteracts the salinity stress. Many of its genes encode for proteins with a significantly higher proportion of acidic amino acid residues. This trait is characteristic of the halophilic prokaryotes as well, supporting the theory of convergent evolution under extreme hypersaline stress.

  3. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  4. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    PubMed

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations.

    PubMed

    Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2016-02-01

    The presence and enumeration of halophilic and alkaliphilic bacteria in Spanish-style table-olive fermentations was studied. Twenty 10-tonne fermenters at two large manufacturing companies in Spain, previously studied through both culture dependent and independent (PCR-DGGE) methodologies, were selected. Virtually all this microbiota was isolated during the initial fermentation stage. A total of 203 isolates were obtained and identified based on 16S rRNA gene sequences. They belonged to 13 bacterial species, included in 11 genera. It was noticeable the abundance of halophilic and alkaliphilic lactic acid bacteria (HALAB). These HALAB belonged to the three genera of this group: Alkalibacterium, Marinilactibacillus and Halolactibacillus. Ten bacterial species were isolated for the first time from table olive fermentations, including the genera Amphibacillus, Natronobacillus, Catenococcus and Streptohalobacillus. The isolates were genotyped through RAPD and clustered in a dendrogram where 65 distinct strains were identified. Biodiversity indexes found statistically significant differences between both patios regarding genotype richness, diversity and dominance. However, Jaccard similarity index suggested that the halophilic/alkaliphilic microbiota in both patios was more similar than the overall microbiota at the initial fermentation stage. Thus, up to 7 genotypes of 6 different species were shared, suggesting adaptation of some strains to this fermentation stage. Morisita-Horn similarity index indicated a high level of codominance of the same species in both patios. Halophilic and alkaliphilic bacteria, especially HALAB, appeared to be part of the characteristic microbiota at the initial stage of this table-olive fermentation, and they could contribute to the conditioning of the fermenting brines in readiness for growth of common lactic acid bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genome Sequence of an Ammonia-Oxidizing Soil Archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1

    PubMed Central

    Kim, Byung Kwon; Jung, Man-Young; Yu, Dong Su; Park, Soo-Je; Oh, Tae Kwang; Rhee, Sung-Keun; Kim, Jihyun F.

    2011-01-01

    Ammonia-oxidizing archaea are ubiquitous microorganisms which play important roles in global nitrogen and carbon cycle on earth. Here we present the high-quality draft genome sequence of an ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus koreensis” MY1, that dominated an enrichment culture of a soil sample from the rhizosphere. Its genome contains genes for survival in the rhizosphere environment as well as those for carbon fixation and ammonium oxidation to nitrite. PMID:21914867

  7. Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars.

    PubMed

    Sinha, Navita; Kral, Timothy A

    2018-05-12

    Methanogens have been considered models for life on Mars for many years. In order to survive any exposure at the surface of Mars, methanogens would have to endure Martian UVC radiation. In this research, we irradiated hydrated and desiccated cultures of slightly halophilic Methanococcus maripaludis and non-halophilic Methanobacterium formicicum for various time intervals with UVC (254 nm) radiation. The survivability of the methanogens was determined by measuring methane concentrations in the headspace gas samples of culture tubes after re-inoculation of the methanogens into their growth-supporting media following exposure to UVC radiation. Hydrated M. maripaludis survived 24 h of UVC exposure, while in a desiccated condition they endured for 16 h. M. formicicum also survived UVC radiation for 24 h in a liquid state; however, in a desiccated condition, the survivability of M. formicicum was only 12 h. Some of the components of the growth media could have served as shielding agents that protected cells from damage caused by exposure to ultraviolet radiation. Overall, these results suggest that limited exposure (12⁻24 h) to UVC radiation on the surface of Mars would not necessarily be a limiting factor for the survivability of M. maripaludis and M. formicicum .

  8. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    PubMed

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  9. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    PubMed

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  10. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia.

    PubMed

    Boujelben, Ines; Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Peña, Arantxa; López, Cristina; Antón, Josefa; Maalej, Sami

    2012-05-01

    The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of "species" during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.

  11. On the response of halophilic archaea to space conditions.

    PubMed

    Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L; Burns, Brendan P

    2014-02-21

    Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth's protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.

  12. Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea

    PubMed Central

    Pietilä, Maija K.; Laurinmäki, Pasi; Russell, Daniel A.; Ko, Ching-Chung; Jacobs-Sera, Deborah; Butcher, Sarah J.

    2013-01-01

    Extremophilic archaea, both hyperthermophiles and halophiles, dominate in habitats where rather harsh conditions are encountered. Like all other organisms, archaeal cells are susceptible to viral infections, and to date, about 100 archaeal viruses have been described. Among them, there are extraordinary virion morphologies as well as the common head-tailed viruses. Although approximately half of the isolated archaeal viruses belong to the latter group, no three-dimensional virion structures of these head-tailed viruses are available. Thus, rigorous comparisons with bacteriophages are not yet warranted. In the present study, we determined the genome sequences of two of such viruses of halophiles and solved their capsid structures by cryo-electron microscopy and three-dimensional image reconstruction. We show that these viruses are inactivated, yet remain intact, at low salinity and that their infectivity is regained when high salinity is restored. This enabled us to determine their three-dimensional capsid structures at low salinity to a ∼10-Å resolution. The genetic and structural data showed that both viruses belong to the same T-number class, but one of them has enlarged its capsid to accommodate a larger genome than typically associated with a T=7 capsid by inserting an additional protein into the capsid lattice. PMID:23283946

  13. On the Response of Halophilic Archaea to Space Conditions

    PubMed Central

    Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L.; Burns, Brendan P.

    2014-01-01

    Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated. PMID:25370029

  14. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    DOEpatents

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  15. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium.

    PubMed

    Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed

    2014-07-01

    Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.

  16. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    PubMed

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  17. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Halococcus salifodinae sp. nov., an Archaeal Isolate from an Austrian Salt Mine

    NASA Technical Reports Server (NTRS)

    Denner, Ewald B. M.; McGenity, Terry J.; Busse, Hans-Jurgen; Grant, William D.; Wanner, Gerhard; Stan-Lotter, Helga

    1994-01-01

    A novel extremely halophilic archaeon (archaebacterium) was isolated from rock salt obtained from an Austrian salt mine. The deposition of the salt is thought to have occurred during the Permian period (225 x 106 to 280 x 10(exp 6) years ago). This organism grew over a pH range of 6.8 to 9.5. Electron microscopy revealed cocci in tetrads or larger clusters. The partial 16S rRNA sequences, polar lipid composition, and menaquinone content suggested that this organism was related to members of the genus Halococcus, while the whole-cell protein patterns, the presence of several unknown lipids, and the presence of pink pigmentation indicated that it was different from previously described coccoid halophiles. We propose that this isolate should be recognized as a new species and should be named Halococcus salifodinae. The type strain is Bl(sub p) (= ATCC 51437 = DSM 8989). A chemotaxonomically similar microorganism was isolated from a British salt mine.

  19. Halophilic-Psychrophilic Bacteria from Tirich Mir Glacier, Pakistan, as Potential Candidate for Astrobiological Studies

    NASA Astrophysics Data System (ADS)

    Rafiq, M. R.; Anesio, A. M. A.; Hayat, M. H.; Zada, S. Z.; Sajjad, W. S.; Shah, A. A. S.; Hasan, F. H.

    2016-09-01

    Hindu Kush, Karakoram, and Himalaya region is referred to as 'third pole' and could be suitable as a terrestrial analog of Mars and increased possibility of finding polyextremophiles. Study is focused on halophilic psychrophiles.

  20. Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Jehlička, J.; Edwards, H. G. M.; Oren, A.

    2013-04-01

    Laboratory cultures of a number of red extremely halophilic Archaea (Halobacterium salinarum strains NRC-1 and R1, Halorubrum sodomense, Haloarcula valismortis) and of Salinibacter ruber, a red extremely halophilic member of the Bacteria, have been investigated by Raman spectroscopy using 514.5 nm excitation to characterize their carotenoids. The 50-carbon carotenoid α-bacterioruberin was detected as the major carotenoid in all archaeal strains. Raman spectroscopy also detected bacterioruberin as the main pigment in a red pellet of cells collected from a saltern crystallizer pond. Salinibacter contains the C40-carotenoid acyl glycoside salinixanthin (all-E, 2'S)-2'-hydroxy-1'-[6-O-(methyltetradecanoyl)-β-D-glycopyranosyloxy]-3',4'-didehydro-1',2'-dihydro-β,ψ-carotene-4-one), for which the Raman bands assignments of are given here for the first time.

  1. Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): Possible Involvement of Halophilic Microorganisms.

    PubMed

    Piñar, Guadalupe; Dalnodar, Dennis; Voitl, Christian; Reschreiter, Hans; Sterflinger, Katja

    2016-01-01

    The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find. As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms. Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities. The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions

  2. Transcription-coupled repair of UV damage in the halophilic archaea.

    PubMed

    Stantial, Nicole; Dumpe, Jarrod; Pietrosimone, Kathryn; Baltazar, Felicia; Crowley, David J

    2016-05-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) in which excision repair proteins are targeted to RNA polymerase-arresting lesions located in the transcribed strand of active genes. TCR has been documented in a variety of bacterial and eukaryotic organisms but has yet to be observed in the Archaea. We used Halobacterium sp. NRC-1 and Haloferax volcanii to determine if TCR occurs in the halophilic archaea. Following UV irradiation of exponentially growing cultures, we quantified the rate of repair of cyclobutane pyrimidine dimers in the two strands of the rpoB2B1A1A2 and the trpDFEG operons of Halobacterium sp. NRC-1 and the pts operon of H. volcanii through the use of a Southern blot assay and strand-specific probes. TCR was observed in all three operons and was dependent on the NER gene uvrA in Halobacterium sp. NRC-1, but not in H. volcanii. The halophilic archaea likely employ a novel mechanism for TCR in which an as yet unknown coupling factor recognizes the arrested archaeal RNA polymerase complex and recruits certain NER proteins to complete the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Halophilic Archaea determined from geothermal steam vent aerosols.

    PubMed

    Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T

    2008-06-01

    Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.

  4. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    NASA Astrophysics Data System (ADS)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  5. The Evolution of Energy-Transducing Systems. Studies with an Extremely Halophilic Archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1997-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of bacteria, chloroplasts and mitochondria (1). Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaea (formerly called archaebacteria) are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution (2). From studies of members of all three major groups of archaea, the halophiles, methanogens and thermoacidophiles, it emerged that they possess a membrane ATPase, which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complex, and possibly a deduction of events during the early evolution of energy-transducing systems.

  6. Is there a common water-activity limit for the three domains of life?

    PubMed Central

    Stevenson, Andrew; Cray, Jonathan A; Williams, Jim P; Santos, Ricardo; Sahay, Richa; Neuenkirchen, Nils; McClure, Colin D; Grant, Irene R; Houghton, Jonathan DR; Quinn, John P; Timson, David J; Patil, Satish V; Singhal, Rekha S; Antón, Josefa; Dijksterhuis, Jan; Hocking, Ailsa D; Lievens, Bart; Rangel, Drauzio E N; Voytek, Mary A; Gunde-Cimerman, Nina; Oren, Aharon; Timmis, Kenneth N; McGenity, Terry J; Hallsworth, John E

    2015-01-01

    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life. PMID:25500507

  7. Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor.

    PubMed

    Strillinger, Eva; Grötzinger, Stefan Wolfgang; Allers, Thorsten; Eppinger, Jörg; Weuster-Botz, Dirk

    2016-02-01

    The success of biotechnological processes is based on the availability of efficient and highly specific biocatalysts, which can satisfy industrial demands. Extreme and remote environments like the deep brine pools of the Red Sea represent highly interesting habitats for the discovery of novel halophilic and thermophilic enzymes. Haloferax volcanii constitutes a suitable expression system for halophilic enzymes obtained from such brine pools. We developed a batch process for the cultivation of H. volcanii H1895 in controlled stirred-tank bioreactors utilising knockouts of components of the flagella assembly system. The standard medium Hv-YPC was supplemented to reach a higher cell density. Without protein expression, cell dry weight reaches 10 g L(-1). Two halophilic alcohol dehydrogenases were expressed under the control of the tryptophanase promoter p.tna with 16.8 and 3.2 mg gCDW (-1), respectively, at a maximum cell dry weight of 6.5 g L(-1). Protein expression was induced by the addition of L-tryptophan. Investigation of various expression strategies leads to an optimised two-step induction protocol introducing 6 mM L-tryptophan at an OD650 of 0.4 followed by incubation for 16 h and a second induction step with 3 mM L-tryptophan followed by a final incubation time of 4 h. Compared with the uncontrolled shaker-flask cultivations used until date, dry cell mass concentrations were improved by a factor of more than 5 and cell-specific enzyme activities showed an up to 28-fold increased yield of the heterologous proteins.

  8. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  9. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    NASA Astrophysics Data System (ADS)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  10. Microbial culturomics unravels the halophilic microbiota repertoire of table salt: description of Gracilibacillus massiliensis sp. nov.

    PubMed

    Diop, Awa; Khelaifia, Saber; Armstrong, Nicholas; Labas, Noémie; Fournier, Pierre-Edouard; Raoult, Didier; Million, Matthieu

    2016-01-01

    Microbial culturomics represents an ongoing revolution in the characterization of environmental and human microbiome. By using three media containing high salt concentration (100, 150, and 200 g/L), the halophilic microbial culturome of a commercial table salt was determined. Eighteen species belonging to the Terrabacteria group were isolated including eight moderate halophilic and 10 halotolerant bacteria. Gracilibacillus massiliensis sp. nov., type strain Awa-1 T (=CSUR P1441=DSM 29726), is a moderately halophilic gram-positive, non-spore-forming rod, and is motile by using a flagellum. Strain Awa-1 T shows catalase activity but no oxidase activity. It is not only an aerobic bacterium but also able to grow in anaerobic and microaerophilic atmospheres. The draft genome of G. massiliensis is 4,207,226 bp long, composed of 13 scaffolds with 36.05% of G+C content. It contains 3,908 genes (3,839 protein-coding and 69 RNA genes). At least 1,983 (52%) orthologous proteins were not shared with the closest phylogenetic species. Hundred twenty-six genes (3.3%) were identified as ORFans. Microbial culturomics can dramatically improve the characterization of the food and environmental microbiota repertoire, deciphering new bacterial species and new genes. Further studies will clarify the geographic specificity and the putative role of these new microbes and their related functional genetic content in environment, health, and disease.

  11. Response of the extremely halophilic Halococcus dombrowskii strain H4 to UV radiation and space conditions in the EXPOSE -ADAPT project on the International Space Station

    NASA Astrophysics Data System (ADS)

    Fendrihan, Sergiu; Grosbacher, Michael; Stan-Lotter, Helga

    2010-05-01

    The international project ADAPT focuses on the response of different microorganisms to outer space conditions. In 2007, the European Space Agency (ESA) has installed the Columbus laboratory and the exposure facility EXPOSE-E on the International Space Station (ISS). One of the microorganisms that were exposed for 18 months on the ISS is Halococcus dombrowskii strain H4, an extremely halophilic archaeon which was isolated from about 250 million years old alpine salt deposits (1). Ground experiments with Hcc. dombrowskii included irradiation with different wavelengths and doses of UV, using a Hg low pressure lamp, a solar simulator SOL2 (both at the DLR, Cologne) and a Mars UV simulation lamp (2). Cells were embedded in halite crystals which were formed on quartz discs by evaporation of high salt buffers. Methods for analyzing the effects of exposure on Hcc. dombrowskii include the estimation of colony forming units (CFUs), staining for viability with the BacLight LIVE/DEAD kit (2), establishing long term liquid cultures and determination of the formation of cyclobutane pyrimidine dimers (CPDs) with specific antibodies (3). Counting of viable (green) and dead (red) cells showed an apparent preservation of viability following exposure to about 21 kJ/m2 in ground experiments, but the calculated D37 (dose of 37 % survival) for Hcc. dombrowskii was about 400 kJ/m2 in salt crystals (2). CPDs were detected in about 6-8% of cells of Hcc. dombrowskii following exposure to a dose of 3000 kJ/m2 (200-400 nm). Preliminary results with the samples of Hcc. dombrowskii from the ISS suggested preservation of cellular morphology and stainability with the fluorescent dyes of the LIVE/DEAD kit, as well as formation of CPDs in about 2-3 % of the cells. The determination of the survival of cells by measuring proliferation requires months of incubation; data can be expected in May or June 2010. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus

  12. Genome sequence of the moderately halophilic bacterium Salinicoccus carnicancri type strain Crm(T) (= DSM 23852(T)).

    PubMed

    Hyun, Dong-Wook; Whon, Tae Woong; Cho, Yong-Joon; Chun, Jongsik; Kim, Min-Soo; Jung, Mi-Ja; Shin, Na-Ri; Kim, Joon-Yong; Kim, Pil Soo; Yun, Ji-Hyun; Lee, Jina; Oh, Sei Joon; Bae, Jin-Woo

    2013-01-01

    Salinicoccus carnicancri Jung et al. 2010 belongs to the genus Salinicoccus in the family Staphylococcaceae. Members of the Salinicoccus are moderately halophilic and originate from various salty environments. The halophilic features of the Salinicoccus suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus Salinicoccus is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of S. carnicancri strain Crm(T) and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It was notable that the strain carried 72 predicted genes associated with osmoregulation, which suggests the presence of beneficial functions that facilitate growth in high-salt environments.

  13. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-01-01

    Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (Cα r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations. PMID:24598750

  14. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  15. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1992-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of eubacteria, chloroplasts, and mitochondria. Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaebacteria are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution. From studies of members of all three major groups of archaebacteria - the halophiles, methanogens, and thermoacidophiles - it emerged that they possess a membrane ATPase which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. Amino acid sequences of critical regions of the enzyme were to be determined, as well as immunoreactions of single subunits in the search for common epitopes. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complexes, and possibly deduction of events during the early evolution of energy-transducing systems.

  16. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    PubMed Central

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  17. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions

    PubMed Central

    A. Nicholson, Carla; Z. Fathepure, Babu

    2004-01-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment. PMID:14766609

  18. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.

    PubMed

    Nicholson, Carla A; Fathepure, Babu Z

    2004-02-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment.

  19. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus.

    PubMed

    Saum, Stephan H; Pfeiffer, Friedhelm; Palm, Peter; Rampp, Markus; Schuster, Stephan C; Müller, Volker; Oesterhelt, Dieter

    2013-05-01

    Salt acclimation in moderately halophilic bacteria is the result of action of a grand interplay orchestrated by signals perceived from the environment. To elucidate the cellular players involved in sensing and responding to changing salinities we have determined the genome sequence of Halobacillus halophilus, a Gram-positive moderate halophilic bacterium that has a strict requirement for the anion chloride. Halobacillus halophilus synthesizes a multitude of different compatible solutes and switches its osmolyte strategy with the external salinity and growth phase. Based on the emerging genome sequence, the compatible solutes glutamate, glutamine, proline and ectoine have already been experimentally studied. The biosynthetic routes for acetyl ornithine and acetyl lysine are also delineated from the genome sequence. Halobacillus halophilus is nutritionally very versatile and most compatible solutes cannot only be produced but also used as carbon and energy sources. The genome sequence unravelled isogenes for many pathways indicating a fine regulation of metabolism. Halobacillus halophilus is unique in integrating the concept of compatible solutes with the second fundamental principle to cope with salt stress, the accumulation of molar concentrations of salt (Cl(-)) in the cytoplasm. Extremely halophilic bacteria/archaea, which exclusively rely on the salt-in strategy, have a high percentage of acidic proteins compared with non-halophiles with a low percentage. Halobacillus halophilus has an intermediate position which is consistent with its ability to integrate both principles. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology.

    PubMed

    Kindzierski, Viktoria; Raschke, Silvia; Knabe, Nicole; Siedler, Frank; Scheffer, Beatrix; Pflüger-Grau, Katharina; Pfeiffer, Friedhelm; Oesterhelt, Dieter; Marin-Sanguino, Alberto; Kunte, Hans-Jörg

    2017-01-01

    Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential.

  1. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content*

    PubMed Central

    Deole, Ratnakar; Challacombe, Jean; Raiford, Douglas W.; Hoff, Wouter D.

    2013-01-01

    Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface. PMID:23144460

  2. Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  3. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  4. Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation.

    PubMed

    Maes, Synthia; Claus, Mathias; Verbeken, Kim; Wallaert, Elien; De Smet, Rebecca; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-11-15

    The increased use and criticality of platinum asks for the development of effective low-cost strategies for metal recovery from process and waste streams. Although biotechnological processes can be applied for the valorization of diluted aqueous industrial streams, investigations considering real stream conditions (e.g., high salt levels, acidic pH, metal speciation) are lacking. This study investigated the recovery of platinum by a halophilic microbial community in the presence of increased salt concentrations (10-80 g L -1 ), different salt matrices (phosphate salts, sea salts and NH 4 Cl) and a refinery process stream. The halophiles were able to recover 79-99% of the Pt at 10-80 g L -1 salts and at pH 2.3. Transmission electron microscopy suggested a positive correlation between intracellular Pt cluster size and elevated salt concentrations. Furthermore, the halophiles recovered 46-95% of the Pt-amine complex Pt[NH 3 ] 4 2+ from a process stream after the addition of an alternative Pt source (K 2 PtCl 4 , 0.1-1.0 g L -1 Pt). Repeated Pt-tetraamine recovery (from an industrial process stream) was obtained after concomitant addition of fresh biomass and harvesting of Pt saturated biomass. This study demonstrates how aqueous Pt streams can be transformed into Pt rich biomass, which would be an interesting feed of a precious metals refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis

    PubMed Central

    Lai, Shu-Jung; Lai, Mei-Chin

    2011-01-01

    The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in

  6. Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment

    NASA Astrophysics Data System (ADS)

    Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.

    2010-11-01

    Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.

  7. Amyloid fibril formation in vitro from halophilic metal binding protein: Its high solubility and reversibility minimized formation of amorphous protein aggregations

    PubMed Central

    Tokunaga, Yuhei; Matsumoto, Mitsuharu; Tokunaga, Masao; Arakawa, Tsutomu; Sugimoto, Yasushi

    2013-01-01

    Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine-rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His-tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low-pH harsh conditions, however, His-HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid-hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full-length His-HP when incubated with 10–20% 2,2,2-trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage. PMID:24038709

  8. Extreme halophilic archaea derive from two distinct methanogen Class II lineages.

    PubMed

    Aouad, Monique; Taib, Najwa; Oudart, Anne; Lecocq, Michel; Gouy, Manolo; Brochier-Armanet, Céline

    2018-04-20

    Phylogenetic analyses of conserved core genes have disentangled most of the ancient relationships in Archaea. However, some groups remain debated, like the DPANN, a deep-branching super-phylum composed of nanosized archaea with reduced genomes. Among these, the Nanohaloarchaea require high-salt concentrations for growth. Their discovery in 2012 was significant because they represent, together with Halobacteria (a Class belonging to Euryarchaeota), the only two described lineages of extreme halophilic archaea. The phylogenetic position of Nanohaloarchaea is highly debated, being alternatively proposed as the sister-lineage of Halobacteria or a member of the DPANN super-phylum. Pinpointing the phylogenetic position of extreme halophilic archaea is important to improve our knowledge of the deep evolutionary history of Archaea and the molecular adaptive processes and evolutionary paths that allowed their emergence. Using comparative genomic approaches, we identified 258 markers carrying a reliable phylogenetic signal. By combining strategies limiting the impact of biases on phylogenetic inference, we showed that Nanohaloarchaea and Halobacteria represent two independent lines that derived from two distinct but related methanogens Class II lineages. This implies that adaptation to high salinity emerged twice independently in Archaea and indicates that their emergence within DPANN in previous studies is likely the consequence of a tree reconstruction artifact, challenging the existence of this super-phylum. Copyright © 2018. Published by Elsevier Inc.

  9. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts.

    PubMed

    Gibtan, Ashagrie; Park, Kyounghee; Woo, Mingyeong; Shin, Jung-Kue; Lee, Dong-Woo; Sohn, Jae Hak; Song, Minjung; Roh, Seong Woon; Lee, Sang-Jae; Lee, Han-Seung

    2017-01-01

    Salting is one of the oldest food preservation techniques. However, salt is also the source of living halophilic microorganisms that may affect human health. In order to determine the microbial communities of commercial salts, an investigation were done using amplicon sequencing approach in four commercial salts: Ethiopian Afdera salt (EAS), Ethiopian rock salt (ERS), Korean Jangpan salt (KJS), and Korean Topan salt (KTS). Using domain-specific primers, a region of the 16S rRNA gene was amplified and sequenced using a Roche 454 instrument. The results indicated that these microbial communities contained 48.22-61.4% Bacteria, 37.72-51.26% Archaea, 0.51-0.86% Eukarya, and 0.005-0.009% unclassified reads. Among bacteria, the communities in these salts were dominated by the phyla Proteobacteria, Bacteroidetes, Actinobacteria , and Firmicutes . Of the archaea, 91.58% belonged to the class Halobacteria , whereas the remaining 7.58, 0.83, and 0.01% were Nanoarchaea, Methanobacteria , and Thermococci , respectively. This comparison of microbial diversity in salts from two countries showed the presence of many archaeal and bacterial genera that occurred in salt samples from one country but not the other. The bacterial genera Enterobacter and Halovibrio were found only in Korean and Ethiopian salts, respectively. This study indicated the occurrence and diversity of halophilic bacteria and archaea in commercial salts that could be important in the gastrointestinal tract after ingestion.

  10. Characterization of feedback-resistant mevalonate kinases from the methanogenic archaeons Methanosaeta concilii and Methanocella paludicola.

    PubMed

    Kazieva, Ekaterina; Yamamoto, Yoko; Tajima, Yoshinori; Yokoyama, Keiichi; Katashkina, Joanna; Nishio, Yousuke

    2017-09-01

    The inhibition of mevalonate kinase (MVK) by downstream metabolites is an important mechanism in the regulation of isoprenoid production in a broad range of organisms. The first feedback-resistant MVK was previously discovered in the methanogenic archaeon Methanosarcinamazei. Here, we report the cloning, expression, purification, kinetic characterization and inhibition analysis of MVKs from two other methanogens, Methanosaetaconcilii and Methanocellapaludicola. Similar to the M. mazei MVK, these enzymes were not inhibited by diphosphomevalonate (DPM), dimethylallyl diphosphate (DMAPP), isopentenyldiphosphate (IPP), geranylpyrophosphate (GPP) or farnesylpyrophosphate (FPP). However, they exhibited significantly higher affinity to mevalonate and higher catalytic efficiency than the previously characterized enzyme.

  11. High quality draft genome sequence of the moderately halophilic bacterium Pontibacillus yanchengensis Y32(T) and comparison among Pontibacillus genomes.

    PubMed

    Huang, Jing; Qiao, Zi Xu; Tang, Jing Wei; Wang, Gejiao

    2015-01-01

    Pontibacillus yanchengensis Y32(T) is an aerobic, motile, Gram-positive, endospore-forming, and moderately halophilic bacterium isolated from a salt field. In this study, we describe the features of P. yanchengensis strain Y32(T) together with a comparison with other four Pontibacillus genomes. The 4,281,464 bp high-quality-draft genome of strain Y32(T) is arranged into 153 contigs containing 3,965 protein-coding genes and 77 RNA encoding genes. The genome of strain Y32(T) possesses many genes related to its halophilic character, flagellar assembly and chemotaxis to support its survival in a salt-rich environment.

  12. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    PubMed Central

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  13. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    PubMed

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  14. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1.

    PubMed

    Yun, Sung Ho; Lee, Sang-Yeop; Choi, Chi-Won; Lee, Hayoung; Ro, Hyun-Joo; Jun, Sangmi; Kwon, Yong Min; Kwon, Kae Kyoung; Kim, Sang-Jin; Kim, Gun-Hwa; Kim, Seung Il

    2017-01-01

    Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMV Novo ) are spherical in shape, and the average diameter of OMV Novo is 25-70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMV Novo . Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMV Novo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.

  15. Evolutionary and Biotechnological Implications of Robust Hydrogenase Activity in Halophilic Strains of Tetraselmis

    PubMed Central

    D'Adamo, Sarah; Jinkerson, Robert E.; Boyd, Eric S.; Brown, Susan L.; Baxter, Bonnie K.; Peters, John W.; Posewitz, Matthew C.

    2014-01-01

    Although significant advances in H2 photoproduction have recently been realized in fresh water algae (e.g. Chlamydomonas reinhardtii), relatively few studies have focused on H2 production and hydrogenase adaptations in marine or halophilic algae. Salt water organisms likely offer several advantages for biotechnological H2 production due to the global abundance of salt water, decreased H2 and O2 solubility in saline and hypersaline systems, and the ability of extracellular NaCl levels to influence metabolism. We screened unialgal isolates obtained from hypersaline ecosystems in the southwest United States and identified two distinct halophilic strains of the genus Tetraselmis (GSL1 and QNM1) that exhibit both robust fermentative and photo H2-production activities. The influence of salinity (3.5%, 5.5% and 7.0% w/v NaCl) on H2 production was examined during anoxic acclimation, with the greatest in vivo H2-production rates observed at 7.0% NaCl. These Tetraselmis strains maintain robust hydrogenase activity even after 24 h of anoxic acclimation and show increased hydrogenase activity relative to C. reinhardtii after extended anoxia. Transcriptional analysis of Tetraselmis GSL1 enabled sequencing of the cDNA encoding the FeFe-hydrogenase structural enzyme (HYDA) and its maturation proteins (HYDE, HYDEF and HYDG). In contrast to freshwater Chlorophyceae, the halophilic Tetraselmis GSL1 strain likely encodes a single HYDA and two copies of HYDE, one of which is fused to HYDF. Phylogenetic analyses of HYDA and concatenated HYDA, HYDE, HYDF and HYDG in Tetraselmis GSL1 fill existing knowledge gaps in the evolution of algal hydrogenases and indicate that the algal hydrogenases sequenced to date are derived from a common ancestor. This is consistent with recent hypotheses that suggest fermentative metabolism in the majority of eukaryotes is derived from a common base set of enzymes that emerged early in eukaryotic evolution with subsequent losses in some organisms. PMID

  16. Two new sesquiterpenoids produced by halophilic Nocardiopsis chromatogenes YIM 90109.

    PubMed

    Sun, Ming-Wei; Zhang, Xiao-Mei; Bi, Hui-Li; Li, Wen-Jun; Lu, Chun-Hua

    2017-01-01

    Two new germacradiene-type sesquiterpenoids, including 1(10)E,5E-germacradiene-9β,11-diol (or 9β-hydroxyl germacradienol) (1) and 11-hydroxy-1(10)E,5E-germacradien-2-one (2-oxygermacradienol) (2), together with a known geosmin-type sesquiterpenoid (1β,4β,4aβ,7α,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a,7(2H)-triol (3), were elucidated by their NMR spectroscopic data, HR-ESI-MS and single-crystal X-ray diffraction from the halophilic strain Nocardiopsis chromatogenes YIM 90109. The antimicrobial activities were evaluated by paper diffusion method.

  17. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    PubMed Central

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  18. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  19. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basen, M; Schut, GJ; Nguyen, DM

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. Bymore » heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.« less

  20. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    NASA Astrophysics Data System (ADS)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  1. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface.

    PubMed

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  2. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    PubMed

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    PubMed

    Jaakkola, Salla T; Zerulla, Karolin; Guo, Qinggong; Liu, Ying; Ma, Hongling; Yang, Chunhe; Bamford, Dennis H; Chen, Xiangdong; Soppa, Jörg; Oksanen, Hanna M

    2014-01-01

    Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  4. Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2015-04-01

    The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60%. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80% of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple.

