Sample records for halorespiring desulfitobacterium dehalogenans

  1. Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans.

    PubMed

    Kruse, Thomas; van de Pas, Bram A; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M; van der Oost, John; Smidt, Hauke; Stams, Alfons J M

    2015-03-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Genomic, Proteomic, and Biochemical Analysis of the Organohalide Respiratory Pathway in Desulfitobacterium dehalogenans

    PubMed Central

    van de Pas, Bram A.; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R.; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M.; van der Oost, John; Smidt, Hauke

    2014-01-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. PMID:25512312

  3. Characterization of an O-Demethylase of Desulfitobacterium hafniense DCB-2

    PubMed Central

    Studenik, Sandra; Vogel, Michaela

    2012-01-01

    Besides acetogenic bacteria, only Desulfitobacterium has been described to utilize and cleave phenyl methyl ethers under anoxic conditions; however, no ether-cleaving O-demethylases from the latter organisms have been identified and investigated so far. In this study, genes of an operon encoding O-demethylase components of Desulfitobacterium hafniense strain DCB-2 were cloned and heterologously expressed in Escherichia coli. Methyltransferases I and II were characterized. Methyltransferase I mediated the ether cleavage and the transfer of the methyl group to the superreduced corrinoid of a corrinoid protein. Desulfitobacterium methyltransferase I had 66% identity (80% similarity) to that of the vanillate-demethylating methyltransferase I (OdmB) of Acetobacterium dehalogenans. The substrate spectrum was also similar to that of the latter enzyme; however, Desulfitobacterium methyltransferase I showed a higher level of activity for guaiacol and used methyl chloride as a substrate. Methyltransferase II catalyzed the transfer of the methyl group from the methylated corrinoid protein to tetrahydrofolate. It also showed a high identity (∼70%) to methyltransferases II of A. dehalogenans. The corrinoid protein was produced in E. coli as cofactor-free apoprotein that could be reconstituted with hydroxocobalamin or methylcobalamin to function in the methyltransferase I and II assays. Six COG3894 proteins, which were assumed to function as activating enzymes mediating the reduction of the corrinoid protein after an inadvertent oxidation of the corrinoid cofactor, were studied with respect to their abilities to reduce the recombinant reconstituted corrinoid protein. Of these six proteins, only one was found to catalyze the reduction of the corrinoid protein. PMID:22522902

  4. Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C

    PubMed Central

    Wu, Qingzhong; Sanford, Robert A.; Löffler, Frank E.

    2006-01-01

    Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization. PMID:16672509

  5. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: Structure of one sensor domain from a histidine kinase and another from a chemotaxis protein

    PubMed Central

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-01-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  6. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments

  7. Enrichment of Desulfitobacterium spp. from forest and grassland soil using the O-demethylation of phenyl methyl ethers as a growth-selective process.

    PubMed

    Mingo, Felix Sebastian; Diekert, Gabriele; Studenik, Sandra

    2016-02-01

    The O-demethylation of phenyl methyl ethers under anaerobic conditions is a metabolic feature of acetogens and Desulfitobacterium spp. Desulfitobacteria as well as most acetogens are Gram-positive bacteria with a low GC content and belong to the phylum Firmicutes. The consumption of the phenyl methyl ether syringate was studied in enrichment cultures originating from five different topsoils. Desulfitobacterium spp. were detected in all topsoils via quantitative PCR. Desulfitobacteria could be enriched using the O-demethylation of syringate as a growth-selective process. The enrichment was significantly favoured by an external electron acceptor such as 3-chloro-4-hydroxyphenylacetate or thiosulfate. Upon cultivation in the presence of syringate and thiosulfate, which naturally occur in soil, a maximum number of 16S rRNA gene copies of Desulfitobacterium spp. was reached within the first three subcultivation steps and accounted for 3-10% of the total microbial community depending on the soil type. Afterwards, a loss of Desulfitobacterium gene copies was observed. Community analyses revealed that Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the main phyla in the initial soil samples. Upon addition of syringate and thiosulfate as growth substrates, these phyla were rapidly outcompeted by Firmicutes, which were under-represented in soil. The main Firmicutes genera identified were Alkalibaculum, Clostridium, Sporobacterium, Sporomusa and Tissierella, which might be responsible for outcompeting the desulfitobacteria. Most of these organisms belong to the acetogens, which have previously been described to demethylate phenyl methyl ethers. The shift of the native community structure to almost exclusively Firmicutes supports the participation of members of this phylum in environmental demethylation processes.

  8. Spectrum of the Reductive Dehalogenation Activity of Desulfitobacterium frappieri PCP-1

    PubMed Central

    Dennie, D.; Gladu, I.; Lépine, F.; Villemur, R.; Bisaillon, J.-G.; Beaudet, R.

    1998-01-01

    Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed. PMID:9797330

  9. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  10. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  11. Characterization of the Corrinoid Iron-Sulfur Protein Tetrachloroethene Reductive Dehalogenase of Dehalobacter restrictus

    PubMed Central

    Maillard, Julien; Schumacher, Wolfram; Vazquez, Francisco; Regeard, Christophe; Hagen, Wilfred R.; Holliger, Christof

    2003-01-01

    Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy. PMID:12902251

  12. Comparative c-type cytochrome expression analysis in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C grown with soluble and insoluble oxidised metal electron acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, Silke; Liu, Xiaoxin; Chourey, Karuna

