Sample records for halothane isoflurane sevoflurane

  1. Anesthesia specific differences in a cardio-pulmonary resuscitation rat model; halothane versus sevoflurane.

    PubMed

    Esser, Torben; Keilhoff, Gerburg; Ebmeyer, Uwe

    2016-12-01

    Our asphyxia cardiac arrest (ACA) rat model is well established. The original model was designed in the 1990th using halothane and nitrous oxide for pre-insult anesthesia. Because of its hepato-toxicity and its potential to induce severe liver failures, halothane is no longer used in clinical anesthesia for several years. In order to minimize the health risk for our laboratory staff as well as to keep the experimental settings of our model on a clinically oriented basis we decided to replace halothane by sevoflurane. In this study we intended to determine if the change of the narcotic gas regiment causes changes in the neurological damage and how far our model had to be adjusted. Adult rats were subjected to 5min of ACA followed by resuscitation. There were four treatment groups: ACA - halothane, ACA - sevoflurane and with halothane or sevoflurane sham operated animals. Vital and blood parameters were monitored during the 45min post-resuscitation intensive care phase. After a survival time of 7 days histological evaluation of the hippocampus was performed. We observed that resuscitated rats anesthetized prior by sevoflurane (i) have had a lower heart rate and a higher MAP compared to halothane anesthetized animals; (ii) The neurological damaged were significantly reduced in the hippocampal CA1 region in sevoflurane treated rats. Using sevoflurane instead of halothane for anesthesia requires some physiological and experimental changes. However the model keeps its validity. Sevoflurane caused less pronounced neurodegeneration in the CA1 region of the hippocampus. This had to be considered in further resuscitation-studies containing sevoflurane as anesthetic. Institutional protocol number for animal studies: 42502-2-2-947 Uni MD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Low flow anaesthesia with isoflurane and sevoflurane in the dog].

    PubMed

    Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo

    2008-01-01

    The aim of the present study was to compare the safety and efficacy of sevoflurane and isoflurane during low flow anaesthesia (fresh gas flow (FGF) 14 ml/kg/min) as well as to compare the consumption of both anaesthetics. Data were gathered from 60 dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs were induced with 0.6 mg/kg (maximum 25 mg) l-methadone and 1 mg/kg (maximum 25 mg) diazepam i.v.. Anaesthesia was maintained with isoflurane (group 1) or sevoflurane (group 2) in a mixture with 50% O2 and 50% N2O as carrier gases, under controlled ventilation. Monitoring included electrocardiogram, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane, sevoflurane). The consumption of isoflurane and sevoflurane as well as the dogs' recovery times were evaluated for both groups. In all groups the inspired oxygen concentrations ranged above the minimum value of 30 Vol% during low flow anaesthesia, with an arterial oxygen saturation above 97%. End tidal concentration of CO2, heart rate and arterial blood pressure were within the physiological ranges and showed no differences between the two groups. Recovery time was significantly shorter after sevoflurane compared to isoflurane anaesthesia, whilst the consumption of sevoflurane was higher than that of isoflurane. Sevoflurane appears to be as clinically safe as isoflurane in low flow anaesthesia. Even considering that sevoflurane is more expensive than isoflurane, the use of the low flow technique decreases the cost of anaesthesia due to the reduced volatile anaesthetic consumption.

  3. Changes in heart rate variability during anaesthesia induction using sevoflurane or isoflurane with nitrous oxide.

    PubMed

    Nishiyama, Tomoki

    2016-01-01

    The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.

  4. A comparison of sevoflurane and isoflurane for short-term anesthesia in polecats (Mustela eversmanni)

    USGS Publications Warehouse

    Gaynor, J. S.; Wimsatt, J.; Mallinckrodt, C.; Biggins, D. E.

    1997-01-01

    Twenty-four Siberian polecats (Mustela eversmanni) from 12 litters were anesthetized with either inhaled sevoflurane or isoflurane. With 7% delivered sevoflurane and 5% delivered isoflurane, time to loss of righting reflex (mean +/- SE) with sevoflurane (1.9 +/- 0.1 min) was significantly shorter compared with isoflurane (2.6 +/- 0.1 min). During maintenance at a light plane of anesthesia, systolic arterial pressure was significantly higher with sevoflurane (83 +/- 2 mm Hg) compared with isoflurane (66 +/- 2 mm Hg), and heart rate was significantly lower with sevoflurane (191 +/- 3 beats/min) compared with isoflurane (204 +/- 3 beats/min). There was no difference in respiratory rate jugular venous pH, pCO3, HCO3-, base excess, or recovery of righting reflex. Induction of anesthesia is more rapid and blood pressure is better maintained with sevoflurane compared with isoflurane; therefore, sevoflurane may be less stressful and safer. Inhaled sevoflurane should be an appropriate anesthetic for black-footed ferrets (Mustela nigripes) in laboratory and field conditions.

  5. A comparison of sevoflurane and isoflurane for short-term anesthesia in polecats (Mustela eversmanni).

    PubMed

    Gaynor, J S; Wimsatt, J; Mallinckrodt, C; Biggins, D

    1997-09-01

    Twenty-four Siberian polecats (Mustela eversmanni) from 12 litters were anesthetized with either inhaled sevoflurane or isoflurane. With 7% delivered sevoflurane and 5% delivered isoflurane, time to loss of righting reflex (mean +/- SE) with sevoflurane (1.9 +/- 0.1 min) was significantly shorter compared with isoflurane (2.6 +/- 0.1 min). During maintenance at a light plane of anesthesia, systolic arterial pressure was significantly higher with sevoflurane (83 +/- 2 mm Hg) compared with isoflurane (66 +/- 2 mm Hg), and heart rate was significantly lower with sevoflurane (191 +/- 3 beats/min) compared with isoflurane (204 +/- 3 beats/min). There was no difference in respiratory rate jugular venous pH, pCO3, HCO3-, base excess, or recovery of righting reflex. Induction of anesthesia is more rapid and blood pressure is better maintained with sevoflurane compared with isoflurane; therefore, sevoflurane may be less stressful and safer. Inhaled sevoflurane should be an appropriate anesthetic for black-footed ferrets (Mustela nigripes) in laboratory and field conditions.

  6. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation.

    PubMed

    Orth, Mashawn; Bravo, Emigdio; Barter, Linda; Carstens, Earl; Antognini, Joseph F

    2006-06-01

    Isoflurane and halothane cause electroencephalographic (EEG) depression and neuronal depression in the reticular formation, a site critical to consciousness. We hypothesized that isoflurane, more than halothane, would depress EEG activation elicited by electrical microstimulation of the reticular formation. Rats were anesthetized with either halothane or isoflurane and stimulating electrodes were positioned in the reticular formation. In a crossover design, anesthetic concentration was adjusted to 0.8 and 1.2 minimum alveolar concentration (MAC) of halothane or isoflurane and electrical microstimulation was performed and the EEG responses were recorded. Microstimulation increased the spectral edge and median edge frequencies 2-2.5 Hz at 0.8 MAC for halothane and isoflurane and 1.2 MAC halothane. At 1.2 MAC isoflurane, burst suppression occurred and microstimulation decreased the period of isoelectricity (24% +/- 19% to 8% +/- 7%; P < 0.05), whereas the spectral edge and median edge frequencies were unchanged. At anesthetic concentrations required to produce immobility, the cortex remains responsive to electrical microstimulation of the reticular formation, although the EEG response is depressed in the transition from 0.8 to 1.2 MAC. These data indicate that cortical neurons remain responsive to synaptic input during isoflurane and halothane anesthesia.

  7. Respiratory reflexes in spontaneously breathing anesthetized dogs in response to nasal administration of sevoflurane, isoflurane, or halothane.

    PubMed

    Mutoh, T; Kanamaru, A; Suzuki, H; Tsubone, H; Nishimura, R; Sasaki, N

    2001-03-01

    To characterize respiratory reflexes elicited by nasal administration of sevoflurane (Sevo), isoflurane (Iso), or halothane (Hal) in anesthetized dogs. 8 healthy Beagles. A permanent tracheostomy was created in each dog. Two to 3 weeks later, dogs were anesthetized by IV administration of thiopental and alpha-chloralose. Nasal passages were isolated such that inhalant anesthetics could be administered to the nasal passages while the dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of each anesthetic at 1.2 and 2.4 times the minimum alveolar concentration (MAC) and the full vaporizer setting (5%) were recorded. Reflexes in response to administration of 5% of each anesthetic also were recorded following administration of lidocaine to the nasal passages. Nasal administration of Sevo, Iso, and Hal induced an immediate ventilatory response characterized by a dose-dependent increase in expiratory time and a resulting decrease in expired volume per unit of time. All anesthetics had a significant effect, but for Sevo, the changes were smaller in magnitude. Responses to administration of each anesthetic were attenuated by administration of lidocaine to the nasal passages. Nasal administration of Sevo at concentrations generally used for mask induction of anesthesia induced milder reflex inhibition of breathing, presumably via afferent neurons in the nasal passages, than that of Iso or Hal. Respiratory reflexes attributable to stimulation of the nasal passages may contribute to speed of onset and could promote a smoother induction with Sevo, compared with Iso or Hal.

  8. Effects of sevoflurane anaesthesia on recovery in children: a comparison with halothane.

    PubMed

    Lapin, S L; Auden, S M; Goldsmith, L J; Reynolds, A M

    1999-01-01

    We prospectively studied one hundred ASA physical status I-II children, ages six months to six years, undergoing myringotomy surgery. Children were randomly assigned to one of four anaesthetic groups receiving either halothane or sevoflurane for anaesthesia and oral midazolam premedication or no premedication. We found that children anaesthetized with sevoflurane had significantly faster recovery times and discharge home times than those who received halothane. Patients given oral midazolam premedication had significantly longer recovery times, but no delay in discharge home compared with those not premedicated. However, children anaesthetized with sevoflurane and no premedication had an unacceptably high incidence (67%) of postoperative agitation. The use of oral midazolam preoperatively did decrease the amount of postoperative agitation seen with sevoflurane. We conclude that although sevoflurane does shorten recovery times, the degree of associated postoperative agitation makes it unacceptable as a sole anaesthetic for myringotomy surgery.

  9. Effects of isoflurane, sevoflurane and methoxyflurane on the electroencephalogram of the chicken.

    PubMed

    McIlhone, Amanda E; Beausoleil, Ngaio J; Johnson, Craig B; Mellor, David J

    2014-11-01

    Anaesthetics have differing effects on mammalian electroencephalogram (EEG) but little is known about the effects on avian EEG. This study explored how inhalant anaesthetics affect chicken EEG. Experimental study. Twelve female Hyline Brown chickens aged 6-11 weeks. Each chicken was anaesthetized with isoflurane, sevoflurane, and methoxyflurane. For each, anaesthesia was adjusted to 1, 1.5 and 2 times Minimum Anaesthetic Concentration (MAC). Total Power (Ptot), Median Frequency (F50), Spectral Edge Frequency (F95) and Burst Suppression Ratio (BSR) were calculated at each volume concentration. BSR data were analyzed using doubly repeated measures anova. Neither isoflurane nor sevoflurane could be included in analysis of F50, F95 and Ptot because of extensive burst suppression; Methoxyflurane data were analyzed using RM anova. There was a significant interaction between anaesthetic and concentration on BSR [F(4,22) = 10.65, p < 0.0001]. For both isoflurane and sevoflurane, BSR increased with concentration. Isoflurane caused less suppression than sevoflurane at 1.5 MAC and at final 1 MAC while methoxyflurane caused virtually no burst suppression. Methoxyflurane concentration had a significant effect on F50 [F(2,20) = 3.83, p = 0.04], F95 [F(2,20) = 4.03, p = 0.03] and Ptot [F(2,20) = 5.22, p = 0.02]. Decreasing methoxyflurane from 2 to 1 MAC increased F50 and F95. Ptot increased when concentration decreased from 1.5 to 1 MAC and tended to be higher at 1 MAC than at 2 MAC. Isoflurane and sevoflurane suppressed chicken EEG in a dose-dependent manner. Higher concentrations of methoxyflurane caused an increasing degree of synchronization of EEG. Isoflurane and sevoflurane suppressed EEG activity to a greater extent than did methoxyflurane at equivalent MAC multiples. Isoflurane caused less suppression than sevoflurane at intermediate concentrations. These results indicate the similarity between avian and mammalian EEG responses to inhalant anaesthetics and reinforce the

  10. Recovery from sevoflurane anesthesia in horses: comparison to isoflurane and effect of postmedication with xylazine.

    PubMed

    Matthews, N S; Hartsfield, S M; Mercer, D; Beleau, M H; MacKenthun, A

    1998-01-01

    To compare recovery from sevoflurane or isoflurane anesthesia in horses. Prospective, randomized cross-over design. Nine Arabian horses (3 mares, 3 geldings, and 3 stallions) weighing 318 to 409 kg, 4 to 20 years old. Horses were anesthetized on three occasions with xylazine (1.1 mg/kg), Diazepam (0.03 mg/kg intravenously [i.v.]), and ketamine (2.2 mg/kg i.v.). After intubation, they were maintained with isoflurane or sevoflurane for 90 minutes. On a third occasion, horses were maintained with sevoflurane and given xylazine (0.1 mg/kg i.v.) when the vaporizer was turned off. Horses were not assisted in recovery and all recoveries were videotaped. Time to extubation, first movement, sternal, and standing were recorded as was the number of attempts required to stand. Recoveries were scored on a 1 to 6 scoring system (1 = best, 6 = worst) by the investigators, and by three evaluators who were blinded to the treatments the horses received. These blinded evaluators assessed the degree of ataxia present at 10 minutes after each horse stood, and recorded the time at which they judged the horse to be ready to leave the recovery stall. Mean times (+/- SD) to extubation, first movement, sternal, and standing were 4.1 (1.7), 6.7 (1.9), 12.6 (4.6), and 17.4 (7.2) minutes with isoflurane; 3.4 (0.8), 6.6 (3.1), 10.3 (3.1), and 13.9 (3.0) minutes with sevoflurane; and 4.0 (1.2), 9.1 (3.3), 13.8 (6.5), and 18.0 (7.1) with sevoflurane followed by xylazine. Horses required a mean number of 4 (2.3), 2 (0.9), and 2 ( 1.6) attempts to stand with isoflurane, sevoflurane, and sevoflurane followed by xylazine respectively. The mean recovery score (SD) for isoflurane was 2.9 (1.2) from investigators and 2.4 (1.1) from blinded evaluators. For sevoflurane, the mean recovery score was 1.7 (0.9) from investigators and 1.9 (1.1) from evaluators, whereas the recoveries from sevoflurane with xylazine treatment were scored as 1.7 (1.2) from investigators and 1.7 (1.0) from blinded evaluators

  11. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  12. Use of intranasal fentanyl in children undergoing myringotomy and tube placement during halothane and sevoflurane anesthesia.

    PubMed

    Galinkin, J L; Fazi, L M; Cuy, R M; Chiavacci, R M; Kurth, C D; Shah, U K; Jacobs, I N; Watcha, M F

    2000-12-01

    Many children are restless, disoriented, and inconsolable immediately after bilateral myringotomy and tympanosotomy tube placement (BMT). Rapid emergence from sevoflurane anesthesia and postoperative pain may increase emergence agitation. The authors first determined serum fentanyl concentrations in a two-phase study of intranasal fentanyl. The second phase was a prospective, placebo-controlled, double-blind study to determine the efficacy of intranasal fentanyl in reducing emergence agitation after sevoflurane or halothane anesthesia. In phase 1, 26 children with American Society of Anesthesiologists (ASA) physical status I or II who were scheduled for BMT received intranasal fentanyl, 2 microg/kg, during a standardized anesthetic. Serum fentanyl concentrations in blood samples drawn at emergence and at postanesthesia care unit (PACU) discharge were determined by radioimmunoassay. In phase 2, 265 children with ASA physical status I or II were randomized to receive sevoflurane or halothane anesthesia along with either intranasal fentanyl (2 microg/kg) or saline. Postoperative agitation, Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) scores, and satisfaction of PACU nurses and parents with the anesthetic technique were evaluated. In phase 1, the mean fentanyl concentrations at 10 +/- 4 min (mean +/- SD) and 34 +/- 9 min after administering intranasal fentanyl were 0.80 +/- 0.28 and 0.64 +/- 0.25 ng/ml, respectively. In phase 2, the incidence of severe agitation, highest CHEOPS scores, and heart rate in the PACU were decreased with intranasal fentanyl. There were no differences between sevoflurane and halothane in these measures and in times to hospital discharge. The incidence of postoperative vomiting, hypoxemia, and slow respiratory rates were not increased with fentanyl. Serum fentanyl concentrations after intranasal administration exceed the minimum effective steady state concentration for analgesia in adults. The use of intranasal fentanyl during

  13. Halothane-induced Hypnosis Is Not Accompanied by Inactivation of Orexinergic Output in Rodents

    PubMed Central

    Gompf, Heinrich; Chen, Jingqiu; Sun, Yi; Yanagisawa, Masashi; Aston-Jones, Gary; Kelz, Max B.