  5. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil.

    PubMed

    Kim, Jong-Geol; Jung, Man-Young; Park, Soo-Je; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Madsen, Eugene L; Min, Deullae; Kim, Jin-Seog; Kim, Geun-Joong; Rhee, Sung-Keun

    2012-06-01

    Nitrification of excess ammonia in soil causes eutrophication of water resources and emission of atmospheric N(2) O gas. The first step of nitrification, ammonia oxidation, is mediated by Archaea as well as Bacteria. The physiological reactions mediated by ammonia-oxidizing archaea (AOA) and their contribution to soil nitrification are still unclear. Results of non-culture-based studies have shown the thaumarchaeotal group I.1b lineage of AOA to be dominant over both AOA of group I.1a and ammonia-oxidizing bacteria in various soils. We obtained from an agricultural soil a highly enriched ammonia-oxidizing culture dominated by a single archaeal population [c. 90% of total cells, as determined microscopically (by fluorescence in situ hybridization) and by quantitative PCR of its 16S rRNA gene]. The archaeon (termed 'strain JG1') fell within thaumarchaeotal group I.1b and was related to the moderately thermophilic archaeon, Candidatus Nitrososphaera gargensis, and the mesophilic archaeon, Ca. Nitrososphaera viennensis with 97.0% and 99.1% 16S rRNA gene sequence similarity respectively. Strain JG1 was neutrophilic (growth range pH 6.0-8.0) and mesophilic (growth range temperature 25-40°C). The optimum temperature of strain JG1 (35-40°C) is > 10°C higher than that of ammonia-oxidizing bacteria (AOB). Membrane analysis showed that strain JG1 contained a glycerol dialkyl glycerol tetraether, GDGT-4, and its regioisomer as major core lipids; this crenarchaeol regioisomer was previously detected in similar abundance in the thermophile, Ca. N. gargensis and has been frequently observed in tropical soils. Substrate uptake assays showed that the affinity of strain JG1 for ammonia and oxygen was much higher than those of AOB. These traits may give a competitive advantage to AOA related to strain JG1 in oligotrophic environments. (13) C-bicarbonate incorporation into archaeal lipids of strain JG1 established its ability to grow autotrophically. Strain JG1 produced a

  6. Draft Genome Sequence of the Novel Thermoacidophilic Archaeon Acidianus copahuensis Strain ALE1, Isolated from the Copahue Volcanic Area in Neuquén, Argentina

    PubMed Central

    Rascovan, Nicolás; Castro, Camila; Revale, Santiago; Giaveno, M. Alejandra; Vazquez, Martín; Donati, Edgardo R.

    2014-01-01

    Acidianus copahuensis is a recently characterized thermoacidophilic archaeon isolated from the Copahue volcanic area in Argentina. Here, we present its draft genome sequence, in which we found genes involved in key metabolic pathways for developing under Copahue’s extreme environmental conditions, such as sulfur and iron oxidation, carbon fixation, and metal tolerance. PMID:24812211

  7. BIOCHEMICAL AND GENETIC CHARACTERIZATION OF AN EARLY STEP IN A NOVEL PATHWAY FOR THE BIOSYNTHESIS OF AROMATIC AMINO ACIDS AND P-AMINOBENZOIC ACID IN THE ARCHAEON METHANOCOCCUS MARIPALUDIS

    EPA Science Inventory

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis ...

  8. Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China

    NASA Astrophysics Data System (ADS)

    Deng, Yuangao; Xu, Gaochao; Sui, Liying

    2015-07-01

    A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.

  9. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase

    PubMed Central

    Shirazian, Pejman; Asad, Sedigheh; Amoozegar, Mohammad Ali

    2016-01-01

    L-asparaginase and L-glutaminase can be effectively used for the treatment of patients who suffer from accute lymphoblastic leukemia and tumor cells. Microbial sources are the best source for the bulk production of these enzymes. However, their long-term administration may cause immunological responses, so screening for new enzymes with novel properties is required. Halophilic and halotolerant bacteria with novel enzymatic characteristics can be considered as a potential source for production of enzymes with different immunological properties. In this study, L-asparaginase and L-glutaminase production by halophilic bacteria isolated from Urmia salt lake was studied. Out of the 85 isolated halophilic and halotolerant bacterial strains, 16 (19 %) showed L-asparaginase activity and 3 strains (3.5 %) showed L-glutaminase activity. Strains with the highest activities were selected for further studies. Based on 16S rDNA sequence analysis, it was shown that the selected isolates for L-asparaginase and L-glutaminase production belong to the genus Bacillus and Salicola, respectively. Both enzymes were produced extracellularly. The strain with the most L-asparaginase production did not show L-glutaminase production which is medically important. The effects of key parameters including temperature, initial pH of the solution, and concentrations of glucose, asparagine or glutamine, and sodium chloride were evaluated by means of response surface methodology (RSM) to optimize enzymes production. Under the obtained optimal conditions, L-asparaginase and L-glutaminase production was increased up to 1.5 (61.7 unit/mL) and 2.6 fold (46.4 unit/mL), respectively. PMID:27330530

  10. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase.

    PubMed

    Shirazian, Pejman; Asad, Sedigheh; Amoozegar, Mohammad Ali

    2016-01-01

    L-asparaginase and L-glutaminase can be effectively used for the treatment of patients who suffer from accute lymphoblastic leukemia and tumor cells. Microbial sources are the best source for the bulk production of these enzymes. However, their long-term administration may cause immunological responses, so screening for new enzymes with novel properties is required. Halophilic and halotolerant bacteria with novel enzymatic characteristics can be considered as a potential source for production of enzymes with different immunological properties. In this study, L-asparaginase and L-glutaminase production by halophilic bacteria isolated from Urmia salt lake was studied. Out of the 85 isolated halophilic and halotolerant bacterial strains, 16 (19 %) showed L-asparaginase activity and 3 strains (3.5 %) showed L-glutaminase activity. Strains with the highest activities were selected for further studies. Based on 16S rDNA sequence analysis, it was shown that the selected isolates for L-asparaginase and L-glutaminase production belong to the genus Bacillus and Salicola, respectively. Both enzymes were produced extracellularly. The strain with the most L-asparaginase production did not show L-glutaminase production which is medically important. The effects of key parameters including temperature, initial pH of the solution, and concentrations of glucose, asparagine or glutamine, and sodium chloride were evaluated by means of response surface methodology (RSM) to optimize enzymes production. Under the obtained optimal conditions, L-asparaginase and L-glutaminase production was increased up to 1.5 (61.7 unit/mL) and 2.6 fold (46.4 unit/mL), respectively.

  11. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  12. Actinopolyspora biskrensis sp. nov., a novel halophilic actinomycete isolated from Northern Sahara.

    PubMed

    Saker, Rafika; Bouras, Noureddine; Meklat, Atika; Zitouni, Abdelghani; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2015-03-01

    A novel halophilic, filamentous actinomycete, designated H254(T), was isolated from a Saharan soil sample collected from Biskra (Northern Sahara), and subjected to a polyphasic taxonomic characterization. The strain is Gram-positive, aerobic, and halophilic, and the optimum NaCl concentration for growth is 15-20 % (w/v). The cell-wall hydrolysate contained meso-diaminopimelic acid, and the diagnostic whole-cell sugars were arabinose and galactose. The diagnostic phospholipid detected was phosphatidylcholine, and MK-9(H4) was the predominant menaquinone. The major fatty acid profiles were anteiso-C17:0 (32.8 %), C15:0 (28 %), and iso-C17:0 (12.3 %). Comparative analysis of the 16S rRNA gene sequences revealed that the strain H254(T) formed a well-separated sub-branch within the radiation of the genus Actinopolyspora, and the microorganism was most closely related to Actinopolyspora saharensis DSM 45459(T) (99.2 %), Actinopolyspora halophila DSM 43834(T) (99.1 %), and Actinopolyspora algeriensis DSM 45476(T) (99.0 %). Nevertheless, the strain had relatively lower mean values for DNA-DNA relatedness with the above strains (57.2, 68.4, and 45.6 %, respectively). Based on phenotypic features and phylogenetic position, we propose that strain H254(T) represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora biskrensis sp. nov. is proposed. The type strain of A. biskrensis is strain H254(T) (=DSM 46684(T) =CECT 8576(T)).

  13. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    PubMed

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent.

    PubMed

    Gorlas, Aurore; Alain, Karine; Bienvenu, Nadège; Geslin, Claire

    2013-08-01

    A novel hyperthermophilic, anaerobic archaeon, strain Bio-pl-0405IT2(T), was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at 2700 m depth in the 'Sarah Spring' area (7° 25' 24" S 107° 47' 66" W). Cells were irregular, motile cocci (0.8-1.5 µm in diameter) and divided by constriction. Growth was observed at temperatures between 60 °C and 95 °C with an optimum at 80 °C. The pH range for growth was between pH 4.0 and pH 8.0 with an optimum around pH 7.0. Strain Bio-pl-0405IT2(T) grew at salt concentrations of 1-5 % (w/v) NaCl with an optimum at 2 %. The novel isolate grew by fermentation or sulphur respiration on a variety of organic compounds. It was a chemoorganoheterotrophic archaeon growing preferentially with yeast extract, peptone and tryptone as carbon and energy sources and sulphur and organic compounds as electron acceptors; it also grew on maltose and starch. Sulphur or l-cystine were required for growth and were reduced to hydrogen sulfide. The strain was resistant to rifampicin, chloramphenicol, vancomycin and kanamycin (all at 100 µg ml(-1)) but was sensitive to tetracycline. The G+C content of its genomic DNA was 53.6 mol%. Phylogenetic analysis of the almost complete 16S rRNA gene sequence (1450 bp) of strain Bio-pl-0405IT2(T) showed that the novel isolate belonged to the genus Thermococcus. DNA-DNA hybridization values with the two closest relatives Thermococcus hydrothermalis AL662(T) and Thermococcus celer JCM 8558(T) were below the threshold value of 70 %. On the basis of the physiological and genotypic distinctness, we propose a novel species, Thermococcus prieurii sp. nov. The type strain is Bio-pl-0405IT2(T) ( = CSUR P577(T)= JCM 16307(T)).

  15. Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia.

    PubMed

    Jamal, Mamdoh T; Pugazhendi, Arulazhagan

    2018-06-01

    A halophilic bacterial consortium was enriched from Red Sea saline water and sediment samples collected from Abhor, Jeddah, Saudi Arabia. The consortium potentially degraded different low (above 90% for phenanthrene and fluorene) and high (69 ± 1.4 and 56 ± 1.8% at 50 and 100 mg/L of pyrene) molecular weight polycyclic aromatic hydrocarbons (PAHs) at different concentrations under saline condition (40 g/L NaCl concentration). The cell hydrophobicity (91° ± 1°) and biosurfactant production (30 mN/m) confirmed potential bacterial cell interaction with PAHs to facilitate biodegradation process. Co-metabolic study with phenanthrene as co-substrate during pyrene degradation recorded 90% degradation in 12 days. The consortium in continuous stirred tank reactor with petroleum refinery wastewater showed complete and 90% degradation of low and high molecular weight PAHs, respectively. The reactor study also revealed 94 ± 1.8% chemical oxygen demand removal by the halophilic consortium under saline condition (40 g/L NaCl concentration). The halophilic bacterial strains present in the consortium were identified as Ochrobactrum halosaudis strain CEES1 (KX377976), Stenotrophomonas maltophilia strain CEES2 (KX377977), Achromobacter xylosoxidans strain CEES3 (KX377978) and Mesorhizobium halosaudis strain CEES4 (KX377979). Thus, the promising halophilic consortium was highly recommended to be employed in petroleum saline wastewater treatment process.

  16. Effects of Salts on the Halophilic Alga Dunaliella viridis1

    PubMed Central

    Johnson, Mary K.; Johnson, Emmett J.; MacElroy, Robert D.; Speer, Henry L.; Bruff, Barbara S.

    1968-01-01

    Determinations of the salt sensitivity of enzymes extracted from the halophilic alga Dunaliella viridis revealed that pentose phosphate isomerase, ribulose diphosphate carboxylase, glucose-6-phosphate dehydrogenase, and phosphohexose isomerase were inhibited by NaCl concentrations far lower than that in the growth medium (3.75 m). The inhibition was reversible and was not prevented by preparing the extracts in the presence of salt. Potassium, lithium, and cesium chlorides were equally inhibitory. In contrast, whole cells require rather high levels of NaCl for optimal growth, whereas growth is inhibited by low levels of the other cations. The results suggest a specific mechanism for the exclusion of sodium from the interior of the cell. Images PMID:5646631

  17. Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings

    PubMed Central

    Ettenauer, Jörg D.; Jurado, Valme; Piñar, Guadalupe; Miller, Ana Z.; Santner, Markus; Saiz-Jimenez, Cesareo; Sterflinger, Katja

    2014-01-01

    A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture-dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. PMID:25084531

  18. Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T.

    PubMed

    Diken, Elif; Ozer, Tugba; Arikan, Muzaffer; Emrence, Zeliha; Oner, Ebru Toksoy; Ustek, Duran; Arga, Kazim Yalcin

    2015-01-01

    Halomonas smyrnensis AAD6T is a gram negative, aerobic, and moderately halophilic bacterium, and is known to produce high levels of levan with many potential uses in foods, feeds, cosmetics, pharmaceutical and chemical industries due to its outstanding properties. Here, the whole-genome analysis was performed to gain more insight about the biological mechanisms, and the whole-genome organization of the bacterium. Industrially crucial genes, including the levansucrase, were detected and the genome-scale metabolic model of H. smyrnensis AAD6T was reconstructed. The bacterium was found to have many potential applications in biotechnology not only being a levan producer, but also because of its capacity to produce Pel exopolysaccharide, polyhydroxyalkanoates, and osmoprotectants. The genomic information presented here will not only provide additional information to enhance our understanding of the genetic and metabolic network of halophilic bacteria, but also accelerate the research on systematical design of engineering strategies for biotechnology applications.

  19. Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns

    PubMed Central

    Antón, Josefa; Rosselló-Mora, Ramón; Rodríguez-Valera, Francisco; Amann, Rudolf

    2000-01-01

    It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteria are not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with the Cytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as “Candidatus Salinibacter gen. nov.” is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised. PMID:10877805

  20. Cloning, Characterization and Analysis of cat and ben Genes from the Phenol Degrading Halophilic Bacterium Halomonas organivorans

    PubMed Central

    Moreno, Maria de Lourdes; Sánchez-Porro, Cristina; Piubeli, Francine; Frias, Luciana; García, María Teresa; Mellado, Encarnación

    2011-01-01

    Background Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995T) is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. Findings The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD), cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB) are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. Conclusions/Significance In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in the decontamination of

  1. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus.

    PubMed Central

    D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F

    1997-01-01

    The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619

  2. A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans

    DOE PAGES

    Heimerl, Thomas; Flechsler, Jennifer; Pickl, Carolin; ...

    2017-06-13

    Based on serial sectioning, focused ion beam scanning electron microscopy (FIB/SEM), and electron tomography, we depict in detail the highly unusual anatomy of the marine hyperthermophilic crenarchaeon, Ignicoccus hospitalis. Our data support a complex and dynamic endomembrane system consisting of cytoplasmic protrusions, and with secretory function. Moreover, we reveal that the cytoplasm of the putative archaeal ectoparasite Nanoarchaeum equitans can get in direct contact with this endomembrane system, complementing and explaining recent proteomic, transcriptomic and metabolomic data on this inter-archaeal relationship. In addition, we identified a matrix of filamentous structures and/or tethers in the voluminous inter-membrane compartment (IMC) of I.more » hospitalis, which might be responsible for membrane dynamics. Overall, this unusual cellular compartmentalization, ultrastructure and dynamics in an archaeon that belongs to the recently proposed TACK superphylum prompts speculation that the eukaryotic endomembrane system might originate from Archaea.« less

  3. Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  4. Assessing the Pathogenicity of Halophilic Vibrio Bacteria and Other Mircroorganisms for Mammals Held in Captivity.

    DTIC Science & Technology

    1988-02-22

    results. First, that the predominant vibrio in Hawaiian waters is V. alginolyticus whereas the predominant vibrio in the gulf of Mexico is V...Classification) [l Assessing the Pathogenecity of Halophilic Vibrio Bacteria and Other Niicroorganisms for M1arine M0ammals Held in Captivity 12...GROUP Bacteria, Vibrio , iviarine iviammals, Disease, Pathogens 1 19. ABSTRACT (Continue on reverse if necessary and identify by block number) 5 .The

  5. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara.

    PubMed

    Quadri, Inès; Hassani, Imene Ikrame; l'Haridon, Stéphane; Chalopin, Morgane; Hacène, Hocine; Jebbar, Mohamed

    2016-01-01

    Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Role of Central Metabolism in the Osmoadaptation of the Halophilic Bacterium Chromohalobacter salexigens*

    PubMed Central

    Pastor, José M.; Bernal, Vicente; Salvador, Manuel; Argandoña, Montserrat; Vargas, Carmen; Csonka, Laszlo; Sevilla, Ángel; Iborra, José L.; Nieto, Joaquín J.; Cánovas, Manuel

    2013-01-01

    Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-13C]-, [2-13C]-, [6-13C]-, and [U-13C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria. PMID:23615905

  7. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2.

    PubMed

    Abdel-Hamed, Asmaa R; Abo-Elmatty, Dina M; Wiegel, Juergen; Mesbah, Noha M

    2016-11-01

    An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH 55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH 55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.

  8. Optimization of growth for the hyperthermophilic archaeon Aeropyrum pernix on a small-batch scale.

    PubMed

    Milek, Igor; Cigic, Blaz; Skrt, Mihaela; Kaletunç, Gönül; Ulrih, Natasa Poklar

    2005-09-01

    Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.

  9. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.

    PubMed

    Qureshi, S A; Bell, S D; Jackson, S P

    1997-05-15

    Archaea (archaebacteria) constitute a domain of life that is distinct from Bacteria (eubacteria) and Eucarya (eukaryotes). Although archaeal cells share many morphological features with eubacteria, their transcriptional apparatus is more akin to eukaryotic RNA polymerases I, II and III than it is to eubacterial transcription systems. Thus, in addition to possessing a 10 subunit RNA polymerase and a homologue of the TATA-binding protein (TBP), Archaea possess a polypeptide termed TFB that is homologous to eukaryotic TFIIB. Here, we investigate the factor requirements for transcription of several promoters of the archaeon Sulfolobus shibatae and its associated virus SSV. Through in vitro transcription and immunodepletion, we demonstrate that S. shibatae TBP, TFB and RNA polymerase are not complexed tightly with one another and that each is required for efficient transcription of all promoters tested. Furthermore, full transcription is restored by supplementing respective depleted extracts with recombinant TBP or TFB, indicating that TBP-associated factors or TFB-associated factors are not required. Indeed, gel-filtration suggests that Sulfolobus TBP and TFB are not associated stably with other proteins. Finally, all promoters analysed are transcribed accurately and efficiently in an in vitro system comprising recombinant TBP and TFB, together with essentially homogeneous preparation of RNA polymerase. Transcription in Archaea is therefore fundamentally homologous to that in eukaryotes, although factor requirements appear to be much less complex.

  10. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.

    PubMed

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

  11. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.

    PubMed

    Auernik, Kathryne S; Maezato, Yukari; Blum, Paul H; Kelly, Robert M

    2008-02-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.

  12. The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michele A; Lauro, Federico M; Williams, Timothy J

    2009-01-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which aremore » subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from - and -Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years

  13. An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA*

    PubMed Central

    Fischer, Susan; Maier, Lisa-Katharina; Stoll, Britta; Brendel, Jutta; Fischer, Eike; Pfeiffer, Friedhelm; Dyall-Smith, Mike; Marchfelder, Anita

    2012-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum. PMID:22767603

  14. Extremely halophilic archaea and the issue of long-term microbial survival

    PubMed Central

    2011-01-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented. PMID:21984879

  15. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite.

    PubMed

    Zhou, H; Zhang, R; Hu, P; Zeng, W; Xie, Y; Wu, C; Qiu, G

    2008-08-01

    To isolate Ferroplasma thermophilum L1(T) from a low pH environment and to understand its role in bioleaching of chalcopyrite. Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1(T), was isolated from a chalcopyrite-leaching bioreactor. The morphological, biochemical and physiological characteristics of strain L1(T) and its role in bioleaching of chalcopyrite were studied. Strain L1(T) was a nonmotile coccus that lacked cell wall. Strain L1(T) had a temperature optimum of 45 degrees C and the optimum pH for growth was 1.0. Strain L1(T) was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA-DNA hybridization, G+C content, and analysis based on 16S rRNA gene sequence indicated that strain L1(T) should be grouped in the genus Ferroplasma, and represented a new species, Ferroplasma thermophilum. Ferroplasma thermophilum in combination with Acidithiobacillus caldus and Leptospirillum ferriphilum could improve the copper dissolution in bioleaching of chalcopyrite. A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH. This study contributes to understand the characteristics of F. thermophilum L1(T) and its role in bioleaching of sulfide ores.

  16. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii.

    PubMed

    MacBeath, G; Kast, P; Hilvert, D

    1998-07-14

    The gene for chorismate mutase (CM) from the archaeon Methanococcus jannaschii, an extreme thermophile, was subcloned and expressed in Escherichia coli. This gene, which belongs to the aroQ class of CMs, encodes a monofunctional enzyme (AroQf) able to complement the CM deficiency of an E. coli mutant strain. The purified protein follows Michaelis-Menten kinetics (kcat = 5.7 s-1 and Km = 41 microM at 30 degreesC) and displays pH-independent activity in the range of pH 5-9. Its activation parameters [Delta H = 16.2 kcal/mol, Delta S = -1. 7 cal/(mol.K)] are similar to those of another well characterized AroQ class CM, the mesophilic AroQp domain from E. coli. Like AroQp, the thermophilic CM is an alpha-helical dimer, but approximately 5 kcal/mol more stable than its mesophilic counterpart as judged from equilibrium denaturation studies. The possible origins of the thermostability of M. jannaschii AroQf, the smallest natural CM characterized to date, are discussed in light of available sequence and tertiary structural information.

  17. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific

  18. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.

    1990-01-01

    An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.

  19. Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions

    PubMed Central

    Hedi, Abdeljabbar; Sadfi, Najla; Fardeau, Marie-Laure; Rebib, Hanene; Cayol, Jean-Luc; Ollivier, Bernard; Boudabous, Abdellatif

    2009-01-01

    Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications. PMID:20066169

  20. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico

    PubMed Central

    Dillon, Jesse G.; Carlin, Mark; Gutierrez, Abraham; Nguyen, Vivian; McLain, Nathan

    2013-01-01

    The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA) evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 and 380 g l−1 total salts, respectively) compared to Pond 9 (180 g l−1 total salts). Both Pond 11 and 12 communities had high representation (47 and 45% of clones, respectively) by Haloquadratum walsbyi-like (99% similarity) lineages. The archaeal community in Pond 9 was dominated (79%) by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community). This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community) was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted. PMID:24391633

  1. Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10.

    PubMed

    Mahansaria, Riddhi; Dhara, Anusua; Saha, Amit; Haldar, Saubhik; Mukherjee, Joydeep

    2018-02-01

    Application of halophiles can decrease the cost of polyhydroxyalkanoate (PHA) production or bioplastic which are an alternative to the petroleum-derived plastic. Extremely halophilic archaeon, Natrinema ajinwuensis RM-G10 accumulated 61.02±0.68% PHA of its cell dry mass at 72h in repeated batch cultures yielding 0.210±0.001gL -1 h -1 volumetric productivity after selection of the best cultivation conditions. Transmission electron microscopy showed the presence of PHA granules inside the archaeal cells. Characterization by gas chromatographic analysis, gas chromatographic- mass spectrophotometric analysis, thermogravimetric analysis, differential scanning calorimetric analysis, X-ray diffraction analysis, Fourier transform infra red spectroscopy and nuclear magnetic resonance spectroscopy revealed the polymer to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 13.93mol% 3-hydroxyvalerate content and having 35.45% crystallinity, -12.3°C glass transition temperature, 143°C and 157.5°C melting temperatures and 284°C degradation temperature. This is the first report on production enhancement (on a small scale) and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10 and the Natrinema genus in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well.

    PubMed

    Ai, Li; Huang, Yaping; Wang, Chuan

    2018-06-04

    A halophilic lipase (LipS2) was produced by Chromohalobacter canadensis strain which was isolated from ancient salt well of Zigong, China. LipS2 was purified to homogeneity and showed a single band with molecular mass of 58 kDa by SDS-PAGE. LipS2 preferred middle-to-long acyl chain esters with C14 triglycerides as optimum substrate. It was noteworthy that LipS2 displayed efficient hydrolysis activity to some vegetable oils which were composed of polyunsaturated fatty acid. LipS2 showed high activity in range of 2.5-3.5 M NaCl, no activity without salt. Optimum temperature and pH were 55 °C and pH 8.5, respectively. Notably, the thermostability and pH stability of LipS2, varying with salt concentration, reached optimum in the presence of 3.0 M NaCl. LipS2 was stimulated by Ca 2+ and Mg 2+ , inhibited by Zn 2+ , Cu 2+ , Mn 2+ , Fe 2+ , and Hg 2+ . Moreover, LipS2 displayed significant tolerance to organic solvents including methanol, ethanol, ethyl acetate and acetone, especially, LipS2 activity was enhanced markedly by the hexane and benzene. Non-ionic surfactants increased LipS2 activity, while ionic surfactants decreased activity. This was the first report on halophilic lipase of Chromohalobacter from ancient salt well. The results suggested that LipS2 may have considerable potential for biotechnological applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization of halophilic C50 carotenoid-producing archaea isolated from solar saltworks in Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Sui, Liying; Liu, Liangsen; Deng, Yuangao

    2014-11-01

    Halophilic archaea comprise the majority of microorganisms found in hypersaline environments. C50 carotenoids accumulated in archaea cells are considered potential biotechnological products and possess a number of biological functions. Ten red colonies were isolated from brine water in a saltern crystallizer pond of the Hangu Saltworks, China. 16S rRNA gene sequence analysis showed that the colonies belonged to the extremely halophilic archaea genera Halobacterium and Halorubrum. Two representative strains, Halobacterium strain SP-2 and Halorubrum strain SP-4, were selected for further study on the phenotypic characteristics and effects of salinity and pH on accumulation and composition of pigments in their cells. The archaeal strains were isolated and grown in a culture medium prepared by dissolving yeast extract (10 g/L) and acid-hydrolyzed casein (7.5 g/L) into brine water obtained from a local salt pond. Their optimum salinity and pH for growth were 250 and 7, respectively, although pigment accumulation (OD490 / mL broth) was highest at pH 8. In addition, at 150-300 salinity, increasing salinity resulted in decreasing pigment accumulation. Analysis of the UV-Vis spectrum, TLC and HLPC chromatograms showed that C50 carotenoid bacterioruberin is the major pigment in both strains.

  4. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  5. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    PubMed

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    NAD + is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD + is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD + concentrations and possibly remove and/or reuse undesirable degradation products of NAD + Here we confirmed that at 85°C, thermal degradation of NAD + results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD + in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD + breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD + is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal

  6. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    PubMed

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  8. Studies of a Halophilic NADH Dehydrogenase. 1: Purification and Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Dalton, Bonnie P.

    1973-01-01

    An NADH dehydrogenase obtained from an extremely halophilic bacterium was purified 570-fold by a combination of gel filtration, chromatography on hydroxyapatite, and ion-exchange chromatography on QAE-Sephadex. The purified enzyme appeared to be FAD-linked and bad an apparent molecular weight of 64000. Even though enzyme activity was stimulated by NaCl, considerable activity (430 % of the maximum activity observed in the presence of 2.5 M NaCl) was observed in the absence of added NaCl. The enzyme was unstable when incubated in solutions of low ionic strength. The presence of NADH enhanced the stability of the enzyme.

  9. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    PubMed

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  10. Transfer RNA methyltransferases from Thermoplasma acidophilum, a thermoacidophilic archaeon.

    PubMed

    Kawamura, Takuya; Anraku, Ryou; Hasegawa, Takahiro; Tomikawa, Chie; Hori, Hiroyuki

    2014-12-23

    We investigated tRNA methyltransferase activities in crude cell extracts from the thermoacidophilic archaeon Thermoplasma acidophilum. We analyzed the modified nucleosides in native initiator and elongator tRNAMet, predicted the candidate genes for the tRNA methyltransferases on the basis of the tRNAMet and tRNALeu sequences, and characterized Trm5, Trm1 and Trm56 by purifying recombinant proteins. We found that the Ta0997, Ta0931, and Ta0836 genes of T. acidophilum encode Trm1, Trm56 and Trm5, respectively. Initiator tRNAMet from T. acidophilum strain HO-62 contained G+, m1I, and m22G, which were not reported previously in this tRNA, and the m2G26 and m22G26 were formed by Trm1. In the case of elongator tRNAMet, our analysis showed that the previously unidentified G modification at position 26 was a mixture of m2G and m22G, and that they were also generated by Trm1. Furthermore, purified Trm1 and Trm56 could methylate the precursor of elongator tRNAMet, which has an intron at the canonical position. However, the speed of methyl-transfer by Trm56 to the precursor RNA was considerably slower than that to the mature transcript, which suggests that Trm56 acts mainly on the transcript after the intron has been removed. Moreover, cellular arrangements of the tRNA methyltransferases in T. acidophilum are discussed.

  11. The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism▿ †

    PubMed Central

    Auernik, Kathryne S.; Maezato, Yukari; Blum, Paul H.; Kelly, Robert M.

    2008-01-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ∼2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. PMID:18083856

  12. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP.

    PubMed Central

    Kamekura, M; Hamakawa, T; Onishi, H

    1982-01-01

    RNA was degraded at 60 degrees C for 24 h by halophilic nuclease H in supernatants from broth cultures of Micrococcus varians subsp. halophilus containing 12% NaCl. Since contaminating 5'-nucleotidase exhibited almost no activity under these conditions, the 5'-GMP formed could be recovered from the reaction mixture, and the yield was 805 mg from 5 g of RNA. PMID:6184020

  13. Distinct Physiological Roles of the Three [NiFe]-Hydrogenase Orthologs in the Hyperthermophilic Archaeon Thermococcus kodakarensis ▿ †

    PubMed Central

    Kanai, Tamotsu; Matsuoka, Ryoji; Beppu, Haruki; Nakajima, Akihito; Okada, Yoshihiro; Atomi, Haruyuki; Imanaka, Tadayuki

    2011-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S0) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S0 reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales. PMID:21515783

  14. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil▿†

    PubMed Central

    Jung, Man-Young; Park, Soo-Je; Min, Deullae; Kim, Jin-Seog; Rijpstra, W. Irene C.; Sinninghe Damsté, Jaap S.; Kim, Geun-Joong; Madsen, Eugene L.; Rhee, Sung-Keun

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [13C]bicarbonate assimilation assay showed stoichiometric incorporation of 13C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to “Candidatus Nitrosopumilus maritimus” revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1's affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N2O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated “Candidatus Nitrosoarchaeum koreensis.” PMID:22003023

  15. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tao; Datta, Supratim; Eichler, Jerry

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilicmore » cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.« less

  16. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis

    PubMed Central

    Lohner, Svenja T; Deutzmann, Jörg S; Logan, Bruce E; Leigh, John; Spormann, Alfred M

    2014-01-01

    Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<−414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism. PMID:24844759

  17. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.