    2012-01-01

    The genomes of Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C encode 40 and 69 putative c-type cytochrome genes, respectively. Deletion mutant and biochemical studies have assigned specific functions to a few c-type cytochromes involved in electron transfer to oxidised metals in Shewanella oneidensis strain MR-1. Although promising, the genetic approach is limited to gene deletions that produce a distinct phenotype, and organism for which a genetic system is available. To more comprehensively investigate and compare c-type cytochrome expression in Shewanella oneidensis strain MR-1 and Anaeromyxobacter dehalogenans strain 2CP-C, proteomic measurements were used to characterise lysates of cells grownmore » with soluble Fe(III) (as ferric citrate) and insoluble Mn(IV) (as MnO2) as electron acceptors. Strain MR-1 expressed 19 and 20, and strain 2CP-C expressed 27 and 25 c-type cytochromes when grown with Fe(III) and Mn(IV), respectively. The majority of c-type cytochromes (77% for strain MR-1 and 63% for strain 2CP-C) were expressed under both growth conditions; however, the analysis also revealed unique c-type cytochromes that were specifically expressed in cells grown with soluble Fe(III) or insoluble Mn(IV). Proteomic characterisation proved to be a promising approach for determining the c-type cytochrome complement expressed under different growth conditions, and will help elucidating the specific functions of more c-type cytochromes that are the basis for Shewanella and Anaeromyxobacter respiratory versatility.« less

  13. Metabolic flexibility of a prospective bioremediator: Desulfitobacterium hafniense Y51 challenged in chemostats.

    PubMed

    Marozava, Sviatlana; Vargas-López, Raquel; Tian, Ye; Merl-Pham, Juliane; Braster, Martin; Meckenstock, Rainer U; Smidt, Hauke; Röling, Wilfred F M; Westerhoff, Hans V

    2018-06-19

    Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics, and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions, respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less

  15. Diversity of Cobalamin Riboswitches in the Corrinoid-Producing Organohalide Respirer Desulfitobacterium hafniense

    PubMed Central

    Choudhary, Pallavi K.; Duret, Aurélie; Rohrbach-Brandt, Emmanuelle; Holliger, Christof; Sigel, Roland K. O.

    2013-01-01

    The strategic adaptation of prokaryotes in polluted niches involves the efficient regulation of their metabolism. The obligate anaerobe and metabolically versatile Desulfitobacterium hafniense reductively dechlorinates halogenated organic compounds (so-called organohalides). Some D. hafniense strains carry out organohalide respiration (OHR), a process which requires the use of corrinoid as a cofactor in reductive dehalogenases, the key enzymes in OHR. We report here the diversity of the cobalamin riboswitches that possibly regulate the corrinoid metabolism for D. hafniense. The analysis of available D. hafniense genomes indicates the presence of 18 cobalamin riboswitches located upstream of genes whose products are mainly involved in corrinoid biosynthesis and transport. To obtain insight into their function, the secondary structures of three of these RNA elements were predicted by Mfold, as well as analyzed by in-line probing. These RNA elements both display diversity in their structural elements and exhibit various affinities toward adenosylcobalamin that possibly relates to their role in the regulation of corrinoid metabolism. Furthermore, adenosylcobalamin-induced in vivo repression of RNA synthesis of the downstream located genes indicates that the corrinoid transporters and biosynthetic enzymes in D. hafniense strain TCE1 are regulated at the transcriptional level. Taken together, the riboswitch-mediated regulation of the complex corrinoid metabolism in D. hafniense could be of crucial significance in environments polluted with organohalides both to monitor their intracellular corrinoid level and to coexist with corrinoid-auxotroph OHR bacteria. PMID:24039263

  16. The Physiological Opportunism of Desulfitobacterium hafniense Strain TCE1 towards Organohalide Respiration with Tetrachloroethene

    PubMed Central

    Duret, Aurélie; Holliger, Christof

    2012-01-01

    Desulfitobacterium hafniense strain TCE1 is capable of metabolically reducing tetra- and trichloroethenes by organohalide respiration. A previous study revealed that the pce gene cluster responsible for this process is located on an active composite transposon, Tn-Dha1. In the present work, we investigated the effects on the stability of the transposon during successive subcultivations of strain TCE1 in a medium depleted of tetrachloroethene. At the physiological level, an increased fitness of the population was observed after 9 successive transfers and was correlated with a decrease in the level of production of the PceA enzyme. The latter observation was a result of the gradual loss of the pce genes in the population of strain TCE1 and not of a regulation mechanism, as was postulated previously for a similar phenomenon described for Sulfurospirillum multivorans. A detailed molecular analysis of genetic rearrangements occurring around Tn-Dha1 showed two independent but concomitant events, namely, the transposition of the first insertion sequence, ISDha1-a, and homologous recombination across identical copies of ISDha1 flanking the transposon. A new model is proposed for the genetic heterogeneity around Tn-Dha1 in D. hafniense strain TCE1, along with some considerations for the cleavage mechanism mediated by the transposase TnpA1 encoded by ISDha1. PMID:22729540

  17. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor.