    2009-01-01

    Background One underexploited property of anesthetics is their ability to probe neuronal regulation of arousal. At appropriate doses, anesthetics reversibly obtund conscious perception. However, individual anesthetic agents may accomplish this by altering the function of distinct neuronal populations. Previously we showed that isoflurane and sevoflurane inhibit orexinergic neurons, delaying reintegration of sensory perception as denoted by emergence. Herein we study the effects of halothane. As a halogenated alkane, halothane differs structurally, has a nonoverlapping series of molecular binding partners, and differentially modulates electrophysiologic properties of several ion channels when compared with its halogenated ether relatives. Methods c-Fos immunohistochemistry and in vivo electrophysiology were used to assess neuronal activity. Anesthetic induction and emergence were determined behaviorally in narcoleptic orexin/ataxin-3 mice and control siblings exposed to halothane. Results Halothane-induced hypnosis occurred despite lack of inhibition of orexinergic neurons in mice. In rats, extracellular single-unit recordings within the locus coeruleus showed significantly greater activity during halothane than during a comparable dose of isoflurane. Microinjection of the orexin-1 receptor antagonist, SB-334867-A during the active period slowed firing rates of locus coeruleus neurons in halothane-anesthetized rats, but had no effect on isoflurane-anesthetized rats. Surprisingly, orexin/ataxin-3 transgenic mice, which develop narcolepsy with cataplexy due to loss of orexinergic neurons, did not show delayed emergence from halothane. Conclusion Coordinated inhibition of hypothalamic orexinergic and locus coeruleus noradrenergic neurons is not required for anesthetic induction. Normal emergence from halothane-induced hypnosis in orexin-deficient mice suggests that additional wake-promoting systems likely remain active during general anesthesia produced by halothane

  14. Ischemic Preconditioning Produces Comparable Protection Against Hepatic Ischemia/Reperfusion Injury Under Isoflurane and Sevoflurane Anesthesia in Rats.

    PubMed

    Jeong, J S; Kim, D; Kim, K Y; Ryu, S; Han, S; Shin, B S; Kim, G S; Gwak, M S; Ko, J S

    2017-11-01

    Various volatile anesthetics and ischemic preconditioning (IP) have been demonstrated to exert protective effect against ischemia/reperfusion (I/R) injury in liver. We aimed to determine whether application of IP under isoflurane and sevoflurane anesthesia would confer protection against hepatic I/R injury in rats. Thirty-eight rats weighing 270 to 300 grams were randomly divided into 2 groups: isoflurane (1.5%) and sevoflurane (2.5%) anesthesia groups. Each group was subdivided into sham (n = 3), non-IP (n = 8; 45 minutes of hepatic ischemia), and IP (n = 8, IP consisting of 10-minute ischemia plus 15-minute reperfusion before prolonged ischemia) groups. The degree of hepatic injury and expressions of B-cell lymphoma 2 (Bcl-2) and caspase 3 were compared at 2 hours after reperfusion. Hepatic ischemia induced significant degree of I/R injuries in both isoflurane and sevoflurane non-IP groups. In both anesthetic groups, introduction of IP dramatically attenuated I/R injuries as marked by significantly lower aspartate aminotransferase and aminotransferase levels and better histologic grades compared with corresponding non-IP groups. There were 2.3- and 1.7-fold increases in Bcl-2 mRNA levels in isoflurane and sevoflurane IP groups, respectively, compared with corresponding non-IP groups (both P < .05). Caspase 3 level was significantly high in the isoflurane non-IP group compared with the sham group; however, there were no differences among the sevoflurane groups. The degree of hepatic I/R injury was significantly high in both isoflurane and sevoflurane groups in rats. However, application of IP significantly protected against I/R injury in both volatile anesthetic groups to similar degrees, and upregulation of Bcl-2 might be an important mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synergistic effect of sevoflurane and isoflurane on inhibition of the adult-type muscle nicotinic acetylcholine receptor by rocuronium.

    PubMed

    Liu, Li; Li, Wei; Wei, Ke; Cao, Jun; Luo, Jie; Wang, Bin; Min, Su

    2013-06-01

    Inhaled anesthetics increase the incidence of postoperative residual neuromuscular blockade, and the mechanism is still unclear. We have investigated the synergistic effect of low-concentration inhaled anesthetics and rocuronium on inhibition of the inward current of the adult-type muscle nicotinic acetylcholine receptor (ε-nAChR). Adult-type mouse muscle ε-nAChR was expressed in HEK293 cells by liposome transfection. The inward current of the ε-nAChR was activated by use of 10 μmol/L acetylcholine alone or in combination with different concentrations of sevoflurane, isoflurane, or rocuronium. The concentration-response curves of five cells were constructed, and the data yielded the 5, 25, and 50 % inhibitory concentrations (IC5, IC25, and IC50, respectively) for single-drug application. Subsequently, the functional channels were perfused by adding 0.5 IC5 of either sevoflurane or isoflurane (aqueous concentrations 140 and 100 μmol/L, respectively) to the solution, followed by addition of IC5, IC25, or IC50 rocuronium. The amount of inhibition was calculated to quantify their synergistic effect. The inhibitory effect of rocuronium was enhanced by sevoflurane or isoflurane in a concentration-dependent manner. Sevoflurane or isoflurane (0.5 IC5) with rocuronium at IC5, IC25, and IC50 synergistically inhibited the current amplitude of adult-type muscle ε-nAChR. When the IC5 of rocuronium was used, isoflurane had a stronger synergistic effect than sevoflurane (p < 0.05). When rocuronium was applied at higher concentrations (IC25 and IC50), sevoflurane had an effect similar to that of isoflurane. For both inhaled anesthetics, the synergistic effect was more intense for rocuronium at IC5 than for rocuronium at IC25 or IC50. Residual-concentration sevoflurane or isoflurane has a strong synergistic effect with rocuronium at clinically relevant residual concentrations. A lower rocuronium concentration resulted in a stronger synergistic effect.

  16. Wash-in and wash-out curves of sevoflurane and isoflurane in morbidly obese patients.

    PubMed

    Torri, G; Casati, A; Comotti, L; Bignami, E; Santorsola, R; Scarioni, M

    2002-06-01

    The aim of this prospective, randomized study is to compare sevoflurane and isoflurane pharmacokinetics in morbidly obese patients. With Ethical Committee approval and written informed consent, 14 obese patients (BMI >35 kg/m2), ASA physical status II, undergoing laparoscopic, silicone-adjustable gastric banding were randomly allocated to receive either sevoflurane (n=7) or isoflurane (n=7) as main anesthetic agents. General anesthesia was induced with 1 mg x kg-1 fentanyl, 6 mg x kg-1 sodium thiopental, and 1 mg x kg-1 succinylcholine followed by 0.4 mg kg-1 x h-1 atracurium bromide (doses were referred to ideal body weight). Intermittent positive pressure ventilation (IPPV) was applied using a Servo-900C ventilator with a nonrebreathing circuit and a 15 l x min-1 fresh gas flow (tidal volume: of 10 ml x kg-1; respiratory rate: 12 breaths/min; inspiratory to expiratory time ratio of 1:2) using an oxygen/air mixture (FiO2=50%), while supplemental boluses of thiopental or fentanyl were given as indicated in order to maintain blood pressure and heart rate values within +/-20% from baseline. After adequate placement of tracheal tube and stabilization of the ventilation parameters, 2% sevoflurane or 1.2% isoflurane was given for 30 min via a nonrebreathing circuit. End-tidal samples were collected at 1, 5, 10, 15, 20, 25 and 30 min, and measured using a calibrated infrared gas analyzer. General anesthesia was then maintained with the same inhalational agents, while supplemental fentanyl was given as indicated. After the last skin suture the inhalational agents were suspended, and the end tidal samples were collected at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 min. Then the lungs were manually ventilated until extubation. No differences in age, gender and body mass index were reported between the two groups. Surgical procedure required 91+/-13 in the sevoflurane group and 83+/-32 min in the isoflurane group. The FA/FI ratio was higher in the sevoflurane group from the

  17. Comparison of three different inhalant anesthetic agents (isoflurane, sevoflurane, desflurane) in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Granone, Tiffany D; de Francisco, Olga N; Killos, Maria B; Quandt, Jane E; Mandsager, Ron E; Graham, Lynelle F

    2012-01-01

    To compare isoflurane, sevoflurane and desflurane for inhalant anesthesia in red-tailed hawks (Buteo jamaicensis) in terms of the speed and characteristics of induction; cardiovascular and respiratory parameters while anesthetized; and speed and quality of recovery. Prospective, cross over, randomized experimental study. 12 healthy adult red-tailed hawks. Anesthesia was induced with isoflurane, sevoflurane or desflurane in oxygen via face mask in a crossover, randomized design with a 1 week washout period between each treatment. Hawks were tracheally intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary monitoring. Data collected included heart rate, respiratory rate, end-tidal CO(2) , inspired and expired agent, SpO(2,) temperature, systolic blood pressure, time to intubation and time to recovery (tracking). Recovery was subjectively scored on a 4 point scale as well as a summary evaluation, by a single blinded observer. No significant difference in time to induction and time to extubation was noted with the administration of isoflurane, sevoflurane or desflurane. Time to the ability of the bird to follow a moving object with its eyes (tracking) was significantly faster with the administration of sevoflurane and desflurane. All recoveries were scored 1 or 2 and were assessed as good to excellent. No significant difference was noted in heart rate, blood pressure and temperature among the three inhalants. Administration of isoflurane resulted in lower respiratory rates. Overall, although isoflurane remains the most common inhaled anesthetic in avian practice, sevoflurane and desflurane both offer faster time to tracking, while similar changes in cardiopulmonary function were observed with each agent during anesthesia of healthy red-tailed hawks. © 2011 The Authors. Veterinary Anaesthesia and Analgesia. © 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  18. Comparison of the effects of halothane, isoflurane and methoxyflurane on the electroencephalogram of the horse.

    PubMed

    Johnson, C B; Taylor, P M

    1998-11-01

    We have investigated in eight ponies the effects of three different end-tidal concentrations of halothane, isoflurane and methoxyflurane on median (F50) and 95% spectral edge (F95) frequencies of the EEG and the second differential (DD) of the middle latency auditory evoked potential (MLAEP). The three concentrations of each agent were chosen to represent approximately the minimum alveolar concentration (MAC), 1.25 MAC and 1.5 MAC for each agent. During halothane anaesthesia, F95 decreased progressively as halothane concentration increased, from mean 13.9 (SD 2.6) at 0.8% to 11.9 (1.1) at 1.2%. DD was lower during anaesthesia with the highest concentration (21 (6.5)) compared with the lowest (27.6 (11.4)). There were no significant changes in F50. During isoflurane anaesthesia, there was a small, but significant increase in F95 between the intermediate and highest concentrations (10.2 (1.5) to 10.8 (1.6)). There were no changes in F50 and DD. Values of F95, F50 and DD at all isoflurane concentrations were similar to those of halothane at the highest concentration. During methoxyflurane anaesthesia, F95 and F50 decreased progressively as methoxyflurane concentration was increased, from 21.3 (0.7) and 6.5 (1), respectively, at 0.26%, to 20.1 (0.6) and 5.6 (0.8), respectively, at 0.39%. DD was lower during anaesthesia with the highest concentration of methoxyflurane (25.7 (7.8)) compared with the lowest (39.7 (20.6)). Values of F95, F50 and DD at all methoxyflurane concentrations were higher than those seen with halothane at the lowest concentration. The different relative positions of the dose-response curves for EEG and MLAEP changes compared with antinociception (MAC) changes suggest differences in the mechanisms of action of these three agents. These differences may explain the incomplete adherence to the Meyer-Overton rule.

  19. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.

    PubMed

    Zhang, Hao; Wheat, Heather; Wang, Peter; Jiang, Sha; Baghdoyan, Helen A; Neubig, Richard R; Shi, X Y; Lydic, Ralph

    2016-02-01

    This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep. © 2016 Associated Professional Sleep Societies, LLC.

  20. Superiority of desflurane over sevoflurane and isoflurane in the presence of pressure-overload right ventricle hypertrophy in rats.

    PubMed

    Blaudszun, Grégoire; Morel, Denis R

    2012-11-01

    Pulmonary hypertension and associated pressure-overload right ventricular (RV) hypertrophy represent a tremendous challenge for the anesthesiologist, as optimal perioperative management is mandatory. However, the ideal anesthetic agent remains unknown because scientific evidence is lacking. Twenty-eight rats were randomly assigned to a control or a monocrotaline group (60 mg kg). Four weeks later, animals were anesthetized, instrumented with a RV conductance catheter, and underwent well-controlled dose-responses to isoflurane, desflurane, and sevoflurane inhalation (minimum alveolar concentrations 0.5, 1.0, 1.5). Compared with controls, rats injected with monocrotaline presented with RV hypertrophy, increased afterload, and contractility, without change in cardiac output. The ratio of pressures in the right over the left circulation increased. The halogenated volatiles differently altered hemodynamics. Sevoflurane reduced RV contractility (more than 50%) and the right over left pressures ratio increased (from 0.41 ± 0.08 [SD] to 0.82 ± 0.14; P < 0.0001) secondary to profound concomitant systemic vasodilation, demonstrating a critical pressure gradient between right and left circulations. Despite significantly higher RV systolic pressures and afterload, desflurane decreased RV contractility much less (<10%; P < 0.0001 vs. sevoflurane) and maintained the right over left pressures ratio at more favorable values (0.47 ± 0.07; P < 0.0001 vs. sevoflurane). Isoflurane presented intermediate effects. In the presence of pressure-overload RV hypertrophy, hemodynamics are better preserved under desflurane inhalation, whereas sevoflurane-and to a lesser extent isoflurane-cause large discrepancies on the left and right circulations, raising the right over left pressures ratio to critical levels despite a conserved cardiac output.

  1. Effects of inhalational anaesthetics in experimental allergic asthma.

    PubMed

    Burburan, S M; Silva, J D; Abreu, S C; Samary, C S; Guimarães, I H L; Xisto, D G; Morales, M M; Rocco, P R M

    2014-06-01

    We evaluated whether isoflurane, halothane and sevoflurane attenuate the inflammatory response and improve lung morphofunction in experimental asthma. Fifty-six BALB/c mice were sensitised and challenged with ovalbumin and anaesthetised with isoflurane, halothane, sevoflurane or pentobarbital sodium for one hour. Lung mechanics and histology were evaluated. Gene expression of pro-inflammatory (tumour necrosis factor-α), pro-fibrogenic (transforming growth factor-β) and pro-angiogenic (vascular endothelial growth factor) mediators, as well as oxidative process modulators, were analysed. These modulators included nuclear factor erythroid-2 related factor 2, sirtuin, catalase and glutathione peroxidase. Isoflurane, halothane and sevoflurane reduced airway resistance, static lung elastance and atelectasis when compared with pentobarbital sodium. Sevoflurane minimised bronchoconstriction and cell infiltration, and decreased tumour necrosis factor-α, transforming growth factor-β, vascular endothelial growth factor, sirtuin, catalase and glutathione peroxidase, while increasing nuclear factor erythroid-2-related factor 2 expression. Sevoflurane down-regulated inflammatory, fibrogenic and angiogenic mediators, and modulated oxidant-antioxidant imbalance, improving lung function in this model of asthma. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  2. A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2.

    PubMed

    MacMillan, Heath A; Nørgård, Mikkel; MacLean, Heidi J; Overgaard, Johannes; Williams, Catherine J A

    2017-08-01

    Anaesthesia is often a necessary step when studying insects like the model organism Drosophila melanogaster. Most studies of Drosophila and other insects that require anaesthesia use either cold exposure or carbon dioxide exposure to induce a narcotic state. These anaesthetic methods are known to disrupt physiology and behavior with increasing exposure, and thus ample recovery time is required prior to experimentation. Here, we examine whether two halogenated ethers commonly used in vertebrate anaesthesia, isoflurane and sevoflurane, may serve as alternative means of insect anaesthesia. Using D. melanogaster, we generated dose-response curves to identify exposure times for each anaesthetic (cold, CO 2 , isoflurane and sevoflurane) that allow for five-minutes of experimental manipulation of the animals after the anaesthetic was removed (i.e. 5min recovery doses). We then compared the effects of this practical dose on high temperature, low temperature, starvation, and desiccation tolerance, as well as locomotor activity and fecundity of female flies following recovery from anaesthesia. Cold, CO 2 and isoflurane each had significant or near significant effects on the traits measured, but the specific effects of each anaesthetic differed, and effects on stress tolerance generally did not persist if the flies were given 48h to recover from anaesthesia. Sevoflurane had no measureable effect on any of the traits examined. Care must be taken when choosing an anaesthetic in Drosophila research, as the impacts of specific anaesthetics on stress tolerance, behavior and reproduction can widely differ. Sevoflurane may be a practical alternative to cold and CO 2 anaesthesia in insects - particularly if flies are to be used for experiments shortly after anesthesia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of equi-minimum alveolar concentration of sevoflurane and isoflurane on bispectral index values during both wash in and wash out phases: A prospective randomised study

    PubMed Central

    Gupta, Madhu; Shri, Iti; Sakia, Prashant; Govil, Deepika

    2015-01-01

    Background and Aims: At equal minimum alveolar concentration (MAC), volatile agents may produce different bispectral index (BIS) values especially at low BIS levels when the effect is volatile agent specific. The present study was performed to compare the BIS values produced by sevoflurane and isoflurane at equal MAC and thereby assessing which is a better hypnotic agent. Methods: Sixty American Society of Anaesthesiologists I and II patients undergoing elective mastoidectomy were divided into groups receiving either isoflurane or sevoflurane, and at equi-MAC. BIS value was measured during both wash in and wash out phase, keeping other parameters same. Statistical analysis was performed using the Friedman two-way analysis and Mann-Whitney U-test. A P < 0.05 was considered significant. Results: BIS value was significantly lower with sevoflurane at all MAC values as compared to isoflurane, except in the beginning and at MAC awake. However, both the drugs proved to be cardiostable. Conclusion: At equi-MAC sevoflurane produces lower BIS values during wash in as well as wash out phase as compared to isoflurane, reflecting probably an agent specific effect and a deficiency in BIS algorithm for certain agents and their interplay. PMID:25788739

  4. Median effective dose of isoflurane, sevoflurane, and desflurane in green iguanas.

    PubMed

    Barter, Linda S; Hawkins, Michelle G; Brosnan, Robert J; Antognini, Joseph F; Pypendop, Bruno H

    2006-03-01

    To determine the median effective dose (ED(50); equivalent to the minimum alveolar concentration [MAC]) of isoflurane, sevoflurane, and desflurane for anesthesia in iguanas. 6 healthy adult green iguanas. In unmedicated iguanas, anesthesia was induced and maintained with each of the 3 volatile drugs administered on separate days according to a Latin square design. Iguanas were endotracheally intubated, mechanically ventilated, and instrumented for cardiovascular and respiratory measurements. During each period of anesthesia, MAC was determined in triplicate. The mean value of 2 consecutive expired anesthetic concentrations, 1 that just permitted and 1 that just prevented gross purposeful movement in response to supramaximal electrical stimulus, and that were not different by more than 15%, was deemed the MAC. Mean +/- SD values for the third MAC determination for isoflurane, sevoflurane, and desflurane were 1.8 +/- 0.3%, 3.1 +/- 1.0%, and 8.9 +/- 2.1% of atmospheric pressure, respectively. The MAC for all inhaled agents was, on average, 22% greater for the first measurement than for the third measurement. Over time, MACs decreased for all 3 agents. Final MAC measurements were similar to values reported for other species. The decrease in MACs over time may be at least partly explained by limitations of anesthetic uptake and distribution imposed by the reptilian cardiorespiratory system. Hence, for a constant end-tidal anesthetic concentration in an iguana, the plane of anesthesia may deepen over time, which could contribute to increased morbidity during prolonged procedures.