    PubMed

    Lohner, Svenja T; Deutzmann, Jörg S; Logan, Bruce E; Leigh, John; Spormann, Alfred M

    2014-08-01

    Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<-414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism.

  18. Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum

    PubMed Central

    Weinisch, Lea; Kühner, Steffen; Roth, Robin; Grimm, Maria; Roth, Tamara; Netz, Daili J. A.; Pierik, Antonio J.

    2018-01-01

    Hypersaline environments pose major challenges to their microbial residents. Microorganisms have to cope with increased osmotic pressure and low water activity and therefore require specific adaptation mechanisms. Although mechanisms have already been thoroughly investigated in the green alga Dunaliella salina and some halophilic yeasts, strategies for osmoadaptation in other protistan groups (especially heterotrophs) are neither as well known nor as deeply investigated as for their prokaryotic counterpart. This is not only due to the recent awareness of the high protistan diversity and ecological relevance in hypersaline systems, but also due to methodological shortcomings. We provide the first experimental study on haloadaptation in heterotrophic microeukaryotes, using the halophilic ciliate Schmidingerothrix salinarum as a model organism. We established three approaches to investigate fundamental adaptation strategies known from prokaryotes. First, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used for the detection, identification, and quantification of intracellular compatible solutes. Second, ion-imaging with cation-specific fluorescent dyes was employed to analyze changes in the relative ion concentrations in intact cells. Third, the effect of salt concentrations on the catalytic performance of S. salinarum malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICDH) was determined. 1H-NMR spectroscopy identified glycine betaine (GB) and ectoine (Ect) as the main compatible solutes in S. salinarum. Moreover, a significant positive correlation of intracellular GB and Ect concentrations and external salinity was observed. The addition of exogenous GB, Ect, and choline (Ch) stimulated the cell growth notably, indicating that S. salinarum accumulates the solutes from the external medium. Addition of external 13C2-Ch resulted in conversion to 13C2-GB, indicating biosynthesis of GB from Ch. An increase of external salinity up to 21% did not result

  19. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium.

    PubMed

    Wang, Chongyang; Huang, Yong; Zhang, Zuotao; Wang, Hui

    2018-04-25

    With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.

  20. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate

    USGS Publications Warehouse

    Switzer, Blum J.; Stolz, J.F.; Oren, A.; Oremland, R.S.

    2001-01-01

    We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate+CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).

  1. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    PubMed Central

    Sorokin, Dimitry Y.; Makarova, Kira S.; Abbas, Ben; Ferrer, Manuel; Golyshin, Peter N.; Galinski, Erwin A.; Ciordia, Sergio; Mena, María Carmen; Merkel, Alexander Y.; Wolf, Yuri I.; van Loosdrecht, Mark C.M.; Koonin, Eugene V.

    2017-01-01

    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes, and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage “Methanonatronarchaeia” that is most closely related to the class Halobacteria. Similar to the Halobacteria, “Methanonatronarchaeia” are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that “Methanonatronarchaeia” employ the “salt-in” osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that utilize C1-methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterosulfide reductase and cytochromes. These features differentiates “Methanonatronarchaeia” from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway. PMID:28555626

  2. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.

    PubMed

    Soto, Daniela F; Recalde, Alejandra; Orell, Alvaro; Albers, Sonja-Verena; Paradela, Alberto; Navarro, Claudio A; Jerez, Carlos A

    2018-03-01

    Inorganic polyphosphates (polyP) are present in all living cells and several important functions have been described for them. They are involved in the response to stress conditions, such as nutrient depletion, oxidative stress and toxic metals amongst others. A recombinant strain of Sulfolobus solfataricus unable to accumulate polyP was designed by the overexpression of its endogenous ppx gene. The overall impact of the lack of polyP on this S. solfataricus polyP (-) strain was analyzed by using quantitative proteomics (isotope-coded protein label, ICPL). Stress-related proteins, such as peroxiredoxins and heat shock proteins, proteins involved in metabolism and several others were produced at higher levels in the ppx expression strain. The polyP deficient strain showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA gene coding for the P-type copper-exporting ATPase. This implies a complementary function of both copper resistance systems. These results strongly suggests that the lack of polyP makes this hyperthermophilic archaeon more sensitive to toxic conditions, such as an exposure to metals or other harmful stimuli, emphasizing the importance of this inorganic phosphate polymers in the adaptations to live in the environmental conditions in which thermoacidophilic archaea thrive. Inorganic polyphosphate (polyP) are ubiquitous molecules with many functions in living organisms. Few studies related to these polymers have been made in archaea. The construction of a polyP deficient recombinant strain of Sulfolobus solfataricus allowed the study of the global changes in the proteome of this thermoacidophilic archaeon in the absence of polyP compared with the wild type strain. The results obtained using quantitative proteomics suggest an important participation of polyP in the oxidative stress response of the cells and as having a possible metabolic role in the cell, as previously described in bacteria. The polyP deficient strain

  3. The Genome Sequence of the psychrophilic archaeon, Methanococcoides burtonii: the Role of Genome Evolution in Cold-adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Michelle A.; Lauro, Federico M.; Williams, Timothy J.

    2009-04-01

    Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five tiered Evidence Rating system that ranked annotations from Evidence Rating (ER) 1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilicmore » archaea which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall/membrane/envelope biogenesis COG genes are over-represented. Likewise, signal transduction (COG category T) genes are over-represented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two over-represented COG categories appear to have been acquired from {var_epsilon}- and {delta}-proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they play an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over

  4. Halotolerant and halophilic bacteria in the oceans of the icy satellites

    NASA Astrophysics Data System (ADS)

    Ramirez, S. I.; Montoya, L.; Avendaño, R.

    2013-05-01

    Halotolerant and halophilic prokaryotes require salt concentrations equal to or higher than those present at terrestrial oceans (Rothschild and Mancinelli, 2001). They are a particular kind of extremophiles and as expected, their halotolerance is mainly expressed in terms of a certain NaCl percentage, at least on Earth. With the discovery of putative salty liquid oceans beneath the iced surfaces of some of the satellites of Jupiter and Saturn (Mueller and McKinnon, 1988; Kargel et al., 2000; Zolotov, 2007), information about the impact of other types of salts, different from NaCl, on the growth of complex biological systems is necessary. We have found that when three specific bacteria strains are growing in media enriched with salts containing chaotropic and kosmotropic ions, their specific optimal growth value is modified (Montoya et al., 2010). The changes can be broadly explained in terms of the Hofmeister series (Zhang and Cremer, 2006). These results can be used to infer an extension in the limits of biological activity. For terrestrial organisms there is scarce information to determine the impact of another salt in the growth of an organism. In these sense we have found that when media enriched with magnesium sulfate (MgSO4) at water activity values (aw) similar to those reported as optimal for NaCl, their growth and tolerance is considerably enhanced. On the other hand, the combination of chaotropic and kosmotropic ions result in salts of astrobiological importance such as the sulphate already mentioned, carbonates or chlorides that can tentatively exist in the putative ocean of Europa, Ganymedes, or Enceladus or even at the subsurface of Mars. In this frame, we studied the growth rate of Halomonas halodurans, H. magadiensis and Bacillus pumillus when exposed to media enriched with NaCl, MgSO4, Mg(NO3)2, MgCl2, Na2SO4 and NH4SO4. Equivalent values of water activity (aw) for each salt were compared and correlated with microbial activity (Montoya et al., 2010

  5. The active natural anti-oxidant properties of chamomile, milk thistle, and halophilic bacterial components in human skin in vitro.

    PubMed

    Mamalis, Andrew; Nguyen, Duc-Huy; Brody, Neil; Jagdeo, Jared

    2013-07-01

    The number of skin cancers continues to rise, accounting for approximately 40% of all cancers reported in the United States and approximately 9,500 deaths per year. Studies have shown reactive oxygen species (ROS) type free radicals are linked to skin cancer and aging. Therefore, it is important for us to identify agents that have anti-oxidant properties to protect skin against free radical damage. The purpose of this research is to investigate the anti-oxidant properties of bisabolol, silymarin, and ectoin that are components from chamomile, milk thistle, and halophilic bacteria, respectively. We measured the ability of bisabolol, silymarin, and ectoin to modulate the hydrogen peroxide (H2O2)-induced upregulation of ROS free radicals in normal human skin fibroblasts in vitro. Using a flow cytometry-based assay, we demonstrated that varying concentrations of these natural components were able to inhibit upregulation of H2O2-generated free radicals in human skin fibroblasts in vitro. Our results indicate components of chamomile, milk thistle, and halophilic bacteria exhibit anti-oxidant capabilities and warrant further study in clinical trials to characterize their anti-cancer and anti-aging capabilities.

  6. Extreme Halophiles and Carbon Monoxide: Looking Through Windows at Earth's Past and Towards a Future on Mars

    NASA Astrophysics Data System (ADS)

    King, G.

    2015-12-01

    Carbon monoxide, which is ubiquitous on Earth, is the 2nd most abundant molecule in the universe. Members of the domain Bacteria have long been known to oxidize it, and activities of CO oxidizers in soils have been known for several decades to contribute to tropospheric CO regulation. Nonetheless, the diversity of CO oxidizers and their evolutionary history remain largely unknown. A molybdenum-dependent dehydrogenase (Mo-CODH) couples CO oxidation by most terrestrial and marine bacteria to either O2 or nitrate. Molybdenum dependence, the requirement for O2 and previous phylogenetic inferences have all supported a relatively late evolution for "aerobic" CO oxidation, presumably after the Great Oxidation Event (GOE) about 2.3 Gya. Although conundrums remain, recent discoveries suggest that Mo-CODH might have evolved before the GOE, and prior to the Bacteria-Archaea split. New phylogenetic analyses incorporating sequences from extremely halophilic CO-oxidizing Euryarchaeota isolated from salterns in the Atacama Desert, brines on Hawai`i and from the Bonneville Salt Flat suggest that Mo-CODH was present in an ancestor shared by Bacteria and Archaea. This observation is consistent with results of phylogenetic histories of genes involved in Mo-cofactor synthesis, and findings by others that Mo-nitrogenase was likely active > 3 Gya. Thus, analyses of Mo-dependent CO oxidizers provide a window on the past by raising questions about the availability of Mo and non-O2 electron acceptors. Extremely halophilic CO oxidizers also provide insights relevant for understanding the potential for extraterrestrial life. CO likely occurred at high concentrations in Mars' early atmosphere, and it occurs presently at about 800 ppm. At such high concentrations, CO represents one of the most abundant energy sources available for near-surface regolith. However, use of CO by an extant or transplanted Mars microbiota would require tolerance of low water potentials and high salt concentrations

  7. Restoration of the di-myo-inositol-phosphate pathway in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Mizgier, Alex; Thiel, Axel; Jebbar, Mohamed; Oger, Phil M

    2015-11-01

    Most Thermococcales accumulate di-myo-inositol-phosphate (DIP) as an organic solute as a response to heat stress. We have studied the accumulation of this osmolyte in the high-hydrostatic pressure adapted hyperthermophile Thermococcus barophilus. We found no accumulation of DIP under any of the stress conditions tested, although this archaeon harbors the 3 DIP synthesis genes. Lack of synthesis is due to the lack of expression of TERMP_01135 coding for the second step of DIP synthesis. In contrast to other species, the T. barophilus synthesis operon is interrupted by a four gene locus, in reverse orientation. Restoring an operon like structure at the DIP locus restored DIP synthesis, but did not have an impact on growth characteristics, suggesting that other mechanisms have evolved in this organism to cope with heat stress. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  9. On the isolation of halophilic microorganisms from salt deposits of great geological age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald

    1993-01-01

    From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  10. Halocin C8: an antimicrobial peptide distributed among four halophilic archaeal genera: Natrinema, Haloterrigena, Haloferax, and Halobacterium.

    PubMed

    Besse, Alison; Vandervennet, Manon; Goulard, Christophe; Peduzzi, Jean; Isaac, Stéphanie; Rebuffat, Sylvie; Carré-Mlouka, Alyssa

    2017-05-01

    Halophilic archaea thrive in hypersaline ecosystems and produce antimicrobial peptides (AMPs) named halocins. AMPs are essential effectors of microbial interactions in natural ecosystems. Halocin C8 is a 7.4 kDa peptide produced by Natrinema sp. AS7092. Surrounded by genes involved in regulation and transport, the halC8 gene encodes a precursor, processed into the mature halocin and an immunity protein, protecting the producing strain against its halocin. This feature constitutes a unique property of halocin C8, as known AMPs and their immunity proteins are generally encoded on distinct ORFs in an operon. By complementary in silico and PCR-based approaches, the presence of halC8 in halophilic archaea collected from various parts of the world was evidenced. The full-length halC8 gene is restricted and consistently found in the genomes of strains belonging to the phylogenetically related genera Natrinema and Haloterrigena, along with transport and regulation genes. Functional expression of halC8 was demonstrated by RT-PCR and antimicrobial assays. Active halocin C8 was shown to contain five disulphide bridges, presumably conferring a compact structure resistant to harsh environmental conditions. In other archaeal genera, Haloferax and Halobacterium, genes encoding halocin C8 with diverging immunity protein moiety were evidenced. A phylogenetic analysis of halocin C8 sequences was conducted.

  11. Non-essential MCM-related proteins mediate a response to DNA damage in the archaeon Methanococcus maripaludis.

    PubMed

    Walters, Alison D; Chong, James P J

    2017-05-01

    The single minichromosome maintenance (MCM) protein found in most archaea has been widely studied as a simplified model for the MCM complex that forms the catalytic core of the eukaryotic replicative helicase. Organisms of the order Methanococcales are unusual in possessing multiple MCM homologues. The Methanococcus maripaludis S2 genome encodes four MCM homologues, McmA-McmD. DNA helicase assays reveal that the unwinding activity of the three MCM-like proteins is highly variable despite sequence similarities and suggests additional motifs that influence MCM function are yet to be identified. While the gene encoding McmA could not be deleted, strains harbouring individual deletions of genes encoding each of the other MCMs display phenotypes consistent with these proteins modulating DNA damage responses. M. maripaludis S2 is the first archaeon in which MCM proteins have been shown to influence the DNA damage response.

  12. Diversity of virus-host systems in hypersaline Lake Retba, Senegal.

    PubMed

    Sime-Ngando, Télesphore; Lucas, Soizick; Robin, Agnès; Tucker, Kimberly Pause; Colombet, Jonathan; Bettarel, Yvan; Desmond, Elie; Gribaldo, Simonetta; Forterre, Patrick; Breitbart, Mya; Prangishvili, David

    2011-08-01

    Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  13. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    PubMed Central

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  14. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates.

    PubMed

    Jehlička, Jan; Culka, Adam; Mana, Lilly; Oren, Aharon

    2018-05-03

    Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO 4 ·7H 2 O, K 2 SO 4 , and (NH 4 )Al(SO 4 ) 2 ·12H 2 O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm -1 . This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.

  15. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination.

    PubMed

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2018-06-01

    Many organisms possess pathways that regenerate NAD + from its degradation products, and two pathways are known to salvage NAD + from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD + , respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD + salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway. IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD + from nicotinamide (Nm) in the

  16. Borrelidins C-E: New Antibacterial Macrolides from a Saltern-Derived Halophilic Nocardiopsis sp.

    PubMed

    Kim, Jungwoo; Shin, Daniel; Kim, Seong-Hwan; Park, Wanki; Shin, Yoonho; Kim, Won Kyung; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan

    2017-06-06

    Chemical investigation of a halophilic actinomycete strain belonging to the genus Nocardiopsis inhabiting a hypersaline saltern led to the discovery of new 18-membered macrolides with nitrile functionality, borrelidins C-E ( 1 - 3 ), along with a previously reported borrelidin ( 4 ). The planar structures of borrelidins C-E, which are new members of the rare borrelidin class of antibiotics, were elucidated by NMR, mass, IR, and UV spectroscopic analyses. The configurations of borrelidines C-E were determined by the interpretation of ROESY NMR spectra, J-based configuration analysis, a modified Mosher's method, and CD spectroscopic analysis. Borrelidins C and D displayed inhibitory activity, particularly against the Gram-negative pathogen Salmonella enterica , and moderate cytotoxicity against the SNU638 and K562 carcinoma cell lines.

  17. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    PubMed

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  18. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  19. Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Mark L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular alpha-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  20. Properties of a Purified Halophilic Malic Dehydrogenase

    PubMed Central

    Holmes, P. K.; Halvorson, H. Orin

    1965-01-01

    Holmes, P. K. (University of Illinois, Urbana), and H. Orin Halvorson. Properties of a purified halophilic malic dehydrogenase. J. Bacteriol. 90:316–326. 1965.—The malic dehydrogenase (MDH) from Halobacterium salinarium required high concentrations of monovalent ions for stability and activity. Studies of inactivation rates at different salt concentrations suggested that approximately 25% NaCl (w/v) is required to stabilize MDH. From 50 to 100% reactivation, depending on the salt concentration present during inactivation, could occur in 2.5 to 5 m NaCl or KCl. The optimal salt concentration for activity of MDH was a function of the pH, and ranged from 1 to 3 m NaCl or KCl. The effect of salt concentration on the pH-activity curves occurred chiefly below pH 7.0. Inactivation of MDH with heat or thiol reagents showed that the enzyme was more labile in the state induced by absence of salt. The activation of MDH by salts was attributed to a decreased rate of dissociation of MDH and reduced nicotinamide adenine dinucleotide (NADH2). The inactivation of the enzyme in the absence of salt could be largely prevented by the presence of NADH2. The S20.w of MDH decreased threefold at low salt concentrations. The enzyme was assumed to be in its native compact configuration only in the presence of a high concentration of salt. PMID:14329442

  1. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B).

    PubMed

    Ghafoori, Hossein; Askari, Mansoure; Sarikhan, Sajjad

    2016-03-01

    This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.

  2. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    NASA Astrophysics Data System (ADS)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  3. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.

    PubMed

    Bansal, Roohi; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara

    2016-11-01

    Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

  4. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    PubMed

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  5. Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea

    PubMed Central

    Pietilä, Maija K.; Atanasova, Nina S.; Manole, Violeta; Liljeroos, Lassi; Butcher, Sarah J.; Oksanen, Hanna M.

    2012-01-01

    Our understanding of the third domain of life, Archaea, has greatly increased since its establishment some 20 years ago. The increasing information on archaea has also brought their viruses into the limelight. Today, about 100 archaeal viruses are known, which is a low number compared to the numbers of characterized bacterial or eukaryotic viruses. Here, we have performed a comparative biological and structural study of seven pleomorphic viruses infecting extremely halophilic archaea. The pleomorphic nature of this novel virion type was established by sedimentation analysis and cryo-electron microscopy. These nonlytic viruses form virions characterized by a lipid vesicle enclosing the genome, without any nucleoproteins. The viral lipids are unselectively acquired from host cell membranes. The virions contain two to three major structural proteins, which either are embedded in the membrane or form spikes distributed randomly on the external membrane surface. Thus, the most important step during virion assembly is most likely the interaction of the membrane proteins with the genome. The interaction can be driven by single-stranded or double-stranded DNA, resulting in the virions having similar architectures but different genome types. Based on our comparative study, these viruses probably form a novel group, which we define as pleolipoviruses. PMID:22357279

  6. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia.

    PubMed

    Ghanmi, Fadoua; Carré-Mlouka, Alyssa; Vandervennet, Manon; Boujelben, Ines; Frikha, Doniez; Ayadi, Habib; Peduzzi, Jean; Rebuffat, Sylvie; Maalej, Sami

    2016-05-01

    Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.

  7. On an early gene for membrane-integral inorganic pyrophosphatase in the genome of an apparently pre-luca extremophile, the archaeon Candidatus Korarchaeum cryptofilum.

    PubMed

    Baltscheffsky, Herrick; Persson, Bengt

    2014-02-01

    A gene for membrane-integral inorganic pyrophosphatase (miPPase) was found in the composite genome of the extremophile archaeon Candidatus Korarchaeum cryptofilum (CKc). This korarchaeal genome shows unusual partial similarity to both major archaeal phyla Crenarchaeota and Euryarchaeota. Thus this Korarchaeote might have retained features that represent an ancestral archaeal form, existing before the occurrence of the evolutionary bifurcation into Crenarchaeota and Euryarchaeota. In addition, CKc lacks five genes that are common to early genomes at the LUCA border. These two properties independently suggest a pre-LUCA evolutionary position of this extremophile. Our finding of the miPPase gene in the CKc genome points to a role for the enzyme in the energy conversion of this very early archaeon. The structural features of its miPPase indicate that it can pump protons through membranes. An miPPase from the extremophile bacterium Caldicellulosiruptor saccharolyticus also has a sequence indicating a proton pump. Recent analysis of the three-dimensional structure of the miPPase from Vigna radiata has resulted in the recognition of a strongly acidic substrate (orthophosphate: Pi, pyrophosphate: PPi) binding pocket, containing 11 Asp and one Glu residues. Asp (aspartic acid) is an evolutionarily very early proteinaceous amino acid as compared to the later appearing Glu (glutamic acid). All the Asp residues are conserved in the miPPase of CKc, V. radiata and other miPPases. The high proportion of Asp, as compared to Glu, seems to strengthen our argument that biological energy conversion with binding and activities of orthophosphate (Pi) and energy-rich pyrophosphate (PPi) in connection with the origin and early evolution of life may have started with similar or even more primitive acidic peptide funnels and/or pockets.

  8. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  9. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.

    PubMed

    Cheng, Feiyue; Gong, Luyao; Zhao, Dahe; Yang, Haibo; Zhou, Jian; Li, Ming; Xiang, Hua

    2017-11-20

    Research on CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting mini-CRISPR and a 600-800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  10. The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis

    PubMed Central

    Kessler, Peter S.; Blank, Carrine; Leigh, John A.

    1998-01-01

    Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920

  11. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila.

    PubMed

    Kucera, Dan; Pernicová, Iva; Kovalcik, Adriana; Koller, Martin; Mullerova, Lucie; Sedlacek, Petr; Mravec, Filip; Nebesarova, Jana; Kalina, Michal; Marova, Ivana; Krzyzanek, Vladislav; Obruca, Stanislav

    2018-05-01

    This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.

    PubMed

    King, Gary M

    2015-04-07

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.

  13. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith

    PubMed Central

    King, Gary M.

    2015-01-01

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars’ atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (−41 MPa to −117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of −39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of −11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (−19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars’ history. PMID:25831529

  14. Three phase partitioning and spectroscopic characterization of bioactive constituent from halophilic Bacillus subtilis EMB M15.

    PubMed

    Yadav, Neerja; Gupta, Munishwar Nath; Khare, Sunil K

    2017-10-01

    In the present study, a halophilic Bacillus subtilis subsp. spizizenii (NCBI GenBank accession number KX109607) was isolated from the Sambhar Salt Lake, Rajasthan India. This organism exhibited significance antibacterial and antifungal activity against Proteus vulgaris, Bacillus subtilis, Aspergillus niger, Rhizopus oligosporus and Penicillium chrysogenum respectively. The bioactive constituent responsible for it was extracted by three phase partitioning and purified by column chromatography. The purified compound was further characterized by FTIR-ATR, NMR and Mass spectrometry. The mass spectra show a molecular ion of m/z 301.14. The compound has very high antimicrobial activity showing 35mm zone of inhibition against Bacillus subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    PubMed Central

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  16. Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment.

    PubMed

    Zeng, Xiang; Zhang, Xiaobo; Jiang, Lijing; Alain, Karine; Jebbar, Mohamed; Shao, Zongze

    2013-06-01

    A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341(T)) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37' S 102° 45' W) at a depth of 2737 m. The cells were irregular cocci, 0.8-1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1% and 7% (w/v) sea salts (Sigma, optimum 3%), 1% and 4% (w/v) NaCl (optimum 3%) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6 ± 1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJ(T) (95.7% 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341(T) (=JCM 17873(T)=DSM 24777(T)).

  17. Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples

    PubMed Central

    Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga

    2011-01-01

    Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm−1 which are attributed to haloarchaeal C50 carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea. These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra. PMID:22058585

  18. Raman spectroscopy as a potentialmethod for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples.

    PubMed

    Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga

    2009-12-01

    Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm(-1) which are attributed to haloarchaeal C(50) carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea.These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra.

  19. The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum - recombinant expression, assembly and characterization.

    PubMed

    Heath, Caroline; Posner, Mareike G; Aass, Hans C; Upadhyay, Abhishek; Scott, David J; Hough, David W; Danson, Michael J

    2007-10-01

    The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.

  20. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    PubMed Central

    Hänelt, Inga; Müller, Volker

    2013-01-01

    The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341

  1. Deuterium incorporation experiments from (3R)- and (3S)-[3-2H]leucine into characteristic isoprenoidal lipid-core of halophilic archaea suggests the involvement of isovaleryl-CoA dehydrogenase.

    PubMed

    Yamauchi, Noriaki; Tanoue, Ryo

    2017-11-01

    The stereochemical reaction course for the two C-3 hydrogens of leucine to produce a characteristic isoprenoidal lipid in halophilic archaea was observed using incubation experiments with whole cell Halobacterium salinarum. Deuterium-labeled (3R)- and (3S)-[3- 2 H]leucine were freshly prepared as substrates from 2,3-epoxy-4-methyl-1-pentanol. Incorporation of deuterium from (3S)-[3- 2 H]leucine and loss of deuterium from (3R)-[3- 2 H]leucine in the lipid-core of H. salinarum was observed. Taken together with the results of our previous report, involving the incubation of chiral-labeled [5- 2 H]leucine, these results strongly suggested an involvement of isovaleryl-CoA dehydrogenase in leucine conversion to isoprenoid lipid in halophilic archaea. The stereochemical course of the reaction (anti-elimination) might have been the same as that previously reported for mammalian enzyme reactions. Thus, these results suggested that branched amino acids were metabolized to mevalonate in archaea in a manner similar to other organisms.

  2. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.

    PubMed

    Chandrayan, Sanjeev K; McTernan, Patrick M; Hopkins, R Christopher; Sun, Junsong; Jenney, Francis E; Adams, Michael W W

    2012-01-27

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.

  3. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase*

    PubMed Central

    Chandrayan, Sanjeev K.; McTernan, Patrick M.; Hopkins, R. Christopher; Sun, Junsong; Jenney, Francis E.; Adams, Michael W. W.

    2012-01-01

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production. PMID:22157005

  4. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs+-selective binding site

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-01-01

    Environmentally friendly absorbents are needed for Sr2+ and Cs+, as the removal of the radioactive Sr2+ and Cs+ that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs+ or Sr2+. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr2+ and Cs+ ions were identified by anomalous X-ray diffraction. The location of one Cs+-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na+ (90 mM Na+/10 mM Cs+). From an activity assay using isothermal titration calorimetry, the bound Sr2+ and Cs+ ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs+-binding site provides important information that is useful for the design of artificial Cs+-binding sites that may be useful in the bioremediation of radioactive isotopes. PMID:25760604

  5. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp.

    PubMed

    Rezaei, Shahla; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali

    2017-04-01

    The aim of the present work was to study the ability of a halophilic bacterial laccase to efficient delignification in extreme conditions. Here, a highly stable extracellular laccase showing ligninolytic activity from halophilic Aquisalibacillus elongatus is described. The laccase production was strongly influenced by NaCl and CuSO 4 and under optimal conditions reached 4.8UmL -1 . The monomeric enzyme of 75kDa was purified by a synthetic affinity column with 68.2% yield and 99.8-fold purification. The enzyme showed some valuable features viz. stability against a wide range of organic solvents, salts, metals, inhibitors, and surfactants and specificity to a wide spectrum of substrates diverse in structure and redox potential. It retained more than 50% of the original activity at 25-75°C and pH 5.0-10.0. Furthermore, the enzyme was found to be effective in the delignification of sugar beet pulp in an ionic liquid that makes it useful for industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methansarcina mazei.

    PubMed

    Bäumer, Sebastian; Lentes, Sabine; Gottschalk, Gerhard; Deppenmeier, Uwe

    2002-03-01

    Analysis of genome sequence data from the methanogenic archaeon Methanosarcina mazei Gö1 revealed the existence of two open reading frames encoding proton-translocating pyrophosphatases (PPases). These open reading frames are linked by a 750-bp intergenic region containing TC-rich stretches and are transcribed in opposite directions. The corresponding polypeptides are referred to as Mvp1 and Mvp2 and consist of 671 and 676 amino acids, respectively. Both enzymes represent extremely hydrophobic, integral membrane proteins with 15 predicted transmembrane segments and an overall amino acid sequence similarity of 50.1%. Multiple sequence alignments revealed that Mvp1 is closely related to eukaryotic PPases, whereas Mvp2 shows highest homologies to bacterial PPases. Northern blot experiments with RNA from methanol-grown cells harvested in the mid-log growth phase indicated that only Mvp2 was produced under these conditions. Analysis of washed membranes showed that Mvp2 had a specific activity of 0.34 U mg (protein)(-1). Proton translocation experiments with inverted membrane vesicles prepared from methanol-grown cells showed that hydrolysis of 1 mol of pyrophosphate was coupled to the translocation of about 1 mol of protons across the cytoplasmic membrane. Appropriate conditions for mvp1 expression could not be determined yet. The pyrophosphatases of M. mazei Gö1 represent the first examples of this enzyme class in methanogenic archaea and may be part of their energy-conserving system.

  7. Diversity of halophilic bacteria isolated from Rambla Salada, Murcia (Spain).

    PubMed

    Luque, Rocío; Béjar, Victoria; Quesada, Emilia; Llamas, Inmaculada

    2014-12-01

    In this study we analyzed the diversity of the halophilic bacteria community from Rambla Salada during the years 2006 and 2007. We collected a total of 364 strains, which were then identified by means of phenotypic tests and by the hypervariable V1-V3 region of the 16S rRNA sequences (around 500 bp). The ribosomal data showed that the isolates belonged to Proteobacteria (72.5%), Firmicutes (25.8%), Actinobacteria (1.4%), and Bacteroidetes (0.3%) phyla, with Gammaproteobacteria the predominant class. Halomonas was the most abundant genus (41.2% isolates) followed by Marinobacter (12.9% isolates) and Bacillus (12.6% isolates). In addition, 9 strains showed <97% sequence identity with validly described species and may well represent new taxa. The diversity of the bacterial community analyzed with the DOTUR package determined 139 operational taxonomic units at 3% genetic distance level. Rarefaction curves and diversity indexes demonstrated that our collection of isolates adequately represented all the bacterial community at Rambla Salada that can be grown under the conditions used in this work. We found that the sampling season influenced the composition of the bacterial community, and bacterial diversity was higher in 2007; this fact could be related to lower salinity at this sampling time.

  8. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Genome features of moderately halophilic polyhydroxyalkanoate-producing Yangia sp. CCB-MM3.

    PubMed

    Lau, Nyok-Sean; Sam, Ka-Kei; Amirul, Abdullah Al-Ashraf

    2017-01-01

    Yangia sp. CCB-MM3 was one of several halophilic bacteria isolated from soil sediment in the estuarine Matang Mangrove, Malaysia. So far, no member from the genus Yangia , a member of the Rhodobacteraceae family, has been reported sequenced. In the current study, we present the first complete genome sequence of Yangia sp. strain CCB-MM3. The genome includes two chromosomes and five plasmids with a total length of 5,522,061 bp and an average GC content of 65%. Since a different strain of Yangia sp. (ND199) was reported to produce a polyhydroxyalkanoate copolymer, the ability for this production was tested in vitro and confirmed for strain CCB-MM3. Analysis of its genome sequence confirmed presence of a pathway for production of propionyl-CoA and gene cluster for PHA production in the sequenced strain. The genome sequence described will be a useful resource for understanding the physiology and metabolic potential of Yangia as well as for comparative genomic analysis with other Rhodobacteraceae .