    PubMed

    Orsi, William D; Barker Jørgensen, Bo; Biddle, Jennifer F

    2016-08-01

    Sulfate reducing bacteria (SRB) oxidize a significant proportion of subseafloor organic carbon, but their metabolic activities and subsistence mechanisms are poorly understood. Here, we report in depth phylogenetic and metabolic analyses of SRB transcripts in the Peru Margin subseafloor and interpret these results in the context of sulfate reduction activity in the sediment. Relative abundance of overall SRB gene transcripts declines strongly whereas relative abundance of ribosomal protein transcripts from sulfate reducing δ-Proteobacteria peak at 90 m below seafloor (mbsf) within a deep sulfate methane transition zone. This coincides with isotopically heavy δ(34) S values of pore water sulfate (70‰), indicating active subseafloor microbial sulfate reduction. Within the shallow sulfate reduction zone (0-5 mbsf), a transcript encoding the beta subunit of dissimilatory sulfite reductase (dsrB) was related to Desulfitobacterium dehalogenans and environmental sequences from Aarhus Bay (Denmark). At 159 mbsf we discovered a transcript encoding the reversely operating dissimilatory sulfite reductase α-subunit (rdsrA), with basal phylogenetic relation to the chemolithoautotrophic SUP05 Group II clade. A diversity of SRB transcripts involved in cellular maintenance point toward potential subsistence mechanisms under low-energy over long time periods, and provide a detailed new picture of SRB activities underlying sulfur cycling in the deep subseafloor. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Improved Understanding of Microbial Iron and Sulfate Reduction Through a Combination of Bottom-up and Top-down Functional Proteomics Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Ruth

    Our overall goal was to improve the understanding of microbial iron and sulfate reduction by evaluating a diverse iron and sulfate reducing organisms utilizing a multi-omics approach combining “top-down” and “bottom-up” omics methodologies. We initiated one of the first combined comparative genomics, shotgun proteomics, RTqPCR, and heterologous expression studies in pursuit of our project objectives. Within the first year of this project, we created a new bioinformatics tool for ortholog identification (“SPOCS”). SPOCS is described in our publication, Curtis et al., 2013. Using this tool we were able to identify conserved orthologous groups across diverse iron and sulfate reducing microorganismsmore » from Firmicutes, gamma-proteobacteria and delta-proteobacteria. For six iron and sulfate reducers we also performed shotgun proteomics (“bottom-up” proteomics including accurate mass and time (AMT) tag and iTRAQ approaches). Cultures include Gram (-) and Gram (+) microbes. Gram (-) were: Geobacter sulfureducens (grown on iron citrate and fumarate), Geobacter bemidjiensis (grown on iron citrate and fumarate), Shewanella oneidiensis (grown on iron citrate and fumarate) and Anaeromyxobacter dehalogenans (grown on iron citrate and fumarate). Although all cultures grew on insoluble iron, the iron precipitates interfered with protein extraction and analysis; which remains a major challenge for researchers in disparate study systems. Among the Gram (-) organisms studied, Anaeromyxobacter dehalogenans remains the most poorly characterized. Yet, it is arguably the most versatile organisms we studied. In this work we have used comparative proteomics to hypothesize which two of the dozens of predicted c-type cytochromes within Anaeromyxobacter dehalogenans may be directly involved in soluble iron reduction. Unfortunately, heterologous expression of these Anaeromyxobacter dehalogenans ctype cytochromes led to poor protein production and/or formation of inclusion

  19. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment.

    PubMed

    El-Sayed, Wael S

    2016-08-26

    Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.

  20. Towards a More Complete Picture: Dissimilatory Metal Reduction by Anaeromyxobacter Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeffler, Frank E.

    2004-06-01

    We investigate the physiological requirements of available Anaeromyxobacter isolates, and assess their distribution and abundance in the environment, including DOE sites. The performers on this project include Frank Loeffler (PI), Robert Sanford (Co-PI), Qingzhong Wu (postdoc), Sara Henry (graduate student) and Cornell Gayle (undergraduate student). Year-1 efforts focused on method and tool development to address the research objectives. First, we compared different analytical assays (based on fluorescent light emission and calorimetric methods) to quantify U(VI) in cultures of Anaeromyxobacter dehalogenans strain 2CP-C. The assays were optimized to reflect specific culture conditions, and we found that a laser-excited spectrofluorescence assay providedmore » reproducible and accurate information on the amount of U(VI) reduced in bacterial cultures. To demonstrate the ability of Anaeromyxobacter dehalogenans strain 2CP-C to reduce U(VI), washed suspensions of fumarate-grown cells were prepared. These experiments confirmed that the rapid reduction of U(VI) to U(IV) depended on the presence of live cells, and no U(VI) reduction occurred in cell-free controls. Additional experiments explored the ability of three different Anaeromyxobacter strains to grow with the mineral hematite, an insoluble form of ferric iron, as electron acceptor. All strain grew equally well with soluble ferric iron (provided as ferric citrate) but distinct differences were observed between strains when grown with hematite. All strains tested shared a 16S rRNA gene similarity of >99.5%, suggesting that closely related strains may differ in their ability to access insoluble forms of ferric iron.« less

  1. Assessment of chloroethene biodegradation in the subsurface by microbiological, molecular and isotopic tools

    NASA Astrophysics Data System (ADS)

    Schmidt, K. R.; Kranzioch, I.; Heidinger, M.; Ertl, S.; Tiehm, A.