  5. [Assessment of health risk of sevoflurane and isoflurane exposure among surgical staff: a problem for employers].

    PubMed

    Kupczewska-Dobecka, Małgorzata; Soćko, Renata

    2006-01-01

    Sevoflurane and isoflurane are polyfluorinated anesthetics used during surgical treatment of both adults and children. They are usually applied as mixtures with oxygen or dinitrogen monoxide. An assessment of health risk of exposure to these inhalant anesthetics poses a serious problem for employers, mostly due to the fact that maximum admissible concentrations (MAC) for these compounds have not been established. Consequently, there is no obligation to measure their air concentration in the workplace. However, the employer is responsible for determining whether or not a given hazardous agent is present in the work environment. The setting of MAC values for sevoflurane and isoflurane has recently been considered by the Expert Group for Chemical Hazards that proposed to accept 55 mg/m3 (7 ppm) and 32 mg/m3 (4 ppm), respectively as MAC values in assessing workplace hazards. These exposure levels should protect the surgical staff from adverse neurological, cardiovascular, respiratory, and irritant effects.

  6. Comparison of an infrared anaesthetic agent analyser (Datex-Ohmeda) with refractometry for measurement of isoflurane, sevoflurane and desflurane concentrations.

    PubMed

    Rudolff, Andrea S; Moens, Yves P S; Driessen, Bernd; Ambrisko, Tamas D

    2014-07-01

    To assess agreement between infrared (IR) analysers and a refractometer for measurements of isoflurane, sevoflurane and desflurane concentrations and to demonstrate the effect of customized calibration of IR analysers. In vitro experiment. Six IR anaesthetic monitors (Datex-Ohmeda) and a single portable refractometer (Riken). Both devices were calibrated following the manufacturer's recommendations. Gas samples were collected at common gas outlets of anaesthesia machines. A range of agent concentrations was produced by stepwise changes in dial settings: isoflurane (0-5% in 0.5% increments), sevoflurane (0-8% in 1% increments), or desflurane (0-18% in 2% increments). Oxygen flow was 2 L minute(-1) . The orders of testing IR analysers, agents and dial settings were randomized. Duplicate measurements were performed at each setting. The entire procedure was repeated 24 hours later. Bland-Altman analysis was performed. Measurements on day-1 were used to yield calibration equations (IR measurements as dependent and refractometry measurements as independent variables), which were used to modify the IR measurements on day-2. Bias ± limits of agreement for isoflurane, sevoflurane and desflurane were 0.2 ± 0.3, 0.1 ± 0.4 and 0.7 ± 0.9 volume%, respectively. There were significant linear relationships between differences and means for all agents. The IR analysers became less accurate at higher gas concentrations. After customized calibration, the bias became almost zero and the limits of agreement became narrower. If similar IR analysers are used in research studies, they need to be calibrated against a reference method using the agent in question at multiple calibration points overlapping the range of interest. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  7. Effects of pregnancy on the solubility of halogenated volatile anaesthetics in rat blood and tissues.

    PubMed

    Rao, Y; Wang, Y L; Li, H; Zhang, W; Liu, J

    2008-11-01

    This study was designed to evaluate the effects of pregnancy on the solubility of halogenated volatile anaesthetics in rat blood and tissues. Tissue samples from 10 pregnant and 10 non-pregnant adult female Sprague Dawley rats, including the heart, liver, kidney and brain, were obtained and made into respective homogenates. Blood/gas and tissue/gas partition coefficients for halothane, sevoflurane and isoflurane were determined by the method of two-stage headspace equilibration by gas chromatography with each of the homogenates. Values were analysed by t-test or one-way analysis of variance. The solubility within blood and brain for halothane in the pregnant group (2.90 +/- 0.44, 5.55 +/- 0.73) was significantly lower than that of the non-pregnant group (3.42 +/- 023, 6.33 +/- 0.64; P < 0.05). However, there were no significant differences between the two groups for liver, kidney or heart solubility. For sevoflurane and isoflurane, there were no significant differences in solubility between the two groups. In conclusion, pregnancy decreased the solubility of halothane within the blood and brain, whereas the solubility of halothane in other tissues including the liver, kidney and heart showed no significant alteration. Pregnancy did not affect the solubility ofsevoflurane or isoflurane within blood or the other tissues studied.

  8. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0

  9. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats.

    PubMed

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R(2) = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R(2) = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients).

  10. [Assessment of occupational exposure of medical personnel to inhalatory anesthetics in Poland].

    PubMed

    Kucharska, Małgorzata; Wesołowski, Wiktor

    2014-01-01

    Despite common use of inhalatory anesthetics, such as nitrous oxide (N2O), halothane, sevoflurane, and the like, occupational exposure to these substances in operating theatres was not monitored in Poland until 2006. The situation changed when maximum admissible concentration (MAC) values for anesthetics used in Poland were established in 2005 for N2O, and in 2007 for sevoflurane, desflurane and isoflurane. The aim of this work was to assess occupational exposure in operating rooms on the basis of reliable and uniform analytical procedures. The method for the determination of all anesthetics used in Poland, i.e. nitrous oxide, sevoflurane, isoflurane, desflurane, and halothane, was developed and validated. The measurements were performed in 2006-2010 in 31 hospitals countrywide. The study covered 117 operating rooms; air samples were collected from the breathing zone of 146 anesthesiologists, and 154 nurses, mostly anaesthetic. The measurements were carried out during various surgical operations, mostly on adult patients but also in hospitals for children. Time weighted average concentrations of the anesthetics varied considerably, and the greatest differences were noted for N2O (0.1-1438.5 mg/m3); 40% of the results exceeded the MAC value. Only 3% of halothane, and 2% of sevoflurane concentrations exceeded the respective MAC values. Working in operating theatres is dangerous to the health of the operating staff. The coefficient of combined exposure to anesthesiologists under study exceeded the admissible value in 130 cases, which makes over 40% of the whole study population. Most of the excessive exposure values were noted for nitrous oxide.

  11. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics.

    PubMed

    Rasmussen, Henrik; Thorud, Syvert

    2007-09-01

    Although halogenated gas anesthetics are indispensable in laboratory animal medicine, they are hazardous when present in the working environment. A simple technique of real-time leak detection and environmental spot monitoring can provide valuable adjunct information to current techniques of time-weighted monitoring. We investigated the minimal limit of detection of halothane, isoflurane, sevoflurane, and desflurane of a leak detector for halogenated gas refrigerants which provides a qualitative response only. We connected a container to an infrared gas analyzer to create a 135-l closed-circuit system and injected liquid halothane, isoflurane, sevoflurane, and desflurane to create calculated gas concentrations of 0.7 to 3.4 parts per million (ppm). The infrared absorbance and response of the leak detector were recorded, and a total of 5 measurements were made per concentration. The actual gas concentrations were calculated by comparison with the agent-specific absorbance standard curve. The leak detector clearly and consistently responded to halothane, isoflurane, sevoflurane, and desflurane from minimal concentrations of 2.1 +/- 0.2, 1.4 +/- 0.04, 0.8 +/- 0.04, and 1.2 +/- 0.4 ppm, respectively, as determined by infrared analysis. Although the detector does not provide numerical and time-weighted results, leak testing of equipment and repeated monitoring of the environment (spot monitoring) can provide valuable real-time information. In addition, with appropriate consideration of the methodological limitations, spot monitoring can be used to predict the likelihood of compliance with time-weighted exposure recommendations. A leak detector therefore represents a simple, effective, and inexpensive instrument for monitoring the leakage of halogenated anesthetic gases from equipment and into the working environment.

  12. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats

    PubMed Central

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R2 = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R2 = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients). PMID:25674241

  13. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiujun; Department of Anesthesiology, The Third Clinical Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051; Liang Ge

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cellmore » viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.« less

  14. Binding of volatile anesthetics to serum albumin: measurements of enthalpy and solvent contributions.

    PubMed

    Sawas, Abdul H; Pentyala, Srinivas N; Rebecchi, Mario J

    2004-10-05

    This study directly examines the enthalpic contributions to binding in aqueous solution of closely related anesthetic haloethers (desflurane, isoflurane, enflurane, and sevoflurane), a haloalkane (halothane), and an intravenous anesthetic (propofol) to bovine and human serum albumin (BSA and HSA) using isothermal titration calorimetry. Binding to serum albumin is exothermic, yielding enthalpies (DeltaH(obs)) of -3 to -6 kcal/mol for BSA with a rank order of apparent equilibrium association constants (K(a) values): desflurane > isoflurane approximately enflurane > halothane >or= sevoflurane, with the differences being largely ascribed to entropic contributions. Competition experiments indicate that volatile anesthetics, at low concentrations, share the same sites in albumin previously identified in crystallographic and photo-cross-linking studies. The magnitude of the observed DeltaH increased linearly with increased reaction temperature, reflecting negative changes in heat capacities (DeltaC(p)). These -DeltaC(p) values significantly exceed those calculated for burial of each anesthetic in a hydrophobic pocket. The enhanced stabilities of the albumin/anesthetic complexes and -DeltaC(p) are consistent with favorable solvent rearrangements that promote binding. This idea is supported by substitution of D(2)O for H(2)O that significantly reduces the favorable binding enthalpy observed for desflurane and isoflurane, with an opposing increase of DeltaS(obs). From these results, we infer that solvent restructuring, resulting from release of water weakly bound to anesthetic and anesthetic-binding sites, is a dominant and favorable contributor to the enthalpy and entropy of binding to proteins.

  15. [Desflurane (I 653) and sevoflurane: halogenated anesthetics of the future?].

    PubMed

    Debaene, B; Lienhart, A

    1992-01-01

    Sevoflurane is an halogenated methyl isopropyl ether. It is potent, non explosive and non flammable. It reacts with soda lime to form traces of a related ether which has not been shown to have any toxic effect on animals chronically exposed to it in a closed system. Induction of anaesthesia with sevoflurane is rapid and smooth, as predicted by a blood/gas partition coefficient of about 0.6 and an acceptable odour which allows the use of concentrations of up to 10%. Its MAC has been reported to vary between 1.7 and 2.3 vol %. Sevoflurane causes dose-dependent cardiovascular and respiratory depression. Its effect on the cerebral circulation is similar to that of isoflurane. The extent of biotransformation is similar to that of enflurane, but its low solubility and rapid elimination confine this to the period of inhalation. No toxic effects on the kidneys, liver and haematopoietic system have been found. Desflurane is a fluorinated methyl ether, structurally very similar to isoflurane. It is non flammable and non explosive at clinical concentrations. It is more stable in the presence of soda lime than any of the volatile anaesthetic agents available. This agent must be delivered with a thermostated vaporizer within a closed circle system, as its boiling point is 23.5 degrees C. Desflurane is less potent than isoflurane. Its MAC has been estimated to be about 7.2 vol % in man. Desflurane did not lead to any liver, lung or kidney injury in laboratory rats, even during hypoxia and enzyme induction. Desflurane undergoes little biotransformation, although the presence of volatile metabolites or covalent tissue-bound products cannot be excluded.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Anesthetic drugs and onset of malignant hyperthermia.

    PubMed

    Visoiu, Mihaela; Young, Michael C; Wieland, Keith; Brandom, Barbara W

    2014-02-01

    The time between the beginning of anesthetic administration and recognition of the first sign of malignant hyperthermia (MH) (MH onset time) could differ among anesthetic drugs. We examined the time of the first signs of suspected MH, anesthetic drugs administered, subject age, and year of event in Adverse Metabolic/Musculoskeletal Reaction to Anesthesia reports in the North American Malignant Hyperthermia Registry. Inclusion criteria were judgment by the reporting clinician that the event was possible or fulminant MH, documentation of the time when anesthetic administration began, and the time when the first MH sign was noted. Descriptive statistics, Kruskal-Wallis analysis, and nonparametric correlation were used to assess the difference in MH onset times under different conditions. Four hundred seventy-seven cases met inclusion criteria; 58.5% were possible MH and 41.5% fulminant MH. Inhaled anesthetic and succinylcholine were given in 53.9% of cases, inhaled anesthetic only in 41.7%, and succinylcholine without inhaled anesthetics in 2.9%. No causative anesthetic drugs were reported in 7 MH cases. In 394 patients exposed to only 1 of the 4 inhaled anesthetics, without regard for subject age, MH onset time was shorter in the presence of halothane than any of the other anesthetics and shorter after succinylcholine in all anesthetics. If succinylcholine was not given, MH onset was shorter during sevoflurane anesthesia than during desflurane or isoflurane. In 322 cases, 1 rather than multiple first signs of MH were reported with masseter spasm as the earliest MH sign. In 339 cases in which masseter spasm was not reported, there was no difference in MH onset time with or without succinylcholine. In 146 cases in which masseter spasm was not reported and succinylcholine was not given, MH onset was shorter during halothane anesthesia, than during exposure to desflurane, or isoflurane. MH onset time during sevoflurane was shorter than during desflurane or isoflurane. MH

  17. [Biological monitoring of occupational exposure to sevoflurane].

    PubMed

    Imbriani, M; Zadra, P; Negri, S; Alessio, A; Maestri, L; Ghittori, S

    2001-01-01

    Sevoflurane has been used in the last few years in brief surgical operations, either alone or in combination with nitrous oxide. Occupationally exposed groups include anesthesiologists, surgeons and operating room nurses. In 1977 the National Institute for Occupational Safety and Health (NIOSH) recommended that occupational exposure to halogenated anesthetic agents (halothane, enflurane, and isoflurane), when used as the sole anesthetic, should be controlled so that no worker would be exposed to time-weighted average concentrations greater than 2 ppm during anesthetic administration. When halogenated anesthetics are associated with nitrous oxide, NIOSH recommends that the limit value should not exceed 0.5 ppm. We think these recommendations can be extended to sevoflurane. Metabolism of sevoflurane is catalyzed by cytochrome P-450; this involves oxidation of the fluoromethyl side chain of the molecule, followed by glucuronidation. Two urinary metabolites of sevoflurane have been identified: inorganic fluoride (which, however, is not specific) and a non-volatile compound that yields hexafluoroisopropanol (HFIP) when digested with the enzyme beta-glucuronidase. In order to investigate the role of urinary HFIP as an indicator of occupational exposure to sevoflurane (CI, ppm), CI was measured in 145 members of 18 operating room staffs. The measurements of the time-weighted average of CI in the breathing zone were made by means of diffusive personal samplers. Each sampler was exposed during the whole working period. Sevoflurane was desorbed with CS2 from charcoal and the concentrations were measured on a gas chromatograph (GC) equipped with a mass selective detector (MSD). The GC was equipped with a 25 meter cross-linked phenylmethylsilicon column (internal diameter 0.2 mm). GC conditions were as follows: injector column temperature = 200 degrees C; column temperature = 30 degrees C; carrier gas = helium; injection technique of samples = splitless. The analytical

  18. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study.