  10. Archaeon and archaeal virus diversity classification via sequence entropy and fractal dimension

    NASA Astrophysics Data System (ADS)

    Tremberger, George, Jr.; Gallardo, Victor; Espinoza, Carola; Holden, Todd; Gadura, N.; Cheung, E.; Schneider, P.; Lieberman, D.; Cheung, T.

    2010-09-01

    Archaea are important potential candidates in astrobiology as their metabolism includes solar, inorganic and organic energy sources. Archaeal viruses would also be expected to be present in a sustainable archaeal exobiological community. Genetic sequence Shannon entropy and fractal dimension can be used to establish a two-dimensional measure for classification and phylogenetic study of these organisms. A sequence fractal dimension can be calculated from a numerical series consisting of the atomic numbers of each nucleotide. Archaeal 16S and 23S ribosomal RNA sequences were studied. Outliers in the 16S rRNA fractal dimension and entropy plot were found to be halophilic archaea. Positive correlation (R-square ~ 0.75, N = 18) was observed between fractal dimension and entropy across the studied species. The 16S ribosomal RNA sequence entropy correlates with the 23S ribosomal RNA sequence entropy across species with R-square 0.93, N = 18. Entropy values correspond positively with branch lengths of a published phylogeny. The studied archaeal virus sequences have high fractal dimensions of 2.02 or more. A comparison of selected extremophile sequences with archaeal sequences from the Humboldt Marine Ecosystem database (Wood-Hull Oceanography Institute, MIT) suggests the presence of continuous sequence expression as inferred from distributions of entropy and fractal dimension, consistent with the diversity expected in an exobiological archaeal community.

  11. Compatible Solute Synthesis and Import by the Moderate Halophile Spiribacter salinus: Physiology and Genomics

    PubMed Central

    León, María J.; Hoffmann, Tamara; Sánchez-Porro, Cristina; Heider, Johann; Ventosa, Antonio; Bremer, Erhard

    2018-01-01

    Members of the genus Spiribacter are found worldwide and are abundant in ecosystems possessing intermediate salinities between seawater and saturated salt concentrations. Spiribacter salinus M19-40 is the type species of this genus and its first cultivated representative. In the habitats of S. salinus M19-40, high salinity is a key determinant for growth and we therefore focused on the cellular adjustment strategy to this persistent environmental challenge. We coupled these experimental studies to the in silico mining of the genome sequence of this moderate halophile with respect to systems allowing this bacterium to control its potassium and sodium pools, and its ability to import and synthesize compatible solutes. S. salinus M19-40 produces enhanced levels of the compatible solute ectoine, both under optimal and growth-challenging salt concentrations, but the genes encoding the corresponding biosynthetic enzymes are not organized in a canonical ectABC operon. Instead, they are scrambled (ectAC; ectB) and are physically separated from each other on the S. salinus M19-40 genome. Genomes of many phylogenetically related bacteria also exhibit a non-canonical organization of the ect genes. S. salinus M19-40 also synthesizes trehalose, but this compatible solute seems to make only a minor contribution to the cytoplasmic solute pool under osmotic stress conditions. However, its cellular levels increase substantially in stationary phase cells grown under optimal salt concentrations. In silico genome mining revealed that S. salinus M19-40 possesses different types of uptake systems for compatible solutes. Among the set of compatible solutes tested in an osmostress protection growth assay, glycine betaine and arsenobetaine were the most effective. Transport studies with radiolabeled glycine betaine showed that S. salinus M19-40 increases the pool size of this osmolyte in a fashion that is sensitively tied to the prevalent salinity of the growth medium. It was amassed in

  12. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies

    PubMed Central

    Saum, Stephan H; Müller, Volker

    2008-01-01

    The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383

  13. Ectoine: A compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage.

    PubMed

    Sajjad, Wasim; Qadir, Sundas; Ahmad, Manzoor; Rafiq, Muhammad; Hasan, Fariha; Tehan, Richard; McPhail, Kerry L; Shah, Aamer Ali

    2018-05-04

    The current study was conducted to investigate the possible role of a compatible solute from radio-halophilic bacterium against desiccation and ultra-violet radiation induced oxidative stress. Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance to ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by High Performance Liquid Chromatography (HPLC). The compound was characterized as ectoine by 1 H and 13 C Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS). Ectoine inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. It also demonstrated more efficient preventition (54.80%) against lysis to erythrocytes membrane by surface active agents than lecithin. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000Jm -2 ) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results indicated that ectoine from Stenotrophomonas sp. WMA-LM19 can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damages in extreme environment. Due to its anti-oxidant properties, ectoine from a radio-halophilic bacterium might be used in sunscreen formulation for protection against UV induced oxidative stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    PubMed

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).

  15. The structure of TON1937 from archaeon Thermococcus onnurineus NA1 reveals a eukaryotic HEAT-like architecture.

    PubMed

    Jeong, Jae-Hee; Kim, Yi-Seul; Rojviriya, Catleya; Cha, Hyung Jin; Ha, Sung-Chul; Kim, Yeon-Gil

    2013-10-01

    The members of the ARM/HEAT repeat-containing protein superfamily in eukaryotes have been known to mediate protein-protein interactions by using their concave surface. However, little is known about the ARM/HEAT repeat proteins in prokaryotes. Here we report the crystal structure of TON1937, a hypothetical protein from the hyperthermophilic archaeon Thermococcus onnurineus NA1. The structure reveals a crescent-shaped molecule composed of a double layer of α-helices with seven anti-parallel α-helical repeats. A structure-based sequence alignment of the α-helical repeats identified a conserved pattern of hydrophobic or aliphatic residues reminiscent of the consensus sequence of eukaryotic HEAT repeats. The individual repeats of TON1937 also share high structural similarity with the canonical eukaryotic HEAT repeats. In addition, the concave surface of TON1937 is proposed to be its potential binding interface based on this structural comparison and its surface properties. These observations lead us to speculate that the archaeal HEAT-like repeats of TON1937 have evolved to engage in protein-protein interactions in the same manner as eukaryotic HEAT repeats. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum.

    PubMed

    Sriskanda, V; Kelman, Z; Hurwitz, J; Shuman, S

    2000-06-01

    We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid MTH: ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (K(m) 1.1 microM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD(+) cannot. MTH: ligase activity is thermophilic in vitro, with optimal nick-joining at 60 degrees C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase-adenylate intermediate (step 1) and hence cannot seal a 3'-OH/5'-PO(4) nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase-adenylate formation, but defective in activating the nick via formation of the DNA-adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA-adenylate, could be elicited for the wild-type MTH: ligase by inclusion of calcium as the divalent cation cofactor. MTH: ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that MTH: ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.

  17. Identification and analysis of proton-translocating pyrophosphatases in the methanogenic archaeon Methanosarcina mazei

    PubMed Central

    Bäumer, Sebastian; Lentes, Sabine; Gottschalk, Gerhard; Deppenmeier, Uwe

    2002-01-01

    Analysis of genome sequence data from the methanogenic archaeon Methanosarcina mazei Gö1 revealed the existence of two open reading frames encoding proton-translocating pyrophosphatases (PPases). These open reading frames are linked by a 750-bp intergenic region containing TC-rich stretches and are transcribed in opposite directions. The corresponding polypeptides are referred to as Mvp1 and Mvp2 and consist of 671 and 676 amino acids, respectively. Both enzymes represent extremely hydrophobic, integral membrane proteins with 15 predicted transmembrane segments and an overall amino acid sequence similarity of 50.1%. Multiple sequence alignments revealed that Mvp1 is closely related to eukaryotic PPases, whereas Mvp2 shows highest homologies to bacterial PPases. Northern blot experiments with RNA from methanol-grown cells harvested in the mid-log growth phase indicated that only Mvp2 was produced under these conditions. Analysis of washed membranes showed that Mvp2 had a specific activity of 0.34 U mg (protein)–1. Proton translocation experiments with inverted membrane vesicles prepared from methanol-grown cells showed that hydrolysis of 1 mol of pyrophosphate was coupled to the translocation of about 1 mol of protons across the cytoplasmic membrane. Appropriate conditions for mvp1 expression could not be determined yet. The pyrophosphatases of M. mazei Gö1 represent the first examples of this enzyme class in methanogenic archaea and may be part of their energy-conserving system. Abbreviations: DCCD, N,N′-dicyclohexylcarbodiimide; PPase, inorganic pyrophosphatase; PPi, inorganic pyrophosphate; Δp, proton motive force. PMID:15803653

  18. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1

    PubMed Central

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.

    2002-01-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652

  19. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    PubMed

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  20. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    PubMed Central

    Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Jonghyun; Kim, Soo Jung; Kang, Sung Gyun; Lee, Jung-Hyun; Kim, Seung Il; Chung, Young-Ho

    2015-01-01

    The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments. PMID:25915030

  1. Pyrobaculum igneiluti sp. nov., a novel anaerobic hyperthermophilic archaeon that reduces thiosulfate and ferric iron.

    PubMed

    Lee, Jerry Y; Iglesias, Brenda; Chu, Caleb E; Lawrence, Daniel J P; Crane, Edward Jerome

    2017-06-01

    A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 °C, at pH 5.5-7.3 and with 0-2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 µm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA-DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T).

  2. Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus metallicus

    PubMed Central

    Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A.

    2013-01-01

    Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining. PMID:23509422

  3. Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus.

    PubMed

    Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A

    2013-01-01

    Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.

  4. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols.

    PubMed

    Alsafadi, Diya; Alsalman, Safaa; Paradisi, Francesca

    2017-11-07

    Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.

  5. Halophilic starch degrading bacteria isolated from Sambhar Lake, India, as potential anode catalyst in microbial fuel cell: A promising process for saline water treatment.

    PubMed

    Vijay, Ankisha; Arora, Shivam; Gupta, Sandeep; Chhabra, Meenu

    2018-05-01

    In this study, Microbial Fuel Cell (MFC) capable of treating saline starch water was developed. Sodium chloride (NaCl) concentrations ranging from 500 mM to 3000 mM were tested at the anode. Nitrate was used as an electron acceptor at the biocathode. The halophilic bacteria were isolated from Sambhar Lake, India. Results indicated successful removal of starch (1.83 kg/m 3 -d) and nitrate (0.13 kg/m 3 -d NO 3 - -N) with concomitant power output of 207.05 mW/m 2 at 1000 mM NaCl concentration. An increase in power density from 71.06 mW/m 2 to 207.05 mW/m 2 (2.92 folds) was observed when NaCl concentration was increased from 500 mM to 1000 mM. A decline in power density was observed when the salt concentrations >1000 mM were used. Concentration of 3000 mM supported power output as well as the highest starch degradation (3.2 kg/m 3 -d) and amylase activity of 2.26 IU/ml. The halophilic exoelectrogens were isolated and identified. The present study demonstrates the utility of MFC for degrading starch in saline water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The anatomy of microbial cell state transitions in response to oxygen.

    PubMed

    Schmid, Amy K; Reiss, David J; Kaur, Amardeep; Pan, Min; King, Nichole; Van, Phu T; Hohmann, Laura; Martin, Daniel B; Baliga, Nitin S

    2007-10-01

    Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism's two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation.

  7. The anatomy of microbial cell state transitions in response to oxygen

    PubMed Central

    Schmid, Amy K.; Reiss, David J.; Kaur, Amardeep; Pan, Min; King, Nichole; Van, Phu T.; Hohmann, Laura; Martin, Daniel B.; Baliga, Nitin S.

    2007-01-01

    Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism’s two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation. PMID:17785531

  8. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of AP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits. he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes. he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. he β -subunit determined preference for adenine or guanine nucleotides. he GP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GP for GP-dependent phosphoenolpyruvate carboxykinase and for other GP-dependent processes. ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both AP and GP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the hermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  9. Lactulose production by a thermostable glycoside hydrolase from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167.

    PubMed

    Letsididi, Rebaone; Hassanin, Hinawi Am; Koko, Marwa Yf; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2018-02-01

    Lactulose has various uses in the food and pharmaceutical fields. Thermostable enzymes have many advantages for industrial exploitation, including high substrate solubilities as well as reduced risk of process contamination. Enzymatic synthesis of lactulose employing a transgalactosylation reaction by a recombinant thermostable glycoside hydrolase (GH1) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was investigated. The optimal pH for lactulose production was found to be 4.5, while the optimal temperature was 85 °C, before it dropped moderately to 83% at 90 °C. However, the relative activity for lactulose synthesis dropped sharply to 35% at 95 °C. At optimal reaction conditions of 70% (w/w) initial sugar substrates with molar ratio of lactose to fructose of 1:4, 15 U mL -1 enzyme concentration and 85 °C, the time course reaction produced a maximum lactulose concentration of 108 g L -1 at 4 h, corresponding to a lactulose yield of 14% and 27 g L -1  h -1 productivity with 84% lactose conversion. The transgalactosylation reaction for lactulose synthesis was greatly influenced by the ratio of galactose donor to acceptor. This novel GH1 may be useful for process applications owing to its high activity in very concentrated substrate reaction media and promising thermostability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India

    PubMed Central

    Sarafin, Yesurethinam; Donio, Mariathasan Birdilla Selva; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-01-01

    Biosurfactant screening was made among the eight halophilic bacterial genera isolated from Kovalam solar salt works in Kanyakumari of India. After initial screening, Kocuria sp. (Km), Kurthia sp. (Ku) and Halococcus sp. (Hc) were found to have positive biosurfactant activity. Biosurfactant derived from Kocuria sp. emulsified more than 50% of the crude oil, coconut oil, sunflower oil, olive oil and kerosene when compared to the other strains. Further, Kocuria marina BS-15 derived biosurfactant was purified and characterized by TLC, FTIR and GC–MS analysis. The TLC analysis revealed that, the purified biosurfactants belong to the lipopeptide group. The IR spectrum results revealed that functional groups are R2C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 NN, alkenes and N–H. The GC–MS analysis confirmed the compound as Nonanoic acid and Cyclopropane with the retention time of 12.78 and 24.65, respectively. PMID:25473358

  11. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    PubMed

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  12. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus.

    PubMed

    Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; de la Garza, Mireya; Reyes-Lopez, Magda; Zazueta-Beltran, Jorge; Nazmi, Kamran; Gomez-Gil, Bruno; Bolscher, Jan G

    2009-01-01

    Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some lactoferrin-peptides have bactericidal activity against Vibrio parahaemolyticus ATCC 17802, the pandemic strain O3:K6, and the multidrug resistant isolate 727, as well as against Vibrio cholerae strains O1 and non-O1. Whereas both peptides lactoferricin (17-30) and lactoferrampin (265-284) did not have bactericidal activity, 40 microM of lactoferrin chimera (a fusion of the two peptides) inhibited the growth of all Vibrio tested to the same extent as the antibiotic gentamicin. The cidal effect of LFchimera showed a clear concentration response in contrast to bovine lactoferrin which showed higher inhibition at 10 microM than at 40 microM. FITC-labeled LFchimera bound to the bacterial membranes. Moreover LFchimera permeabilized bacterial cells and membranes were seriously damaged. Finally, in experiments with the multidrug resistant isolate 727, sub-lethal doses of LFchimera strongly reduced the concentrations of ampicillin, gentamicin or kanamicin needed to reach more than 95% growth inhibition, suggesting synergistic effects. These data indicate that LFchimera is a potential candidate to combat the multidrug resistant pathogenic Vibrio species.

  13. Growth Kinetics of Extremely Halophilic Archaea (Family Halobacteriaceae) as Revealed by Arrhenius Plots

    PubMed Central

    Robinson, Jessie L.; Pyzyna, Brandy; Atrasz, Rachelle G.; Henderson, Christine A.; Morrill, Kira L.; Burd, Anna Mae; DeSoucy, Erik; Fogleman, Rex E.; Naylor, John B.; Steele, Sarah M.; Elliott, Dawn R.; Leyva, Kathryn J.; Shand, Richard F.

    2005-01-01

    Members of the family Halobacteriaceae in the domain Archaea are obligate extreme halophiles. They occupy a variety of hypersaline environments, and their cellular biochemistry functions in a nearly saturated salty milieu. Despite extensive study, a detailed analysis of their growth kinetics is missing. To remedy this, Arrhenius plots for 14 type species of the family were generated. These organisms had maximum growth temperatures ranging from 49 to 58°C. Nine of the organisms exhibited a single temperature optimum, while five grew optimally at more than one temperature. Generation times at these optimal temperatures ranged from 1.5 h (Haloterrigena turkmenica) to 3.0 h (Haloarcula vallismortis and Halorubrum saccharovorum). All shared an inflection point at 31 ± 4°C, and the temperature characteristics for 12 of the 14 type species were nearly parallel. The other two species (Natronomonas pharaonis and Natronorubrum bangense) had significantly different temperature characteristics, suggesting that the physiology of these strains is different. In addition, these data show that the type species for the family Halobacteriaceae share similar growth kinetics and are capable of much faster growth at higher temperatures than those previously reported. PMID:15659670

  14. Halophilic life on Mars ?

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, Helga; Fendrihan, Sergiu; Dornmayr-Pfaffenhuemer, Marion; Holzinger, Anita; Polacsek, Tatjana K.; Legat, Andrea; Grösbacher, Michael; Weigl, Andreas

    2010-05-01

    Background: The search for extraterrestrial life has been declared as a goal for the 21th century by several space agencies. Potential candidates are microorganisms on or in the surface of moons and planets, such as Mars. Extremely halophilic archaea (haloarchaea) are of astrobiological interest since viable strains have been isolated from million years old salt deposits (1) and halite has been found in Martian meteorites and in surface pools. Therefore, haloarchaeal responses to simulated and real space conditions were explored. Immuno assays for a potential Life Marker Chip experiment were developed with antisera against the universal enzyme ATP synthase. Methods: The focus of these studies was on the application of fluorescent probes since they provide strong signals, and detection devices are suitable for miniaturization. Viability of haloarchaeal strains (Halococcus dombrowskii and Halobacterium salinarum NRC-1) was probed with the LIVE/DEAD BacLight™ kit and the BacLight™ Bacterial Membrane Potential kit. Cyclobutane pyrimidine dimers (CPD) in the DNA, following exposure to simulated and real space conditions (UV irradiation from 200 - 400 nm; 18 months exposure on the International Space Station [ISS] within the ADAPT experiment by Dr. P. Rettberg), were detected with fluorescent Alexa-Fluor-488-coupled antibodies. Immuno assays with antisera against the A-ATPase subunits from Halorubrum saccharovorum were carried out with the highly sensitive Immun-Star ™ WesternC ™ chemiluminescent kit (Bio-Rad). Results: Using the LIVE/DEAD BacLight™ kit, the D37 (dose of 37% survival) for Hcc. dombrowskii and Hbt. salinarum NRC-1, following exposure to UV (200-400 nm) was about 400 kJ/m2, when cells were embedded in halite and about 1 kJ/m2, when cells were in liquid cultures. Fluorescent staining indicated a slightly higher cellular activity than that which was derived from the determination of colony forming units. Assessment of viability with the Bac

  15. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    PubMed Central

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  16. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis.

    PubMed

    Jeyanthi, Venkadapathi; Velusamy, Palaniyandi

    2016-06-01

    The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.

  17. Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Salgaonkar, Bhakti B.; Das, Deepthi; Bragança, Judith Maria

    2016-02-01

    Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0-0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g-1) > Halococcus strain BK6 (165.9/388.5 mg g-1) > Haloarcula strain BS2 (93.2/28.5 mg g-1) > Halorubrum strain BS17 (29.9/16.2 mg g-1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %).

  18. Nesterenkonia pannonica sp. nov., a novel alkaliphilic and moderately halophilic actinobacterium.

    PubMed

    Borsodi, Andrea K; Szili-Kovács, Tibor; Schumann, Peter; Spröer, Cathrin; Márialigeti, Károly; Tóth, Erika

    2017-10-01

    An alkaliphilic and moderately halophilic bacterial strain characterized by optimal growth at pH 9.0-10.0 and with 5-7 % (w/v) NaCl, designated BV-35 T , was isolated from water of a soda pan located in Kiskunság National Park, Hungary. Cells of the orange-pigmented colony were Gram-stain-positive, non-motile and non-endospore-forming coccoid rods. The isolate was strictly aerobic, catalase-positive and oxidase-negative. Strain BV-35 T displayed a peptidoglycan similar to type A4α, l-Lys-l-Glu (A11.54 according to www.peptidoglycan-types.info) but containing additionally 4-aminobutyric acid. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone, and anteiso-C15 : 0 and anteiso-C17 : 0 were its major cellular fatty acids. The DNA G+C content of strain BV-35 T was 65.4 mol%. Based on 16S rRNA gene sequence similarities, the novel isolate showed the closest relationship to Nesterenkonia populi GP 10-3 T (97.9 %). The DNA-DNA relatedness between BV-35 T and N. populi was 46.7 %. The distinguishing phenotypic and genetic results of this polyphasic study revealed that strain BV-35 T represents a novel member of the genus Nesterenkonia, for which the name Nesterenkonia pannonica sp. nov. is proposed. The type strain is BV-35 T (=DSM 29786 T =NCAIM B 02606 T ).

  19. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M

    2016-07-05

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response.

  20. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Jebbar, Mohamed; Thiel, Axel; Kervarec, Nelly; Oger, Phil M.

    2016-01-01

    The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. PMID:27378270

  1. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea.

    PubMed

    Arahal, D R; Márquez, M C; Volcani, B E; Schleifer, K H; Ventosa, A

    1999-04-01

    A group of 91 moderately halophilic, Gram-positive, rod-shaped strains were isolated from enrichments prepared from Dead Sea water samples collected 57 years ago. These strains were examined for 117 morphological, physiological, biochemical, nutritional and antibiotic susceptibility characteristics. All strains formed endospores and were motile, strictly aerobic and positive for catalase and oxidase. They grew in media containing 5-25% (w/v) total salts, showing optimal growth at 10% (w/v). Eighteen strains were chosen as representative isolates and were studied in more detail. All these strains had mesodiaminopimelic acid in the cell wall and a DNA G + C content of 39.0-42.8 mol%; they constitute a group with levels of DNA-DNA similarity of 70-100%. The sequences of the 16S rRNA genes of three representative strains (strains 123T, 557 and 832) were almost identical (99.9%), and placed the strains in the low G + C content Gram-positive bacteria. On the basis of their features, these isolates should be regarded as members of a new species of the genus Bacillus, for which the name Bacillus marismortui sp. nov. is proposed. The type strain is strain 123T (= DSM 12325T = ATCC 700626T = CIP 105609T = CECT 5066T).

  2. Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov.

    PubMed

    Zhang, Yong-Guang; Wang, Hong-Fei; Yang, Ling-Ling; Zhou, Xing-Kui; Zhi, Xiao-Yang; Duan, Yan-Qing; Xiao, Min; Zhang, Yuan-Ming; Li, Wen-Jun

    2016-01-01

    A novel obligately halophilic, facultatively alkaliphilic actinobacterium, designated EGI 80759T, was isolated from the rhizosphere of Tamarix hispida Willd, Karamay, Xinjiang province, north-west China. Cells of strain EGI 80759T were Gram-stain-positive, non-motile and non-endospore-forming rods. Strain EGI 80759T showed obligately halophilic growth with a tolerance to 8-25 % (w/v) NaCl (optimum growth at 10-12 %, w/v) and facultatively alkaliphilic growth within the pH range 7.0-11.0 (optimum growth at pH 9.0-10.0). Cell-wall hydrolysates of the isolate contained meso-diaminopimelic acid (peptidoglycan type A1γ), with glucose, glucosamine, ribose and mannose as the major sugars. The major fatty acids identified were 10-methyl-C17 : 0, C17 : 1ω8c and C17 : 0. The predominant menaquinone was MK-9(H4). The G+C content of the genomic DNA was 72.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain EGI 80759T clustered with members of the class Nitriliruptoria and showed highest 16S rRNA gene sequence similarities with Euzebya tangerina F10T (90.3 %) and Nitriliruptor alkaliphilus ANL-iso2T (88.1 %). On the basis of the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, Egibacter rhizosphaerae gen. nov., sp. nov., of a proposed novel family, Egibacteraceae fam. nov., and order, Egibacterales ord. nov., within the class Nitriliruptoria. The type strain of the type species, Egibacter rhizosphaerae, is EGI 80759T ( = CGMCC 1.14997T = KCTC 39588T).

  3. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G

    PubMed Central

    2011-01-01

    Background Malate synthase, one of the two enzymes unique to the glyoxylate cycle, is found in all three domains of life, and is crucial to the utilization of two-carbon compounds for net biosynthetic pathways such as gluconeogenesis. In addition to the main isoforms A and G, so named because of their differential expression in E. coli grown on either acetate or glycolate respectively, a third distinct isoform has been identified. These three isoforms differ considerably in size and sequence conservation. The A isoform (MSA) comprises ~530 residues, the G isoform (MSG) is ~730 residues, and this third isoform (MSH-halophilic) is ~430 residues in length. Both isoforms A and G have been structurally characterized in detail, but no structures have been reported for the H isoform which has been found thus far only in members of the halophilic Archaea. Results We have solved the structure of a malate synthase H (MSH) isoform member from Haloferax volcanii in complex with glyoxylate at 2.51 Å resolution, and also as a ternary complex with acetyl-coenzyme A and pyruvate at 1.95 Å. Like the A and G isoforms, MSH is based on a β8/α8 (TIM) barrel. Unlike previously solved malate synthase structures which are all monomeric, this enzyme is found in the native state as a trimer/hexamer equilibrium. Compared to isoforms A and G, MSH displays deletion of an N-terminal domain and a smaller deletion at the C-terminus. The MSH active site is closely superimposable with those of MSA and MSG, with the ternary complex indicating a nucleophilic attack on pyruvate by the enolate intermediate of acetyl-coenzyme A. Conclusions The reported structures of MSH from Haloferax volcanii allow a detailed analysis and comparison with previously solved structures of isoforms A and G. These structural comparisons provide insight into evolutionary relationships among these isoforms, and also indicate that despite the size and sequence variation, and the truncated C-terminal domain of the H

  4. Halosiccatus urmianus gen. nov., sp. nov., a haloarchaeon from a salt lake.

    PubMed

    Mehrshad, Maliheh; Amoozegar, Mohammad Ali; Makhdoumi, Ali; Fazeli, Seyed Abolhassan Shahzadeh; Farahani, Homa; Asadi, Basaer; Schumann, Peter; Ventosa, Antonio

    2016-02-01

    A novel, orange-pigmented, halophilic archaeon, strain DC8 T , was isolated from Urmia salt lake in north-west Iran. The cells of strain DC8 T were non-motile and pleomorphic, from small rods to triangular or disc shaped. The novel strain needed at least 2.5 M NaCl and 0.02 M MgCl 2 for growth. Optimal growth was achieved at 4.0 M NaCl and 0.1 M MgCl 2 . The optimum pH and temperature for growth were pH 7.5 and 45 °C, respectively, and it was able to grow over a pH range of 7.0 to 8.5 and a temperature range of 25 to 55 °C. Analysis of the 16S rRNA gene sequence showed that strain DC8 T was a member of the family Halobacteriaceae ; however, its similarity was as low as 90.1 %, 89.3 % and 89.1 % to the most closely related haloarchaeal taxa, including type species of members of the genera Halosimplex , Halobaculum and Halomicrobium , respectively. The G+C content of its DNA was 68.1 mol%. Polar lipid analyses revealed that strain DC8 T contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and phosphatidic acid. One unknown phospholipid, two major glycolipids and one minor glycolipid were also detected. The only quinone present was MK-8 (II-H 2 ). The physiological, biochemical and phylogenetic differences between strain DC8 T and other extremely halophilic archaeal genera with validly published names supported that this strain represents a novel species of a new genus within the family Halobacteriaceae , for which the name Halosiccatus urmianus gen. nov., sp. nov. is proposed. The type strain is strain DC8 T ( = IBRC-M 10911 T  = CECT 8793 T ).

  5. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus

    PubMed Central

    Holmes, Dawn E; Risso, Carla; Smith, Jessica A; Lovley, Derek R

    2012-01-01

    Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets. PMID:21776029

  6. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Salinivirga fredricksonii gen. nov., sp. nov., a heterotrophic halophile isolated from a photosynthetic mat, a member of a novel lineage (Salinarimonadaceae fam. nov.) within the order Rhizobiales, and reclassification of the genus Salinarimonas Liu et al. 2010 into Salinarimonadaceae.

    PubMed

    Cole, Jessica K; Morton, Beau R; Cardamone, Hayley C; Lake, Hannah R R; Dohnalkova, Alice C; Kim, Young-Mo; Kyle, Jennifer E; Maezato, Yukari; Dana, Karl L; Metz, Thomas O; Romine, Margaret F; Nelson, William C; Lindemann, Stephen R

    2018-05-01

    A halophilic bacterial strain, HL-109 T , was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109 T is representative of a new lineage, for which the name Salinivirga fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109 T (=JCM 31876 T =DSM 102886 T ). In addition, examination of the phylogenetics of strain HL-109 T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera Salinivirga and Salinarimonas (the type genus of the family).

  8. Thermococcus sulfurophilus sp. nov., a New Hyperthermophilic, Sulfur-Reducing Archaeon Isolated from Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Whitman, William B.; Marsic, Damien; Garriott, Owen; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new hyperthermophilic, anaerobic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from "black smoker" chimney material at the Rainbow hydrothermal vent site in the Atlantic Ocean (36.2 N; 33.9 W). The cells of strain OGL-20P have irregular coccoid shape and are motile with a single flagellum. Growth occurs within pH range of 5.5-8.2 (optimal at pH 7.0-7.2), salinity range of 1-5% NaCl (optimal concentration 3% NaCl wt/vol), and temperature range of +55 C to +94 C (optimal growth at +83 C to +85 C). Strain OGL-20P is resistant to freezing (at -20 C). New isolate is strictly anaerobic with sulfur-type of respiration. A limited number of compounds are utilized as electron donors, including peptone, becto-tryptone, casamino-acids, and yeast extract but does not grow with separate amino acids. Sulfur and Iron can be used as electron acceptors; but not sulfate, sulfite, thiosulfate or nitrate. Strain OGL-20P is resistant to chloramphenicol, kanamycin, and gentamycin. Growth of str. OGL20P is inhibited by tetracyclin but not by Na2MoO4. The G+C content of DNA is 57.2 mol%. The 16S ribosomal RNA sequence analysis allows one to classify strain OGL-20P as a representative of a now species of Thermococcus genus. The name Thermococcus sulfurophilus op. nov., was suggested for the new isolate, type strain OGL-20P (sup T) (= ATCC BAA_394 (sup T) = DSM...(supT)).

  9. N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM.

    PubMed

    Yurist-Doutsch, Sophie; Magidovich, Hilla; Ventura, Valeria V; Hitchen, Paul G; Dell, Anne; Eichler, Jerry

    2010-02-01

    Like Eukarya and Bacteria, Archaea are also capable of performing N-glycosylation. In the halophilic archaeon Haloferax volcanii, N-glycosylation is mediated by the products of the agl gene cluster. In the present report, this gene cluster was expanded to include an additional sequence, aglM, shown to participate in the biosynthesis of hexuronic acids contained within a pentasaccharide decorating the S-layer glycoprotein, a reporter H. volcanii glycoprotein. In response to different growth conditions, changes in the transcription profile of aglM mirrored changes in the transcription profiles of aglF, aglG and aglI, genes encoding confirmed participants in the H. volcanii N-glycosylation pathway, thus offering support to the hypothesis that in H. volcanii, N-glycosylation serves an adaptive role. Following purification, biochemical analysis revealed AglM to function as a UDP-glucose dehydrogenase. In a scoupled reaction with AglF, a previously identified glucose-1-phosphate uridyltransferase, UDP-glucuronic acid was generated from glucose-1-phosphate and UTP in a NAD(+)-dependent manner. These experiments thus represent the first step towards in vitro reconstitution of the archaeal N-glycosylation process.