    2012-04-01

    A multiple lines of evidence approach to assess the biodegradation potential of contaminated sites includes - site investigation analysing pollutant distribution (compounds, concentrations, isotopic composition) and hydrochemical conditions (redox conditions) - determination of the presence of pollutant degrading bacteria in the field by microbiological (most probable number, MPN) and molecular (polymerase chain reaction, PCR) methods - analysis of degradation processes in the laboratory by microcosms with determination of site specific isotopic enrichment factors enabling the quantification of biodegradation processes in the field. Results will be shown of the application of such a multiple lines of evidence approach at a chloroethene-contaminated site in Frankenthal, Germany. In anaerobic groundwater microcosms, reductive transformation of perchloroethene (PCE) and trichloroethene (TCE) was observed to mainly proceed to cis-1,2-dichloroethene (cDCE). 16S-PCR analysis showed a wide distribution of halorespiring bacteria capable of PCE degradation to cDCE, whereas Dehalococcoides - the only organisms described so far being able of complete reductive dechlorination down to ethene - was only found in one groundwater sample. Aerobic microcosms showed metabolic degradation of the lower chlorinated compounds cDCE and vinyl chloride (VC). Co-metabolic degradation of cDCE with VC as auxiliary substrate occurred, too. Significant stable carbon isotope fractionation was observed during anaerobic degradation of PCE and TCE as well as during aerobic degradation of cDCE and VC. Compiling the results of the different assessment methods, sequential dechlorination - PCE/TCE to cDCE anaerobically and cDCE to CO2 aerobically - was demonstrated to occur at the Frankenthal site. The extent of biodegradation in the field was calculated based on the enrichment factors determined in microcosms and the 13C-isotopic composition of the contaminants on site. The application of molecular

  2. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  3. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    PubMed

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  4. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, Paul M.

    2000-01-01

     The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  5. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, P.M.

    2000-01-01

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  6. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil.

    PubMed

    Song, Mengke; Luo, Chunling; Li, Fangbai; Jiang, Longfei; Wang, Yan; Zhang, Dayi; Zhang, Gan

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Measurement of Rate Constants for Homodimer Subunit Exchange Using Double Electron-Electron Resonance and Paramagnetic Relaxation Enhancements

    PubMed Central

    Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.

    2013-01-01

    Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k−1;, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 minutes. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies. PMID:23180051

  8. Response of microbial communities to pesticide residues in soil restored with Azolla imbricata.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2018-01-01

    Under conditions of Azolla imbricata restoration, the high-throughput sequencing technology was employed to determine change trends of microbial community structures in the soil that had undergone long-term application of pesticides. The relationship between the content of pesticide residues in the soil and the microbial community structure was analyzed. The results indicated that the microbial diversity was strongly negatively correlated with the contents of pesticide residues in the soil. At a suitable dosage of 5 kg fresh A. imbricata per square meter of soil area, the soil microbial diversity increased by 12.0%, and the contents of pesticide residues decreased by 26.8-72.1%. Sphingobacterium, Sphingopyxis, Thermincola, Sphingobium, Acaryochloris, Megasphaera, Ralstonia, Pseudobutyrivibrio, Desulfitobacterium, Nostoc, Oscillochloris, and Aciditerrimonas may play major roles in the degradation of pesticide residues. Thauera, Levilinea, Geothrix, Thiobacillus, Thioalkalispira, Desulfobulbus, Polycyclovorans, Fluviicola, Deferrisoma, Erysipelothrix, Desulfovibrio, Cytophaga, Vogesella, Zoogloea, Azovibrio, Halomonas, Paludibacter, Crocinitomix, Haliscomenobacter, Hirschia, Silanimonas, Alkalibacter, Woodsholea, Peredibacter, Leptolinea, Chitinivorax, Candidatus_Lumbricincola, Anaerovorax, Propionivibrio, Parasegetibacter, Byssovorax, Runella, Leptospira, and Nitrosomonas may be indicators to evaluate the contents of pesticide residues.

  9. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    PubMed

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  10. Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation.

    PubMed

    Gao, Peike; Li, Guoqiang; Le, Jianjun; Liu, Xiaobo; Liu, Fang; Ma, Ting

    2018-02-01

    Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent nutrient stimulation process.

  11. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc.

    PubMed

    Islam, Shohana; Mate, Diana M; Martínez, Ronny; Jakob, Felix; Schwaneberg, Ulrich

    2018-05-01

    Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate. © 2017 Wiley Periodicals, Inc.

  12. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    PubMed

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Consumption of Tropospheric Levels of Methyl Bromide by C1 Compound-Utilizing Bacteria and Comparison to Saturation Kinetics

    USGS Publications Warehouse

    Goodwin, K.D.; Varner, R.K.; Crill, P.M.; Oremland, R.S.

    2001-01-01

    Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters (???2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2T - terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2T displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent Ks of 2.4 ??M MeBr and a Vmax of 1.6 nmol h-1 (106 cells)-1. Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 ?? 107-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2T), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C1 compound-oxidizing bacteria in this study. Aerobic C1 bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.

  14. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI

    NASA Astrophysics Data System (ADS)

    Patterson, Bradley M.; Lee, Matthew; Bastow, Trevor P.; Wilson, John T.; Donn, Michael J.; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4 ± 0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170 ± 20 mg L- 1 to 39 ± 11 mg L- 1, the degradation half-life decreased 5-fold to 0.83 ± 0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from - 14.6 ± 0.7‰ to - 0.72 ± 0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  15. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.

    PubMed

    Hirasawa, Julia Sumiko; Sarti, Arnaldo; Del Aguila, Nora Katia Saavedra; Varesche, Maria Bernadete A

    2008-10-01

    In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7 mg O2 l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO4(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%.

  16. Functional Role of Infective Viral Particles on Metal Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans andmore » the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.« less

  17. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment.

    PubMed

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-09-24

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  18. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    PubMed Central

    He, Wei-Jie; Yuan, Qing-Song; Zhang, You-Bing; Guo, Mao-Wei; Gong, An-Dong; Zhang, Jing-Bo; Wu, Ai-Bo; Huang, Tao; Qu, Bo; Li, He-Ping; Liao, Yu-Cai

    2016-01-01

    Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10) and temperatures (20–37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation. PMID:27669304

  19. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  20. Isolation from Estuarine Sediments of a Desulfovibrio Strain Which Can Grow on Lactate Coupled to the Reductive Dehalogenation of 2,4,6-Tribromophenol

    PubMed Central

    Boyle, Alfred W.; Phelps, Craig D.; Young, L. Y.