    PubMed Central

    Dubois, B W; Cherian, S F; Evers, A S

    1993-01-01

    There is controversy as to the molecular nature of volatile anesthetic target sites. One proposal is that volatile anesthetics bind directly to hydrophobic binding sites on certain sensitive target proteins. Consistent with this hypothesis, we have previously shown that a fluorinated volatile anesthetic, isoflurane, binds saturably [Kd (dissociation constant) = 1.4 +/- 0.2 mM, Bmax = 4.2 +/- 0.3 sites] to fatty acid-displaceable domains on serum albumin. In the current study, we used 19F-NMR T2 relaxation to examine whether other volatile anesthetics bind to the same sites on albumin and, if so, whether they vary in their affinity for these sites. We show that three other fluorinated volatile anesthetics bind with varying affinity to fatty acid-displaceable domains on serum albumin: halothane, Kd = 1.3 +/- 0.2 mM; methoxyflurane, Kd = 2.6 +/- 0.3 mM; and sevoflurane, Kd = 4.5 +/- 0.6 mM. These three anesthetics inhibit isoflurane binding in a competitive manner: halothane, K(i) (inhibition constant) = 1.3 +/- 0.2 mM; methoxyflurane, K(i) = 2.5 +/- 0.4 mM; and sevoflurane, K(i) = 5.4 +/- 0.7 mM--similar to each anesthetic's respective Kd of binding to fatty acid displaceable sites. These results illustrate that a variety of volatile anesthetics can compete for binding to specific sites on a protein. PMID:8341659

  19. Controversies in pediatric anesthesia: sevoflurane and fluid management.

    PubMed

    Gueli, Sarah L; Lerman, Jerrold

    2013-06-01

    To explore the interrelationships among the pharmacokinetics of sevoflurane, epileptiform electroencephalographic (EEG) activity and awareness in children. To also describe the revised perioperative fluid management strategy espoused by Holliday and Segar and noninvasive measures that may predict who will respond positively to fluid loading. The depth of anesthesia during the early washin period with sevoflurane 8% is one-third less than during halothane. Eight percent sevoflurane rarely causes clinical seizures; more commonly, it causes epileptiform EEG activity that only weakly portends seizure activity. When preceded by nitrous oxide, midazolam or normocapnia, the risk of inducing epileptiform activity during spontaneous respiration is exceedingly small. Decreasing the inspired concentration of sevoflurane upon loss of the eyelash reflex to prevent epileptiform activity has not been shown to reduce the risk of clinical seizures, but more importantly, it may increase the risk of awareness if the child is stimulated. Isotonic intravenous solutions should be infused in volumes of 20-40 ml/kg over 2-4 h in children undergoing elective surgery. Postoperatively, these infusions may be continued at rates of 2/1/0.5 ml/kg/h; serum sodium concentration should be measured periodically. Noninvasive measures currently do not reliably identify those children who will respond positively to fluid boluses. Sevoflurane is a well tolerated induction agent that rarely causes seizures in children, but may cause awareness if the inspired concentration is prematurely reduced. Perioperative isotonic fluids should be infused at 20-40 ml/kg over 2-4 h during elective surgery. Noninvasive metrics do not predict a child's responsiveness to fluid loading.

  20. Molecular understanding of Abeta peptide interaction with isoflurane, propofol, and thiopental: NMR spectroscopic study.

    PubMed

    Mandal, Pravat K; Williams, John P; Mandal, Ratna

    2007-01-23

    Abeta peptide is the major component of senile plaques (SP), which accumulate in the brain of a patient with Alzheimer's disease (AD). A recent report indicated that isoflurane enhanced Abeta oligomerization (micro-aggregation) and subsequent cytotoxicity of the Abeta peptide. A separate study showed that a clinically relevant concentration of isoflurane induces apoptosis and increases Abeta production in a human neuroglioma cell line. In vitro studies have indicated that halothane interacts specifically with Abeta peptide to induce oligomerization and that Abeta42 oligomerizes faster than Abeta40. The specific interactions of isoflurane, propofol, and thiopental with uniformly 15N labeled Abeta40 and Abeta42 peptide were investigated using multidimensional nuclear magnetic resonance (NMR) experiments. We found that isoflurane and propofol (at higher concentration) interact with Abeta40 peptides and induce Abeta oligomerization. Thiopental does not interact with specific residues (G29, A30, and I31) of Abeta40; hence, the peptide remains in the monomeric form. On the basis of our NMR study, thiopental does not oligomerize Abeta40 even at higher concentrations.

  1. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials.

    PubMed

    Sulbaek Andersen, Mads P; Nielsen, Ole J; Karpichev, Boris; Wallington, Timothy J; Sander, Stanley P

    2012-06-21

    The smog chamber/Fourier-transform infrared spectroscopy (FTIR) technique was used to measure the rate coefficients k(Cl + CF(3)CHClOCHF(2), isoflurane) = (4.5 ± 0.8) × 10(-15), k(Cl + CF(3)CHFOCHF(2), desflurane) = (1.0 ± 0.3) × 10(-15), k(Cl + (CF(3))(2)CHOCH(2)F, sevoflurane) = (1.1 ± 0.1) × 10(-13), and k(OH + (CF(3))(2)CHOCH(2)F) = (3.5 ± 0.7) × 10(-14) cm(3) molecule(-1) in 700 Torr of N(2)/air diluent at 295 ± 2 K. An upper limit of 6 × 10(-17) cm(3) molecule(-1) was established for k(Cl + (CF(3))(2)CHOC(O)F). The laser photolysis/laser-induced fluorescence (LP/LIF) technique was employed to determine hydroxyl radical rate coefficients as a function of temperature (241-298 K): k(OH + CF(3)CHFOCHF(2)) = (7.05 ± 1.80) × 10(-13) exp[-(1551 ± 72)/T] cm(3) molecule(-1); k(296 ± 1 K) = (3.73 ± 0.08) × 10(-15) cm(3) molecule(-1), and k(OH + (CF(3))(2)CHOCH(2)F) = (9.98 ± 3.24) × 10(-13) exp[-(969 ± 82)/T] cm(3) molecule(-1); k(298 ± 1 K) = (3.94 ± 0.30) × 10(-14) cm(3) molecule(-1). The rate coefficient of k(OH + CF(3)CHClOCHF(2), 296 ± 1 K) = (1.45 ± 0.16) × 10(-14) cm(3) molecule(-1) was also determined. Chlorine atoms react with CF(3)CHFOCHF(2) via H-abstraction to give CF(3)CFOCHF(2) and CF(3)CHFOCF(2) radicals in yields of approximately 83% and 17%. The major atmospheric fate of the CF(3)C(O)FOCHF(2) alkoxy radical is decomposition via elimination of CF(3) to give FC(O)OCHF(2) and is unaffected by the method used to generate the CF(3)C(O)FOCHF(2) radicals. CF(3)CHFOCF(2) radicals add O(2) and are converted by subsequent reactions into CF(3)CHFOCF(2)O alkoxy radicals, which decompose to give COF(2) and CF(3)CHFO radicals. In 700 Torr of air 82% of CF(3)CHFO radicals undergo C-C scission to yield HC(O)F and CF(3) radicals with the remaining 18% reacting with O(2) to give CF(3)C(O)F. Atmospheric oxidation of (CF(3))(2)CHOCH(2)F gives (CF(3))(2)CHOC(O)F in a molar yield of 93 ± 6% with CF(3)C(O)CF(3) and HCOF as minor products. The IR

  2. Accelerated recovery from sevoflurane anesthesia with isocapnic hyperpnoea.

    PubMed

    Katznelson, Rita; Minkovich, Leonid; Friedman, Zeev; Fedorko, Ludvik; Beattie, W Scott; Fisher, Joseph A

    2008-02-01

    Isocapnic hyperpnoea (IH) reduces recovery time from isoflurane anesthesia in animals and humans. We studied the effect of IH on the emergence profile of sevoflurane-anesthetized patients by comparing postoperative recovery variables in patients administered IH (IH group) to those recovered in the customary fashion (control group). We enrolled 30 ASA I-III patients undergoing elective gynecological surgery. Induction and maintenance of anesthesia were standardized with a protocol consisting of fentanyl, propofol, rocuronium, and sevoflurane in air/O2. Patients were randomly assigned to control (C) or IH groups at the end of the surgery. We recorded time intervals from discontinuing sevoflurane to recovery milestones. Time to tracheal extubation was much shorter in the IH group compared with group C (6.2 +/- 2.1 vs 12.3 +/- 3.8 min, respectively, P < 0.01). The IH group also had shorter times to initiation of spontaneous ventilation (4.2 +/- 1.7 vs 6.5 +/- 3.8 min, P = 0.047), eye opening (5.5 +/- 1.4 vs 13.3 +/- 4.4 min, P < 0.01), bispectral index value >75 (3.9 +/- 1.1 vs 8.8 +/- 3.7 min, P < 0.01), leaving operating room (7.7 +/- 2.0 vs 15.3 +/- 3.4 min, P < 0.01), and eligibility for postanesthetic care unit discharge (67.2 +/- 19.3 vs 90.6 +/- 20.0 min, P < 0.01). IH accelerates recovery from sevoflurane anesthesia and shortens operating room and postanesthetic care unit stay.

  3. Effect of method of euthanasia on sperm motility of mature Sprague-Dawley rats.

    PubMed

    Stutler, Shannon A; Johnson, Eric W; Still, Kenneth R; Schaeffer, David J; Hess, Rex A; Arfsten, Darryl P

    2007-03-01

    Euthanasia is one of the most commonly performed procedures in laboratory animal settings. The method of euthanasia may affect experimental results in studies using animals and must be compatible with research objectives including subsequent tissue analyses. Our present study was performed to evaluate the effects of 7 euthanasia methods on sperm motility in mature rats. Rats were euthanized using CO2, 2 commercially available euthanasia solutions (Beuthanasia-D and Sleepaway), and 4 volatile anesthetics (enflurane, halothane, isoflurane, and sevoflurane). Rats euthanized by rapid decapitation alone served as negative controls, and a-chlorohydrin-treated rats euthanized by rapid decapitation were positive controls for sperm impairment. For 5 of these methods, we also measured time to ataxia, recumbency, respiratory arrest, and no auscultable heartbeat. Immediately after euthanasia of each rat, distal caudal epididymides were removed; 1 was processed for automated sperm motility analysis, and the other was frozen for subsequent concentration analysis. Time to all measured parameters was less for volatile anesthetics than for Beuthanasia-D. Times to last respiration and no heartbeat were less for halothane and isoflurane than for enflurane and sevoflurane. Percentage motile sperm did not differ significantly between methods. Percentage progressively motile sperm did not vary significantly between methods except for Beuthanasia-D, for which it was significantly less than the negative control value. Specific sperm motion parameters for each euthanasia method except CO2 and Sleepaway varied significantly from the negative control. Our results indicate that the method of euthanasia is an important consideration when rat sperm motility parameters must be evaluated.

  4. Comparison of hemodynamic response to adrenaline infiltration in children undergoing cleft palate repair during general anesthesia with sevoflurane and isoflurane.

    PubMed

    Gunnam, Poojita Reddy; Durga, Padmaja; Gurajala, Indira; Kaluvala, Prasad Rao; Veerabathula, Prardhana; Ramachandran, Gopinath

    2016-01-01

    Systemic absorption of adrenaline often used for infiltration during cleft palate surgery leads to adverse hemodynamic responses. These hemodynamic responses may be attenuated by the volatile anesthetics. This study aims to compare the hemodynamic responses to adrenaline infiltration during isoflurane (ISO) and sevoflurane (SEVO) anesthesia. Sixty children aged between 9 months and 48 months, weighing between 8 kg and 20 kg, undergoing primary repair of cleft palate were randomly allocated into two groups: Group ISO - anesthesia maintained with ISO (2 minimum alveolar concentrations [MAC]) and nitrous oxide 50% and group SEVO - maintained on SEVO (2 MAC) and nitrous oxide 50%. Surgical site was infiltrated with 1 ml/kg of 1:200,000 solution of adrenaline with 0.5% lignocaine. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) were noted at the end of infiltration and every 1 min for 5 min following infiltration. The percentage change of hemodynamic responses from baseline, following infiltration were compared between the two groups. There was no significant change in HR from baseline, and the response was comparable between the agents at all times. The blood pressure (BP) increased from baseline in both the groups but the increase was greater in SEVO than ISO group at 2 and 3 min after infiltration. The maximum change in HR from baseline (group ISO median 10.9% [interquartile range (IQR) 4.5-23.0] vs. group SEVO 26.5% [11.9-44.6]) was comparable in both the groups (P = 0.169). The maximum change in SBP was significantly greater in group SEVO than group ISO (42.8% [IQR 20.0-60.9] vs. 26.0 [11.3-44.5], P = 0.04). The incidence of significant change (>20%) of SBP, DBP, and MAP from baseline was significantly greater in group SEVO after infiltration and 1 min and 2 min after infiltration. There were no arrhythmias in any of the groups. Isoflurane results in greater attenuation of rise in BP during

  5. Anesthetic-dependent changes in the chain-melting phase transition of DPPG liposomes studied using near-infrared spectroscopy supported by PCA

    NASA Astrophysics Data System (ADS)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2017-11-01

    The effect of inhalation anesthetics (enflurane, isoflurane, sevoflurane or halothane) on the lipid chain-melting phase transition of negatively charged phospholipid membranes was studied using near-infrared (NIR) spectroscopy supported by Principal Component Analysis (PCA). NIR spectra of anesthetics-mixed dipalmitoylphosphatidylglycerol (DPPG) membranes were recorded in a range of the first overtone of the symmetric and antisymmetric stretching vibrations of CH2 groups of lipid aliphatic chains as a function of increasing temperature. Anesthetic-dependent changes in the trans to gauche conformers ratio of CH2 groups in the hydrocarbon lipid chains were characterized in detail and compared with the zwitterionic lipid membranes, which were built of dipalmitoylphosphatidylcholine (DPPC) molecules.

  6. Unexplained hepatitis following halothane.

    PubMed Central

    Walton, B; Simpson, B R; Strunin, L; Doniach, D; Perrin, J; Appleyard, A J

    1976-01-01

    Full clinical and laboratory details of 203 patients with postoperative jaundice were submitted to a panel of hepatologists. All patients whose jaundice may have had an identifiable cause were excluded, which left 76 patients with unexplained hepatitis following halothane anaesthesia (UHFH). Hepatitis in 95% of these cases followed multiple exposure to halothane, with repeated exposure within four weeks in 55% of cases. Twenty-nine patients were obese, 52 were aged 41-70, and 53 were women. Thirteen patients died in acute hepatic failure. Rapid onset of jaundice after anaesthesia, male sex, and obesity in either sex were poor prognostic signs. Of the clinical stigmata of hypersensitivity, only eosinophilia was impressive. The UHFH group had a much greater incidence of liver kidney microsomal (LKM) and thyroid antibodies and autoimmune complement fixation than those patients whose jaundice related to identifiable factors. Thirteen of the 19 patients with LKM antibodies also had thyroid antibodies. In six patients retested two to three years later LKM antibodies had disappeared, although thyroid antibodies persisted. Rapidly repeated exposure to halothane may cause hepatitis, but such a complication is probably rare. Possibly obese women with a tendency to organ-specific autoimmunity may be more at risk. Nevertheless, the comparative risks of rapidly repeated halothane or non-halothane anaesthesia cannot be determined from the present data. If alternative satisfactory agents are available halothane should be avoided in patients with unexplained hepatitis after previous exposure, although in three to five patients with UHFH who were re-exposed to halothane jaundice did not recur. PMID:1268612

  7. General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels

    PubMed Central

    Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I

    2008-01-01

    Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027

  8. Interaction of anesthetic molecules with α-helix and polyproline II extended helix of long-chain poly-L-lysine

    NASA Astrophysics Data System (ADS)

    Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-01-01

    The effect of halothane, enflurane, sevoflurane, and isoflurane molecules, as volatile anesthetics, on the α-helices and polyproline II extended helices (PPII) of long-chain poly-L-lysine (PLL) were studied using Fourier-transform infrared and vibrational circular dichroism spectroscopy. Uncharged and charged α-helices, as well as charged extended PPII helices, were subjected to anesthetic actions in solvents with different pD values or methanol to water ratios. A crucial factor responsible for hindering the anesthetic-PLL interactions is shown to be the ionization of amino groups of the PLL side chains. The α-helix to β-sheet transition was triggered only for the uncharged α-helical structures of PLL by the nonpolar anesthetics under study.

  9. NIR studies of cholesterol-dependent structural modification of the model lipid bilayer doped with inhalation anesthetics

    NASA Astrophysics Data System (ADS)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-06-01

    The influence of cholesterol on the structure of the model lipid bilayers treated with inhalation anesthetics (enflurane, isoflurane, sevoflurane and halothane) was investigated employing near-infrared (NIR) spectroscopy combined with the Principal Component Analysis (PCA). The conformational changes occurring in the hydrophobic area of the lipid bilayers were analyzed using the first overtones of symmetric (2νs) and antisymmetric (2νas) stretching vibrations of the CH2 groups of lipid aliphatic chains. The temperature values of chain-melting phase transition (Tm) of anesthetic-mixed dipalmitoylphosphatidylcholine (DPPC)/cholesterol and dipalmitoylphosphatidylglycerol (DPPG)/cholesterol membranes, which were obtained from the PCA analysis, were compared with cholesterol-free DPPC and DPPG bilayers mixed with inhalation anesthetics.

  10. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices.

    PubMed

    Diniz, Paulo H C; Guatimosim, Cristina; Binda, Nancy S; Costa, Flávia L P; Gomez, Marcus V; Gomez, Renato S

    2014-01-01

    GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics

  11. Halothane and halothane/succinylcholine induced malignant hyperthermia (porcine stress syndrome) in a population of Ontario boars.