  10. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    PubMed Central

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  11. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    PubMed

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  12. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs{sup +}-selective binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo

    2015-03-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr{sup 2+}-binding sites and one Cs{sup +}-binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr{sup 2+} and Cs{sup +}, as the removal of the radioactive Sr{sup 2+} and Cs{sup +} that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs{sup +}more » or Sr{sup 2+}. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3{sub 1} using X-ray crystallography. Moreover, the locations of bound Sr{sup 2+} and Cs{sup +} ions were identified by anomalous X-ray diffraction. The location of one Cs{sup +}-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na{sup +} (90 mM Na{sup +}/10 mM Cs{sup +}). From an activity assay using isothermal titration calorimetry, the bound Sr{sup 2+} and Cs{sup +} ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs{sup +}-binding site provides important information that is useful for the design of artificial Cs{sup +}-binding sites that may be useful in the bioremediation of radioactive isotopes.« less

  13. Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea

    PubMed Central

    Graf, Michael; Blaby, Ian K.; Makkay, Andrea M.; Starosta, Agata L.; Papke, R. Thane; Oshima, Tairo; Wilson, Daniel N.

    2016-01-01

    Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies. PMID:28053595

  14. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  15. Comparative Proteomic Insights into the Lactate Responses of Halophilic Salinicoccus roseus W12

    PubMed Central

    Wang, Hongyan; Wang, Limin; Yang, Han; Cai, Yumeng; Sun, Lifan; Xue, Yanfen; Yu, Bo; Ma, Yanhe

    2015-01-01

    Extremophiles use adaptive mechanisms to survive in extreme environments, which is of great importance for several biotechnological applications. A halophilic strain, Salinicoccus roseus W12, was isolated from salt lake in Inner Mongolia, China in this study. The ability of the strain to survive under high sodium conditions (including 20% sodium lactate or 25% sodium chloride, [w/v]) made it an ideal host to screen for key factors related to sodium lactate resistance. The proteomic responses to lactate were studied using W12 cells cultivated with or without lactate stress. A total of 1,656 protein spots in sodium lactate-treated culture and 1,843 spots in NaCl-treated culture were detected by 2-dimensional gel electrophoresis, and 32 of 120 significantly altered protein spots (fold change > 2, p < 0.05) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. Among 21 successfully identified spots, 19 proteins were upregulated and 2 were downregulated. The identified proteins are mainly involved in metabolism, cellular processes and signaling, and information storage and processing. Transcription studies confirmed that most of the encoding genes were upregulated after the cells were exposed to lactate in 10 min. Cross-protecting and energy metabolism-related proteins played an important role in lactate tolerance for S. roseus W12. PMID:26358621

  16. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    PubMed

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  17. Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring.

    PubMed

    Elshahed, Mostafa S; Najar, Fares Z; Roe, Bruce A; Oren, Aharon; Dewers, Thomas A; Krumholz, Lee R

    2004-04-01

    The archaeal community in a sulfide- and sulfur-rich spring with a stream water salinity of 0.7 to 1.0% in southwestern Oklahoma was studied by cloning and sequencing of 16S rRNA genes. Two clone libraries were constructed from sediments obtained at the hydrocarbon-exposed source of the spring and the microbial mats underlying the water flowing from the spring source. Analysis of 113 clones from the source library and 65 clones from the mat library revealed that the majority of clones belonged to the kingdom Euryarchaeota, while Crenarchaeota represented less than 10% of clones. Euryarchaeotal clones belonged to the orders Methanomicrobiales, Methanosarcinales, and Halobacteriales, as well as several previously described lineages with no pure-culture representatives. Those within the Halobacteriales represented 36% of the mat library and 4% of the source library. All cultivated members of this order are obligately aerobic halophiles. The majority of halobacterial clones encountered were not affiliated with any of the currently described genera of the family Halobacteriaceae. Measurement of the salinity at various locations at the spring, as well as along vertical gradients, revealed that soils adjacent to spring mats have a much higher salinity (NaCl concentrations as high as 32%) and a lower moisture content than the spring water, presumably due to evaporation. By use of a high-salt-plus-antibiotic medium, several halobacterial isolates were obtained from the microbial mats. Analysis of 16S rRNA genes indicated that all the isolates were members of the genus Haloferax. All isolates obtained grew at a wide range of salt concentrations, ranging from 6% to saturation, and all were able to reduce elemental sulfur to sulfide. We reason that the unexpected abundance of halophilic Archaea in such a low-salt, highly reduced environment could be explained by their relatively low salt requirement, which could be satisfied in specific locations of the shallow spring via

  18. Actinopolysporins A-C and tubercidin as a Pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600.

    PubMed

    Zhao, Li-Xing; Huang, Sheng-Xiong; Tang, Shu-Kun; Jiang, Cheng-Lin; Duan, Yanwen; Beutler, John A; Henrich, Curtis J; McMahon, James B; Schmid, Tobias; Blees, Johanna S; Colburn, Nancy H; Rajski, Scott R; Shen, Ben

    2011-09-23

    Our current natural product program utilizes new actinomycetes originating from unexplored and underexplored ecological niches, employing cytotoxicity against a selected panel of cancer cell lines as the preliminary screen to identify hit strains for natural product dereplication, followed by mechanism-based assays of the purified natural products to discover potential anticancer drug leads. Three new linear polyketides, actinopolysporins A (1), B (2), and C (3), along with the known antineoplastic antibiotic tubercidin (4), were isolated from the halophilic actinomycete Actinopolyspora erythraea YIM 90600, and the structures of the new compounds were elucidated on the basis of spectroscopic data interpretation. All four compounds were assayed for their ability to stabilize the tumor suppressor programmed cell death protein 4 (Pdcd4), which is known to antagonize critical events in oncogenic pathways. Only 4 significantly inhibited proteasomal degradation of a model Pdcd4-luciferase fusion protein, with an IC50 of 0.88±0.09 μM, unveiling a novel biological activity for this well-studied natural product.

  19. Involvement of EupR, a response regulator of the NarL/FixJ family, in the control of the uptake of the compatible solutes ectoines by the halophilic bacterium Chromohalobacter salexigens.

    PubMed

    Rodríguez-Moya, Javier; Argandoña, Montserrat; Reina-Bueno, Mercedes; Nieto, Joaquín J; Iglesias-Guerra, Fernando; Jebbar, Mohamed; Vargas, Carmen

    2010-10-13

    Osmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions. A C. salexigens Tn1732-induced mutant (CHR95) showed a delayed growth with glucose at low and optimal salinities, could not grow at high salinity, and was able to use ectoines as carbon sources at low salinity. CHR95 was affected in the transport and/or metabolism of glucose, and showed a deregulated ectoine uptake at any salinity, but it was not affected in ectoine metabolism. Transposon insertion in CHR95 caused deletion of three genes, Csal0865-Csal0867: acs, encoding an acetyl-CoA synthase, mntR, encoding a transcriptional regulator of the DtxR/MntR family, and eupR, encoding a putative two-component response regulator with a LuxR_C-like DNA-binding helix-turn-helix domain. A single mntR mutant was sensitive to manganese, suggesting that mntR encodes a manganese-dependent transcriptional regulator. Deletion of eupR led to salt-sensitivity and enabled the mutant strain to use ectoines as carbon source at low salinity. Domain analysis included EupR as a member of the NarL/FixJ family of two component response regulators. Finally, the protein encoded by Csal869, located three genes downstream of eupR was suggested to be the cognate histidine kinase of EupR. This protein was predicted to be a hybrid histidine kinase with one transmembrane and one cytoplasmic sensor domain. This work represents the first example of the involvement of a two-component response

  20. Characterization of a thermostable glycoside hydrolase (CMbg0408) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167.

    PubMed

    Letsididi, Rebaone; Hassanin, Hinawi Am; Koko, Marwa Yf; Ndayishimiye, Jean B; Zhang, Tao; Jiang, Bo; Stressler, Timo; Fischer, Lutz; Mu, Wanmeng

    2017-05-01

    Hyperthermophilic archaea capable of functioning optimally at very high temperatures are a good source of unique and industrially important thermostable enzymes. A glycoside hydrolase family 1 β-galactosidase gene (BglB) from a hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was cloned and expressed in Escherichia coli. The recombinant enzyme (CMbg0408) displayed optimum activity at 110 °C and pH 5.0. It also retained 92% and 70% of its maximal activity at 115 and 120 °C, respectively. The enzyme was completely thermostable and active after 120 min of incubation at 80 and 90 °C. It also showed broad substrate specificity with activities of 8876 ± 185 U mg -1 for p-nitrophenyl-β-d-galactopyranoside, 4464 ± 172 U mg -1 for p-nitrophenyl-β-d-glucopyranoside, 1486 ± 68 U mg -1 for o-nitrophenyl-β-d-galactopyranoside, 2250 ± 86 U mg -1 for o-nitrophenyl-β-d-xylopyranoside and 175 ± 4 U mg -1 for lactose. A catalytic efficiency (k cat /K m ) of 3059 ± 122 mmol L -1  s -1 and K m value of 8.1 ± 0.08 mmol L -1 were displayed towards p-nitrophenyl-β-d-galactopyranoside. As a result of its remarkable thermostability and high activity at high temperatures, this novel β-galactosidase may be useful for food and pharmaceutical applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater.

    PubMed

    Duan, Jinming; Fang, Hongda; Su, Bing; Chen, Jinfang; Lin, Jinmei

    2015-03-01

    A novel halophilic bacterium capable of heterotrophic nitrification-aerobic denitrification was isolated from marine sediments and identified as Vibrio diabolicus SF16. It had ability to remove 91.82% of NH4(+)-N (119.77 mg/L) and 99.71% of NO3(-)-N (136.43 mg/L). The nitrogen balance showed that 35.83% of initial NH4(+)-N (119.77 mg/L) was changed to intracellular nitrogen, and 53.98% of the initial NH4(+)-N was converted to gaseous denitrification products. The existence of napA gene further proved the aerobic denitrification ability of strain SF16. The optimum culture conditions were salinity 1-5%, sodium acetate as carbon source, C/N 10, and pH 7.5-9.5. When an aerated biological filter system inoculated with strain SF16 was employed to treat saline wastewater, the average removal efficiency of NH4(+)-N and TN reached 97.14% and 73.92%, respectively, indicating great potential of strain SF16 for future full-scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Thermococcus Thioreducens sp. nov., A Novel Hyperthermophilic, Obligately Sulfur-Reducing Archaeon from a Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Bej, Asim K.; Garriott, Owen

    2003-01-01

    A novel hyperthermophilic organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N; 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed to occur within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3 %), and temperature range 55-94 C (optimum 83-85 C). Novel isolate is strictly anaerobic and obligately dependent from elemental sulfur as electron acceptor, but it cannot reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products that can be utilized as substrates during sulfur-reduction are: peptone, bactotryptone, casamino-acids, and yeast extract. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 57.1 mol% . Comparative 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is most closely related to Thermococcus celer and 'T. barossii', but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, the name Thermococcus thioreducens sp. nov., is proposed. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = DSM 1498(sup T)).

  3. Mechanism of Dissolution of Envelopes of the Extreme Halophile Halobacterium cutirubrum1

    PubMed Central

    Onishi, H.; Kushner, D. J.

    1966-01-01

    Onishi, H. (National Research Council, Ottawa, Ontario, Canada), and D. J. Kushner. Mechanism of dissolution of envelopes of the extreme halophile Halobacterium cutirubrum. J. Bacteriol. 91:646–652. 1966.—Envelopes of Halobacterium cutirubrum dissolved rapidly in media of low ionic strength. Heating partially inhibited breakdown, probably because of nonspecific protein coagulation rather than inactivation of a lytic enzyme(s). Dissolution of envelopes in water did not involve splitting of peptide bonds or protein-lipid bonds, or any extensive breakdown of carbohydrate polymers. Dissolution was increased by alcohols and urea, even at high salt concentrations, but was not affected by metabolic inhibitors. Thus, no evidence was found for a dilution-activated lytic enzyme that contributes to envelope breakdown. Cells of H. cutirubrum were stable in 2 m NaCl, but lysis occurred in 2 m KCl or NH4Cl. This lysis did not involve an extensive breakdown of the envelope. No evidence for different sites of Na+, K+, and NH4+ action was obtained from the pattern of release of envelope constituents in different concentrations of these salts. Ultracentrifugation studies showed that adding salts to envelopes that had been dissolved in water led to a nonspecific reaggregation of envelope material. No difference was seen between the effects of KCl and NaCl, except at 3 to 4 m concentrations where KCl caused more aggregation. The preferential effect of Na+ on intact cells is probably due to its ability specifically to prevent leakage rather than to an overall effect on envelope integrity. Images PMID:5883109

  4. Isolation, characterization and phylogenetic analysis of halophilic archaea from a salt mine in central Anatolia (Turkey).

    PubMed

    Yildiz, Evrim; Ozcan, Birgul; Caliskan, Mahmut

    2012-01-01

    The haloarchaeal diversity of a salt mine, a natural cave in central Anatolia, was investigated using convential microbiological and molecular biology methods. Eight halophilic archaeal isolates selected based on their colony morphology and whole cell protein profiles were taxonomically classified on the basis of their morphological, physiological, biochemical properties, polar lipid and protein profiles and 16S rDNA sequences. From the 16S rDNA sequences comparisons it was established that the isolates CH2, CH3 and CHC resembled Halorubrum saccharovorum by 98.8%, 98.9% and 99.5%, respectively. There was a 99.7% similarity between the isolate CH11 and Halobacterium noricense and 99.2% between the isolate CHA1 and Haloarcula argentinensis. The isolate CH8K and CH8B revealed a similarity rate of 99.8% and 99.3% to Halococcus dombrowskii, respectively. It was concluded that the isolates named CH2, CH3 and CHC were clustered in the genus Halorubrum and that CHA1 and CH7 in the genus Haloarcula, CH8K and CH8B in the genus Halococcus and CH11 in the genus Halobacterium.

  5. Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094(T)), a moderately halophilic member of the Roseobacter clade.

    PubMed

    Riedel, Thomas; Spring, Stefan; Fiebig, Anne; Petersen, Jörn; Kyrpides, Nikos C; Göker, Markus; Klenk, Hans-Peter

    2014-06-15

    Salipiger mucosus Martínez-Cànovas et al. 2004 is the type species of the genus Salipiger, a moderately halophilic and exopolysaccharide-producing representative of the Roseobacter lineage within the alphaproteobacterial family Rhodobacteraceae. Members of this family were shown to be the most abundant bacteria especially in coastal and polar waters, but were also found in microbial mats and sediments. Here we describe the features of the S. mucosus strain DSM 16094(T) together with its genome sequence and annotation. The 5,689,389-bp genome sequence consists of one chromosome and several extrachromosomal elements. It contains 5,650 protein-coding genes and 95 RNA genes. The genome of S. mucosus DSM 16094(T) was sequenced as part of the activities of the Transregional Collaborative Research Center 51 (TRR51) funded by the German Research Foundation (DFG).

  6. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine

    NASA Technical Reports Server (NTRS)

    Bhupathiraju, V. K.; McInerney, M. J.; Woese, C. R.; Tanner, R. S.

    1999-01-01

    Three strains, designated VS-751T, VS-511 and VS-732, of a strictly anaerobic, moderately halophilic, Gram-negative, rod-shaped bacterium were isolated from a highly saline (15-20%) brine from an oil reservoir in central Oklahoma, USA. The optimal concentration of NaCl for growth of these three strains was 2 M (12%), and the strains also grew in the presence of an additional 1 M MgCl2. The strains were mesophilic and grew at a pH range of 6-8. Carbohydrates used by all three strains included glucose, fructose, arabinose, galactose, maltose, mannose, cellobiose, sucrose and inulin. Glucose fermentation products included ethanol, acetate, H2 and CO2, with formate produced by two of the three strains. Differences were noted among strains in the optimal temperature and pH for growth, the maximum and minimum NaCl concentration that supported growth, substrate utilization and cellular fatty acid composition. Despite the phenotypic differences among the three strains, analysis of the 16S rRNA gene sequences and DNA-DNA hybridizations showed that these three strains were members of the same genospecies which belonged to the genus Haloanaerobium. The phenotypic and genotypic characteristics of strains VS-751T, VS-511 and VS-732 are different from those of previously described species of Haloanaerobium. It is proposed that strain VS-751T (ATCC 700103T) be established as the type strain of a new species, Haloanaerobium kushneri.

  7. Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old dead sea brine samples.

    PubMed

    Arahal, D R; Gutiérrez, M C; Volcani, B E; Ventosa, A

    2000-10-01

    A taxonomic study comprising both phenotypic and genotypic characterization, has been carried out on a total of 158 extremely halophilic aerobic archaeal strains. These strains were isolated from enrichments prepared from Dead Sea water samples dating from 1936 that were collected by B. E. Volcani for the demonstration of microbial life in the Dead Sea. The isolates were examined for 126 morphological, physiological, biochemical and nutritional tests. Numerical analysis of the data, by using the S(J) coefficient and UPGMA clustering method, showed that the isolates clustered into six phenons. Twenty-two out of the 158 strains used in this study were characterized previously (ARAHAL et al., 1996) and were placed into five phenotypic groups. The genotypic study included both the determination of the guanineplus-cytosine content of the DNA and DNA-DNA hybridization studies. For this purpose, representative strains from the six phenons were chosen. These groups were found to represent some members of three different genera - Haloarcula (phenons A, B, and C), Haloferax (phenons D and E) and Halobacterium (phenon F) - of the family Halobacteriaceae, some of them never reported to occur in the Dead Sea, such as Haloarcula hispanica, while Haloferax volcanii (phenons D and E) was described in the Dead Sea by studies carried out several decades later than Volcani's work.

  8. Isolation and identification of two extremely halophilic archaea from sebkhas in the Algerian Sahara.

    PubMed

    Khallef, Sakina; Lestini, Roxane; Myllykallio, Hannu; Houali, Karim

    2018-03-31

    In Algeria, many salt lakes are to be found spread from southern Tunisia up to the Atlas Mountains in northern Algeria. Oum Eraneb and Ain El beida sebkhas (salt lakes), are located in the Algerian Sahara. The aim of this study was to explore the diversity of the halobacteria in this type of habitats. The physicochemical properties of these shallow saline environments were examined and compared with other hypersaline and marine ecosystems. Both sites were relatively alkaline with a pH around 8.57- 8.74 and rich in salt at 13% and 16% (w/v) salinity for Oum Eraneb and Ain El beida, respectively, with dominant ions of sodium and chloride. The microbial approach revealed the presence of two halophilic archaea, strains JCM13561 and A33T in both explored sebkhas. Growth occurred between 10 and 25% (w/v) NaCl and the isolates grow optimally at 20% (w/v) NaCl. The pH range for growth was 6 to 9.5 with an optimum at pH 7.5 for the first strain and 7 to 9.5 with an optimum pH at 8.5-9 for the second strain. On the basis of 16S rRNA gene sequence analysis, strains JCM13561 and A33T were most closely related to Halorubrum litoreum and Natronorubrum bangense (99% and 96% similarity, respectively).

  9. Gracilibacillus aidingensis sp. nov., a novel moderately halophilic bacterium isolated from Aiding salt lake.

    PubMed

    Guan, Tong-Wei; Tian, Lei; Li, En-Yuan; Tang, Shu-Kun; Zhang, Xiao-Ping

    2017-11-01

    A novel Gram-positive, aerobe, moderately halophilic bacterium was isolated from saline soil of Aiding lake in Xinjiang, north-west of China, designated strain YIM 98001 T . Cells were rod-shaped, motile and grew at 5-20% (w/v) NaCl (optimum 10%), pH 6-10 (optimum pH 7.0) and 4-45 °C (optimum 37 °C). The major cellular fatty acids were anteiso C 15:0 , anteiso C 17:0 , iso C 15:0 . The predominant respiratory quinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid were the major polar lipids. Meso-diaminopimelic acid was the diagnostic diamino acid of the cell-wall peptidoglycan. The G+C content was 36.46 mol%. 16S rRNA gene sequence analysis showed that the strain belongs to the family Bacillaceae, with the highest sequence similarity to the type strain Gracilibacillus thailandensis TP2-8 T (96.84%), followed by Gracilibacillus saliphilus YIM 91119 T (96.78%) and Gracilibacillus ureilyticus MF38 T (96.57%), thus confirming the affiliation of strain YIM 98001 T to the genus Gracilibacillus. The polyphasic approach indicates that strain YIM 98001 T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus aidingensis is proposed. The type strain is YIM 98001 T (=KCTC 42683 T  = DSMZ 104330 T ).

  10. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    PubMed

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  11. Thermococcus Thioreducens sp. Nov., a Novel Hyperthermophilic, Obligately Sulfur-reducing Archaeon from a Deep-sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T)).

  12. N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis

    PubMed Central

    Ding, Yan; Meyer, Benjamin H.; Albers, Sonja-Verena; Kaminski, Lina; Eichler, Jerry

    2014-01-01

    SUMMARY N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus. PMID:24847024

  13. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    PubMed

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  14. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample.

    PubMed

    Wang, Jing-Li; Ma, Ke-Dong; Wang, Yan-Wei; Wang, Hui-Min; Li, Yan-Bin; Zhou, Shan; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; He, Ming-Xiong; Ruan, Zhi-Yong

    2016-02-01

    A Gram-stain positive, non-motile, non-sporogenous, aerobic, rod-shaped and halophilic bacterium, designated LAM0015(T), was isolated from a saline sediment sample collected from Yantai City in China. The isolate was found to be able to grow at NaCl concentrations of 5-25 % (w/v) (optimum: 7-12 %), 15-45 °C (optimum: 35 °C) and pH 5.0-9.0 (optimum: 7.0). The major fatty acids were determined to be anteiso-C15:0 and anteiso-C17:0. The predominant respiratory quinone was identified as MK-7. The cell wall peptidoglycan was determined to contain meso-diaminopimelic acid. The polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, five phospholipids and one glycolipid. The DNA G+C content was 43.1 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate belongs within the genus Lentibacillus and is closely related to Lentibacillus persicus DSM 22530(T), Lentibacillus salicampi JCM 11462(T) and Lentibacillus jeotgali JCM 15795(T) with 97.3, 96.7 and 96.4 % sequence similarity, respectively. The DNA-DNA hybridization value between LAM0015(T) and L. persicus DSM 22530(T) was 51.2 ± 1.4 %. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0015(T) is concluded to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus amyloliquefaciens sp. nov. is proposed. The type strain is LAM0015(T) (=ACCC 06401(T) = JCM 19838(T)).

  15. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth wasmore » inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.« less

  16. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium Halomonas xianhensis SUR308.

    PubMed

    Biswas, Jhuma; Ganguly, J; Paul, A K

    2015-01-01

    A moderately halophilic bacterium, Halomonas xianhensis SUR308 (Genbank Accession No. KJ933394) was isolated from a multi-pond solar saltern at Surala, Ganjam district, Odisha, India. The isolate produced a significant amount (7.87 g l(-1)) of extracellular polysaccharides (EPS) when grown in malt extract-yeast extract medium supplemented with 2.5% NaCl, 0.5% casein hydrolysate and 3% glucose. The EPS was isolated and purified following the conventional method of precipitation and dialysis. Chromatographic analysis (paper, GC and GC-MS) of the hydrolyzed EPS confirmed its heteropolymeric nature and showed that it is composed mainly of glucose (45.74 mol%), galactose (33.67 mol %) and mannose (17.83 mol%). Fourier-transform infrared spectroscopy indicated the presence of methylene and carboxyl groups as characteristic functional groups. In addition, its proton nuclear magnetic resonance spectrum revealed functional groups specific for extracellular polysaccharides. X-ray diffraction analysis revealed the amorphous nature (CIxrd, 0.56) of the EPS. It was thermostable up to 250 °C and displayed pseudoplastic rheology and remarkable stability against pH and salts. These unique properties of the EPS produced by H. xianhensis indicate its potential to act as an agent for detoxification, emulsification and diverse biological activities.

  17. Corrigendum: Saliniramus fredricksonii gen. nov., sp. nov., a heterotrophic halophile isolated from Hot Lake, Washington, a member of a novel lineage (Salinarimonadaceae fam. nov.) within the order Rhizobiales, and reclassification of the genus Salinarimonas Liu et al. 2010 into Salinarimonadaceae.

    PubMed

    Cole, Jessica K; Morton, Beau R; Cardamone, Hayley C; Lake, Hannah R R; Dohnalkova, Alice C; Kim, Young-Mo; Kyle, Jennifer E; Maezato, Yukari; Dana, Karl L; Metz, Thomas O; Romine, Margaret F; Nelson, William C; Lindemann, Stephen R

    2018-06-01

    There was an error in the proposed genus name in the published article, in that the genus 'Salinivirga' was effectively published while this article was in review. Therefore, the genus 'Salinivirga' should be replaced with 'Saliniramus'. For the convenience of future readers, we have included the complete corrected article below, in which all occurrences of the incorrect genus name have been amended: A halophilic bacterial strain, HL-109 T , was isolated from the unicyanobacterial consortium UCC-O, which was obtained from the photosynthetic mat of Hot Lake (Washington, USA). A polyphasic approach using phenotypic, genotypic and chemotaxonomic data was used to classify the strain within the order Rhizobiales. The organism stained Gram-negative and was a moderate thermophile with a growth optimum of 45 °C. It was obligately aerobic, heterotrophic and halophilic, growing in both NaCl and MgSO4 brines. The novel isolate had a polymorphic cellular morphology of short rods with occasional branching, and cells were monotrichous. The major fatty acids detected were C18 : 1, C18 : 0, C16 : 0 and C18 : cyc. Phylogenetic analysis of the 16S rRNA gene placed the strain in the order Rhizobiales and it shared 94 % identity with the type strain of its nearest relative, Salinarimonas ramus. Morphological, chemotaxonomic and phylogenetic results did not affiliate the novel organism with any of the families in the Rhizobiales; therefore, HL-109 T is representative of a new lineage, for which the name Saliniramus fredricksonii gen. nov., sp. nov. is proposed, with the type strain HL-109 T (=JCM 31876 T =DSM 102886 T ). In addition, examination of the phylogenetics of strain HL-109 T and its nearest relatives, Salinarimonas ramus and Salinarimonasrosea, demonstrates that these halophiles form a clade distinct from the described families of the Rhizobiales. We further propose the establishment of a new family, Salinarimonadaceae fam. nov., to accommodate the genera

  18. Molecular dynamics study of the structural and dynamic characteristics of the polyextremophilic short-chain dehydrogenase from the Thermococcus sibiricus archaeon and its homologues

    NASA Astrophysics Data System (ADS)

    Popinako, Anna V.; Antonov, Mikhail Yu.; Bezsudnova, Ekaterina Yu.; Prokopiev, Georgiy A.; Popov, Vladimir O.

    2017-11-01

    The study of structural adaptations of proteins from polyextremophilic organisms using computational molecular dynamics method is appealing because the obtained knowledge can be applied to construction of synthetic proteins with high activity and stability in polyextreme media which is useful for many industrial applications. To investigate molecular adaptations to high temperature, we have focused on a superthermostable short-chain dehydrogenase TsAdh319 from the Thermococcus sibiricus polyextremophilic archaeon and its closest structural homologues. Molecular dynamics method is widely used for molecular structure refinement, investigation of biological macromolecules motion, and, consequently, for interpreting the results of certain biophysical experiments. We performed molecular dynamics simulations of the proteins at different temperatures. Comparison of root mean square fluctuations (RMSF) of the atoms in thermophilic alcohol dehydrogenases (ADHs) at 300 K and 358 K revealed the existence of stable residues at 358 K. These residues surround the active site and form a "nucleus of rigidity" in thermophilic ADHs. The results of our studies suggest that the existence of the "nucleus of rigidity" is crucial for the stability of TsAdh319. Absence of the "nucleus of rigidity" in non-thermally stable proteins causes fluctuations throughout the protein, especially on the surface, triggering the process of denaturation at high temperatures.

  19. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE PAGES

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.; ...

    2014-12-04

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  20. High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: Involvement of electrostatic interactions and cofactors

    PubMed Central

    Moczygemba, Charmaine; Guidry, Jesse; Jones, Kathryn L.; Gomes, Cláudio M.; Teixeira, Miguel; Wittung-Stafshede, Pernilla

    2001-01-01

    The ferredoxin from the thermophilic archaeon Acidianus ambivalens is a small monomeric seven-iron protein with a thermal midpoint (Tm) of 122°C (pH 7). To gain insight into the basis of its thermostability, we have characterized unfolding reactions induced chemically and thermally at various pHs. Thermal unfolding of this ferredoxin, in the presence of various guanidine hydrochloride (GuHCl) concentrations, yields a linear correlation between unfolding enthalpies (ΔH[Tm]) and Tm from which an upper limit for the heat capacity of unfolding (ΔCP) was determined to be 3.15 ± 0.1 kJ/(mole • K). Only by the use of the stronger denaturant guanidine thiocyanate (GuSCN) is unfolding of A. ambivalens ferredoxin at pH 7 (20°C) observed ([GuSCN]1/2 = 3.1 M; ΔGU[H2O] = 79 ± 8 kJ/mole). The protein is, however, less stable at low pH: At pH 2.5, Tm is 64 ± 1°C, and GuHCl-induced unfolding shows a midpoint at 2.3 M (ΔGU[H2O] = 20 ± 1 kJ/mole). These results support that electrostatic interactions contribute significantly to the stability. Analysis of the three-dimensional molecular model of the protein shows that there are several possible ion pairs on the surface. In addition, ferredoxin incorporates two iron–sulfur clusters and a zinc ion that all coordinate deprotonated side chains. The zinc remains bound in the unfolded state whereas the iron–sulfur clusters transiently form linear three-iron species (in pH range 2.5 to 10), which are associated with the unfolded polypeptide, before their complete degradation. PMID:11468351

  1. A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Derrick L.; Notey, Jaspreet S.; Chandrayan, Sanjeev K.

    In this paper, a mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targetedmore » gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Finally, electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.« less

  2. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A Novel Branching Enzyme of the GH-57 Family in the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1

    PubMed Central

    Murakami, Taira; Kanai, Tamotsu; Takata, Hiroki; Kuriki, Takashi; Imanaka, Tadayuki

    2006-01-01

    Branching enzyme (BE) catalyzes formation of the branch points in glycogen and amylopectin by cleavage of the α-1,4 linkage and its subsequent transfer to the α-1,6 position. We have identified a novel BE encoded by an uncharacterized open reading frame (TK1436) of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. TK1436 encodes a conserved protein showing similarity to members of glycoside hydrolase family 57 (GH-57 family). At the C terminus of the TK1436 protein, two copies of a helix-hairpin-helix (HhH) motif were found. TK1436 orthologs are distributed in archaea of the order Thermococcales, cyanobacteria, some actinobacteria, and a few other bacterial species. When recombinant TK1436 protein was incubated with amylose used as the substrate, a product peak was detected by high-performance anion-exchange chromatography, eluting more slowly than the substrate. Isoamylase treatment of the reaction mixture significantly increased the level of short-chain α-glucans, indicating that the reaction product contained many α-1,6 branching points. The TK1436 protein showed an optimal pH of 7.0, an optimal temperature of 70°C, and thermostability up to 90°C, as determined by the iodine-staining assay. These properties were the same when a protein devoid of HhH motifs (the TK1436ΔH protein) was used. The average molecular weight of branched glucan after reaction with the TK1436ΔH protein was over 100 times larger than that of the starting substrate. These results clearly indicate that TK1436 encodes a structurally novel BE belonging to the GH-57 family. Identification of an overlooked BE species provides new insights into glycogen biosynthesis in microorganisms. PMID:16885460

  4. Thermococcus thioreducens sp. nov., a Novel Hyperthermophilic, Obligately Sulfur-Reducing Archaeon from a Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2degN, 33.9degW). The cells of strain OGL-20P(T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0-8.5 (optimum pH 7.0), an NaCl concentration range of 1-5%(w/v) (optimum 3%)and a temperature range of 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloram phenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G + C content of the DNA is 52.9 mol% The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (=JCM 12859(exp T) = DSM 14981(exp T)=ATCC BAA-394(exp T)).