    1999-01-01

    Strain TBP-1, an anaerobic bacterium capable of reductively dehalogenating 2,4,6-tribromophenol to phenol, was isolated from estuarine sediments of the Arthur Kill in the New York/New Jersey harbor. It is a gram-negative, motile, vibrio-shaped, obligate anaerobe which grows on lactate, pyruvate, hydrogen, and fumarate when provided sulfate as an electron acceptor. The organism accumulates acetate when grown on lactate and sulfate, contains desulfoviridin, and will not grow in the absence of NaCl. It will not utilize acetate, succinate, propionate, or butyrate for growth via sulfate reduction. When supplied with lactate as an electron donor, strain TBP-1 will utilize sulfate, sulfite, sulfur, and thiosulfate for growth but not nitrate, fumarate, or acrylate. This organism debrominates 2-, 4-, 2,4-, 2,6-, and 2,4,6-bromophenol but not 3- or 2,3-bromophenol or monobrominated benzoates. It will not dehalogenate monochlorinated, fluorinated, or iodinated phenols or chlorinated benzoates. Together with its physiological characteristics, its 16S rRNA gene sequence places it in the genus Desulfovibrio. The average growth yield of strain TBP-1 grown on a defined medium supplemented with lactate and 2,4,6-bromophenol is 3.71 mg of protein/mmol of phenol produced, and the yield was 1.42 mg of protein/mmol of phenol produced when 4-bromophenol was the electron acceptor. Average growth yields (milligrams of protein per millimole of electrons utilized) for Desulfovibrio sp. strain TBP-1 grown with 2,4,6-bromophenol, 4-bromophenol, or sulfate are 0.62, 0.71, and 1.07, respectively. Growth did not occur when either lactate or 2,4,6-bromophenol was omitted from the growth medium. These results indicate that Desulfovibrio sp. strain TBP-1 is capable of growth via halorespiration. PMID:10049873

  1. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils

    PubMed Central

    Sanford, Robert A.; Wagner, Darlene D.; Wu, Qingzhong; Chee-Sanford, Joanne C.; Thomas, Sara H.; Cruz-García, Claribel; Rodríguez, Gina; Massol-Deyá, Arturo; Krishnani, Kishore K.; Ritalahti, Kirsti M.; Nissen, Silke; Konstantinidis, Konstantinos T.; Löffler, Frank E.

    2012-01-01

    Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N2O) concentrations. N2O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N2O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N2O to N2 reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N2O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N2O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N2O consumption will advance understanding of the ecological controls on N2O emissions and lead to refined greenhouse gas flux models. PMID:23150571

  2. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms.

    PubMed

    Wang, Hui; Cao, Xian; Li, Lei; Fang, Zhou; Li, Xianning

    2018-01-01

    Soil microbial fuel cells (MFCs) are a sustainable technology that degrades organic pollutants while generating electricity. However, there have been no detailed studies of the mechanisms of pollutant degradation in soil MFCs. In this study, the effects of external resistance and electrode effectiveness on atrazine and hexachlorobenzene (HCB) degradation were evaluated, the performance of soil MFCs in the degradation of these pollutants under different soil redox conditions was assessed, and the associated microorganisms in the anode were investigated. With an external resistance of 20Ω, the degradation efficiencies of atrazine and HCB were 95% and 78%, respectively. The degradation efficiency, degradation rate increased with decreasing external resistance, while the half-life decreased. There were different degradation trends for different pollutants under different soil redox conditions. The fastest degradation rate of atrazine was in the upper MFC section (aerobic), whereas that of HCB was in the lower MFC section (anaerobic). The results showed that electrode effectiveness played a significant role in pollution degradation. In addition, the microbial community analysis demonstrated that Proteobacteria, especially Deltaproteobacteria involved in current generation was extremely abundant (27.49%) on soil MFC anodes, although the percentage abundances of atrazine degrading Rhodocyclaceae (8.77%), Desulfitobacterium (0.64%), and HCB degrading Desulfuromonas (0.73%), were considerably lower. The results of the study suggested that soil MFCs can enhance the degradation of atrazine and HCB, and bioelectrochemical reduction was the main mechanism for the pollutants degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration.

    PubMed

    Wong, Yie K; Holland, Sophie I; Ertan, Haluk; Manefield, Mike; Lee, Matthew

    2016-09-01

    Dehalobacter sp. strain UNSWDHB can dechlorinate up to 4 mM trichloromethane at a rate of 0.1 mM per day to dichloromethane and 1,1,2-trichloroethane (1 mM, 0.1 mM per day) with the unprecedented product profile of 1,2-dichloroethane and vinyl chloride. 1,1,1-trichloroethane and 1,1-dichloroethane were slowly utilized by strain UNSWDHB and were not completely removed, with minimum threshold concentrations of 0.12 mM and 0.07 mM respectively under growth conditions. Enzyme kinetic experiments confirmed strong substrate affinity for trichloromethane and 1,1,2-trichloroethane (Km  = 30 and 62 µM respectively) and poor substrate affinity for 1,1,1-trichloroethane and 1,1-dichloroethane (Km  = 238 and 837 µM respectively). Comparison of enzyme kinetic and growth data with other trichloromethane respiring organisms (Dehalobacter sp. strain CF and Desulfitobacterium sp. strain PR) suggests an adaptation of strain UNSWDHB to trichloromethane. The trichloromethane RDase (TmrA) expressed by strain UNSWDHB was identified by BN-PAGE and functionally characterized. Amino acid comparison of homologous RDases from all three organisms revealed only six significant amino acid substitutions/deletions, which are likely to be crucial for substrate specificity. Furthermore, strain UNSWDHB was shown to grow without exogenous supply of cobalamin confirming genomic-based predictions of a fully functional cobalamin synthetic pathway. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.