    PubMed

    Seeler, D C; McDonell, W N; Basrur, P K

    1983-07-01

    This paper recounts a study of the prevalence of malignant hyperthermia in a population of boars entering the Record of Performance Test Station at New Hamburg, Ontario over a period of ten months. The literature is briefly reviewed and an account of the present status of malignant hyperthermia (porcine stress syndrome) in Ontario boars using the halothane or halothane/succinylcholine screening tests is presented. It was determined in this population of boars that there was a 1.5% prevalence rate of malignant hyperthermia susceptible boars. This was based on a five minute halothane challenge carried out on 786 boars from 107 herds. The halothane reactors came from a total of eight herds or 7.5% of the total number of herds. A majority of 58.3% of the animals reacted after the three minute mark of the halothane challenge. In contrast, an 18.0% prevalence rate was determined using halothane/succinylcholine challenge on 123 boars. This further identified an additional eight herds with the problem, bringing the total to 16 or 15% of the total number of herds. It is suggested that the prevalence of malignant hyperthermia in Ontario breeding herds is much higher than was originally thought and that the halothane challenge is an inadequate screening test for this trait if the intention is to remove the genetic trait from the breeding herd. At the same time halothane challenge testing will identify those animals which have a strong susceptibility to the trait and if used on key breeding stock will help to maintain some control on the condition until a more definitive test is readily available.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Anesthesia with Isoflurane and Sevoflurane in the Crested Serpent Eagle (Spilornis cheela hoya): Minimum Anesthetic Concentration, Physiological Effects, Hematocrit, Plasma Chemistry and Behavioral Effects

    PubMed Central

    CHAN, Fang-Tse; CHANG, Geng-Ruei; WANG, Hsien-Chi; HSU, Tien-Huan

    2013-01-01

    ABSTRACT The initial goal of this study was to determine the minimum anesthetic concentration (MAC) for isoflurane (ISO) and sevoflurane (SEVO) for the crested serpent eagle. Next, we compared the anesthetic effects of each on the physiological effects, hematocrit, plasma chemistry values and behavior in spontaneously breathing captive adult crested serpent eagles. Sixteen eagles were randomly allocated to two groups for anesthesia with ISO (n=8) or SEVO (n=8). First, we measured the MAC values of ISO and SEVO, and four weeks later, we investigated the effect of each on the physiological effects, hematocrit (HCT) and plasma chemistry values. The MAC values of ISO and SEVO for crested serpent eagles were 1.46 ± 0.30 and 2.03 ± 0.32%, respectively. The results revealed no significant differences between the two anesthetics in induction time, while time of extubation to recovery was significantly shorter with SEVO. A time-related increase in end-tidal CO2 and decreases in body temperature and respiratory rates were observed during anesthesia with each anesthetic. There were no significant differences between the effect of the two anesthetics on heart rate, hematocrit, plasma chemistry values or respiration, although each caused minor respiration depression. We concluded that SEVO is a more effective inhalant agent than ISO for use in eagles, showing the most rapidest induction and recovery from anesthesia. PMID:23955396

  13. Anesthesia with isoflurane and sevoflurane in the crested serpent eagle (Spilornis cheela hoya): minimum anesthetic concentration, physiological effects, hematocrit, plasma chemistry and behavioral effects.

    PubMed

    Chan, Fang-Tse; Chang, Geng-Ruei; Wang, Hsien-Chi; Hsu, Tien-Huan

    2013-12-30

    The initial goal of this study was to determine the minimum anesthetic concentration (MAC) for isoflurane (ISO) and sevoflurane (SEVO) for the crested serpent eagle. Next, we compared the anesthetic effects of each on the physiological effects, hematocrit, plasma chemistry values and behavior in spontaneously breathing captive adult crested serpent eagles. Sixteen eagles were randomly allocated to two groups for anesthesia with ISO (n=8) or SEVO (n=8). First, we measured the MAC values of ISO and SEVO, and four weeks later, we investigated the effect of each on the physiological effects, hematocrit (HCT) and plasma chemistry values. The MAC values of ISO and SEVO for crested serpent eagles were 1.46 ± 0.30 and 2.03 ± 0.32%, respectively. The results revealed no significant differences between the two anesthetics in induction time, while time of extubation to recovery was significantly shorter with SEVO. A time-related increase in end-tidal CO₂ and decreases in body temperature and respiratory rates were observed during anesthesia with each anesthetic. There were no significant differences between the effect of the two anesthetics on heart rate, hematocrit, plasma chemistry values or respiration, although each caused minor respiration depression. We concluded that SEVO is a more effective inhalant agent than ISO for use in eagles, showing the most rapidest induction and recovery from anesthesia.

  14. The impact of age on bispectral index values and EEG bispectrum during anaesthesia with desflurane and halothane in children.

    PubMed

    Tirel, O; Wodey, E; Harris, R; Bansard, J Y; Ecoffey, C; Senhadji, L

    2006-04-01

    The relationship between end-tidal sevoflurane concentration, bispectral index (BIS) and the EEG bispectrum in children appears to be age dependent. The aim of this study was to quantify the BIS values at 1 MAC (minimum alveolar concentration) for desflurane and halothane, and explore the relationship with age for these anaesthetic agents in children. ECG, EEG and BIS were recorded continuously in 90 children aged 6-170 months requiring anaesthesia for elective surgery. Fifty children were anaesthetized with desflurane, and 40 children with halothane. Recordings were performed through to a steady state of 2 MAC, and thereafter at 1 and 0.5 MAC, respectively. The bispectrum of the EEG was estimated using MATLAB(c) software. A multiple correspondence analysis (MCA) was used. At a steady state of 1 MAC, BIS values were significantly higher with halothane 62 (43-80) than desflurane 34 (18-64). BIS values were significantly correlated with age in both groups: DES (r(2)=0.57; P<0.01) and HALO (r(2)=0.48; P<0.01). Changes in position in the structured model of the MCA (dependent on the pattern of the EEG bispectrum) were different for the two volatile anaesthetic agents. In children, BIS values are linked to age irrespective of the volatile anaesthetic agent used. The difference in BIS values for different agents at the same MAC can be explained by the specific effect on the EEG bispectrum induced by each anaesthetic agent, bringing into question the ability of the EEG bispectrum to accurately determine the depth of anaesthesia.

  15. Volatile anesthetics, not intravenous anesthetic propofol bind to and attenuate the activation of platelet receptor integrin αIIbβ3.

    PubMed

    Yuki, Koichi; Bu, Weiming; Shimaoka, Motomu; Eckenhoff, Roderic

    2013-01-01

    In clinical reports, the usage of isoflurane and sevoflurane was associated with more surgical field bleeding in endoscopic sinus surgeries as compared to propofol. The activation of platelet receptor αIIbβ3 is a crucial event for platelet aggregation and clot stability. Here we studied the effect of isoflurane, sevoflurane, and propofol on the activation of αIIbβ3. The effect of anesthetics on the activation of αIIbβ3 was probed using the activation sensitive antibody PAC-1 in both cell-based (platelets and αIIbβ3 transfectants) and cell-free assays. The binding sites of isoflurane on αIIbβ3 were explored using photoactivatable isoflurane (azi-isoflurane). The functional implication of revealed isoflurane binding sites were studied using alanine-scanning mutagenesis. Isoflurane and sevoflurane diminished the binding of PAC-1 to wild-type αIIbβ3 transfectants, but not to the high-affinity mutant, β3-N305T. Both anesthetics also impaired PAC-1 binding in a cell-free assay. In contrast, propofol did not affect the activation of αIIbβ3. Residues adducted by azi-isoflurane were near the calcium binding site (an important regulatory site termed SyMBS) just outside of the ligand binding site. The mutagenesis experiments demonstrated that these adducted residues were important in regulating integrin activation. Isoflurane and sevoflurane, but not propofol, impaired the activation of αIIbβ3. Azi-isoflurane binds to the regulatory site of integrin αIIbβ3, thereby suggesting that isoflurane blocks ligand binding of αIIbβ3 in not a competitive, but an allosteric manner.

  16. [Comparison of waste anesthetic gases in operating rooms with or without an scavenging system in a Brazilian University Hospital].

    PubMed

    Braz, Leandro Gobbo; Braz, José Reinaldo Cerqueira; Cavalcante, Guilherme Aparecido Silva; Souza, Kátina Meneghetti; Lucio, Lorena Mendes de Carvalho; Braz, Mariana Gobbo

    Occupational exposure to waste anesthetic gases in operating room (OR) without active scavenging system has been associated with adverse health effects. Thus, this study aimed to compare the trace concentrations of the inhaled anesthetics isoflurane and sevoflurane in OR with and without central scavenging system. Waste concentrations of isoflurane and sevoflurane were measured by infrared analyzer at different locations (near the respiratory area of the assistant nurse and anesthesiologist and near the anesthesia station) and at two times (30 and 120minutes after the start of surgery) in both OR types. All isoflurane and sevoflurane concentrations in unscavenged OR were higher than the US recommended limit (2 parts per million), regardless of the location and time evaluated. In scavenged OR, the average concentrations of isoflurane were within the limit of exposure, except for the measurements near the anesthesia station, regardless of the measurement times. For sevoflurane, concentrations exceeded the limit value at all measurement locations and at both times. The exposure to both anesthetics exceeded the international limit in unscavenged OR. In scavenged OR, the concentrations of sevoflurane, and to a lesser extent those of isoflurane, exceeded the recommended limit value. Thus, the OR scavenging system analyzed in the present study decreased the anesthetic concentrations, although not to the internationally recommended values. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Molecular genetic analysis of volatile-anesthetic action.

    PubMed Central

    Keil, R L; Wolfe, D; Reiner, T; Peterson, C J; Riley, J L

    1996-01-01

    The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volatile anesthetics tested (isoflurane, halothane, enflurane, sevoflurane, and methoxyflurane). Growth inhibition by the agents is relatively rapid and reversible. The potency of these compounds as yeast growth inhibitors directly correlates with their lipophilicity as is predicted by the Meyer-Overton relationship, which directly correlates anesthetic potency of agents and their lipophilicity. The effects of isoflurane on yeast cells were characterized in the most detail. Yeast cells survive at least 48 h in a concentration of isoflurane that inhibits colony formation. Mutants resistant to the growth-inhibitory effects of isoflurane are readily selected. The gene identified by one of these mutations, zzz4-1, has been cloned and characterized. The predicted ZZZ4 gene product has extensive homology to phospholipase A2-activating protein, a GO effector protein of mice. Both zzz4-1 and a deletion of ZZZ4 confer resistance to all five of the agents tested, suggesting that signal transduction may be involved in the response of these cells to volatile anesthetics. PMID:8668160

  18. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1620 Halothane gas analyzer. (a...

  19. [Anesthesia with isoflurane in air and with isoflurane and nitrous oxide].

    PubMed

    Girardi, G; Rossi, R; Cellai, M P; Pieraccioli, E; Novelli, G P

    1994-06-01

    The aim of this study is to control the depth, the quality of recovery of total inhalation isoflurane anesthesia with or without nitrous oxide. Controlled comparative study was carried out on 51 patients, aged 40-54 yr, ASA 1, undergoing saphenectomy, in an University Clinic. Induction: thiopental (3.5 mg kg), atracurium (0.6 mg kg) i.v. Patients were randomly assigned to: group 1 (26 patients), 5% isoflurane in air, by mask; group 2 (25 patients), 3% isoflurane and 60% N2O, by mask. Maintenance: group 1, 2% isoflurane in air; group 2, 1.2% isoflurane and 60% N2O. During anesthesia, consciousness and analgesia level were monitored by EEG Compressed Spectral Array, and clinical signs of pain by Evans' test; arousal time evaluation by "Time to correct response test". The subjective impressions, eventual dreams and recalls were collected using a standard set of questions one hour after the end of anesthesia and 24 hours later. One hour before anesthesia and two hours after the end of surgical procedures, a psychomotor performance recovery evaluation was performed using Zazzo's "deux barrages" test. Student's "t" test. Adequate anesthetic depth was documented in all patients. Recovery time was statistically longer in isoflurane group (group 1 16.7 sd 2.2 minutes vs 10.3 sd 1.9 minutes group 2, p < 0.01). No patient reported recalls relative to anesthetic period. Two hours after recovery no significant differences in psychomotor performance tests were recorded. Isoflurane anesthesia in air, in adequate concentrations, provides a sufficient level of analgesia, hypnosis, amnesia, without clinical side effects.

  20. A mouse model of severe halothane hepatitis based on human risk factors.

    PubMed

    Dugan, Christine M; MacDonald, Allen E; Roth, Robert A; Ganey, Patricia E

    2010-05-01

    Halothane (2-bromo-2-chloro-1,1,1-trifluoro-ethane) is an inhaled anesthetic that induces severe, idiosyncratic liver injury, i.e., "halothane hepatitis," in approximately 1 in 20,000 human patients. We used known human risk factors (female sex, adult age, and genetics) as well as probable risk factors (fasting and inflammatory stress) to develop a murine model with characteristics of human halothane hepatitis. Female and male BALB/cJ mice treated with halothane developed dose-dependent liver injury within 24 h; however, the liver injury was severe only in females. Livers had extensive centrilobular necrosis, inflammatory cell infiltrate, and steatosis. Fasting rendered mice more sensitive to halothane hepatotoxicity, and 8-week-old female mice were more sensitive than males of the same age or than younger (4-week-old) females. C57BL/6 mice were insensitive to halothane, suggesting a strong genetic predisposition. In halothane-treated females, plasma concentration of tumor necrosis factor-alpha was greater than in males, and neutrophils were recruited to liver more rapidly and to a greater extent. Anti-CD18 serum attenuated halothane-induced liver injury in female mice, suggesting that neutrophil migration, activation, or both are required for injury. Coexposure of halothane-treated male mice to lipopolysaccharide to induce modest inflammatory stress converted their mild hepatotoxic response to a pronounced, female-like response. This is the first animal model of an idiosyncratic adverse drug reaction that is based on human risk factors and produces reproducible, severe hepatitis from halothane exposure with lesions characteristic of human halothane hepatitis. Moreover, these results suggest that a more robust innate immune response underlies the predisposition of female mice to halothane hepatitis.

  1. Development of three Drosophila melanogaster strains with different sensitivity to volatile anesthetics.

    PubMed

    Liu, Jin; Hu, Zhao-yang; Ye, Qi-quan; Dai, Shuo-hua

    2009-03-05

    The mechanisms of action for volatile anesthetics remain unknown for centuries partly owing to the insufficient or ineffective research models. We designed this study to develop three strains derived from a wild-type Drosophila melanogaster with different sensitivities to volatile anesthetics, which may ultimately facilitate molecular and genetic studies of the mechanism involved. Median effective doses (ED(50)) of sevoflurane in seven-day-old virgin female and male wild-type Drosophila melanogaster were determined. The sensitive males and females of percentile 6 - 10 were cultured for breeding sensitive offspring (S(1)). So did median ones of percentile 48 - 52 for breeding median offspring (M(1)), resistant ones of percentile 91 - 95 for breeding resistant offspring (R(1)). Process was repeated through 31 generations, in the 37th generation, S(37), M(37) and R(37) were used to determine ED(50) for enflurane, isoflurane, sevoflurane, desflurane, halothane, methoxyflurane, chloroform and trichloroethylene, then ED(50) values were correlated with minimum alveolar concentration (MAC) values in human. From a wild-type Drosophila melanogaster we were able to breed three strains with high, median and low sevoflurane requirements. The ratio of sevoflurane requirements of three strains were 1.20:1.00:0.53 for females and 1.22:1.00:0.72 for males. Strains sensitive, median and resistant to sevoflurane were also sensitive, median and resistant to other volatile anesthetics. For eight anesthetics, ED(50) values in three strains correlated directly with MAC values in human. Three Drosophila melanogaster strains with high, median and low sensitivity to volatile anesthetics, but with same hereditary background were developed. The ED(50) are directly correlated with MAC in human for eight volatile anesthetics.

  2. Euthanasia using gaseous agents in laboratory rodents.

    PubMed

    Valentim, A M; Guedes, S R; Pereira, A M; Antunes, L M

    2016-08-01

    Several questions have been raised in recent years about the euthanasia of laboratory rodents. Euthanasia using inhaled agents is considered to be a suitable aesthetic method for use with a large number of animals simultaneously. Nevertheless, its aversive potential has been criticized in terms of animal welfare. The data available regarding the use of carbon dioxide (CO2), inhaled anaesthetics (such as isoflurane, sevoflurane, halothane and enflurane), as well as carbon monoxide and inert gases are discussed throughout this review. Euthanasia of fetuses and neonates is also addressed. A table listing currently available information to ease access to data regarding euthanasia techniques using gaseous agents in laboratory rodents was compiled. Regarding better animal welfare, there is currently insufficient evidence to advocate banning or replacing CO2 in the euthanasia of rodents; however, there are hints that alternative gases are more humane. The exposure to a volatile anaesthetic gas before loss of consciousness has been proposed by some scientific studies to minimize distress; however, the impact of such a measure is not clear. Areas of inconsistency within the euthanasia literature have been highlighted recently and stem from insufficient knowledge, especially regarding the advantages of the administration of isoflurane or sevoflurane over CO2, or other methods, before loss of consciousness. Alternative methods to minimize distress may include the development of techniques aimed at inducing death in the home cage of animals. Scientific outcomes have to be considered before choosing the most suitable euthanasia method to obtain the best results and accomplish the 3Rs (replacement, reduction and refinement). © The Author(s) 2015.

  3. Incidence of postoperative nausea and vomiting after paediatric strabismus surgery with sevoflurane or remifentanil-sevoflurane.

    PubMed

    Oh, A Y; Kim, J H; Hwang, J W; Do, S H; Jeon, Y T

    2010-06-01

    In this prospective, randomized, double-blind study, we evaluated and compared the incidence of postoperative nausea and vomiting (PONV) after paediatric strabismus surgery with two different anaesthetic methods, sevoflurane or remifentanil-sevoflurane. In total, 78 paediatric patients (aged 6-11 yr) undergoing strabismus surgery were enrolled and randomly assigned to two groups, sevoflurane (Group S) and remifentanil-sevoflurane (Group R). Anaesthesia was maintained with 2-3% sevoflurane in Group S (n=39) or with a continuous infusion of remifentanil combined with 1% sevoflurane in Group R (n=39), both using 50% N(2)O/O(2). Arterial pressure and heart rate before induction, after tracheal intubation, after skin incision, and at the end of surgery were recorded. The incidence of PONV in the post-anaesthesia care unit, the day surgery care unit, and at home 24 h after surgery was recorded. Arterial pressure and heart rate were stable throughout the surgery, but were significantly lower in Group R than in Group S after tracheal intubation and skin incision. The incidence of PONV and postoperative vomiting was 17.9%/17.9% and 12.8%/10.2% (Group S/Group R) at the respective time points; values were comparable between the groups. The incidence of PONV after paediatric strabismus surgery under sevoflurane anaesthesia was relatively low, and combining remifentanil with sevoflurane did not further increase the incidence.