  5. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation

    PubMed Central

    Miranda-Miranda, Estefan; Sánchez-Reyes, Ayixón; Cuervo-Soto, Laura; Aceves-Zamudio, Denise; Atriztán-Hernández, Karina; Morales-Herrera, Catalina; Rodríguez-Hernández, Rocío; Folch-Mallol, Jorge

    2014-01-01

    A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications. PMID:25162614

  6. Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology.

    PubMed

    Martinelli, Livia; Zalar, Polona; Gunde-Cimerman, Nina; Azua-Bustos, Armando; Sterflinger, Katja; Piñar, Guadalupe

    2017-07-01

    Halophilic fungal strains isolated from historical wooden staircase in a salt mine in Austria, and from wall biofilm and soil of a cave in the Coastal Range of the hyperarid Atacama Desert in Chile were characterised and described newly as Aspergillus salisburgensis and Aspergillus atacamensis. Morphological characters including solitary phialides producing solitary conidia and conidia in chains and/or heads suggested affinity to Aspergillus subgenus Polypaecilum. Strains required salt for growth, grew optimally on media with 10-25% NaCl and at 15-28 °C. These values are similar to those observed for Aspergillus salinarus comb. nov. (Phialosimplex salinarum), while the ex-type strains of Aspergillus sclerotialis, Aspergillus chlamydosporus and Aspergillus caninus (all belonging to Aspergillus subgen. Polypaecilum) grew optimally at 0-5% NaCl and showed fastest growth at 28-37 °C. Phylogenetic analyses on the basis of rDNA sequences, RAPD-PCR fingerprint patterns, and cellobiohydrolase gene (cbh-I) polymorphism clustered the strains into three groups and supported their taxonomic recognition as A. salinarus, A. atacamensis and A. salisburgensis. On the basis of phylogenetic inferences, also Sagenomella keratitidis is newly combined as Aspergillus keratitidis and inferred as a species of Aspergillus subgenus Polypaecilum.

  7. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste.

    PubMed

    Tejerizo, Gonzalo Torres; Kim, Yong Sung; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Off, Sandra; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-04-10

    Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.

    PubMed

    Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S

    2010-04-01

    To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.

  9. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    PubMed

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  10. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification.

    PubMed

    Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming

    2017-11-01

    The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance.

    PubMed

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-12-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16 S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8 pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified biosurfactants contain 1, 2-Ethanediamine N, N, N', N'-tetra, 8-Methyl-6-nonenamide, (Z)-9-octadecenamide and a fatty acid derivative. Pharmacological screening of antibacterial, antifungal, antiviral and anticancer assays revealed that, the biosurfactant extracted from Halomonas sp BS4 effectively controlled the human pathogenic bacteria and fungi an aquaculturally important virus, WSSV. The biosurfactant also suppressed the proliferation of mammary epithelial carcinoma cell by 46.77% at 2.5 μg concentration. Based on these findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin.

  12. Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring.

    PubMed

    Díaz-Cárdenas, C; López, G; Patel, B K C; Baena, S

    2010-04-01

    A mesophilic, strictly anaerobic, slightly halophilic bacterium, designated strain USBA 82(T), was isolated from a terrestrial saline spring in the Colombian Andes. The non-spore-forming curved rods (5-7 x 1.3 microm) with pointed or rounded ends, stained Gram-negative and were motile by means of laterally inserted flagella. The strain grew optimally at 30 degrees C (growth range 20-40 degrees C), pH 7.3 (growth range pH 5.5-8.5) and 2 % (w/v) NaCl (growth range 0.1-7 % NaCl). The strain fermented peptides, amino acids and a few organic acids, but growth was not observed on carbohydrates, alcohols or fatty acids. The strain reduced thiosulfate and sulfur to sulfide. Sulfate, sulfite, nitrate and nitrite were not used as electron acceptors. On peptone alone, acetate, succinate, propionate and traces of ethanol were formed, but in the presence of thiosulfate, acetate and succinate were formed. The G+C content of the chromosomal DNA was 52 mol% (T(m)). 16S rRNA gene sequence analysis indicated that strain USBA 82(T) was affiliated to Dethiosulfovibrio peptidovorans within the phylum Synergistetes with a similarity value of approximately 93 %. Based on the differences between the new strain and the type species of the genus Dethiosulfovibrio, we suggest that strain USBA 82(T) represents a novel species of the genus for which the name Dethiosulfovibrio salsuginis sp. nov. is proposed. The type strain is USBA 82(T) (=DSM 21565(T)=KCTC 5659(T)).

  13. Role of Trehalose in Salinity and Temperature Tolerance in the Model Halophilic Bacterium Chromohalobacter salexigens

    PubMed Central

    Salvador, Manuel; Rodríguez-Moya, Javier; Iglesias-Guerra, Fernando; Csonka, Laszlo N.; Nieto, Joaquín J.; Vargas, Carmen

    2012-01-01

    The disaccharide trehalose is considered as a universal stress molecule, protecting cells and biomolecules from injuries imposed by high osmolarity, heat, oxidation, desiccation and freezing. Chromohalobacter salexigens is a halophilic and extremely halotolerant γ-proteobacterium of the family Halomonadaceae. In this work, we have investigated the role of trehalose as a protectant against salinity, temperature and desiccation in C. salexigens. A mutant deficient in the trehalose-6-phosphate synthase gene (otsA::Ω) was not affected in its salt or heat tolerance, but double mutants ectoine- and trehalose-deficient, or hydroxyectoine-reduced and trehalose-deficient, displayed an osmo- and thermosensitive phenotype, respectively. This suggests a role of trehalose as a secondary solute involved in osmo- (at least at low salinity) and thermoprotection of C. salexigens. Interestingly, trehalose synthesis was osmoregulated at the transcriptional level, and thermoregulated at the post-transcriptional level, suggesting that C. salexigens cells need to be pre-conditioned by osmotic stress, in order to be able to quickly synthesize trehalose in response to heat stress. C. salexigens was more sensitive to desiccation than E. coli and desiccation tolerance was slightly improved when cells were grown at high temperature. Under these conditions, single mutants affected in the synthesis of trehalose or hydroxyectoine were more sensitive to desiccation than the wild-type strain. However, given the low survival rates of the wild type, the involvement of trehalose and hydroxyectoine in C. salexigens response to desiccation could not be firmly established. PMID:22448254

  14. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance.

    PubMed

    Matsumi, Rie; Manabe, Kenji; Fukui, Toshiaki; Atomi, Haruyuki; Imanaka, Tadayuki

    2007-04-01

    We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.

  15. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments.

    PubMed

    Kaye, Jonathan Z; Márquez, M Carmen; Ventosa, Antonio; Baross, John A

    2004-03-01

    To assess the physiological and phylogenetic diversity of culturable halophilic bacteria in deep-sea hydrothermal-vent environments, six isolates obtained from low-temperature hydrothermal fluids, sulfide rock and hydrothermal plumes in North and South Pacific Ocean vent fields located at 1530-2580 m depth were fully characterized. Three strains were isolated on media that contained oligotrophic concentrations of organic carbon (0.002 % yeast extract). Sequencing of the 16S rRNA gene indicated that all strains belonged to the genus Halomonas in the gamma-subclass of the Proteobacteria. Consistent with previously described species, the novel strains were slightly to moderately halophilic and grew in media containing up to 22-27 % total salts. The isolates grew at temperatures as low as -1 to 2 degrees C and had temperature optima of 30 or 20-35 degrees C. Both the minimum and optimum temperatures for growth were similar to those of Antarctic and sea-ice Halomonas species and lower than typically observed for the genus as a whole. Phenotypic tests revealed that the isolates were physiologically versatile and tended to have more traits in common with each other than with closely related Halomonas species, presumably a reflection of their common deep-sea, hydrothermal-vent habitat of origin. The G+C content of the DNA for all strains was 56.0-57.6 mol%, and DNA-DNA hybridization experiments revealed that four strains (Eplume1(T), Esulfide1(T), Althf1(T) and Slthf2(T)) represented novel species and that two strains (Eplume2 and Slthf1) were related to Halomonas meridiana. The proposed new species names are Halomonas neptunia (type strain Eplume1(T)=ATCC BAA-805(T)=CECT 5815(T)=DSM 15720(T)), Halomonas sulfidaeris (type strain Esulfide1(T)=ATCC BAA-803(T)=CECT 5817(T)=DSM 15722(T)), Halomonas axialensis (type strain Althf1(T)=ATCC BAA-802(T)=CECT 5812(T)=DSM 15723(T)) and Halomonas hydrothermalis (type strain Slthf2(T)=ATCC BAA-800(T)=CECT 5814(T)=DSM 15725(T)).

  16. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria.

    PubMed

    Amziane, Meriam; Darenfed-Bouanane, Amel; Abderrahmani, Ahmed; Selama, Okba; Jouadi, Lydia; Cayol, Jean-Luc; Nateche, Farida; Fardeau, Marie-Laure

    2017-02-01

    A Gram-positive, moderately halophilic, endospore-forming bacterium, designated MerV T , was isolated from a sediment sample of a saline lake located in Ain Salah, south of Algeria. The cells were rod shaped and motile. Isolate MerV T grew at salinity interval of 0.5-25% NaCl (optimum, 5-10%), pH 6.0-12.0 (optimum, 8.0), and temperature between 10 and 40 °C (optimum, 30 °C).The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, a phospholipid, and two lipids, and MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C 15:0 and anteiso C 17:0 . The DNA G+C content was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MerV T was most closely related to Virgibacillus halodenitrificans (gene sequence similarity of 97.0%). On the basis of phenotypic, chemotaxonomic properties, and phylogenetic analyses, strain MerV T (=DSM = 28944 T ) should be placed in the genus Virgibacillus as a novel species, for which the name Virgibacillus ainsalahensis is proposed.

  17. Cloning, Expression, and Purification of Choline Dehydrogenase from the Moderate Halophile Halomonas elongata

    PubMed Central

    Gadda, Giovanni; McAllister-Wilkins, Elien Elizabeth

    2003-01-01

    Choline dehydrogenase (EC 1.1.99.1) catalyzes the four-electron oxidation of choline to glycine-betaine via a betaine-aldehyde intermediate. Such a reaction is of considerable interest for biotechnological applications in that transgenic plants engineered with bacterial glycine-betaine-synthesizing enzymes have been shown to have enhanced tolerance towards various environmental stresses, such as hypersalinity, freezing, and high temperatures. To date, choline dehydrogenase has been poorly characterized in its biochemical and kinetic properties, mainly because its purification has been hampered by instability of the enzyme in vitro. In the present report, we cloned and expressed in Escherichia coli the betA gene from the moderate halophile Halomonas elongata which codes for a hypothetical choline dehydrogenase. The recombinant enzyme was purified to more than 70% homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by treatment with 30 to 50% saturation of ammonium sulfate followed by column chromatography using DEAE-Sepharose. The purified enzyme showed similar substrate specificities with either choline or betaine-aldehyde as the substrate, as indicated by the apparent V/K values (where V is the maximal velocity and K is the Michaelis constant) of 0.9 and 0.6 μmol of O2 min−1 mg−1 mM−1 at pH 7 and 25°C, respectively. With 1 mM phenazine methosulfate as the primary electron acceptor, the apparent Vmax values for choline and betaine-aldehyde were 10.9 and 5.7 μmol of O2 min−1 mg−1, respectively. These Vmax values decreased four- to sevenfold when molecular oxygen was used as the electron acceptor. Altogether, the kinetic data are consistent with the conclusion that H. elongata betA codes for a choline dehydrogenase that can also act as an oxidase when electron acceptors other than molecular oxygen are not available. PMID:12676692

  18. Salinithrix halophila gen. nov., sp. nov., a halophilic bacterium in the family Thermoactinomycetaceae.

    PubMed

    Zarparvar, Parisa; Amoozegar, Mohammad Ali; Nikou, Mahdi Moshtaghi; Schumann, Peter; Ventosa, Antonio

    2014-12-01

    A halophilic actinomycete, strain R4S8(T), was isolated from soil of Inche-Broun hypersaline wetland in the north of Iran. The isolate grew aerobically at temperatures of 30-50 °C (optimum 40 °C), pH 6-10 (optimum pH 7.0) and in the presence of 1-15 % (w/v) NaCl (optimum 3-5 %). It formed short and straight to moderately flexuous aerial mycelium without motile elements. The cell wall of strain R4S8(T) contained meso-diaminopimelic acid as the diamino acid without any diagnostic sugars. The polar lipid pattern consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylmonomethylethanolamine two unknown phospholipids and one unknown aminophospholipid. It synthesized anteiso-C15 : 0 (44.8 %), iso-C15 : 0 (28.8 %) and iso-C14 : 0 (8.5 %) as major fatty acids. MK-6 was the predominant respiratory quinone. The G+C content of the genomic DNA was 52.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain R4S8(T) belongs to the family Thermoactinomycetaceae and showed the closest 16S rRNA gene sequence similarity with Desmospora activa IMMIB L-1269(T) (95.5 %) and Marininema mesophilum SCSIO 10219(T) (95.3 %). On the basis of phylogenetic analysis and phenotypic characteristics, strain R4S8(T) represents a novel species in a new genus within the family Thermoactinomycetaceae, for which the name Salinithrix halophila gen. nov., sp. nov. is proposed. The type strain of the type species is R4S8(T) ( = IBRC-M 10813(T) = CECT 8506(T)). © 2014 IUMS.

  19. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia.

    PubMed

    Conde-Martínez, Natalia; Acosta-González, Alejandro; Díaz, Luis E; Tello, Edisson

    2017-12-08

    Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3-29 and A1SM3-36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3-36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract

  20. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil.

    PubMed

    Wang, Xiaowei; Xue, Yanfen; Ma, Yanhe

    2011-05-01

    A Gram-stain-positive, rod-shaped, non-sporulating, motile and moderately halophilic bacterium, designated strain H96B60(T), was isolated from a saline soil sample of the Qaidam basin, China. The strain was facultatively anaerobic. Major end products formed from glucose fermentation were acetate, ethanol and lactic acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The isoprenoid quinone component was menaquinone-6 (MK-6). The predominant cellular fatty acids were C(16: 0), anteiso-C(13 : 0) and anteiso-C(15 : 0). The genomic DNA G+C content of strain H96B60(T) was 36.2 mol%. Phylogenetic analysis based on comparative 16S rRNA gene sequences indicated that strain H96B60(T) represented a novel phyletic lineage within the family Bacillaceae and was related most closely to Halolactibacillus species (96.1-96.4 % similarity). Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain H96B60(T) is considered to represent a novel species of a new genus, for which the name Streptohalobacillus salinus gen. nov., sp. nov. is proposed. The type strain of Streptohalobacillus salinus is H96B60(T) ( = DSM 22440(T)  = CGMCC 1.7733(T)).

  2. Deciphering the role of multiple betaine-carnitine-choline transporters in the Halophile Vibrio parahaemolyticus.

    PubMed

    Ongagna-Yhombi, Serge Y; McDonald, Nathan D; Boyd, E Fidelma

    2015-01-01

    Vibrio parahaemolyticus is a halophile that is the predominant cause of bacterial seafood-related gastroenteritis worldwide. To survive in the marine environment, V. parahaemolyticus must have adaptive strategies to cope with salinity changes. Six putative compatible solute (CS) transport systems were previously predicted from the genome sequence of V. parahaemolyticus RIMD2210633. In this study, we determined the role of the four putative betaine-carnitine-choline transporter (BCCT) homologues VP1456, VP1723, VP1905, and VPA0356 in the NaCl stress response. Expression analysis of the four BCCTs subjected to NaCl upshock showed that VP1456, VP1905, and VPA0356, but not VP1723, were induced. We constructed in-frame single-deletion mutant strains for all four BCCTs, all of which behaved similarly to the wild-type strain, demonstrating a redundancy of the systems. Growth analysis of a quadruple mutant and four BCCT triple mutants demonstrated the requirement for at least one BCCT for efficient CS uptake. We complemented Escherichia coli MHK13, a CS synthesis- and transporter-negative strain, with each BCCT and examined CS uptake by growth analysis and (1)H nuclear magnetic resonance (NMR) spectroscopy analyses. These data demonstrated that VP1456 had the most diverse substrate transport ability, taking up glycine betaine (GB), proline, choline, and ectoine. VP1456 was the sole ectoine transporter. In addition, the data demonstrated that VP1723 can transport GB, proline, and choline, whereas VP1905 and VPA0356 transported only GB. Overall, the data showed that the BCCTs are functional and that there is redundancy among them. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Isolation, characterization and exploring biotechnological potential of halophilic archaea from salterns of western India.

    PubMed

    Singh, Aparna; Singh, Anil Kumar

    2018-01-01

    Thirteen halophilic archaea were isolated from Kandla and Bhayander salt pans. These isolates were grouped into three different genera Halobacterium, Haloferax and Haloarcula based on morphological and biochemical characterization, polar lipid analysis, Amplified 16S rDNA restriction analysis (ARDRA) and 16S rDNA sequence analysis. Biochemical characterization suggested the ability of isolates to produce protease, amylase and poly-hydroxybutyrate (PHB) indicating their biotechnological potential. The isolates were further screened for the amount of extracellular protease produced. Halobacterium sp. SP1(1) showed significant protease production compared to other isolates. Protease producing ability of the isolate was influenced by several factors such as NaCl concentration, type of protein source, metal ions and surfactants, and presence of amino acid supplements in the production medium. Soybean flour, FeCl 3 and dicotylsulfosuccinate were found to increase protease production by 2.36, 1.54 and 1.26 folds, respectively compared to production in basal medium. Effect of organic solvents used in paints (n-decane, n-undecane and n-dodecane) was also investigated on protease production by the isolate. Protease production by Halobacterium sp. SP1(1) was enhanced by 1.2 folds in presence of n-decane compared to control. Furthermore, the ability of isolate to hydrolyse fish protein was investigated using three different edible fishes (Pomfret, Flat fish and Seer fish) as sole protein source. Pomfret was found to be a good protein source for protease production by the isolate. These results revealed that Halobacterium sp. SP1(1) may have potential for paint-based antifouling coating preparations and fish sauce preparation by virtue of its extracellular protease.

  4. Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research

    NASA Astrophysics Data System (ADS)

    Serrano, Paloma; Wagner, Dirk; Böttger, Ute; de Vera, Jean-Pierre; Lasch, Peter; Hermelink, Antje

    2014-08-01

    Methanogenic archaea from Siberian permafrost are suitable model organisms that meet many of the preconditions for survival on the martian subsurface. These microorganisms have proven to be highly resistant when exposed to diverse stress factors such as desiccation, radiation and other thermo-physical martian conditions. In addition, the metabolic requirements of methanogenic archaea are in principle compatible with the environmental conditions of the Red Planet. The ExoMars mission will deploy a rover carrying a Raman spectrometer among the analytical instruments in order to search for signatures of life and to investigate the martian geochemistry. Raman spectroscopy is known as a powerful nondestructive optical technique for biosignature detection that requires only little sample preparation. In this study, we describe the use of confocal Raman microspectroscopy (CRM) as a rapid and sensitive technique for characterization of the methanogenic archaeon Methanosarcina soligelidi SMA-21 at the single cell level. These studies involved acquisition of Raman spectra from individual cells isolated from microbial cultures at different stages of growth. Spectral analyses indicated a high degree of heterogeneity between cells of individual cultures and also demonstrated the existence of growth-phase specific Raman patterns. For example, besides common Raman patterns of microbial cells, CRM additionally revealed the presence of lipid vesicles and CaCO3 particles in microbial preparations of M. soligelidi SMA-21, a finding that could be confirmed by electron microscopy. The results of this study suggest that heterogeneity and diversity of microorganisms have to be considered when using Raman-based technologies in future space exploration missions.

  5. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  6. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    PubMed

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  7. A novel NhaD-type Na+/H+ antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila.

    PubMed

    Wang, Yanhong; Song, Na; Yang, Lina; Abdel-Motaal, Heba; Zhang, Rui; Zhang, Zhenglai; Meng, Fankui; Jiang, Juquan

    2017-07-01

    In this study, a NhaD-type Na + /H + antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na + /H + antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L -1 and to LiCl up to 0.2 mol·L -1 and to an alkaline pH. pH-dependent Na + (Li + )/H + antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na + (Li + )/H + antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na + /H + antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na + /H + antiporter.

  8. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy

    PubMed Central

    Li, Wei; Hoffman, David W.

    2001-01-01

    Translation initiation factor 1A (aIF-1A) from the archaeon Methanococcus jannaschii was expressed in Escherichia coli, purified, and characterized in terms of its structure and dynamics using multidimensional NMR methods. The protein was found to be a member of the OB-fold family of RNA-associated proteins, containing a barrel of five beta-strands, a feature that is shared with the homologous eukaryotic translation initiation factor 1A (eIF-1A), as well as the prokaryotic translation initiation factor IF1. External to the β barrel, aIF-1A contains an α-helix at its C-terminal and a flexible loop at its N-terminal, features that are qualitatively similar to those found in eIF-1A, but not present in prokaryotic IF1. The structural model of aIF-1A, when used in combination with primary sequence information for aIF-1A in divergent species, permitted the most-conserved residues on the protein surface to be identified, including the most likely candidates for direct interaction with the 16S ribosomal RNA and other components of the translational apparatus. Several of the conserved surface residues appear to be unique to the archaea. Nitrogen-15 relaxation and amide exchange rate data were used to characterize the internal motions within aIF-1A, providing evidence that the protein surfaces that are most likely to participate in intermolecular interactions are relatively flexible. A model is proposed, suggesting some specific interactions that may occur between aIF-1A and the small subunit of the archaeal ribosome. PMID:11714910

  9. Expression and characterization of a potential exopolysaccharide from a newly isolated halophilic thermotolerant bacteria Halomonas nitroreducens strain WB1

    PubMed Central

    Chikkanna, Arpitha; Kishore, Abhinoy

    2018-01-01

    The halophilic bacterial strain WB1 isolated from a hydrothermal vent was taxonomically characterized using multiple proxies, as Halomonas nitroreducens strain WB1. When grown on malt extract/yeast extract (MY) medium, it produced large quantities of exopolysaccharide (EPS). The polymer was synthesized at a higher rate during the log and early stationary phases. The anionic polysaccharide is primarily composed of glucose, mannose, and galactose. The studied EPS was highly viscous and had pseudoplastic nature. The EPS was found to be a mixture of three polysaccharides under FT-IR, which makes it less labile to environmental diagenesis. It also has emulsifying and antioxidant activity along with the binding capacity to heavy metals. The EPS has unique and interesting physical and chemical properties, which are different from earlier reported exo-polysaccharides produced by different bacterial genus. This suggests that the extreme geological niches like hypersaline, hyperthermal, hypothermal, and oligophilic environments, which are not well studied so far, can offer extensive and potential resources for medical, biotechnological and industrial applications. The study clearly showed that the thermal springs from the temperate region can be a potent source of many such industrially important microbial genera and need further detailed studies to be carried out. PMID:29707437

  10. Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Gan, Longzhan; Zhang, Heming; Tian, Jiewei; Li, Xiaoguang; Long, Xiufeng; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-02-01

    A novel aerobic, Gram-stain-positive, motile, moderately halophilic and coccoid bacterial strain, designated LCB217 T , was isolated from a saline-alkali soil in north-western China and identified using a polyphasic taxonomic approach. Growth occurred with 3-15 % (w/v) NaCl (optimum 3-5 %), at 10-45 °C (optimum 30 °C) and at pH 7.0-9.0 (optimum pH 9.0). Strain LCB217 T contained MK-7 and MK-8 as the predominant menaquinones and anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 as the major fatty acids. The polar lipids from strain LCB217 T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid, one unidentified aminophospholipid and one unidentified lipid. The peptidoglycan type was A4α (l-Lys-d-Glu). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain LCB217 T belonged to the genus Planococcus and was closely related to the type strains Planococcus plakortidis AS/ASP6 (II) T (98.2 % similarity), Planococcus maitriensis S1 T (97.7 %) and Planococcus salinarum ISL-16 T (97.2 %). The G+C content of the genomic DNA was 49.4 mol%. DNA-DNA relatedness values between strain LCB217 T andPlanococcusplakortidis AS/ASP6 (II) T , Planococcusmaitriensis S1 T andPlanococcussalinarum ISL-16 T were 29.5, 38.1 and 39.5 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data, strain LCB217 T represents a novel species of the genus Planococcus, for which the name Planococcus salinus sp. nov. is proposed. The type strain is LCB217 T (=CGMCC 1.15685 T =KCTC 33861 T ).

  11. Spiribacter roseus sp. nov., a moderately halophilic species of the genus Spiribacter from salterns.

    PubMed

    León, María José; Vera-Gargallo, Blanca; Sánchez-Porro, Cristina; Ventosa, Antonio

    2016-10-01

    Four pink-pigmented, non-motile, Gram-staining-negative and moderately halophilic curved rods, designated strains SSL50T, SSL25, SSL97 and SSL4, were isolated from a saltern located in Isla Cristina, Huelva, south-west Spain. Phylogenetic analyses based on 16S rRNA gene sequences showed that they were members of the genus Spiribacter, most closely related to Spiribacter curvatus UAH-SP71T (99.3-99.5 % sequence similarity) and Spiribacter salinus M19-40T (96.5-96.7 %). Other related strains were Alkalilimnicola ehrlichii MLHE-1T (95.1-95.3 %), Arhodomonas recens RS91T (95.1-95.2 %) and Arhodomonas aquaeolei ATCC 49307T (95.0-95.1 %), all members of the family Ectothiorhodospiraceae. The major fatty acids were C18 : 1ω6c and/or C18 : 1ω7c, C16 : 0 and C12 : 0. The DNA G+C range was 64.0-66.3 mol%. The DNA-DNA hybridization values between strains SSL50T, SSL25, SSL97, SSL4 and S. piribacter. curvatus UAH-SP71T were 37-49 %. The average nucleotide identity (ANIb) values between the genome of strain SSL50T and those of the two other representatives of the genus Spiribacter, S. curvatus UAH-SP71T and S. salinus M19-40T, were 82.4 % and 79.1 %, respectively, supporting the proposal of a novel species of the genus Spiribacter. On the basis of the polyphasic analysis, the four new isolates are considered to represent a novel species of the genus Spiribacter, for which the name Spiribacter roseus sp. nov. is proposed. The type strain is SSL50T (=CECT 9117T=IBRC-M 11076T).

  12. Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Cheng, T. C.; Ramakrishnan, V.; Chan, S. I.

    1999-01-01

    A novel metallocarboxypeptidase (PfuCP) has been purified to homogeneity from the hyperthermophilic archaeon, Pyrococcus furiosus, with its intended use in C-terminal ladder sequencing of proteins and peptides at elevated temperatures. PfuCP was purified in its inactive state by the addition of ethylenediaminetetraacetic acid (EDTA) and dithiothreitol (DTT) to purification buffers, and the activity was restored by the addition of divalent cobalt (K, = 24 +/- 4 microM at 80 degrees C). The serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) had no effect on the activity. The molecular mass of monomeric PfuCP is 59 kDa as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 58 kDa by SDS-PAGE analysis. In solution, PfuCP exists as a homodimer of approximately 128 kDa as determined by gel filtration chromatography. The activity of PfuCP exhibits a temperature optimum exceeding 90 degrees C under ambient pressure, and a narrow pH optimum of 6.2-6.6. Addition of Co2+ to the apoPfuCP at room temperature does not alter its far-UV circular dichroism (CD) or its intrinsic fluorescence spectrum. Even when the CoPfuCP is heated to 80 degrees C, its far-UV CD shows a minimal change in the global conformation and the intrinsic fluorescence of aromatic residues shows only a partial quenching. Changes in the intrinsic fluorescence appear essentially reversible with temperature. Finally, the far-UV CD and intrinsic fluorescence data suggest that the overall structure of the holoenzyme is extremely thermostable. However, the activities of both the apo and holo enzyme exhibit a similar second-order decay over time, with 50% activity remaining after approximately 40 min at 80 degrees C. The N-blocked synthetic dipeptide, N-carbobenzoxy-Ala-Arg (ZAR), was used in the purification assay. The kinetic parameters at 80 degrees C with 0.4 mM CoCl2 were: Km, 0.9 +/- 0.1 mM; Vmax, 2,300 +/- 70 U mg(-1); and turn over number

  13. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress.

    PubMed

    Thombre, Rebecca S; Shinde, Vinaya D; Oke, Radhika S; Dhar, Sunil Kumar; Shouche, Yogesh S

    2016-05-27

    Haloarchaea are unique microorganism's resistant to environmental and osmotic stresses and thrive in their habitats despite extreme fluctuating salinities. In the present study, haloarchaea were isolated from hypersaline thalossohaline salterns of Bhandup, Mumbai, India and were identified as Haloferax prahovense, Haloferax alexandrines, Haloferax lucentense, Haloarcula tradensis, Haloarcula marismortui and Haloarcula argentinensis. The mechanism of adaptation to contrasting salinities (1.5 M and 4.5 M) was investigated in the extreme haloarchaeon, Hal. marismortui RR12. Hal. marismortui RR12 increased the intracellular sequestration of K(+) and Cl(-) ions in hypo salinity and hyper salinity respectively as detected by Energy-dispersive X-ray spectroscopy microanalysis (EDAX) and Inductively Coupled Plasma- atomic Emission Spectroscopy (ICP-AES) indicating the presence of 'salt-in' strategy of osmoadaptation. As a cellular response to salinity stress, it produced small heat shock like proteins (sHSP) identified using MALDI-TOF MS and increased the production of protective red carotenoid pigment. This is the first report on the study of the concomitant cellular, molecular and physiological mechanism adapted by Hal. marismortui RR12 when exposed to contrasting salinities in external environment.

  14. Proteome Analyses of Hydrogen-producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1 in Different One-carbon Substrate Culture Conditions*

    PubMed Central

    Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Min-Sik; Kang, Sung Gyun; Lee, Jung-Hyun; Choi, Jong-Soon; Kim, Seung Il; Chung, Young-Ho

    2012-01-01

    Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H2-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H2-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MSE. A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H2 production via an electron transport mechanism and that CO2 produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1. PMID:22232491

  15. Construction and characterization of the hetero-oligomer of the group II chaperonin from the hyperthermophilic archaeon, Thermococcus sp. strain KS-1.