    2015-03-01

    We explored the impact of the starting community composition and structure on ecosystem response to perturbations using organic carbon amendment experiments. Subsurface sediment was partitioned into flow-through columns, and the microbial communities were initially stimulated in situ by addition of acetate as a carbon and electron donor source. This drove community richness and evenness down, and pushed the system into a new biogeochemical state characterized by iron reduction. Reconstructed near-full-length 16S rRNA gene sequence analysis indicated a concomitant enrichment of Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After 10 to 12 days, acetate was exchange for lactate in a subset of columns.more » Following the clear onset of sulfate reduction (35 days after acetate-amendment), acetate was substituted for lactate in additional columns. Acetatestimulated communities differed markedly during each biogeochemical regime and at each lactate-switch. Regardless, however, of when communities were switched to lactate, they followed comparable trajectories with respect to composition and structure, with convergence evident one week after each switch, and marked after one month of lactate amendment. During sulfate reduction all treatments were enriched in Firmicutes and a number of species likely involved in sulfate reduction (notably Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum). Lactate treatments were distinguished by substantially lower relative abundances of Desulfotomaculum and Bacteroidetes, and enrichments of Psychrosinus and Clostridiales species. Results imply that the structure of the starting community was not significant in controlling organism selection in community succession.« less

  5. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.

    PubMed

    Munro, Jacob E; Kimyon, Önder; Rich, Deborah J; Koenig, Joanna; Tang, Sihui; Low, Adrian; Lee, Matthew; Manefield, Mike; Coleman, Nicholas V

    2017-11-01

    1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is found in hydrolytic DCA degraders, was positively correlated to the DCA concentration, and was unexpectedly most abundant in samples with low oxygen conditions. A dhlA-containing bacterium isolated from the site (Xanthobacter EL8) was capable of anaerobic growth on DCA under denitrifying conditions. The presence of diverse DCA-dehalogenating bacteria at this site indicates that natural attenuation or biostimulation could be valid approaches for site cleanup. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    PubMed Central

    Maphosa, Farai; Lieten, Shakti H.; Dinkla, Inez; Stams, Alfons J.; Smidt, Hauke; Fennell, Donna E.

    2012-01-01

    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic, and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics, and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics, and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter, and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper, we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants. PMID:23060869

  7. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    PubMed

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  8. Precipitation of alacranite (As8S9) by a novel As(V)-respiring anaerobe strain MPA-C3.

    PubMed

    Mumford, Adam C; Yee, Nathan; Young, Lily Y

    2013-10-01

    Strain MPA-C3 was isolated by incubating arsenic-bearing sediments under anaerobic, mesophilic conditions in minimal media with acetate as the sole source of energy and carbon, and As(V) as the sole electron acceptor. Following growth and the respiratory reduction of As(V) to As(III), a yellow precipitate formed in active cultures, while no precipitate was observed in autoclaved controls, or in uninoculated media supplemented with As(III). The precipitate was identified by X-ray diffraction as alacranite, As8 S9 , a mineral previously only identified in hydrothermal environments. Sequencing of the 16S rRNA gene indicated that strain MPA-C3 is a member of the Deferribacteres family, with relatively low (90%) identity to Denitrovibrio acetiphilus DSM 12809. The arsenate respiratory reductase gene, arrA, was sequenced, showing high homology to the arrA gene of Desulfitobacterium halfniense. In addition to As(V), strain MPA-C3 utilizes NO3(-), Se(VI), Se(IV), fumarate and Fe(III) as electron acceptors, and acetate, pyruvate, fructose and benzoate as sources of carbon and energy. Analysis of a draft genome sequence revealed multiple pathways for respiration and carbon utilization. The results of this work demonstrate that alacranite, a mineral previously thought to be formed only chemically under hydrothermal conditions, is precipitated under mesophilic conditions by the metabolically versatile strain MPA-C3. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    NASA Astrophysics Data System (ADS)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  10. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples.

    PubMed

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-10-30

    Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while < 2% of 19 bp oligomers are present. Other species showed different ranges of > 98% to < 2% of possible oligomers in D. melanogaster (12-17 bp), C. elegans (11-17 bp), A. thaliana (11-17 bp), S. cerevisiae (10-16 bp) and E. coli (9-15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously

  11. Evaluating the microbial community and gene regulation involved in crystallization kinetics of ZnS formation in reduced environments

    NASA Astrophysics Data System (ADS)

    Falk, Nicholas; Chaganti, Subba Rao; Weisener, Christopher G.