  4. Inhibitory action of halothane on rat masculine sexual behavior and sperm motility.

    PubMed

    Oropeza-Hernández, Luis F; Quintanilla-Vega, Betzabet; Albores, Arnulfo; Fernández-Guasti, Alonso

    2002-07-01

    Adult male rats were exposed to inhale halothane in the following regime: 15 ppm/4 h/5 days/week/9 weeks. Sexual behavior observations and sperm motility test were made before halothane exposure (0 days) and at 15, 30, 45 and 60 days of exposure. Fifteen days after halothane exposure, this anesthetic inhibited the proportion of animals displaying ejaculation. In those animals ejaculating, halothane produced an inhibition of masculine sexual behavior reflected as an increase in the intromission latency, number of mounts and postejaculatory interval. At 30 days after exposure, only an increase in the intromission latency was observed. At 45 and 60 days, the inhibitory effect of halothane on sexual behavior disappeared. Similarly, at 15 and 30 days, but not at 45 or 60 days of halothane exposure, a reduced sperm motility was observed. Such transient effects of halothane suggest the development of tolerance to the inhibitory actions of this anesthetic on sexual behavior and sperm motility. These halothane effects are in line with an inhibition of masculine sexual behavior after stimulation of the GABAergic system.

  5. The pathology of halothane hepatotoxicity in a guinea-pig model: a comparison with human halothane hepatitis.

    PubMed Central

    Lunam, C. A.; Hall, P. M.; Cousins, M. J.

    1989-01-01

    The pathology of halothane hepatotoxicity is described in detail in a guinea-pig model. Twenty-two of 40 guinea-pigs developed liver damage after exposure to 1% halothane in 21% O2 for 4 h. The other 18 animals showed no evidence of hepatic injury. Two distinct patterns of damage were identified: mild damage, in which livers had focal areas of necrosis, and severe damage, where necrosis was confluent around the terminal hepatic venules, often extending to the portal tracts. Serum alanine aminotransferase activity was significantly elevated in guinea-pigs with severe liver damage. Hepatocytes in the damaged areas showed degenerative changes ranging from vacuolization to ballooning degeneration and necrosis. Inflammatory cells, predominantly lymphocytes, were often present in the areas of necrosis. The pathology of mild and severe liver injury in the guinea-pig closely resembles the spectrum of injury observed in non-fatal halothane hepatitis in man. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:2818932

  6. Biodegradation of halothane, enflurane and methoxyflurane.

    PubMed

    Sakai, T; Takaori, M

    1978-08-01

    The biodegradation of halothane, enflurane and methoxyflurane was studied in 22 patients undergoing abdominal surgery, by measuring the uptake and elimination of each agent and the fluoride excretion in urine. Six control patients were anaesthetized with nitrous oxide in oxygen together with neuromuscular blocking drugs, five patients with nitrous oxide in oxygen and 0.93% halothane, five with nitrous oxide in oxygen and 1.30% enflurane, and six with nitrous oxide in oxygen and 0.31% methoxyflurane. The ratio of the fluoride excretion in urine to the total amount of fluoride contained in the amount of each anaesthetic agent absorbed during anaesthesia was estimated to be 17.7% for halothane, 2.3% for enflurane and 46.3% for methoxyflurane. The serum fluoride concentration increased to a maximum of 15.8 +/- 3.8 mumol litre-1 (mean +/- SD) at 6 h after anaesthesia with methoxyflurane, while it did not exceed 8 mumol litre-1 with the other anaesthetic agents.

  7. 21 CFR 529.1186 - Isoflurane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inhalation: (1) Amount—(i) Horses: For induction of surgical anesthesia: 3 to 5 percent isoflurane (with oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen). (ii) Dogs: For induction of surgical anesthesia: 2 to 2.5 percent isoflurane (with oxygen) for 5...

  8. 21 CFR 529.1186 - Isoflurane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... inhalation: (1) Amount—(i) Horses: For induction of surgical anesthesia: 3 to 5 percent isoflurane (with oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen). (ii) Dogs: For induction of surgical anesthesia: 2 to 2.5 percent isoflurane (with oxygen) for 5...

  9. 21 CFR 529.1186 - Isoflurane.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Amount—(i) Horses: For induction of surgical anesthesia: 3 to 5 percent isoflurane (with oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen). (ii) Dogs: For induction of surgical anesthesia: 2 to 2.5 percent isoflurane (with oxygen) for 5 to 10...

  10. 21 CFR 529.1186 - Isoflurane.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Amount—(i) Horses: For induction of surgical anesthesia: 3 to 5 percent isoflurane (with oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen). (ii) Dogs: For induction of surgical anesthesia: 2 to 2.5 percent isoflurane (with oxygen) for 5 to 10...

  11. 21 CFR 529.1186 - Isoflurane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen). (ii) Dogs: For induction of surgical anesthesia: 2 to 2.5 percent isoflurane (with oxygen) for 5 to 10 minutes. For maintenance of surgical anesthesia: 1.5 to 1.8 percent isoflurane (with oxygen...

  12. Surgical suite environmental control system. [using halothane absorbing filter

    NASA Technical Reports Server (NTRS)

    Higginbotham, E. J.; Jacobs, M. L.

    1974-01-01

    Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.

  13. Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men

    PubMed Central

    Teppema, Luc J; Nieuwenhuijs, Diederik; Sarton, Elise; Romberg, Raymonda; Olievier, Cees N; Ward, Denham S; Dahan, Albert

    2002-01-01

    We studied the effect of the antioxidants (AOX) ascorbic acid (2 g, I.V.) and α-tocopherol (200 mg, P.O.) on the depressant effect of subanaesthetic doses of halothane (0.11 % end-tidal concentration) on the acute isocapnic hypoxic ventilatory response (AHR), i.e. the ventilatory response upon inhalation of a hypoxic gas mixture for 3 min (leading to a haemoglobin saturation of 82 ± 1.8 %) in healthy male volunteers. In the first set of protocols, two groups of eight subjects each underwent a control hypoxic study, a halothane hypoxic study and finally a halothane hypoxic study after pretreatment with AOX (study 1) or placebo (study 2). Halothane reduced the AHR by more than 50 %, from 0.79 ± 0.31 to 0.36 ± 0.14 l min−1 %−1 in study 1 and from 0.79 ± 0.40 to 0.36 ± 0.19 l min−1 %−1 in study 2, P < 0.01 for both. Pretreatment with AOX prevented this depressant effect of halothane in the subjects of study 1 (AHR returning to 0.77 ± 0.32 l min−1 %−1, n.s. from control), whereas placebo (study 2) had no effect (AHR remaining depressed at 0.36 ± 0.27 l min−1 %−1, P < 0.01 from control). In a second set of protocols, two separate groups of eight subjects each underwent a control hypoxic study, a sham halothane hypoxic study and finally a sham halothane hypoxic study after pretreatment with AOX (study 3) or placebo (study 4). In studies 3 and 4, sham halothane did not modify the control hypoxic response, nor did AOX (study 3) or placebo (study 4). The 95 % confidence intervals for the ratio of hypoxic sensitivities, (AOX + halothane):halothane in study 1 and (AOX - sham halothane):sham halothane in study 3, were [1.7, 2.6] and [1.0, 1.2], respectively. Because the antioxidants prevented the reduction of the acute hypoxic response by halothane, we suggest that this depressant effect may be caused by reactive species produced by a reductive metabolism of halothane during hypoxia or that a change in redox state of carotid body cells by the

  14. Sensitive determination of four general anaesthetics in human whole blood by capillary gas chromatography with cryogenic oven trapping.

    PubMed

    Kojima, T; Ishii, A; Watanabe-Suzuki, K; Kurihara, R; Seno, H; Kumazawa, T; Suzuki, O; Katsumata, Y

    2001-10-05

    Four general anaesthetics, sevoflurane, isoflurane, enflurane and halothane, in human whole blood, have been found measurable with very high sensitivity by capillary gas chromatography-flame ionization detection (GC-FID) with cryogenic oven trapping upon injection of headspace (HS) vapor sample. To a 7-ml vial, containing 0.48 ml of distilled water and 20 microl of internal standard solution (5 microg), a 0.5-ml of whole blood sample spiked with or without anaesthetics, was added, and the mixture was heated at 55 degrees C for 15 min. A measure of 10 ml HS vapor was injected into the GC in the splitless mode at -40 degrees C oven temperature, which was programmed up to 250 degrees C. All four peaks were clearly separated; no impurity peaks were found among their peaks. Their extraction efficiencies were about 10%. The calibration curves showed good linearity in the range of 0.5-20 microg/ml; their detection limits were 10-100 ng/ml, which are almost comparable to those by previous reports. The coefficients of intra-day and day-to-day variations were 6.5-9.8 and 7.3-17.2%, respectively. Isoflurane or enflurane was also measured from whole blood samples in which three volunteers inhaled each compound.

  15. Halothane reduces the early lipopolysaccharide-induced lung inflammation in mechanically ventilated rats.

    PubMed

    Giraud, O; Seince, P F; Rolland, C; Leçon-Malas, V; Desmonts, J M; Aubier, M; Dehoux, M

    2000-12-01

    Several studies suggest that anesthetics modulate the immune response. The aim of this study was to investigate the effect of halothane and thiopental on the lung inflammatory response. Rats submitted or not to intratracheal (IT) instillation of lipopolysaccharides (LPS) were anesthetized with either halothane (0. 5, 1, or 1.5%) or thiopental (60 mg. kg(-1)) and mechanically ventilated for 4 h. Control rats were treated or not by LPS without anesthesia. Lung inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluids (BALF) and by cytokine measurements (tumor necrosis factor-alpha [TNF-alpha], interleukin-6 [IL-6], macrophage inflammatory protein-2 [MIP-2], and monocyte chemoattractant protein-1 [MCP-1]) in BALF and lung homogenates. In the absence of LPS treatment, neither halothane nor thiopental modified the moderate inflammatory response induced by tracheotomy or mechanical ventilation. Cell recruitment and cytokine concentrations were increased in all groups receiving IT LPS. However, in halothane-anesthetized rats (halothane > or = 1%), but not in thiopental-anesthetized rats, the LPS-induced lung inflammation was altered in a dose-dependent manner. Indeed, when using 1% halothane, polymorphonuclear leukocyte (PMN) recruitment was decreased by 55% (p < 0.001) and TNF-alpha, IL-6, and MIP-2 concentrations in BALF and lung homogenates were decreased by more than 60% (p < 0.001) whereas total protein and MCP-1 concentrations remained unchanged. The decrease of MIP-2 (observed at the protein and messenger RNA [mRNA] level) was strongly correlated to the decrease of PMN recruitment (r = 0.73, p < 0.05). This halothane-reduced lung inflammatory response was transient and was reversed 20 h after the end of the anesthesia. Our study shows that halothane > or = 1%, delivered during 4 h by mechanical ventilation, but not mechanical ventilation per se, alters the early LPS-induced lung inflammation in the rat, suggesting a specific

  16. Diphenylhydantoin and lidocaine modification of A-V conduction in halothane-anesthetized dogs.

    PubMed

    Atlee, J L; Homer, L D; Tobey, R E

    1975-07-01

    The effect of halothane on A-V conduction was evaluated in gods during atrial pacing using the technique of His-bundle electrocardiography. In addition, the effects of lidocaine and diphenylkydantoin (DPH) on A-V conuction were examined during halothane anesthesia. Effects of these drugs on three subintervals of A-V conduction were compared. These included the -H (stimulus atifact of His-bundle deflection-atrioventricular conduction), H-Q (His-budnle deflection onset of QRS complex-His-Purkinje conduction), and H-S intervals(His-bundle delfection to end of QRS COmplex-total intraventricular conduction). Linear regression best described the relationship between duration of interval (P-H, H-V,and H-S) and heart rate during incremental increases in the atrial paced rate. Data from these experiments were fitted to a multiple lenear regression model that predicted the effect of increasing concentrations of halothan, lidocaine, and DPH on slope and intercept coefficients. In creasing concentrations of halothan ( 30 and 45 mg/100 ml arterial). Both lidocaine and DPH further depressed conduction at all levels of halothan anesthesia. The P-H interval was particularly sensitive todrug effefts. This may represent potentiation of the normal slowing of conduction through the AVnode in response to incremental increases in heart rate (fatigue response.) We conclude thatboth lidocaine and DPH fail to reverse the depressant effect of halothane on A-V conduction. This may explain their ineffectiveness in treating certain types of arrhythmias during halothane anesthesia.

  17. Halothane hepatotoxicity and the reduced derivative, 1,1,1-trifluoro-2-chloroethane.

    PubMed Central

    Brown, B R; Sipes, I G; Baker, R K

    1977-01-01

    Halothane (1,1,1-trifluoro-2-bromo-2-chloroethane) is a safe, clinically useful inhalation anesthetic. Rare, unpredictable cases of liver necrosis have been reported following its use. Although the mechanism of this reaction in man is unknown the most plausible is biotransformation to reactive intermediates compounds. The oxidative metabolism of halothane appears to be benign. There is early evidence that reductive (nonoxygen dependent) may be harmful. Since the bromine atom of halothane appears to possess weak bond energy, the reduced, debrominated derivative of halothane, 1,1,1-trifluoro-2-chloroethane, was synthesized and tested for hepatotoxicity in the rat. The derivative is unstable and thus was prepared anaerobically and trapped in propylene glycol solvent. Injection of small amounts of this compound into the portal vein of rats produces extensive liver necrosis. It is postulated that biotransformation of halothane via a reductive pathway could produce this reactive intermediate metabolite. Images FIGURE 1. PMID:612444

  18. Respiratory reflexes in response to nasal administration of halothane to anesthetized, spontaneously breathing dogs.

    PubMed

    Mutoh, T; Kanamaru, A; Tsubone, H; Nishimura, R; Sasaki, N

    2000-03-01

    To characterize and determine the sensory innervation of respiratory reflexes elicited by nasal administration of halothane to dogs. 10 healthy Beagles. Dogs underwent permanent tracheostomy and, 2 to 3 weeks later, were anesthetized with thiopental and alpha-chloralose administered IV. The nasal passages were functionally isolated so that halothane could be administered to the nasal passages while dogs were breathing 100% O2 via the tracheostomy. Respiratory reflexes in response to administration of halothane at concentrations of 1.25, 1.75, and 2.5 times the minimum alveolar concentration (MAC), and 5% (administered in 100% O2 at a flow rate of 5 L/min) were recorded. Reflexes in response to administration of 5% halothane were also recorded following transection of the infraorbital nerve, transection of the caudal nasal nerve, and nasal administration of lidocaine. Nasal administration of halothane induced an inhibition of breathing characterized by a dose-dependent increase in expiratory time and a resultant decrease in expired volume per unit time. Effects were noticeable immediately after the onset of halothane administration and lasted until its cessation. Reflex responses to halothane administration were attenuated by transection of the caudal nasal nerve and by nasal administration of lidocaine, but transection of the infraorbital nerve had no effect. Nasal administration of halothane at concentrations generally used for mask induction of anesthesia induces reflex inhibition of breathing. Afferent fibers in the caudal nasal nerve appear to play an important role in the reflex inhibition of breathing induced by halothane administration.

  19. Isoflurane increases cardiorespiratory coordination in rats

    NASA Astrophysics Data System (ADS)

    Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias

    2008-12-01

    Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.

  20. 21 CFR 529.2150 - Sevoflurane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chapter. (c) Conditions of use—(1) Amount. For induction of surgical anesthesia: up to 7 percent sevoflurane. For maintenance of surgical anesthesia: 3.7 to 4 percent sevoflurane with oxygen in the absence.... For induction and maintenance of general anesthesia in dogs. (3) Limitations. Federal law restricts...

  1. 21 CFR 529.2150 - Sevoflurane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chapter. (c) Conditions of use—(1) Amount. For induction of surgical anesthesia: up to 7 percent sevoflurane. For maintenance of surgical anesthesia: 3.7 to 4 percent sevoflurane with oxygen in the absence.... For induction and maintenance of general anesthesia in dogs. (3) Limitations. Federal law restricts...

  2. 21 CFR 529.2150 - Sevoflurane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... chapter. (c) Conditions of use—(1) Amount. For induction of surgical anesthesia: up to 7 percent sevoflurane. For maintenance of surgical anesthesia: 3.7 to 4 percent sevoflurane with oxygen in the absence.... For induction and maintenance of general anesthesia in dogs. (3) Limitations. Federal law restricts...

  3. 21 CFR 529.2150 - Sevoflurane.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chapter. (c) Conditions of use—(1) Amount. For induction of surgical anesthesia: up to 7 percent sevoflurane. For maintenance of surgical anesthesia: 3.7 to 4 percent sevoflurane with oxygen in the absence.... For induction and maintenance of general anesthesia in dogs. (3) Limitations. Federal law restricts...

  4. 21 CFR 529.2150 - Sevoflurane.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... chapter. (c) Conditions of use—(1) Amount. For induction of surgical anesthesia: up to 7 percent sevoflurane. For maintenance of surgical anesthesia: 3.7 to 4 percent sevoflurane with oxygen in the absence.... For induction and maintenance of general anesthesia in dogs. (3) Limitations. Federal law restricts...