    PubMed

    Sahlan, Muhamad; Kanzaki, Taro; Yohda, Masafumi

    2009-05-01

    The hyperthermophilic archaeon Thermococcus sp. strain KS-1 (T. KS-1) expresses two different chaperonin subunits, alpha and beta, for the folding of its proteins. The composition of the subunits in the hexadecameric double ring changes with temperature. The content of the beta subunit significantly increases according to the increase in temperature. The homo-oligomer of the beta subunit, Cpn beta, is more thermostable than that of the alpha subunit, Cpn alpha. Since Cpn alpha and Cpn beta also have different protein folding activities and interactions with prefoldin, the hetero-oligomer is thought to exhibit different characteristics according to the content of subunits. The hetero-oligomer of the T. KS-1 chaperonin has not been studied, however, because the alpha and beta subunits form hetero-oligomers of varying compositions when they are expressed simultaneously. In this study, we characterized the T. KS-1 chaperonin hetero-oligomer, Cpn alphabeta, containing both alpha and beta in the alternate order, which was constructed by the expression of alpha and beta subunits in a coordinated fashion and protease digestion. Cpn alphabeta protected citrate synthase from thermal aggregation, promoted the folding of acid-denatured GFP in an ATP-dependent manner, and exhibited an ATP-dependent conformational change. The yield of refolded GFP generated by Cpn alphabeta was almost equivalent to that generated by Cpn beta but lower than that generated by Cpn alpha. In contrast, Cpn alphabeta exhibited almost the same level of thermal stability as Cpn alpha, which was lower than that of Cpn beta. The affinity of Cpn alphabeta to prefoldin was found to be between those of Cpn alpha and Cpn beta, as expected.

  16. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  17. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    PubMed

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  18. Salinivibrio kushneri sp. nov., a moderately halophilic bacterium isolated from salterns.

    PubMed

    López-Hermoso, Clara; de la Haba, Rafael R; Sánchez-Porro, Cristina; Ventosa, Antonio

    2018-05-01

    Ten Gram-strain-negative, facultatively anaerobic, moderately halophilic bacterial strains, designated AL184 T , IB560, IB563, IC202, IC317, MA421, ML277, ML318, ML328A and ML331, were isolated from water ponds of five salterns located in Spain. The cells were motile, curved rods and oxidase and catalase positive. All of them grew optimally at 37°C, at pH 7.2-7.4 and in the presence of 7.5% (w/v) NaCl. Based on phylogenetic analyses of the 16S rRNA, the isolates were most closely related to Salinivibrio sharmensis BAG T (99.6-98.2% 16S rRNA gene sequence similarity) and Salinivibrio costicola subsp. costicola ATCC 35508 T (99.0-98.1%). According to the MLSA analyses based on four (gyrB, recA, rpoA and rpoD) and eight (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA) concatenated gene sequences, the most closely relatives were S. siamensis JCM 14472 T (96.8-95.4% and 94.9-94.7%, respectively) and S. sharmensis DSM 18182 T (94.0-92.6% and 92.9-92.7%, respectively). In silico DNA-DNA hybridization (GGDC) and average nucleotide identity (ANI) showed values of 23.3-44.8% and 80.2-91.8%, respectively with the related species demonstrating that the ten isolates constituted a single novel species of the genus Salinivibrio. Its pangenome and core genome consist of 6041 and 1230 genes, respectively. The phylogeny based on the concatenated orthologous core genes revealed that the ten strains form a coherent phylogroup well separated from the rest of the species of the genus Salinivibrio. The major cellular fatty acids of strain AL184 T were C 16:0 and C 18:1 . The DNA G+C content range was 51.9-52.5mol% (T m ) and 50.2-50.9mol% (genome). Based on the phylogenetic-phylogenomic, phenotypic and chemotaxonomic data, the ten isolates represent a novel species of the genus Salinivibrio, for which the name Salinivibrio kushneri sp. nov. is proposed. The type strain is AL184 T (=CECT 9177 T =LMG 29817 T ). Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.

    PubMed

    Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

    2013-03-01

    Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.

  20. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    PubMed

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  1. Abiotic Stress Resistance, a Novel Moonlighting Function of Ribosomal Protein RPL44 in the Halophilic Fungus Aspergillus glaucus

    PubMed Central

    Liu, Xiao-Dan; Xie, Lixia; Wei, Yi; Zhou, Xiaoyang; Jia, Baolei; Liu, Jinliang

    2014-01-01

    Ribosomal proteins are highly conserved components of basal cellular organelles, primarily involved in the translation of mRNA leading to protein synthesis. However, certain ribosomal proteins moonlight in the development and differentiation of organisms. In this study, the ribosomal protein L44 (RPL44), associated with salt resistance, was screened from the halophilic fungus Aspergillus glaucus (AgRPL44), and its activity was investigated in Saccharomyces cerevisiae and Nicotiana tabacum. Sequence alignment revealed that AgRPL44 is one of the proteins of the large ribosomal subunit 60S. Expression of AgRPL44 was upregulated via treatment with salt, sorbitol, or heavy metals to demonstrate its response to osmotic stress. A homologous sequence from the model fungus Magnaporthe oryzae, MoRPL44, was cloned and compared with AgRPL44 in a yeast expression system. The results indicated that yeast cells with overexpressed AgRPL44 were more resistant to salt, drought, and heavy metals than were yeast cells expressing MoRPL44 at a similar level of stress. When AgRPL44 was introduced into M. oryzae, the transformants displayed obviously enhanced tolerance to salt and drought, indicating the potential value of AgRPL44 for genetic applications. To verify the value of its application in plants, tobacco was transformed with AgRPL44, and the results were similar. Taken together, we conclude that AgRPL44 supports abiotic stress resistance and may have value for genetic application. PMID:24814782

  2. Identification of moderately halophilic bacteria from Thai fermented fish ( pla-ra ) and proposal of Virgibacillus siamensis sp. nov.

    PubMed

    Tanasupawat, Somboon; Chamroensaksri, Nitcha; Kudo, Takuji; Itoh, Takashi

    2010-10-01

    Forty-one isolates of moderately halophilic bacteria were isolated from fermented fish (pla-ra) in Thailand. On the basis of their phenotypic and chemotaxonomic characteristics, DNA-DNA relatedness and 16S rRNA gene sequences analyses, they were divided into six groups. The isolates in Group I to V were Gram-positive rod-shaped bacteria. They contained meso-diaminopimelic acid in the cell-wall peptidoglycan and menaquinone with seven isoprene units (MK-7). An isolate in Group VI was a Gram-negative rod-shaped bacterium. The DNA G+C contents of tested strains ranged from 36.5-63 mol%. Ten strains (Group I) were identified as Virgibacillus dokdonensis, 13 isolates (Group II) as V. halodenitrificans, 14 isolates (Group III) as V. marismortui, 1 isolate (Group IV) as Virgibacillus sp., 2 isolates (Group V) as Bacillus vietnamnensis, and 1 isolate (Group VI) as Chromohalobacter salexigens. Isolate MS3-4 in Group IV was closely related to V. carmonensis KCTC 3819(T) (95.9%). This strain contained anteiso-C(15:0) (55.8%) and anteiso-C(17:0) (17.7%) as major cellular fatty acids and had phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid as polar lipids. The DNA G+C content of MS3-4 was 38.0 mol%. The strain from Group IV is proposed as Virgibacillus siamensis sp. nov. and MS3-4(T) is the type strain (JCM 15395(T) =PCU 312(T) =TISTR 1957(T)).

  3. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6.

    PubMed

    Amoozegar, Mohammad Ali; Ashengroph, Morahem; Malekzadeh, Feridon; Reza Razavi, Mohamad; Naddaf, Saied; Kabiri, Mahboubeh

    2008-01-01

    Among the 49 strains of moderately halophilic bacteria isolated from the salty environments of Iran, a Gram-positive coccus designated as strain QW6 showed high capacity in the removal of toxic oxyanions of tellurium in a wide range of culture medium factors including pH (5.5-10.5), temperature (25-45 degrees C), various salts including NaCl, KCl, and Na(2)SO(4) (0.5-4 M), selenooxyanions (2-10 mM), and at different concentrations of potassium tellurite (0.5-1 mM) under aerobic condition. Phenotypic characterization and phylogenetic analyses based on 16S rDNA sequence comparisons indicated that this strain was a member of the genus Salinicoccus. The maximum tellurite removal was exhibited in 1.5M NaCl at 35 degrees C, while the activity reduced by 53% and 47% at 25 and 45 degrees C, respectively. The optimum pH for removal activity was shown to be 7.5, with 90% and 83% reduced removal capacities at the two extreme values of 5.5 and 10, respectively. The impact of different concentrations of selenooxyanions (2-10 mM) on tellurite removal by strain QW6 was evaluated. The ability of strain QW6 in the removal of tellurite in the presence of 6mM selenite increased by 25%. The concentration of toxic potassium tellurite in the supernatant of the bacterial culture medium decreased by 99% (from 0.5 to 0.005 mM) after 6 days and the color of the medium changed to black due to the formation of less toxic elemental tellurium.

  4. Widespread Secondary Contact and New Glacial Refugia in the Halophilic Rotifer Brachionus plicatilis in the Iberian Peninsula

    PubMed Central

    Campillo, Sergi; Serra, Manuel; Carmona, María José; Gómez, Africa

    2011-01-01

    Small aquatic organisms harbour deep phylogeographic patterns and highly structured populations even at local scales. These patterns indicate restricted gene flow, despite these organisms' high dispersal abilities, and have been explained by a combination of (1) strong founder effects due to rapidly growing populations and very large population sizes, and (2) the development of diapausing egg banks and local adaptation, resulting in low effective gene flow, what is known as the Monopolization hypothesis. In this study, we build up on our understanding of the mitochondrial phylogeography of the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula by both increasing the number of sampled ponds in areas where secondary contact is likely and doubling sample sizes. We analyzed partial mitochondrial sequences of 252 individuals. We found two deep mitochondrial DNA lineages differing in both their genetic diversity and the complexity of their phylogeographic structure. Our analyses suggest that several events of secondary contact between clades occurred after their expansion from glacial refugia. We found a pattern of isolation-by-distance, which we interpret as being the result of historical colonization events. We propose the existence of at least one glacial refugium in the SE of the Iberian Peninsula. Our findings challenge predictions of the Monopolization hypothesis, since coexistence (i.e., secondary contact) of divergent lineages in some ponds in the Iberian Peninsula is common. Our results indicate that phylogeographic structures in small organisms can be very complex and that gene flow between diverse lineages after population establishment can indeed occur. PMID:21698199

  5. Widespread secondary contact and new glacial refugia in the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula.

    PubMed

    Campillo, Sergi; Serra, Manuel; Carmona, María José; Gómez, Africa

    2011-01-01

    Small aquatic organisms harbour deep phylogeographic patterns and highly structured populations even at local scales. These patterns indicate restricted gene flow, despite these organisms' high dispersal abilities, and have been explained by a combination of (1) strong founder effects due to rapidly growing populations and very large population sizes, and (2) the development of diapausing egg banks and local adaptation, resulting in low effective gene flow, what is known as the Monopolization hypothesis. In this study, we build up on our understanding of the mitochondrial phylogeography of the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula by both increasing the number of sampled ponds in areas where secondary contact is likely and doubling sample sizes. We analyzed partial mitochondrial sequences of 252 individuals. We found two deep mitochondrial DNA lineages differing in both their genetic diversity and the complexity of their phylogeographic structure. Our analyses suggest that several events of secondary contact between clades occurred after their expansion from glacial refugia. We found a pattern of isolation-by-distance, which we interpret as being the result of historical colonization events. We propose the existence of at least one glacial refugium in the SE of the Iberian Peninsula. Our findings challenge predictions of the Monopolization hypothesis, since coexistence (i.e., secondary contact) of divergent lineages in some ponds in the Iberian Peninsula is common. Our results indicate that phylogeographic structures in small organisms can be very complex and that gene flow between diverse lineages after population establishment can indeed occur.

  6. Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand.

    PubMed

    Tanasupawat, Somboon; Namwong, Sirilak; Kudo, Takuji; Itoh, Takashi

    2007-07-01

    A Gram-positive, spore-forming and moderately halophilic bacterium was isolated from fermented fish (pla-ra) in Thailand. Cells of the isolate, RBU1-1(T), were strictly aerobic, motile rods and contained meso-diaminopimelic acid in the cell-wall peptidoglycan. Menaquinone with seven isoprene units (MK-7) was the predominant quinone. This isolate grew at 15-48 degrees C, pH 5-9 and in 2-30 % NaCl (optimally 10-20 %). The major cellular fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0). Polar lipid analysis revealed the presence of phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 36.7 mol%. 16S rRNA gene sequence analysis revealed that strain RBU1-1(T) was a member of the family Bacillaceae, and belonged to a cluster with Filobacillus and Tenuibacillus; strain RBU1-1(T) showed 16S rRNA gene sequence similarities of 96.0-96.9 % to members of these two genera. Strain RBU1-1(T) could also be differentiated from members of the genera Filobacillus and Tenuibacillus based on certain phenotypic characteristics such as cell-wall composition, mode of flagellation and growth pH range. Therefore, strain RBU1-1(T) is considered to represent a novel species in a new genus in the family Bacillaceae, for which the name Piscibacillus salipiscarius gen. nov., sp. nov. is proposed. The type strain of Piscibacillus salipiscarius is RBU1-1(T) (=JCM 13188(T)=PCU 270(T)=TISTR 1571(T)).

  7. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    PubMed Central

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  8. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52

    NASA Astrophysics Data System (ADS)

    Qiu, Xuan; Wang, Hongmei; Yao, Yanchen; Duan, Yong

    2017-08-01

    Although most modern dolomites occur in hypersaline environments, the effects of elevated salinity on the microbial mediation of dolomite precipitation have not been fully evaluated. Here we report results of dolomite precipitation in association with a batch culture of Haloferax volcanii DS52, a halophilic archaeon, under various salinities (from 120‰ to 360‰) and the impact of salinity on microbe-mediated dolomite formation. The mineral phases, morphology and atomic arrangement of the precipitates were analyzed by XRD, SEM and TEM, respectively. The amount of amino acids on the archaeal cell surface was quantified by HPLC/MS. The XRD analysis indicated that disordered dolomite formed successfully with the facilitation of cells harvested from cultures with relatively high salinities (200‰ and 280‰) but was not observed in association with cells harvested from cultures with lower salinity (120‰) or the lysates of cells harvested from extremely high salinity (360‰). The TEM analysis demonstrated that the crystals from cultures with a salinity of 200‰ closely matched that of dolomite. Importantly, we found that more carboxyl groups were presented on the cell surface under high salinity conditions to resist the high osmotic pressure, which may result in the subsequent promotion of dolomite formation. Our finding suggests a link between variations in the hydro-chemical conditions and the formation of dolomite via microbial metabolic activity and enhances our understanding about the mechanism of microbially mediated dolomite formation under high salinity conditions.

  9. Draft genome of Haloarcula rubripromontorii strain SL3, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico.

    PubMed

    Sánchez-Nieves, Rubén; Facciotti, Marc; Saavedra-Collado, Sofía; Dávila-Santiago, Lizbeth; Rodríguez-Carrero, Roy; Montalvo-Rodríguez, Rafael

    2016-03-01

    The genus Haloarcula belongs to the family Halobacteriaceae which currently has 10 valid species. Here we report the draft genome sequence of strain SL3, a new species within this genus, isolated from the Solar Salterns of Cabo Rojo, Puerto Rico. Genome assembly performed using NGEN Assembler resulted in 18 contigs (N50 = 601,911 bp), the largest of which contains 1,023,775 bp. The genome consists of 3.97 MB and has a GC content of 61.97%. Like all species of Haloarcula, the genome encodes heterogeneous copies of the small subunit ribosomal RNA. In addition, the genome includes 6 rRNAs, 48 tRNAs, and 3797 protein coding sequences. Several carbohydrate-active enzymes genes were found, as well as enzymes involved in the dihydroxyacetone processing pathway which are not found in other Haloarcula species. The NCBI accession number for this genome is LIUF00000000 and the strain deposit number is CECT9001.

  10. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer.

    PubMed

    Chimileski, Scott; Franklin, Michael J; Papke, R Thane

    2014-08-14

    . volcanii demonstrates some biofilm phenotypes similar to bacterial biofilms, but also has interesting phenotypes that may be unique to this organism or to this class of organisms, including changes in cellular morphology and an unusual form of social motility. Because H. volcanii has one of the most advanced genetic systems for any archaeon, the phenotypes reported here may promote the study of genetic and developmental processes in archaeal biofilms.

  11. Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization.

    PubMed

    Maruthiah, Thirumalai; Somanath, Beena; Jasmin, Jebamonydhas Vijila; Immanuel, Grasian; Palavesam, Arunachalam

    2016-12-01

    The quantum of marine fish wastes produced by fish processing industries has necessitated to search new methods for its disposal. Hence, this study is focused on production and purification of halophilic organic solvent tolerant protease (HOSP) from marine Alcaligenes faecalis APCMST-MKW6 using marine shell wastes as substrate. The candidate bacterium was isolated from the marine sediment of Manakudi coast and identified as A. faecalis APCMST-MKW6. The purified protease showed 16.39-fold purity, 70.34 U/mg specific activity with 21.67 % yield. The molecular weight of the purified alkaline protease was 49 kDa. This purified protease registered maximum activity at pH 9 and it was stable between pH 8-9 after 1.30 h of incubation. The optimum temperature registered was 60 °C and it was stable between 50 and 60 °C even after 1.30 h of incubation. This enzyme also showed maximum activity at 20 % NaCl concentration. Further, manganese chloride, magnesium chloride, calcium chloride and barium chloride influenced this enzyme activity remarkably and it was also found to be enhanced by many of the tested surfactants and solvents. The candidate bacterium effectively deproteinized the shrimp shell waste compared to the other tested crustaceans shell wastes and also attained maximum antioxidant activity.

  12. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    PubMed

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-07-01

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  13. Purification, Characterization, and Potential of Saline Waste Water Remediation of a Polyextremophilic α-Amylase from an Obligate Halophilic Aspergillus gracilis

    PubMed Central

    Ali, Imran; Akbar, Ali; Yanwisetpakdee, Benjawan; Prasongsuk, Sehanat; Lotrakul, Pongtharin; Punnapayak, Hunsa

    2014-01-01

    An obligate halophilic Aspergillus gracilis which was isolated from a hypersaline man-made saltern from Thailand was screened for its potential of producing extracellular α-amylase in the previous studies. In this study the α-amylase was extracted and purified by the help of column chromatography using Sephadex G-100 column. Presence of amylase was verified by SDS-PAGE analysis, showing a single band of approximately 35 kDa. The specific activity of the enzyme was found to be 131.02 U/mg. The Lineweaver-Burk plot showed the V max and K m values of 8.36 U/mg and 6.33 mg/mL, respectively. The enzyme was found to have the best activity at 5 pH, 60°C, and 30% of NaCl concentration, showing its polyextremophilic nature. The use of various additives did not show much variation in the activity of enzyme, showing its resilience against inhibitors. The enzyme, when tested for its use for synthetic waste water remediation by comparing its activity with commercial amylase in different salt concentrations showed that the α-amylase from A. gracilis was having better performance at increasing salt concentrations than the commercial one. This shows its potential to be applied in saline waste water and other low water activity effluents for bioremediation. PMID:24949415

  14. Acidic Ribosomal Proteins from the Extreme ’Halobacterium cutirubrum’,

    DTIC Science & Technology

    the extreme halophilic bacterium, Halobacterium cutirubrum. The identification of the protein moieties involved in these and other interactions in...the halophile ribosome requires a rapid and reproducible screening method for the separation, enumeration and identification of these acidic...polypeptides in the complex ribosomal protein mixtures. In this paper the authors present the results of analyses of the halophile ribosomal proteins using a

  15. Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard

    PubMed Central

    Llamas, Inmaculada; Mata, Juan Antonio; Tallon, Richard; Bressollier, Philippe; Urdaci, María C.; Quesada, Emilia; Béjar, Victoria

    2010-01-01

    We have studied the exopolysaccharide produced by the type strain of Salipiger mucosus, a species of halophilic, EPS-producing (exopolysaccharide-producing) bacterium belonging to the Alphaproteobacteria. The strain, isolated on the Mediterranean seaboard, produced a polysaccharide, mainly during its exponential growth phase but also to a lesser extent during the stationary phase. Culture parameters influenced bacterial growth and EPS production. Yield was always directly related to the quantity of biomass in the culture. The polymer is a heteropolysaccharide with a molecular mass of 250 kDa and its components are glucose (19.7%, w/w), mannose (34%, w/w), galactose (32.9%, w/w) and fucose (13.4%, w/w). Fucose and fucose-rich oligosaccharides have applications in the fields of medicine and cosmetics. The chemical or enzymatic hydrolysis of fucose-rich polysaccharides offers a new efficient way to process fucose. The exopolysaccharide in question produces a solution of very low viscosity that shows pseudoplastic behavior and emulsifying activity on several hydrophobic substrates. It also has a high capacity for binding cations and incorporating considerable quantities of sulfates, this latter feature being very unusual in bacterial polysaccharides. PMID:20948906

  16. Draft genome sequence of Dethiosulfovibrio salsuginis DSM 21565T an anaerobic, slightly halophilic bacterium isolated from a Colombian saline spring.

    PubMed

    Díaz-Cárdenas, Carolina; López, Gina; Alzate-Ocampo, José David; González, Laura N; Shapiro, Nicole; Woyke, Tanja; Kyrpides, Nikos C; Restrepo, Silvia; Baena, Sandra

    2017-01-01

    A bacterium belonging to the phylum Synergistetes , genus Dethiosulfovibrio was isolated in 2007 from a saline spring in Colombia. Dethiosulfovibrio salsuginis USBA 82 T ( DSM 21565 T = KCTC 5659 T ) is a mesophilic, strictly anaerobic, slightly halophilic, Gram negative bacterium with a diderm cell envelope. The strain ferments peptides, amino acids and a few organic acids. Here we present the description of the complete genome sequencing and annotation of the type species Dethiosulfovibrio salsuginis USBA 82 T . The genome consisted of 2.68 Mbp with a 53.7% G + C . A total of 2609 genes were predicted and of those, 2543 were protein coding genes and 66 were RNA genes. We detected in USBA 82 T genome six Synergistetes conserved signature indels (CSIs), specific for Jonquetella, Pyramidobacter and Dethiosulfovibrio . The genome of D. salsuginis contained, as expected, genes related to amino acid transport, amino acid metabolism and thiosulfate reduction. These genes represent the major gene groups of Synergistetes , related with their phenotypic traits, and interestingly, 11.8% of the genes in the genome belonged to the amino acid fermentation COG category. In addition, we identified in the genome some ammonification genes such as nitrate reductase genes. The presence of proline operon genes could be related to de novo synthesis of proline to protect the cell in response to high osmolarity. Our bioinformatics workflow included antiSMASH and BAGEL3 which allowed us to identify bacteriocins genes in the genome.

  17. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation.

    PubMed

    Mallick, Ivy; Bhattacharyya, Chandrima; Mukherji, Shayantan; Dey, Dhritiman; Sarkar, Somesh Chandra; Mukhopadhyay, Ujjal Kumar; Ghosh, Abhrajyoti

    2018-01-01

    Arsenic (As) uptake by plants is largely influenced by the presence of microbial consortia and their interactions with As. In the coastal region of Bengal deltaic plain of Eastern India, the As-contaminated groundwater is frequently used for irrigation purposes resulting in an elevated level of soil As in agricultural lands. The health hazards associated with As necessitates development of cost-effective remediation strategies to reclaim contaminated agricultural lands. Among the available technologies developed in recent times, bioremediation using bacteria has been found to be the most propitious. In this study, two As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus vietnamensis AB403 were isolated, identified and characterized from mangrove rhizosphere of Sundarban. The isolates, AB402 and AB403, could tolerate 35mM and 20mM of arsenite, respectively. The effect of As on the exopolysaccharide (EPS) synthesis, biofilm formation, and root association was evaluated for both the bacterial strains. Arsenic adsorption on the cell surfaces and intracellular accumulation in both the bacterial strains were promising under culture conditions. Moreover, both the strains when used as inoculum, not only promoted the growth of rice seedlings but also decreased As uptake and accumulation in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts.

    DTIC Science & Technology

    1987-07-31

    1{ 1. Project Goals: A. To determine the mechanism of tRNA intron processing in the halophilic archaebacteria. B. Characterize and compare the...enzyme(s) responsible for the removal of 5’-flanking sequences from halophilic and sulfur-dependent tRNA gene transcripts. C. Examine the structure and...distribution of tRNA introns in the halophilic archaebacteria. 2. Accomplishments: A. Intron processing mechanism We have succeeded in our primary

  19. Processing of Archaebacterial Intron-Containing tRNA Gene Transcripts

    DTIC Science & Technology

    1988-07-27

    number) The overall goal of this project is to develop an understanding of tRNA gene structure and transcript processing in the halophilic Archaebacteria...containing precursor tRNAs in the halophilic Archaebecteria suggest that tRNATr p may be the only interrupted tR?4A gene in these organisms...1 August 1986 RESEARCH OBJECTIVE: To determine the mechanism of tRNA intron processing in the halophilic archaebacteria; characterize the enzyme

  20. Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake.

    PubMed

    Amoozegar, Mohammad Ali; Bagheri, Maryam; Makhdoumi-Kakhki, Ali; Didari, Maryam; Schumann, Peter; Nikou, Mahdi Moshtaghi; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-06-01

    A novel Gram-staining-positive, moderately halophilic bacterium, designated strain A76(T), was isolated from a brine sample of the hypersaline lake Aran-Bidgol in Iran. Cells were strictly aerobic, coccus-shaped, non-motile, non-sporulating, and catalase- and oxidase-positive. Strain A76(T) grew between pH 7.0 and 10.0 (optimal growth at pH 8.0), between 20 and 45 °C (optimal growth at 35 °C) and at salinities of 0.5 to 12.5% (w/v) NaCl (optimal growth at 7.5%, w/v, NaCl). On the basis of 16S rRNA gene sequence analysis, strain A76(T) was shown to belong to the phylum Firmicutes with sequence similarities of 94.1, 93.1 and 91.1%, to the type species of the genera Jeotgalicoccus, Salinicoccus and Nosocomiicoccus, respectively. The DNA G+C content of this new isolate was 38.8 mol%. The major cellular fatty acids of strain A76(T) were anteiso-C(15 : 0) and iso-C(15 : 0), and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, an unknown lipid and two unknown phospholipids. The isoprenoid quinones were MK-6 (94%), MK-5 (3%) and MK-7 (3%). The amino acid constituents of the cell wall were Lys, Asp, Gly, Glu and Ala. The physiological, biochemical and phylogenetic differences between strain A76(T) and type strains of taxa with validly published names suggest that this strain represents a novel species in a novel genus within the family Staphylococcaceae, for which the name Aliicoccus persicus gen. nov., sp. nov. is proposed. The type strain of Aliicoccus persicus is strain A76(T) ( = CECT 8508(T) = DSM 28306(T) = IBRC-M 10081(T)). © 2014 IUMS.

  1. Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms.

    PubMed

    Pendashteh, A R; Fakhru'l-Razi, A; Chuah, T G; Radiah, A B Dayang; Madaeni, S S; Zurina, Z A

    2010-10-01

    Produced water or oilfield wastewater is the largest volume ofa waste stream associated with oil and gas production. The aim of this study was to investigate the biological pretreatment of synthetic and real produced water in a sequencing batch reactor (SBR) to remove hydrocarbon compounds. The SBR was inoculated with isolated tropical halophilic microorganisms capable of degrading crude oil. A total sequence of 24 h (60 min filling phase; 21 h aeration; 60 min settling and 60 min decant phase) was employed and studied. Synthetic produced water was treated with various organic loading rates (OLR) (0.9 kg COD m(-3) d(-1), 1.8 kg COD m(-3) d(-1) and 3.6 kg COD m(-3) d(-1)) and different total dissolved solids (TDS) concentration (35,000 mg L(-1), 100,000 mg L(-1), 150,000 mg L(-1), 200,000 mg L(-1) and 250,000 mg L(-1)). It was found that with an OLR of 0.9 kg COD m(-3) d(-1) and 1.8 kg COD m(-3) d(-1), average oil and grease (O&G) concentrations in the effluent were 7 mg L(-1) and 12 mg L(-1), respectively. At TDS concentration of 35,000 mg L(-1) and at an OLR of 1.8 kg COD m(-3)d(-1), COD and O&G removal efficiencies were more than 90%. However, with increase in salt content to 250,000 mg L(-1), COD and O&G removal efficiencies decreased to 74% and 63%, respectively. The results of biological treatment of real produced water showed that the removal rates of the main pollutants of wastewater, such as COD, TOC and O&G, were above 81%, 83%, and 85%, respectively.

  2. Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine.

    PubMed

    Fox-Powell, Mark G; Cockell, Charles S

    2018-01-01

    Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg 2+ and SO 4 2- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na + /Cl - brines (12.141 mol liter -1 ). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na 2 SO 4 , MgCl 2 , and MgSO 4 , yet despite this plasticity the strain was still restricted; requiring either Na + or Cl - to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.

  3. Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress.

    PubMed

    Tao, Ping; Li, Hui; Yu, Yunjiang; Gu, Jidong; Liu, Yongdi

    2016-08-01

    The moderately halophilic bacterium Virgibacillus halodenitrificans PDB-F2 copes with salinity by synthesizing or taking up compatible solutes. The main compatible solutes in this strain were ectoine and hydroxyectoine, as determined by (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR). A high-performance liquid chromatography (HPLC) analysis showed that ectoine was the major solute that was synthesized in response to elevated salinity, while hydroxyectoine was a minor solute. However, the hydroxyectoine/ectoine ratio increased from 0.04 at 3 % NaCl to 0.45 at 15 % NaCl in the late exponential growth phase. A cluster of ectoine biosynthesis genes was identified, including three genes in the order of ectA, ectB, and ectC. The hydroxyectoine biosynthesis gene ectD was not part of the ectABC gene cluster. Reverse transcription-quantitative polymerase chain reactions (RT-qPCR) showed that the expression of the ect genes was salinity dependent. The expression of ectABC reached a maximum at 12 % NaCl, while ectD expression increased up to 15 % NaCl. Ectoine and hydroxyectoine production was growth phase dependent. The hydroxyectoine/ectoine ratio increased from 0.018 in the early exponential phase to 0.11 in the stationary phase at 5 % NaCl. Hydroxyectoine biosynthesis started much later than ectoine biosynthesis after osmotic shock, and the temporal expression of the ect genes differed under these conditions, with the ectABC genes being expressed first, followed by ectD gene. Increased culture salinity triggered ectoine or hydroxyectoine uptake when they were added to the medium. Hydroxyectoine was accumulated preferentially when both ectoine and hydroxyectoine were provided exogenously.

  4. Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain.