    2018-01-01

    In anoxic environments, sulfate-reducing bacteria (SRB) may precipitate sparingly-soluble, fine-grained sulfides as by-products of dissimilatory sulfate reduction. This bio-mechanism lends importance to acid rock drainage (ARD) remediation efforts for its ability to immobilize harmful metals from contaminant pathways, including Zn. However, SRB often coexist alongside multiple bacterial guilds in these environments, and may be sustained or hindered by the activities and metabolic by-products of their cohorts, driven by the commonly available substrates. Thus, the effectiveness of onset sulfate reduction and resultant metal-sulfide generation in ARD treatment can be enhanced by unravelling the complexities associated with these interactions. This research used material sourced from a passive bioreactor system located at the Stockton Coal Mine, New Zealand to investigate SRB activity and associated community function. RNA sequencing showed spore-forming Desulfitobacterium and Desulfotomaculum as the dominant SRB enriched from the reduced zone of the bioreactor. Metatranscriptomic analysis revealed acetogenic bacteria as syntrophic partners in substrate availability and Pseudomonas as metal-resistant community members. ZnS precipitates were observed by scanning electron microscopy (SEM) in short-term batch enrichments as well as long-term raw bioreactor material, with observed differences in mineral arrangement indicative of different nucleation scenarios. Syntrophy, metal response mechanisms, and the capacity for sporulation were observed as key microbial functions in mine waste reclamation settings. Here, Zn and S mass balance calculations coupled with RNA sequence data and microscopy illuminated favourable physicochemical and biological conditions for early metal sulfide precipitation in passive treatment systems for ARD and highlight the advantages of linking both lab and field-scale studies.

  12. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  13. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  14. Novel Firmicutes Group Implicated in the Dechlorination of Two Chlorinated Xanthones, Analogues of Natural Organochlorines

    PubMed Central

    Krzmarzick, Mark J.; Miller, Hanna R.; Yan, Tao

    2014-01-01

    Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine. PMID:24296507

  15. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria*

    PubMed Central

    Anashkin, Viktor A.; Salminen, Anu; Tuominen, Heidi K.; Orlov, Victor N.; Lahti, Reijo; Baykov, Alexander A.

    2015-01-01

    Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ∼10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria. PMID:26400082

  16. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  17. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase

    DOE PAGES

    Ticak, Tomislav; Kountz, D. J.; Girosky, K. E.; ...

    2014-10-13

    COG5598 comprises a large number of proteins related to MttB, the trimethylamine:corrinoid methyltransferase. MttB has a genetically encoded pyrrolysine residue proposed essential for catalysis. MttB is the only known trimethylamine methyltransferase, yet the great majority of members of COG5598 lack pyrrolysine, leaving the activity of these proteins an open question. Here, we describe the function of one of the nonpyrrolysine members of this large protein family. Three nonpyrrolysine MttB homologs are encoded in Desulfitobacterium hafniense, a Gram-positive strict anaerobe present in both the environment and human intestine. D. hafniense was found capable of growth on glycine betaine with electron acceptorsmore » such as nitrate or fumarate, producing dimethylglycine and CO 2 as products. Examination of the genome revealed genes for tetrahydrofolate-linked oxidation of a methyl group originating from a methylated corrinoid protein, but no obvious means to carry out corrinoid methylation with glycine betaine. DSY3156, encoding one of the nonpyrrolysine MttB homologs, was up-regulated during growth on glycine betaine. The recombinant DSY3156 protein converts glycine betaine and cob(I)alamin to dimethylglycine and methylcobalamin. To our knowledge, DSY3156 is the first glycine betaine:corrinoid methyltransferase described, and a designation of MtgB is proposed. Additionally, DSY3157, an adjacently encoded protein, was shown to be a methylcobalamin:tetrahydrofolate methyltransferase and is designated MtgA. Homologs of MtgB are widely distributed, especially in marine bacterioplankton and nitrogen-fixing plant symbionts. Lastly, they are also found in multiple members of the human microbiome, and may play a beneficial role in trimethylamine homeostasis, which in recent years has been directly tied to human cardiovascular health.« less

  18. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    PubMed Central

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while < 2% of 19 bp oligomers are present. Other species showed different ranges of > 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden

  19. Potential for microbial oxidation of ferrous iron in basaltic glass.

    PubMed

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  20. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  1. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC

    PubMed Central

    Buttet, Géraldine F.; Willemin, Mathilde S.; Hamelin, Romain; Rupakula, Aamani; Maillard, Julien

    2018-01-01

    Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results

  2. Vitamin B12 effects on chlorinated methanes-degrading microcosms: Dual isotope and metabolically active microbial populations assessment.

    PubMed

    Rodríguez-Fernández, Diana; Torrentó, Clara; Guivernau, Miriam; Viñas, Marc; Hunkeler, Daniel; Soler, Albert; Domènech, Cristina; Rosell, Mònica

    2018-04-15

    Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which vitamin B 12 was added (B 12 /pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and chlorine compound-specific stable-isotope analysis, and the active microbial community through 16S rRNA MiSeq high-throughput sequencing. Autoclaved slurry controls discarded abiotic degradation processes. B 12 catalyzed CF and CT biodegradation without the accumulation of dichloromethane, carbon disulphide, or CF. The carbon isotopic fractionation value of CF (ƐC CF ) with B 12 was -14±4‰, and the value for chlorine (ƐCl CF ) was -2.4±0.4‰. The carbon isotopic fractionation values of CT (ƐC CT ) were -16±6 with B 12 , and -13±2‰ without B 12 ; and the chlorine isotopic fractionation values of CT (ƐCl CT ) were -6±3 and -4±2‰, respectively. Acidovorax, Ancylobacter, and Pseudomonas were the most metabolically active genera, whereas Dehalobacter and Desulfitobacterium were below 0.1% of relative abundance. The dual C-Cl element isotope slope (Λ=Δδ 13 C/Δδ 37 Cl) for CF biodegradation (only detected with B 12 , 7±1) was similar to that reported for CF reduction by Fe(0) (8±2). Several reductive pathways might be competing in the tested CT scenarios, as evidenced by the lack of CF accumulation when B 12 was added, which might be linked to a major activity of Pseudomonas stutzeri; by different chlorine apparent kinetic isotope effect values and Λ which was statistically different with and without B 12 (5±1 vs 6.1±0.5), respectively. Thus, positive B 12 effects such as CT and CF degradation catalyst were quantified for the first time in isotopic terms, and confirmed with the major activity of species potentially capable of their degradation. Moreover, the indirect benefits of B 12 on the degradation of chlorinated ethenes were proved, creating a basis for remediation

  3. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column.