  5. Pharmacoeconomics of volatile inhalational anaesthetic agents: an 11-year retrospective analysis.

    PubMed

    Weinberg, L; Story, D; Nam, J; McNicol, L

    2010-09-01

    With continuously increasing expenditure on health care resources, various cost containment strategies have been suggested in regard to controlling the cost of inhalational anaesthetic agents. We performed a cost identification analysis assessing inhalational anaesthetic agent expenditure at a tertiary level hospital, along with an evaluation of strategies to contain the cost of these agents. The number of bottles of isoflurane, sevoflurane and desflurane used during the financial years 1997 to 2007 was retrospectively determined and the acquisition costs and cumulative drug expenditure calculated. Pharmacoeconomic modelling using low fresh gas flow anaesthesia was performed to evaluate practical methods of cost reduction. The use of isoflurane decreased from 384 bottles during 1997 to 204 in 2007. In contrast, use of sevoflurane increased from 226 bottles during 1998 to 875 during 2007. Desflurane use increased from 34 bottles per year during 2002 (its year of introduction) to 163 bottles per year in 2007. While the inflation-adjusted cumulative expenditure for these inhalational agents (Australian dollars) increased from $132,000 in 1997 to over $326,000 in 2007, an increase of 168%, patient workload over the same period increased by only 11%. Pharmacoeconomic modelling demonstrated that sevoflurane at 2 l/minute costs 19 times more than isoflurane at 0.5 l/minute. For the financial years 1997 to 2007, we found a progressive shift from the cheaper isoflurane to the more expensive agents, sevoflurane and desflurane, a shift associated with marked increases in costs. Low flow anaesthesia with isoflurane is one strategy to reduce costs.

  6. Cholinergic synaptic transmissions were altered after single sevoflurane exposure in Drosophila pupa.

    PubMed

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Xu, Kangqing; Gu, Huaiyu

    2015-01-01

    . Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure.

  7. Infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses.

    PubMed

    Yamashita, Kazuto; Muir, William W; Tsubakishita, Sae; Abrahamsen, Eric; Lerch, Phillip; Izumisawa, Yasuharu; Kotani, Tadao

    2002-10-15

    To evaluate effects of infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses. Randomized clinical trial. 40 horses. Horses were premedicated with xylazine and anesthetized with diazepam and ketamine. Anesthesia was maintained by infusion of guaifenesin, ketamine, and medetomidine and inhalation of sevoflurane (20 horses) or by inhalation of sevoflurane (20 horses). A surgical plane of anesthesia was maintained by controlling the inhaled concentration of sevoflurane. Sodium pentothal was administered as necessary to prevent movement in response to surgical stimulation. Hypotension was treated with dobutamine; hypoxemia and hypercarbia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. The delivered concentration of sevoflurane (ie, the vaporizer dial setting) was significantly lower and the quality of transition to inhalation anesthesia and of anesthetic maintenance were significantly better in horses that received the guaifenesin-ketamine-medetomidine infusion than in horses that did not. Five horses, all of which received sevoflurane alone, required administration of pentothal. Recovery time and quality of recovery were not significantly different between groups, but horses that received the guaifenesin-ketamine-medetomidine infusion required fewer attempts to stand. Results suggest that in horses, the combination of a guaifenesin-ketamine-medetomidine infusion and inhalation of sevoflurane resulted in better transition and maintenance phases while improving cardiovascular function and reducing the number of attempts needed to stand after the completion of anesthesia, compared with inhalation of sevoflurane.

  8. [The uterotropismus of halothane, chloroform or methoxyflurane in clinical use (author's transl)].

    PubMed

    Fassolt, A; Schubiger, V; Hauser, G A

    1976-11-01

    To perform episiotomy, 89 women after childbirth were anaesthetized with either halothane (50 patients), methoxyflurane (24 patients) or chloroform (15 patients). The activity of the uterus was registered tocodynamographically. To examine the alternate influence of narcotics and uterotonica, 57 patients were pre-medicated with sintocinon and methergin i.m. as a prophylaxis. The second group (32 patients) received no premedication to stimulate labor activity, however in 18 cases towards the end of narcosis oxytocin and methergin were given i.v. In addition to these examinations 5 vaginal deliveries were anaesthetised with halothane only. Concerning our own experimental study it can be observed: 1. The relaxative properties of halothane wich suppresses completly the activity of myometrium during the deep stages of anaesthesia are superior to chloroform and methoxyflurane. 2. More rapid relaxation of the uterus with halothane compared with chloroform and methoxyflurane. 3. After the use of halothane a quicker return of the activity of the uterus compared with chloroform and methoxyflurane. 4. The value of a prophylaxis with uterotonica can be demonstrated by a comparatively reduced slowing-down of labour-activity during anaesthesia. 5. In every one of the cases, an interuption of the labour-suppressing, caused by the anaesthesia, can be obtained by injecting intravenously oxytocin or methergin. 6. During vaginal delivery, compared to the post placentar phase, there is no need for higher concentrations of halothane to be used to suppress labour contractions. The discussion deals with the intensity of reduction of the uterus contraction caused by the above mentioned narcotics, the dangers of the atony of the uterus, and the indications and contra-indications of obstetrical anaesthesia with halothane or methoxyflurane.

  9. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  10. Determination of halothane-induced sleeping time in the rat: effect of prior administration of centrally active drugs.

    PubMed Central

    Turnbull, M J; Watkins, J W

    1976-01-01

    A method is described for the determination of halothane-induced sleeping time in the rat. 2 The sleeping time exhibited a diurnal variation which was due, at least in part, to a change in the sensitivity of the central nervous system (CNS) to the anaesthetic. 3 Tolerance to halothane did not develop in rats repeatedly exposed to the anaesthetic over a period of over 48 hours. 4 Repeated sleeping time determinations have been used to follow changes in the sensitivity of the CNS to the anaesthetic occurring with time. 5 A tolerance to halothane was induced by pretreatment of rats with doses of amylobarbitone, pentobarbitone or meprobamate sufficient to keep animals anaesthetized for approximately 12 hours. This tolerance was followed by a period of halothane-hypersensitivity. 6 Halothane-tolerant animals awakened with higher brain halothane concentrations and were also tolerant to intracerebroventricularly administered pentobarbitone. 7 Halothane-hypertensive rats awakened with lower brain halothane concentrations and were also hypersensitivity to intracerebroventricularly administered pentobarbitone. 8 The possibility that the induction of cross-tolerance to halothane may be indicative of a drug's potential to produce dependence is discussed. PMID:987820

  11. Effects of thiopentone sodium, methoxyflurane and halothane on haematological parameters in sheep during prolonged anaesthesia.

    PubMed

    Edjtehadi, M

    1978-01-01

    1. Satisfactory surgical anaesthesia in sheep was achieved by i.v. injection of thiopentone sodium per se (20 mg/kg); and also with thiopentone/methoxyflurane and thiopentone/halothane anaesthetics (2--3% and 1.5--2%, respectively). 2. Cardiac arrhythmias were not observed during thiopentone sodium, thiopentone/methoxyflurane and thiopentone/halothane anaesthesia. However, during thiopentone anaesthesia, one sheep displayed a high degree of sinus tachycardia followed with ventricular tachycardia. 3. Pneumograms recorded during thiopentone sodium and thiopentone/methoxyflurane anaesthesia showed no irregularity, but in thiopentone/halothane anaesthesia, 30% of the sheep developed Cheyne-Stokes periodic respiration. 4. Packed cell volume (PCV) and haemoglobin (Hb) were significantly decreased in thiopentone/methoxyflurane and thiopentone anaesthetized sheep, but not in animals anaesthetized by thiopentone/halothane. 5. White blood cell count (WBC) was significantly decreased only in thiopentone/methoxyflurane anaesthetized sheep, but was not remarkable in thiopentone and thiopentone/halothane anaesthetized animals. 6. A significant lymphocytopenia occurred in thiopentone/methoxyflurane and in thiopentone/halothane anaesthetized sheep, but not in the thiopentone anaesthetized animals. This was accompanied with an increase in neutrophils. 7. Clotting time fell, but the extent and time course was different in thiopentone, thiopentone/methoxyflurane and thiopentone/halothane anaesthesia. 8. From these data, it is suggested that thiopentone sodium, thiopentone/methoxyflurane and thiopentone/halothane have different effects on different blood parameters during prolonged anaesthesia, and may be clinically significant.

  12. Beyond Ether and Chloroform-A Major Breakthrough With Halothane.

    PubMed

    Huang, Lisa; Sang, Christine N; Desai, Manisha S

    2017-07-01

    The use of equipment powered by electricity in the operating room increased the risk of fires in the presence of flammable agents such as ether and cyclopropane. Chloroform was associated with cardiac arrhythmias and liver damage. The introduction of halothane in the late 1950s was heralded as a solution to many problems facing the specialty of anesthesia. We explore whether the manufacturer promptly reported halothane's adverse effects to regulatory agencies and practitioners. We consulted documents submitted by Ayerst Laboratories to federal authorities through the Freedom of Information Act, promotional advertisements, package inserts, published articles, and textbooks. Two major complications associated with the use of halothane, cardiac arrhythmias and the risk of hepatotoxicity, were disclosed by the manufacturer when the drug was first introduced to the US market. Reports appeared timely and complete; there was no apparent attempt to conceal or otherwise downplay these risks. The process of drug discovery and approval for clinical use has always been a lengthy, complex, and extremely expensive undertaking, with only a small minority of compounds receiving approval. The risk of adverse effects or drug interaction directly impacts commercial viability. In the case of halothane, the manufacturer disclosed major adverse effects, and the drug enjoyed decades of popularity until it was replaced by agents with a better drug profile. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of cimetidine and diethyldithiocarbamate on the metabolism of halothane and methoxyflurane in vitro.

    PubMed

    Loesch, J; Siegers, C P; Younes, M

    1987-06-01

    The metabolism of halothane and methoxyflurane was measured in vitro by the vial equilibration method using the S-9-fraction from rat liver as source of enzymes. Kinetic values were measured for halothane: Vmax = 11.6 nmol/g.min, KM = 19.6 mumol/l and methoxyflurane: Vmax = 12.0 nmol/g.min, KM = 17.5 mumol/l. Dithiocarb showed strong inhibitory activity on halothane and methoxyflurane metabolism; inhibition constants were calculated as Ki = 0.051 mmol/l and Ki = 0.004 mmol/l, respectively. Cimetidine inhibited the metabolism of both anesthetics to a lesser extent. Inhibition constants were calculated as Ki = 16.2 mmol/l and Ki = 8.2 mmol/l for halothane and methoxyflurane, respectively. The observed inhibitory properties of dithiocarb and cimetidine on the metabolism of halothane and methoxyflurane may be of interest in connection with the problem of toxic liver and kidney injury after anesthesia with these agents.

  14. Genetic predisposition to liver damage after halothane anesthesia in guinea pigs.

    PubMed

    Lunam, C A; Cousins, M J; Hall, P M

    1986-11-01

    Three 4-hr normoxic (21% oxygen) exposures to 1% halothane administered 3 days apart were associated with elevations in serum alanine aminotransferase (ALT) activity in four of 20 guinea pigs after the initial and third exposures. Serum alanine aminotransferase values were not measured after the second anesthetic. Susceptibility was defined as an ALT level greater than 300 IU/L after halothane. Nonsusceptible animals, that is, animals without significant increases in ALT values after halothane, remained nonsusceptible after reexposure. Serum alanine aminotransferase values after the first and third anesthesias were significantly correlated (rs = 0.86, P less than 0.001). Two exposures of another 30 guinea pigs at a 5-week interval resulted in high elevations of ALT in the same eight animals after both anesthetics. In contrast, after an initial exposure nonsusceptible animals remained nonsusceptible upon reexposure. Serum alanine aminotransferase levels after the first and second anesthetics were significantly correlated (rs = 0.85, P less than 0.001). The proportion of first generation (F1) males with elevated ALTs whose parents were susceptible to halothane hepatotoxicity (HH) was significantly higher than the proportion of males with elevated ALTs in a random group of 90 males (P less than 0.005). First generation males and females of nonsusceptible parents had ALTs within the normal range after halothane exposure. These studies suggest that in the guinea pig genetic predisposition is an important determinant of susceptibility to HH, although other contributing factors are not excluded.

  15. Assessing the depth of isoflurane anaesthesia during cardiopulmonary bypass.

    PubMed

    Ng, Ka Ting; Alston, R Peter; Just, George; McKenzie, Chris

    2018-03-01

    Bispectral index (BIS) and monitoring of end-tidal concentration may be associated with a reduction in the incidence of awareness during volatile-based general anaesthesia. An analogue of end-tidal concentration during cardiopulmonary bypass (CPB) is measuring exhausted isoflurane concentration from the oxygenator as an estimate to blood and, so, brain concentration. The aim of this study was to determine the relationships between oxygenator exhaust and blood concentrations of isoflurane and the BIS score during CPB when administering isoflurane into the sweep gas supply to the oxygenator. Seventeen patients undergoing elective cardiac surgery using CPB and isoflurane with BIS monitoring were recruited in a single-centre university hospital. Isoflurane gas was delivered via a calibrated vaporiser at the beginning of anaesthetic induction. Radial arterial blood samples were collected after the initiation of CPB and before aortic cross-clamping, which were analysed for isoflurane by gas chromatography and mass spectrometry. The BIS score and the concentration of exhausted isoflurane from the oxygenator membrane, as measured by an anaesthetic gas analyser, were recorded at the time of blood sampling. The mean duration of anaesthetic induction to arterial blood sampling was 90 min (95%CI: 80,100). On CPB, the median BIS was 39 (range, 7-43) and the mean oxygenator exhaust isoflurane concentration was 1.24 ± 0.21%. No significant correlation was demonstrated between BIS with arterial isoflurane concentration (r=-0.19, p=0.47) or oxygenator exhaust isoflurane concentration (r=0.07, p=0.80). Mixed-venous blood temperature was moderately correlated to BIS (r=0.50, p=0.04). Oxygenator exhaust isoflurane concentration was moderately, positively correlated with its arterial concentration (r=0.64, p<0.01). In conclusion, in patients undergoing heart surgery with CPB, the findings of this study indicate that, whilst oxygenator exhaust concentrations were significantly

  16. MAC reduction of isoflurane by sufentanil.

    PubMed

    Brunner, M D; Braithwaite, P; Jhaveri, R; McEwan, A I; Goodman, D K; Smith, L R; Glass, P S

    1994-01-01

    We have shown previously that a plasma fentanyl concentration of 1.67 ng ml-1 reduced the MAC of isoflurane by 50%. By comparing equal degrees of MAC reduction by sufentanil, we may determine the potency ratio of these opioids. Seventy-six patients were allocated randomly to receive predetermined infusions of sufentanil, and end-tidal concentrations of isoflurane in oxygen. Blood samples were obtained 10 min after the start of the infusion, and just before and after skin incision. Any purposeful movement by the patient was recorded. The MAC reduction of isoflurane produced by sufentanil was obtained using a logistic regression model. A sufentanil plasma concentration of 0.145 ng ml-1 (95% confidence limits 0.04, 0.26 ng ml-1) resulted in a 50% reduction in the MAC of isoflurane. At a plasma concentration greater than 0.5 ng ml-1, sufentanil exhibited a ceiling effect.

  17. Comparing charcoal and zeolite reflection filters for volatile anaesthetics: A laboratory evaluation.

    PubMed

    Sturesson, Louise W; Frennström, Jan O; Ilardi, Marcella; Reinstrup, Peter

    2015-08-01

    A modified heat-moisture exchanger that incorporates a reflecting filter for use with partial rebreathing of exhaled volatile anaesthetics has been commercially available since the 1990 s. The main advantages of the device are efficient delivery of inhaled sedation to intensive care patients and reduced anaesthetic consumption during anaesthesia. However, elevated arterial CO2 values have been observed with an anaesthetic conserving device compared with a conventional heat and moisture exchanger, despite compensation for larger apparatus dead space. The objective of this study is to thoroughly explore the properties of two reflecting materials (charcoal and zeolites). A controlled, prospective, observational laboratory study. Lund University Hospital, Sweden, from December 2011 to December 2012. None. Three filters, with identical volumes, were compared using different volatile anaesthetics at different conditions of temperature and moisture. The filtering materials were charcoal or zeolite. Glass spheres were used as an inert control. Consumption of volatile anaesthetics using different reflecting materials in filters at different conditions regarding temperature and moisture. CO2 reflection by the filtering materials: glass spheres, charcoal or zeolite. Isoflurane consumption in an open system was 60.8 g h(-1). The isoflurane consumption in dry, warm air was 39.8 g h(-1) with glass spheres. Changing to charcoal and zeolite had a profound effect on isoflurane consumption, 11.8 and 10.7 g h(-1), respectively. Heating and humidifying the air as well as the addition of N2O created only minor changes in consumption. The percentage of isoflurane conserved by the charcoal filter was independent of the isoflurane concentration (0.5 to 4.5%). Reflection of sevoflurane, desflurane and halothane by the charcoal filter was similar to reflection of isoflurane. Both charcoal and zeolite filters had CO2 reflecting properties and end-tidal CO2 increased by 3 to 3.7% compared

  18. HCN1 Channels Contribute to the Effects of Amnesia and Hypnosis But Not Immobility of Volatile Anesthetics

    PubMed Central

    Liu, Jin; Ke, Bowen; Wang, Xiaojia; Li, Fengshan; Li, Tao; Bayliss, Douglas A.; Chen, Xiangdong

    2015-01-01

    Background HCN1 channels have been identified as targets of ketamine to produce hypnosis. Volatile anesthetics also inhibit HCN1 channels. However, the effects of HCN1 channels on volatile anesthetics in vivo is still elusive. This study uses global and conditional HCN1 knockout mice to evaluate how HCN1 channels affect the actions of volatile anesthetics. Methods Minimum alveolar concentrations (MAC) of isoflurane and sevoflurane that induced immobility (MAC of immobility) and/or hypnosis (MAC of hypnosis) were determined in wild-type (WT) mice, global HCN1 channel knockout mice (HCN1−/−), floxed HCN1 channel gene (HCN1f/f) mice and forebrain-selective HCN1 channel knockout (HCN1f/f: cre) mice. Immobility of mice was defined as no purposeful reactions to tail-clamping stimulus and hypnosis was defined as loss of righting reflex (LORR). The amnestic effects of isoflurane and sevoflurane were evaluated by fear-potentiated startle in these four strains of mice. Results All MAC values were expressed as mean ± SEM. For MAC of immobility of isoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~1.24-1.29% isoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for isoflurane (each ~1.05% isoflurane) were significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (0.86±0.03%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (0.84±0.03%, P<0.001); no significant difference was found between HCN1−/− and HCN1f/f: cre mice. For MAC of immobility of sevoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~2.6-2.7% sevoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for sevoflurane (each ~1.90% sevoflurane) was significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (1.58±0.05%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (1.56±0.05%, P<0.001). No significant

  19. Circulatory and respiratory effects of methoxyflurane in dogs: comparison of halothane.

    PubMed

    Steffey, E P; Farver, T B; Woliner, M J

    1984-12-01

    Circulatory and respiratory effects of 3 alveolar concentrations (representing 1.0, 1.5, and 2.0 times the minimal alveolar concentration, MAC) of methoxyflurane in O2 were compared with similar MAC multiples of halothane in O2. Eight adult mixed breed dogs that were healthy and nonmedicated were studied in cross-over fashion with both agents during conditions of controlled ventilation (CV; PaCO2 averaged 34 to 38 mm of Hg) and spontaneous ventilation (SV). When ventilation was controlled, methoxyflurane similar to halothane caused dose-related cardiovascular depression. Except for a greater heart rate and lesser stroke volume with methoxyflurane, little difference was noticed between the anesthetics at equivalent doses during CV. There was less dose-related circulatory depression during SV with both agents but particularly with methoxyflurane. During SV, PaCO2 increased progressively with increases in alveolar concentrations of methoxyflurane and halothane. Methoxyflurane caused significantly greater (P less than 0.05) hypoventilation than halothane only at 2.0 MAC. Except for a greater respiratory gas flow and inspiratory-expiratory gas flow ratio and a lesser inspiratory-expiratory time ratio with methoxyflurane, there was no anesthetic- or dose-response effect on respiratory variables.