    PubMed

    Romano, Ida; Finore, Ilaria; Nicolaus, Giancarlo; Huertas, F Javier; Lama, Licia; Nicolaus, Barbara; Poli, Annarita

    2008-04-01

    A Gram-positive, spore-forming, halophilic bacterial strain, FP5T, was isolated from a salt lake in southern Spain and subjected to a polyphasic taxonomic study. Strain FP5T was strictly aerobic. Cells were coccoidal, occurring singly or in clusters. The cell-wall peptidoglycan type of strain FP5T was A4 beta based on l-Orn-d-Asp. Strain FP5T was characterized chemotaxonomically by having MK-7 as the major menaquinone and anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0 as the main fatty acids. The isolate grew optimally at 37 degrees C and in presence of 10 % NaCl; no growth was observed in the absence of NaCl. The DNA G+C content was 43.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain FP5T falls within the evolutionary radiation of species of the genus Halobacillus. Levels of 16S rRNA gene sequence similarity between strain FP5T and the type strains of nine recognized Halobacillus species were in the range 97.0-99.0 %. Levels of DNA-DNA relatedness indicated that strain FP5T represents a genomic species that is distinct from recognized Halobacillus species. Strain FP5T could be differentiated from recognized Halobacillus species based on several phenotypic characteristics. On the basis of phenotypic, phylogenetic and genomic data, strain FP5T is considered to represent a novel species of the genus Halobacillus, for which the name Halobacillus alkaliphilus sp. nov. is proposed. The type strain is FP5T (=DSM 18525T =ATCC BAA-1361T).

  5. Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium.

    PubMed

    Pugin, Benoît; Blamey, Jenny M; Baxter, Bonnie K; Wiegel, Juergen

    2012-09-01

    Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH(37 °C) range 6.5-10.3 (optimum pH(37 °C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1

  6. Draft genome sequence of Halorubrum tropicale strain V5, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico.

    PubMed

    Sánchez-Nieves, Rubén; Facciotti, Marc T; Saavedra-Collado, Sofía; Dávila-Santiago, Lizbeth; Rodríguez-Carrero, Roy; Montalvo-Rodríguez, Rafael

    2016-03-01

    The genus Halorubrum is a member of the family Halobacteriaceae which currently has the highest number of described species (31) of all the haloarchaea. Here we report the draft genome sequence of strain V5, a new species within this genus that was isolated from the solar salterns of Cabo Rojo, Puerto Rico. Assembly was performed and rendered the genome into 17 contigs (N50 = 515,834 bp), the largest of which contains 1,031,026 bp. The genome consists of 3.57 MB in length with G + C content of 67.6%. In general, the genome includes 4 rRNAs, 52 tRNAs, and 3246 protein-coding sequences. The NCBI accession number for this genome is LIST00000000 and the strain deposit number is CECT9000.

  7. Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean.

    PubMed

    Mori, Koji; Maruyama, Akihiko; Urabe, Tetsuro; Suzuki, Ken-Ichiro; Hanada, Satoshi

    2008-04-01

    A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51T, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue-green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 degrees C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51T could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO2 fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus Archaeoglobus, with sequence similarities of 93.6-97.2 %; the closest relative was Archaeoglobus veneficus. Phylogenetic analyses of the dsrAB and apsA genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5'-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51T represents a novel species of the genus Archaeoglobus, for which the name Archaeoglobus infectus sp. nov. is proposed. The type strain is Arc51T (=NBRC 100649T=DSM 18877T).

  8. Study of Pure Proteins, Nucleic Acids and Their Complexes from Halobacteria of the Dead Sea: RNA Polymerase-DNA Interaction.

    DTIC Science & Technology

    1987-09-21

    objectives of our program are to isolate and characterize a fully active DNA dependent RNA polymerase from the extremely halophilic archaebacteria of the genus...operons in II. Marismortui. The halobacteriaceae are extreme halophiles . They require 3.5 M NaCI for optimal growth an(l no growth is observed below 2...was difficutlt to perform due to the extreme genetic instability in this strain (6). In contrast, the genoine of the extreme halophilic and prototrophic

  9. Cold Shock of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins

    PubMed Central

    Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.

    2005-01-01

    The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718

  10. Archaea in artificial environments: Their presence in global spacecraft clean rooms and impact on planetary protection

    PubMed Central

    Moissl-Eichinger, Christine

    2011-01-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments. PMID:20703318

  11. Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection.

    PubMed

    Moissl-Eichinger, Christine

    2011-02-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments.

  12. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  13. Diversity of Heterotrophic Protists from Extremely Hypersaline Habitats.

    PubMed

    Park, Jong Soo; Simpson, Alastair G B

    2015-09-01

    Heterotrophic protists (protozoa) are a diverse but understudied component of the biota of extremely hypersaline environments, with few data on molecular diversity within halophile 'species', and almost nothing known of their biogeographic distribution. We have garnered SSU rRNA gene sequences for several clades of halophilic protozoa from enrichments from waters of >12.5% salinity from Australia, North America, and Europe (6 geographic sites, 25 distinct samples). The small stramenopile Halocafeteria was found at all sites, but phylogenies did not show clear geographic clustering. The ciliate Trimyema was recorded from 6 non-European samples. Phylogenies confirmed a monophyletic halophilic Trimyema group that included possible south-eastern Australian, Western Australian and North American clusters. Several halophilic Heterolobosea were detected, demonstrating that Pleurostomum contains at least three relatively distinct clades, and increasing known continental ranges for Tulamoeba peronaphora and Euplaesiobystra hypersalinica. The unclassified flagellate Palustrimonas, found in one Australian sample, proves to be a novel deep-branching alveolate. These results are consistent with a global distribution of halophilic protozoa groups (∼ morphospecies), but the Trimyema case suggests that is worth testing whether larger forms exhibit biogeographic phylogenetic substructure. The molecular detection/characterization of halophilic protozoa is still far from complete at the clade level, let alone the 'species level'. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Characterization of Desulfovibrio salinus sp. nov., a slightly halophilic sulfate-reducing bacterium isolated from a saline lake in Tunisia.

    PubMed

    Ben Ali Gam, Zouhaier; Thioye, Abdoulaye; Cayol, Jean-Luc; Joseph, Manon; Fauque, Guy; Labat, Marc

    2018-03-01

    A novel slightly halophilic sulfate-reducing bacterium, designated strain P1BSR T , was isolated from water of a saline lake in Tunisia. Strain P1BSR T had motile (single polar flagellum), Gram-negative, rod-shaped, non-spore-forming cells, occurring singly or in pairs. Strain P1BSR T grew at temperatures between 15 and 45 °C (optimum 40 °C), and in a pH range between 6 and 8.5 (optimum pH 6.7). The strain required NaCl for growth (1 % w/v), and tolerated high NaCl concentration (up to 12 % w/v) with an optimum of 3 % (w/v). Sulfate, thiosulfate and sulfite served as terminal electron acceptors, but not elemental sulfur, fumarate, nitrate and nitrite. Strain P1BSR T utilized lactate, pyruvate, formate, d-fructose and glycerol as carbon and energy sources. The main cellular fatty acid was C16 : 0 (50.8 %). The genomic DNA G+C content was 47.7 mol%. Phylogenetic analysis of 16S rRNA gene sequence similarity indicated that strain P1BSR T was affiliated to the genus Desulfovibrio, with the type strains Desulfovibrio salexigens (96.51 %), Desulfovibrio zosterae (95.68 %), Desulfovibrio hydrothermalis (94.81 %) and Desulfovibrio ferrireducens (94.73 %) as its closest phylogenetic relatives. On the basis of genotypic, phenotypic and phylogenetic characteristics, it is proposed to assign strain P1BSR T to a novel species of the genus Desulfovibrio, Desulfovibrio salinus sp. nov. The type strain is P1BSR T (=DSM 101510 T =JCM 31065 T ).

  15. Use of natural mRNAs in the cell-free protein-synthesizing systems of the moderate halophile Vibrio costicola.

    PubMed

    Choquet, C G; Kushner, D J

    1990-06-01

    In vitro protein synthesis was studied in extracts of the moderate halophile Vibrio costicola by using as mRNAs the endogenous mRNA of V. costicola and the RNA of the R17 bacteriophage of Escherichia coli. Protein synthesis (amino acid incorporation) was dependent on the messenger, ribosomes, soluble cytoplasmic factors, energy source, and tRNA(FMet) (in the R17 RNA system) and was inhibited by certain antibiotics. These properties indicated de novo protein synthesis. In the V. costicola system directed by R17 RNA, a protein of the same electrophoretic mobility as the major coat protein of the R17 phage was synthesized. Antibiotic action and the response to added tRNA(FMet) showed that protein synthesis in the R17 RNA system, but not in the endogenous messenger system, absolutely depended on initiation. Optimal activity of both systems was observed in 250 to 300 mM NH4+ (as glutamate). Higher salt concentrations, especially those with Cl- as anion, were generally inhibitory. The R17 RNA-directed system was more sensitive to Cl- ions than the endogenous system was. Glycine betaine stimulated both systems and partly overcame the toxic effects of Cl- ions. Both systems required Mg2+, but in lower concentrations than the polyuridylic acid-directed system previously studied. Initiation factors were removed from ribosomes by washing with 3.0 to 3.5 M NH4Cl, concentrations about three times as high as that needed to remove initiation factors from E. coli ribosomes. Washing with 4.0 M NH4Cl damaged V. costicola ribosomes, although the initiation factors still functioned. Cl- ions inhibited the attachment of initiation factors to tRNA(FMet) but had little effect on binding of initiation factors to R17 RNA.

  16. Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1.

    PubMed

    Ishikawa, Morio; Nakajima, Kazuyuki; Itamiya, Yuko; Furukawa, Sayumi; Yamamoto, Yasushi; Yamasato, Kazuhide

    2005-11-01

    Eleven novel strains of marine-inhabiting lactic acid bacteria that were isolated from living and decaying marine organisms collected from a temperate area of Japan are described. The isolates were motile with peritrichous flagella and non-sporulating. They lacked catalase, quinones and cytochromes. Fermentation products from glucose were lactate, formate, acetate and ethanol. Lactate yield as percentage conversion from glucose was affected by the pH of the fermentation medium: approximately 55 % at the optimal growth pH of 8.0, greater than approximately 70 % at pH 7.0 and less than approximately 30 % at pH 9.0. The molar ratio of the other three products was the same at each cultivation pH, approximately 2 : 1 : 1. Carbohydrates and related compounds were aerobically metabolized to acetate and pyruvate as well as lactate. The isolates were slightly halophilic, highly halotolerant and alkaliphilic. The optimum NaCl concentration for growth was 2.0-3.0 % (w/v), with a range of 0-25.5 %. The optimum pH for growth was 8.0-9.5, with a range of 6.0-10.0. The G+C content of the DNA was 38.5-40.7 mol%. The isolates constituted two genomic species (DNA-DNA relatedness of less than 41 %) each characterized by sugar fermentation profiles. The cell-wall peptidoglycan of both phenotypes contained meso-diaminopimelic acid. The major cellular fatty acids were C(16 : 0) and a-C(13 : 0). Comparative sequence analysis of the 16S rRNA genes revealed that these isolates represent novel species constituting a phylogenetic unit outside the radiation of typical lactic acid bacteria and an independent line of descent within the group composed of the halophilic/halotolerant/alkaliphilic and/or alkalitolerant species in Bacillus rRNA group 1, with 94.8-95.1 % similarity to the genus Paraliobacillus, 93.7-94.1 % to the genus Gracilibacillus and 93.8-94.2 % to Virgibacillus marismortui. On the basis of possession of physiological and biochemical characteristics common to typical lactic acid

  17. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia.

    PubMed

    Hedi, Abdeljabbar; Fardeau, Marie-Laure; Sadfi, Najla; Boudabous, Abdellatif; Ollivier, Bernard; Cayol, Jean-Luc

    2009-03-01

    A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20-22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7-1 x 4-13 microm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9-8.4). Optimum temperature for growth was 42 degrees C (range 30-50 degrees C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H(2), and CO(2). The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91-92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANG(T) (=DSM 19997(T)=JCM 15060(T)).

  18. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis.

    PubMed

    Meng, Lin; Hong, Shan; Liu, Henan; Huang, Haipeng; Sun, Hao; Xu, Tong; Jiang, Juquan

    2014-11-01

    The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.

  19. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.

    PubMed

    Wheaton, Garrett H; Mukherjee, Arpan; Kelly, Robert M

    2016-08-01

    The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. The mechanisms by which extremely

  20. Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei.

    PubMed

    Cassidy, Liam; Prasse, Daniela; Linke, Dennis; Schmitz, Ruth A; Tholey, Andreas

    2016-10-07

    The recent discovery of an increasing number of small open reading frames (sORF) creates the need for suitable analytical technologies for the comprehensive identification of the corresponding gene products. For biological and functional studies the knowledge of the entire set of proteins and sORF gene products is essential. Consequently in the present study we evaluated analytical approaches that will allow for simultaneous analysis of widest parts of the proteome together with the predicted sORF. We performed a full proteome analysis of the methane producing archaeon Methanosarcina mazei strain Gö1 cytosolic proteome using a high/low pH reversed phase LC-MS bottom-up approach. The second analytical approach was based on semi-top-down strategy, encompassing a separation at intact protein level using a GelFree system, followed by digestion and LC-MS analysis. A high overlap in identified proteins was found for both approaches yielding the most comprehensive coverage of the cytosolic proteome of this organism achieved so far. The application of the second approach in combination with an adjustment of the search criteria for database searches further led to a significant increase of sORF peptide identifications, finally allowing to detect and identify 28 sORF gene products.

  1. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  2. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    PubMed Central

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  3. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles weremore » isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.« less

  4. Optimization of EPS Production and Characterization by a Halophilic Bacterium, Kocuria rosea ZJUQH from Chaka Salt Lake with Response Surface Methodology.

    PubMed

    Gu, Di; Jiao, Yingchun; Wu, Jianan; Liu, Zhengjie; Chen, Qihe

    2017-05-16

    With the rising awareness of microbial exopolysaccharides (EPSs) application in various fields, halophilic microorganisms which produce EPSs have received broad attention. A newly identified Kocuria rosea ZJUQH CCTCC M2016754 was determined to be a moderate halobacterium on account of its successful adaption to the environment containing 10% NaCl. The optimal combination of fermentation medium compositions on EPS production was studied. In this work, a fractional factorial design was adopted to investigate the significant factors that affected EPS production. The factors of KCl and MgSO₄ were found to have a profound impact on EPS production. We utilized central composite design and response surface methodology to derive a statistical model for optimizing the submerged culture medium composition. Judging from these experimental results, the optimum culture medium for producing EPSs was composed of 0.50% casein hydrolysate, 1.00% sodium citrate, 0.30% yeast extract, 0.50% KCl, 0.50% peptone, and 5.80% MgSO₄ (initial pH 7.0). The maximal EPS was 48.01 g/L, which is close to the predicted value (50.39 g/L). In the validation experiment, the highest concentration of 70.64 g/L EPSs was obtained after 120 h under the optimized culture medium in a 5-L bioreactor. EPS from this bacterium was also characterized by differential scanning calorimetry (DSC) and Fourier transform infrared analysis (FT-IR). The findings in this study imply that Kocuria rosea ZJUQH has great potential to be exploited as a source of EPSs utilized in food, the pharmaceutical and agriculture industry, and in the biotreatment of hypersaline environments.

  5. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH.

    PubMed Central

    Ni, S; Boone, J E; Boone, D R

    1994-01-01

    Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499

  6. Low-pass sequencing for microbial comparative genomics

    PubMed Central

    Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy

    2004-01-01

    Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich

  7. Differences in lateral gene transfer in hypersaline versus thermal environments.

    PubMed

    Rhodes, Matthew E; Spear, John R; Oren, Aharon; House, Christopher H

    2011-07-08

    The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  8. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil.

    PubMed

    Rezgui, Raja; Ben Ali Gam, Zouhaier; Ben Hamed, Said; Fardeau, Marie-Laure; Cayol, Jean-Luc; Maaroufi, Abderrazak; Labat, Marc

    2011-01-01

    A novel strictly anaerobic, moderately halophilic and mesophilic bacterium, designated strain SOL3f37(T), was isolated from a hydrocarbon-polluted soil surrounding a deep petroleum environment located in south Tunisia. Cells of strain SOL3f37(T) stained Gram-positive and were motile, straight and spore-forming. Strain SOL3f37(T) had a typical Gram-positive-type cell-wall structure, unlike the thick, multilayered cell wall of its closest relative Clostridiisalibacter paucivorans. The major fatty acids were iso-C(15 : 0) (41 %), iso-C(14 : 0) 3-OH and/or iso-C(15 : 0) dimethyl acetal (21.6 %), iso-C(13 : 0) (4.4 %), anteiso-C(15 : 0) (3.9 %) and iso-C(15 : 1) (2.8 %). Strain SOL3f37(T) grew between 20 and 48 °C (optimum 40 °C) and at pH 6.2-8.1 (optimum pH 6.9). Strain SOL3f37(T) required at least 0.5 NaCl l(-1) and grew in the presence of NaCl concentrations up to 150 g l(-1) (optimum 40 g l(-1)). Yeast extract (2 g l(-1)) was required for degradation of pyruvate, fumarate, fructose, glucose and mannitol. Also, strain SOL3f37(T) grew heterotrophically on yeast extract, peptone and bio-Trypticase, but was unable to grow on Casamino acids. Sulfate, thiosulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 30.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SOL3f37(T) was a member of the family Clostridiaceae in the order Clostridiales; strain SOL3f37(T) was related to members of various genera of the family Clostridiaceae. It exhibited highest 16S rRNA gene sequence similarity (93.4 %) with Clostridiisalibacter paucivorans 37HS60(T), 91.8 % with Thermohalobacter berrensis CTT3(T) and 91.7 % with Caloranaerobacter azorensis MV1087(T). On the basis of genotypic, phenotypic and phylogenetic data, it is suggested that strain SOL3f37(T) represents a novel species in a new genus. The name Sporosalibacterium faouarense gen. nov., sp. nov. is

  9. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal “Shock” Reveal Generic and Specific Metal Responses

    PubMed Central

    Wheaton, Garrett H.; Mukherjee, Arpan

    2016-01-01

    ABSTRACT The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by “shocking” M. sedula with representative metals (Co2+, Cu2+, Ni2+, UO22+, Zn2+) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu2+ (259 ORFs, 106 Cu2+-specific ORFs) and Zn2+ (262 ORFs, 131 Zn2+-specific ORFs) triggered the largest responses, followed by UO22+ (187 ORFs, 91 UO22+-specific ORFs), Ni2+ (93 ORFs, 25 Ni2+-specific ORFs), and Co2+ (61 ORFs, 1 Co2+-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu2+ (6-fold) but also in response to UO22+ (4-fold) and Zn2+ (9-fold). Cu2+ challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu2+ resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist

  10. Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach

    PubMed Central

    Fernández, Ana B.; Vera-Gargallo, Blanca; Sánchez-Porro, Cristina; Ghai, Rohit; Papke, R. Thane; Rodriguez-Valera, Francisco; Ventosa, Antonio

    2014-01-01

    We analyzed the prokaryotic community structure of a saltern pond with 21% total salts located in Isla Cristina, Huelva, Southwest Spain, close to the Atlantic ocean coast. For this purpose, we constructed a metagenome (designated as IC21) obtained by pyrosequencing consisting of 486 Mb with an average read length of 397 bp and compared it with other metagenomic datasets obtained from ponds with 19, 33, and 37% total salts acquired from Santa Pola marine saltern, located in Alicante, East Spain, on the Mediterranean coast. Although the salinity in IC21 is closer to the pond with 19% total salts from Santa Pola saltern (designated as SS19), IC21 is more similar at higher taxonomic levels to the pond with 33% total salts from Santa Pola saltern (designated as SS33), since both are predominated by the phylum Euryarchaeota. However, there are significant differences at lower taxonomic levels where most sequences were related to the genus Halorubrum in IC21 and to Haloquadratum in SS33. Within the Bacteroidetes, the genus Psychroflexus is the most abundant in IC21 while Salinibacter dominates in SS33. Sequences related to bacteriorhodopsins and halorhodopsins correlate with the abundance of Haloquadratum in Santa Pola SS19 to SS33 and of Halorubrum in Isla Cristina IC21 dataset, respectively. Differences in composition might be attributed to local ecological conditions since IC21 showed a decrease in the number of sequences related to the synthesis of compatible solutes and in the utilization of phosphonate. PMID:24847316

  11. LccA, an Archaeal Laccase Secreted as a Highly Stable Glycoprotein into the Extracellular Medium by Haloferax volcanii▿ †

    PubMed Central

    Uthandi, Sivakumar; Saad, Boutaiba; Humbard, Matthew A.; Maupin-Furlow, Julie A.

    2010-01-01

    Laccases couple the oxidation of phenolic compounds to the reduction of molecular oxygen and thus span a wide variety of applications. While laccases of eukaryotes and bacteria are well characterized, these enzymes have not been described in archaea. Here, we report the purification and characterization of a laccase (LccA) from the halophilic archaeon Haloferax volcanii. LccA was secreted at high levels into the culture supernatant of a recombinant H. volcanii strain, with peak activity (170 ± 10 mU·ml−1) at stationary phase (72 to 80 h). LccA was purified 13-fold to an overall yield of 72% and a specific activity of 29.4 U·mg−1 with an absorbance spectrum typical of blue multicopper oxidases. The mature LccA was processed to expose an N-terminal Ala after the removal of 31 amino acid residues and was glycosylated to 6.9% carbohydrate content. Purified LccA oxidized a variety of organic substrates, including bilirubin, syringaldazine (SGZ), 2,2,-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and dimethoxyphenol (DMP), with DMP oxidation requiring the addition of CuSO4. Optimal oxidation of ABTS and SGZ was at 45°C and pH 6 and pH 8.4, respectively. The apparent Km values for SGZ, bilirubin, and ABTS were 35, 236, and 670 μM, with corresponding kcat values of 22, 29, and 10 s−1, respectively. The purified LccA was tolerant of high salt, mixed organosolvents, and high temperatures, with a half-life of inactivation at 50°C of 31.5 h. PMID:19966030

  12. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    PubMed

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-02-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here.

  13. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    PubMed Central

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of posttranscriptional modifications. A more refined mapping of RNA modifications can be obtained by using two RNases in parallel combined with further fragmentation by Post Source Decay (PSD). This approach allows fast and sensitive screening of a purified RNA for posttranscriptional modification, and has been applied on 5S rRNA from two thermophilic microorganisms, the bacterium Bacillus stearothermophilus and the archaeon Sulfolobus acidocaldarius, as well as the halophile archaea Halobacterium halobium and Haloarcula marismortui. One S. acidocaldarius posttranscriptional modification was identified and was further characterized by PSD as a methylation of cytidine32. The modified C is located in a region that is clearly conserved with respect to both sequence and position in B. stearothermophilus and H. halobium and to some degree also in H. marismortui. However, no analogous modification was identified in the latter three organisms. We further find that the 5' end of H. halobium 5S rRNA is dephosphorylated, in contrast to the other 5S rRNA species investigated. The method additionally gives an immediate indication of whether the expected RNA sequence is in agreement with the observed fragment masses. Discrepancies with two of the published 5S rRNA sequences were identified and are reported here. PMID:10688367

  14. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    PubMed Central

    Pickl, Andreas; Johnsen, Ulrike

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly upregulated as a cotranscript. The in-frame deletion of HVO_1499, designated ptfC (ptf stands for phosphotransferase system for fructose) and encoding the putative fructose-specific membrane component EIIC, resulted in a loss of growth on fructose, which could be recovered by complementation in trans. Transcripts of HVO_1500 (pfkB) and HVO_1494 (fba), encoding putative fructose-1-phosphate kinase (1-PFK) and fructose-1,6-bisphosphate aldolase (FBA), respectively, as well as 1-PFK and FBA activities were specifically upregulated in fructose-grown cells. pfkB and fba knockout mutants did not grow on fructose, whereas growth on glucose was not inhibited, indicating the functional involvement of both enzymes in fructose catabolism. Recombinant 1-PFK and FBA obtained after homologous overexpression were characterized as having kinetic properties indicative of functional 1-PFK and a class II type FBA. From these data, we conclude that fructose uptake in H. volcanii involves a fructose-specific PTS generating fructose-1-phosphate, which is further converted via fructose-1,6-bisphosphate to triose phosphates by 1-PFK and FBA. This is the first report of the functional involvement of a bacterial-like PTS and of class II FBA in the sugar metabolism of archaea. PMID:22493022

  15. Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand.

    PubMed

    Yachai, Mongkol; Tanasupawat, Somboon; Itoh, Takashi; Benjakul, Soottawat; Visessanguan, Wonnop; Valyasevi, Ruud

    2008-09-01

    A Gram-negative, motile, rod-shaped, extremely halophilic archaeon, designated strain HPC1-2(T), was isolated from pla-ra, a salt-fermented fish product of Thailand. Strain HPC1-2(T) was able to grow at 20-60 degrees C (optimum at 37-40 degrees C), at 2.6-5.1 M NaCl (optimum at 3.4-4.3 M NaCl) and at pH 5.0-8.0 (optimum at pH 7.0-7.5). Hypotonic treatment with less than 1.7 M NaCl caused cell lysis. The major polar lipids of the isolate were C(20)C(20) derivatives of phosphatidylglycerol, methylated phosphatidylglycerol phosphate, phosphatidylglycerol sulfate, triglycosyl diether, sulfated triglycosyl diether and sulfated tetraglycosyl diether. The G+C content of the DNA was 65.5 mol%. 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Halobacterium in the family Halobacteriaceae. Based on 16S rRNA gene sequence similarity, strain HPC1-2(T) was related most closely to Halobacterium salinarum DSM 3754(T) (99.2%) and Halobacterium jilantaiense JCM 13558(T) (97.8%). However, low levels of DNA-DNA relatedness suggested that strain HPC1-2(T) was genotypically different from these closely related type strains. Strain HPC1-2(T) could also be differentiated based on physiological and biochemical characteristics. Therefore, strain HPC1-2(T) is considered to represent a novel species of the genus Halobacterium, for which the name Halobacterium piscisalsi sp. nov. is proposed. The type strain is HPC1-2(T) (=BCC 24372(T)=JCM 14661(T)=PCU 302(T)).

  16. Furthering the Enzymatic Destruction of Nerve Agents

    DTIC Science & Technology

    2002-01-01

    properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J. Bacteriol. 173, 1938-1943. DeFrank, J.J.; Beaudry, W.T...Cheng, T.-c.; Harvey, S.P.; Stroup, A.N. and Szafraniec, L.L. (1993) Screening of halophilic bacteria and Alteromonas species for organophosphorus

  17. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    DTIC Science & Technology

    2013-03-01

    acid anhydrolase (OPAA, EC 3.1.8.2) was purified from halophilic Alteromonas sp. bacteria. OPPA displayed hydrolysis activity against several highly...2010, 49, 547–559. 3. DeFrank, J.J.; Cheng, T.-C. Purification and Properties of Organophosphorus Acid Anhydrolase from a Halophilic Bacterial

  18. Solution 1H NMR determination of secondary structure for the three-iron form of ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Teng, Q; Zhou, Z H; Smith, E T; Busse, S C; Howard, J B; Adams, M W; La Mar, G N

    1994-05-24

    Two-dimensional 1H NMR data have been used to make sequence-specific assignments and define the secondary structure of the three-iron form of the oxidized ferredoxin, Fd, from the hyperthermophilic archaeon Pyrococcus furiosus, Pf. Signals for at least some protons were located for 65 of the 66 amino acids in the sequence, in spite of the paramagnetic (S = 1/2) ground state, but not all could be assigned. Unassigned and missing signals could be qualitatively correlated with the expected proximity of the protons to the paramagnetic cluster. The secondary structure was deduced from qualitative analysis of the 2D nuclear Overhauser effect, which identified two antiparallel beta-sheets, one triple-stranded including Ala1-Ser5, Val39-Glu41, and Thr62-Ala66, and one double-stranded consisting of Glu26-Asn28 and Lys32-Glu34, as well as an alpha-helix involving Glu43-Glu54. Three tight type I turns are located at residues Asp7-Thr10, Pro22-Phe25, and Asp29-Gly31. Comparison with the crystal structure of Desulfovibrio gigas, Dg, Fd (Kissinger et al., 1991) reveals a very similar folding topology, although several secondary structural elements are extended in Pf relative to Dg Fd. Thus the beta-sheet involving the two termini is expanded to include the two terminal residues and incorporates a third strand from the internal loop that is lengthened by several insertions in Pf relative to Dg Fd. The double-stranded beta-sheet in the interior of Pf Fd is lengthened slightly due to a much tighter type I turn between the two strands. The helix near the C-terminus is three residues longer in Pf than in Dg Fd, as well as being shifted toward the N-terminus. The disulfide link between the two nonligating Cys residues (Cys21 and Cys48) is conserved in Pf Fd, but the link near the C-terminus is in the middle of the long alpha-helix in Pf Fd, instead of at the N-terminus of the helix as in Dg Fd. The extensions of the beta-sheets and alpha-helix increase the number of main

  19. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola) and characterization of osmoregulatory genes in halophilic Bacilli.

    PubMed

    Mukhtar, Salma; Mehnaz, Samina; Mirza, Muhammad Sajjad; Mirza, Babur Saeed; Malik, Kauser Abdulla

    2018-04-27

    Salinity is one of the major abiotic stresses, with a total of 3% of the world's land mass being affected by salinity. Approximately 6.3 million hectares of land in Pakistan is affected by salinity to varying degree and most of the areas are arid to semiarid with low annual precipitation. The aim of present study is to identify and characterize Bacillus and Bacillus-derived bacterial genera from the rhizospheric and non-rhizospheric soil samples from Khewra Salt Mine, Pakistan by using culture-independent as well as culture-dependent methods. Seven Bacillus-like bacterial genera Bacillus, Halobacillus, Virgibacillus, Brevibacillus, Paenibacillus, Tumebacillus and Lysinibacillus were detected by using pyrosequencing analysis whereas only four genera Bacillus, Halobacillus, Oceanobacillus and Virgibacillus were identified by culture-dependent methods. Most of Bacillus-like isolates identified in this study were moderately halophilic, alkaliphilic and mesophilic bacteria and were considered as a good source of hydrolytic enzymes because of their ability to degrade proteins, carbohydrates and lipids. Eight Bacillus-like strains from the genera Bacillus, Halobacillus, Oceanobacillus and Virgibacillus showed positive results for the presence of ectABC gene cluster (ectoine), six strains could synthesize betaine from choline and six strains tested positive for the synthesis of proline from either glutamate or ornithine by using proline dehydrogenase enzyme.

  20. Antibacterial efficacy of silver nanoparticles and ethyl acetate's metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria.

    PubMed

    Arul, Dhayalan; Balasubramani, Govindasamy; Balasubramanian, Velramar; Natarajan, Thillainathan; Perumal, Pachiappan

    2017-10-01

    Bacteria are generally responsible for the prevalence of several diseases and pathogenic bacteria are showing increasing resistance to different antibacterials. During the present study an extremophilic bacterium-A30 isolated from the marine waters was characterized and evaluated against four multi-drug resistant (MDR) pathogens, viz; Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The sensitivity pattern of the selected pathogens was tested with 31 antibiotics. Among the 47 marine microbial extracts tested on 4-MDR pathogens viz: Methicillin-resistant Staphylococcus aureus (MRSA), E. coli, K. pneumoniae and P. aeruginosa, only our strain A30 strain exhibited highest efficacy. This strain was subsequently subjected to 16S rDNA sequencing which confirmed its allocation as Bacillus cereus. Silver nanoparticle (AgNPs) synthesis and ethyl acetate extraction were performed using the supernatant of B. cereus. The synthesized AgNPs were characterized by UV-Visible, Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Zeta potential analyses. The presence of functional groups and 13 bioactive components in the ethyl acetate extract were analyzed using FT-IR and gas chromatography-mass spectrometry (GC-MS). The synthesized of AgNPs and the ethyl acetate extract showed preponderant activity against P. aeruginosa and MRSA, respectively. The effects of AgNPs were significant when compared to ethyl acetate extract. Therefore, the halophilic bacterium, B. cereus mediated AgNPs could provide antibacterial applications in the biomedical industries.