    PubMed

    Azizian, Mohammad F; Marshall, Ian P G; Behrens, Sebastian; Spormann, Alfred M; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to "Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  4. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.

    Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a

  5. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms†

    PubMed Central

    Kostka, Joel E.; Dalton, Dava D.; Skelton, Hayley; Dollhopf, Sherry; Stucki, Joseph W.

    2002-01-01

    Smectite clay minerals are abundant in soils and sediments worldwide and are typically rich in Fe. While recent investigations have shown that the structural Fe(III) bound in clay minerals is reduced by microorganisms, previous studies have not tested growth with clay minerals as the sole electron acceptor. Here we have demonstrated that a pure culture of Shewanella oneidensis strain MR-1 as well as enrichment cultures of Fe(III)-reducing bacteria from rice paddy soil and subsurface sediments are capable of conserving energy for growth with the structural Fe(III) bound in smectite clay as the sole electron acceptor. Pure cultures of S. oneidensis were used for more detailed growth rate and yield experiments on various solid- and soluble-phase electron acceptors [smectite, Fe(III) oxyhydroxide FeOOH, Fe(III) citrate, and oxygen] in the same minimal medium. Growth was assessed as direct cell counts or as an increase in cell carbon (measured as particulate organic carbon). Cell counts showed that similar growth of S. oneidensis (108 cells ml−1) occurred with smectitic Fe(III) and on other Fe forms [amorphous Fe(III) oxyhydroxide, and Fe citrate] or oxygen as the electron acceptor. In contrast, cell yields of S. oneidensis measured as the increase in cell carbon were similar on all Fe forms tested while yields on oxygen were five times higher, in agreement with thermodynamic predictions. Over a range of particle loadings (0.5 to 4 g liter−1), the increase in cell number was highly correlated to the amount of structural Fe in smectite reduced. From phylogenetic analysis of the complete 16S rRNA gene sequences, a predominance of clones retrieved from the clay mineral-reducing enrichment cultures were most closely related to the low-G+C gram-positive members of the Bacteria (Clostridium and Desulfitobacterium) and the δ-Proteobacteria (members of the Geobacteraceae). Results indicate that growth with smectitic Fe(III) is similar in magnitude to that with Fe

  6. Use of Bacteria To Stabilize Archaeological Iron

    PubMed Central

    Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic

    2017-01-01

    ABSTRACT Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is

  7. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    DOE PAGES

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; ...

    2016-02-12

    Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a

  8. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability.

    PubMed

    Fan, Lan-Feng; Tang, Sen-Lin; Chen, Chang-Po; Hsieh, Hwey-Lian

    2012-01-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s ) = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and

  9. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes.

    PubMed

    Woods, Angela; Kuntze, Kevin; Gelman, Faina; Halicz, Ludwik; Nijenhuis, Ivonne

    2018-01-01

    The potential of compound-specific stable isotope analysis (CSIA) to characterize biotransformation of brominated organic compounds (BOCs) was assessed and compared to chlorinated analogues. Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S catalyzed the dehalogenation of tribromoethene (TBE) to either vinyl bromide (VB) or ethene, respectively. Significantly lower isotope fractionation was observed for TBE dehalogenation by S. multivorans (ε C  = -1.3 ± 0.2‰) compared to D. hafniense (ε C  = -7.7 ± 1.5‰). However, higher fractionation was observed for dibromoethene (DBE) dehalogenation by S. multivorans (ε C  = -16.8 ± 1.8‰ and -21.2 ± 1.6‰ for trans- and cis-1,2- (DBE) respectively), compared to D. hafniense PCE-S (ε C  = -9.5 ± 1.2‰ and -14.5 ± 0.7‰ for trans-1,2-DBE and cis-1,2-DBE, respectively). Significant, but similar, bromine fractionation was observed for for S. multivorans (ε Br  = -0.53 ± 0.15‰, -1.03 ± 0.26‰, and -1.18 ± 0.13‰ for trans-1,2-DBE, cis-1,2-DBE and TBE, respectively) and D. hafniense PCE-S (ε Br  = -0.97 ± 0.28‰, -1.16 ± 0.36‰, and -1.34 ± 0.32‰ for cis-1,2-DBE, TBE and trans-1,2-DBE, respectively). Variable CBr dual-element slopes were estimated at Λ (ε C /ε Br ) = 1.03 ± 0.2, 17.9 ± 5.8, and 29.9 ± 11.0 for S. multivorans debrominating TBE, cis-1,2-DBE and trans-1,2-DBE, respectively, and at 7.14 ± 1.6, 8.27 ± 3.7, and 8.92 ± 2.4 for D. hafniense PCE-S debrominating trans-1,2-DBE, TBE and cis-1,2-DBE, respectively. A high variability in isotope fractionation, which was substrate property related, was observed for S. multivorans but not D. hafniense, similar as observed for chlorinated ethenes, and may be due to rate-limiting steps preceding the bond-cleavage or differences in the reaction mechanism. Overall, significant isotope fractionation was observed and, therefore, CSIA can be applied to monitor the

  10. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.

  11. Microbial degradation of chloroethenes in groundwater systems

    NASA Astrophysics Data System (ADS)

    Bradley, Paul M.

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichlor

  12. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    USGS Publications Warehouse

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although