  20. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats.

    PubMed

    Guidera, Jennifer A; Taylor, Norman E; Lee, Justin T; Vlasov, Ksenia Y; Pei, JunZhu; Stephen, Emily P; Mayo, J Patrick; Brown, Emery N; Solt, Ken

    2017-01-01

    Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12-40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC-CT and PFC-PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC-CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1-4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.

  1. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats

    PubMed Central

    Guidera, Jennifer A.; Taylor, Norman E.; Lee, Justin T.; Vlasov, Ksenia Y.; Pei, JunZhu; Stephen, Emily P.; Mayo, J. Patrick; Brown, Emery N.; Solt, Ken

    2017-01-01

    Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12–40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC–CT and PFC–PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC–CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1–4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats. PMID:28725184

  2. Isoflurane minimum alveolar concentration reduction by fentanyl.

    PubMed

    McEwan, A I; Smith, C; Dyar, O; Goodman, D; Smith, L R; Glass, P S

    1993-05-01

    Isoflurane is commonly combined with fentanyl during anesthesia. Because of hysteresis between plasma and effect site, bolus administration of fentanyl does not accurately describe the interaction between these drugs. The purpose of this study was to determine the MAC reduction of isoflurane by fentanyl when both drugs had reached steady biophase concentrations. Seventy-seven patients were randomly allocated to receive either no fentanyl or fentanyl at several predetermined plasma concentrations. Fentanyl was administered using a computer-assisted continuous infusion device. Patients were also randomly allocated to receive a predetermined steady state end-tidal concentration of isoflurane. Blood samples for fentanyl concentration were taken at 10 min after initiation of the infusion and before and immediately after skin incision. A minimum of 20 min was allowed between the start of the fentanyl infusion and skin incision. The reduction in the MAC of isoflurane by the measured fentanyl concentration was calculated using a maximum likelihood solution to a logistic regression model. There was an initial steep reduction in the MAC of isoflurane by fentanyl, with 3 ng/ml resulting in a 63% MAC reduction. A ceiling effect was observed with 10 ng/ml providing only a further 19% reduction in MAC. A 50% decrease in MAC was produced by a fentanyl concentration of 1.67 ng/ml. Defining the MAC reduction of isoflurane by all the opioids allows their more rational administration with inhalational anesthetics and provides a comparison of their relative anesthetic potencies.

  3. Malignant Hyperthermia: Report of Two Cases with a Neglected Complication in Cardiac Surgery.

    PubMed

    Neshati, Mahdi; Azadeh, Manizheh; Neshati, Parinaz; Burnett, Tyrone; Saenz, Ryan; Karbasi, Bahman; Shahmohammadi, Ghader; Nourizadeh, Eskandar; Rostamzadeh, Mohsen

    2017-10-01

    Malignant hyperthermia (MH) can develop after contact with volatile anesthetics (halothane, enflurane, isoflurane, sevoflurane, and desflurane) as well as succinylcholine and cause hypermetabolism during anesthesia, which is associated with high mortality when untreated. Early diagnosis and treatment could be life-saving. During cardiac surgery, hypothermia and cardiopulmonary bypass make the diagnosis of MH extremely challenging compared with other settings such as general surgery. We herein report 2 cases of MH, graded as "very likely" or "almost certain" based on the MH clinical grading scale. A 14-month-old infant and a 53-year-old male underwent surgery for severe pulmonary valve stenosis and mitral valve replacement, respectively. Both of them were extubated on the operation day, but they deteriorated with the development of high-grade fever, hypotension, renal failure, and acidosis. The first case had muscle spasms. Unfortunately, the delayed symptoms of MH in the early postoperative course were not diagnosed in these 2 cases, which caused permanent neurologic damage in the first case and death in the second one. However, the infant was discharged from the hospital after 2 months.

  4. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ≈80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  5. Isoflurane prevents neurocognitive dysfunction after cardiopulmonary bypass in rats.

    PubMed

    Li, Wen; Zheng, Beijie; Xu, Huan; Deng, Yuxiao; Wang, Shuyan; Wang, Xiangrui; Su, Diansan

    2013-06-01

    Postoperative cognitive dysfunction occurs frequently after cardiac surgeries with cardiopulmonary bypass (CPB). Available data from rat CPB models are conflicting. However, none of them was designed to investigate the role of isoflurane (the main anesthetic in all of these studies) in the neurocognitive dysfunction after CPB. Isoflurane has documented neuroprotective effects so the present authors hypothesized that isoflurane prevents the neurocognitive dysfunction in rats after CPB. A prospective, interventional study. A university research laboratory. Male Sprague-Dawley rats. Male Sprague-Dawley rats were divided into 5 groups: the isoflurane CPB group, the animals were anesthetized with isoflurane and underwent 60 minutes of normothermic CPB; the chloral hydrate CPB group, the animals were anesthetized with chloral hydrate and underwent 60 minutes of normothermic CPB; the isoflurane sham group, the animals were subjected only to cannulation and the same duration of anesthesia but no CPB; the chloral hydrate sham group, the animals received only cannulation and the same duration of anesthesia but no CPB; and the naive group, the animals received no treatment. The neurocognitive function of all rats was measured on days 4 to 6 (short-term) and 31 to 33 after CPB (long-term). After the behavior tests, the animals were sacrificed, and the brain was harvested for the measurement of acetylcholinesterase (AChE) and choline acetyltransferase protein levels. Short-term (days 4-6 after CPB) learning and memory were impaired after CPB when the animals were anesthetized with chloral hydrate. When isoflurane was used, the learning and memory did not change after CPB. No long-term (days 31-33 after CPB) neurocognitive changes were found after CPB. AChE decreased significantly after isoflurane anesthesia regardless of whether CPB was performed. Isoflurane prevented the neurocognitive dysfunction induced by CPB, which might involve the cerebral cholinergic system. Copyright

  6. Evaluation of Isoflurane Overdose for Euthanasia of Neonatal Mice.

    PubMed

    Seymour, Travis L; Nagamine, Claude M

    2016-01-01

    Neonatal mice (that is, pups younger than 6 d) must be exposed to CO2 for as long as 50 min to achieve euthanasia. Alternatively, other inhalant anesthetic agents have been used to euthanize laboratory rodent species. We investigated the efficacy of isoflurane at saturated vapor pressure to euthanize neonatal mice. Neonatal mice (n = 76; age, 1 or 2 d) were exposed to isoflurane in a sealed, quart-size (0.95-L) plastic bag at room temperature. Righting and withdrawal reflexes were absent in less than 2 min. After 30 min of exposure to isoflurane, pups were removed and monitored for recovery. All pups were cyanotic and showed no detectable signs of life when they were removed from the bag. However, after 30 to 120 min after removal from the bag, 24% of isoflurane-overexposed pups began gasping and then resumed normal respiration and regained a normal pink coloration. These results demonstrate that isoflurane overexposure at saturated vapor pressure for 30 min is insufficient to euthanize neonatal mice and that isoflurane overexposure must be followed by a secondary means of euthanasia.

  7. Evaluation of Isoflurane Overdose for Euthanasia of Neonatal Mice

    PubMed Central

    Seymour, Travis L; Nagamine, Claude M

    2016-01-01

    Neonatal mice (that is, pups younger than 6 d) must be exposed to CO2 for as long as 50 min to achieve euthanasia. Alternatively, other inhalant anesthetic agents have been used to euthanize laboratory rodent species. We investigated the efficacy of isoflurane at saturated vapor pressure to euthanize neonatal mice. Neonatal mice (n = 76; age, 1 or 2 d) were exposed to isoflurane in a sealed, quart-size (0.95-L) plastic bag at room temperature. Righting and withdrawal reflexes were absent in less than 2 min. After 30 min of exposure to isoflurane, pups were removed and monitored for recovery. All pups were cyanotic and showed no detectable signs of life when they were removed from the bag. However, after 30 to 120 min after removal from the bag, 24% of isoflurane-overexposed pups began gasping and then resumed normal respiration and regained a normal pink coloration. These results demonstrate that isoflurane overexposure at saturated vapor pressure for 30 min is insufficient to euthanize neonatal mice and that isoflurane overexposure must be followed by a secondary means of euthanasia. PMID:27177567

  8. Effects of halothane and methoxyflurane on the hypothalamic-pituitary-adrenal axis in rat.

    PubMed

    Karuri, A R; Engelking, L R; Kumar, M S

    1998-10-01

    Effects of acute exposure (2 h) to either 1.5% halothane or 0.5% methoxyflurane on chemical mediators of the hypothalamic-pituitary-adrenal (HPA) axis were evaluated in male Sprague-Dawley rats immediately after exposure, after the righting reflex (4 h), or 24 h postexposure. Effects of these anesthetics on hippocampal corticotropin releasing factor (CRF) were also evaluated. Methoxyflurane caused significant elevations in pituitary adrenocorticotropin hormone (ACTH)-like immunoreactivities in all three of the experiment's time groups, yet halothane failed to cause the same response immediately after exposure. Serum ACTH-like immunoreactivities were significantly elevated immediately after exposure to both anesthetics, but were not elevated at 4 and 24 h postexposure. Corticosterone (CORT)-like immunoreactivities were significantly elevated by halothane in all experimental groups, and in the 2- and 24-h groups following methoxyflurane exposure. Hippocampal CRF-like immunoreactivities remained unaffected by either anesthetic. Results indicate that a 2-h exposure to either halothane or methoxyflurane results in significant activation of the rat hypothalamic-pituitary-adrenal axis, and that the activation appears to be sustained over a 24-h period.

  9. Speed of recovery and side-effect profile of sevoflurane sedation compared with midazolam.

    PubMed

    Ibrahim, A E; Ghoneim, M M; Kharasch, E D; Epstein, R H; Groudine, S B; Ebert, T J; Binstock, W B; Philip, B K

    2001-01-01

    Sedation for surgical procedures performed with regional or local anesthesia has usually been achieved with intravenous medications, whereas the use of volatile anesthetics has been limited. The use of sevoflurane for sedation has been suggested because of its characteristics of nonpungency, rapid induction, and quick elimination. The purpose of this investigation was to assess the quality, recovery, and side effects of sevoflurane sedation compared with midazolam. One hundred seventy-three patients undergoing surgery with local or regional anesthesia were enrolled in a multicenter, open-label, randomized investigation comparing sedation with sevoflurane versus midazolam. Sedation level was titrated to an Observer's Assessment of Alertness--Sedation score of 3 (responds slowly to voice). Recovery was assessed objectively by Observer's Assessment of Alertness--Sedation, Digit Symbol Substitution Test (DSST), and memory scores, and subjectively by visual analog scales. Significantly more patients in the sevoflurane group had to be converted to general anesthesia because of excessive movement (18 sevoflurane and 2 midazolam; P = 0.043). Of remaining patients, 141 were assessable for efficacy and recovery data (93 sevoflurane and 48 midazolam). Sevoflurane and midazolam produced dose-related sedation. Sevoflurane patients had higher DSST and memory scores during recovery. Seventy-six percent (sevoflurane) compared with 35% (midazolam) returned to baseline DSST at 30 min postoperatively (P < 0.05). More frequent excitement-disinhibition was observed with sevoflurane (15 [16%] vs. midazolam; P = 0.008). Sevoflurane for sedation produces faster recovery of cognitive function as measured by DSST and memory scores compared with midazolam. However, sevoflurane for sedation is complicated by a high incidence of intraoperative excitement.

  10. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation.

    PubMed

    Antognini, J F; Bravo, E; Atherley, R; Carstens, E

    2006-09-01

    Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.

  11. Polyuria with sevoflurane administration: a case report.

    PubMed

    Schirle, Lori

    2011-02-01

    Polyuria has been reported as a side effect of sevoflurane administration, but because of its relative rarity, many practitioners are not aware of this potential phenomenon. Polyuria in its extreme form can cause undesirable hemodynamic changes. A case study, in an 18-year-old man, is presented highlighting polyuria as a probable side effect of sevoflurane administration.

  12. 21 CFR 868.1620 - Halothane gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... infrared or ultraviolet radiation. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Halothane gas analyzer. 868.1620 Section 868.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  13. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning.

    PubMed

    Dutton, Robert C; Maurer, Anya J; Sonner, James M; Fanselow, Michael S; Laster, Michael J; Eger, Edmond I

    2002-05-01

    Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P < 0.05). Training to tone was more resistant to the effects of isoflurane than training to context (P < 0.05), and the three-trial learning procedure was more was more resistant than the one-trial procedure (P < 0.05). Isoflurane provided intense dose-dependent anterograde but not retrograde amnesia for classic fear conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.

  14. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells.

    PubMed

    Liu, Jiaying; Yang, Longqiu; Guo, Xia; Jin, Guangli; Wang, Qimin; Lv, Dongdong; Liu, Junli; Chen, Qiu; Song, Qiong; Li, Baolin

    2018-05-03

    Rapid proliferation is one of the critical characteristics of breast cancer. However, the underlying regulatory mechanism of breast cancer cell proliferation is largely unclear. The present study indicated that sevoflurane, one of inhalational anesthetics, could significantly suppress breast cancer cell proliferation by arresting cell cycle at G1 phase. Notably, the rescue experiment indicated that miR-203 was upregulated by sevoflurane and mediated the function of sevoflurane on suppressing the breast cancer cell proliferation. The present study indicated the function of the sevoflurane/miR-203 signaling pathway on regulating breast cancer cell proliferation. These results provide mechanistic insight into how the sevoflurane/miR-203 signaling pathway supresses proliferation of breast cancer cells, suggesting the sevoflurane/miR-203 pathway may be a potential target in the treatment of breast cancer.

  15. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    PubMed

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  16. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury.

    PubMed

    Statler, Kimberly D; Alexander, Henry; Vagni, Vincent; Holubkov, Richard; Dixon, C Edward; Clark, Robert S B; Jenkins, Larry; Kochanek, Patrick M

    2006-03-03

    Isoflurane improves outcome vs. fentanyl anesthesia, in experimental traumatic brain injury (TBI). We assessed the temporal profile of isoflurane neuroprotection and tested whether isoflurane confers benefit at the time of TBI. Adult, male rats were randomized to isoflurane (1%) or fentanyl (10 mcg/kg iv bolus then 50 mcg/kg/h) for 30 min pre-TBI. Anesthesia was discontinued, rats recovered to tail pinch, and TBI was delivered by controlled cortical impact. Immediately post-TBI, rats were randomized to 1 h of isoflurane, fentanyl, or no additional anesthesia, creating 6 anesthetic groups (isoflurane:isoflurane, isoflurane:fentanyl, isoflurane:none, fentanyl:isoflurane, fentanyl:fentanyl, fentanyl:none). Beam balance, beam walking, and Morris water maze (MWM) performances were assessed over post-trauma d1-20. Contusion volume and hippocampal survival were assessed on d21. Rats receiving isoflurane pre- and post-TBI exhibited better beam walking and MWM performances than rats treated with fentanyl pre- and any treatment post-TBI. All rats pretreated with isoflurane had better CA3 neuronal survival than rats receiving fentanyl pre- and post-TBI. In rats pretreated with fentanyl, post-traumatic isoflurane failed to affect function but improved CA3 neuronal survival vs. rats given fentanyl pre- and post-TBI. Post-traumatic isoflurane did not alter histopathological outcomes in rats pretreated with isoflurane. Rats receiving fentanyl pre- and post-TBI had the worst CA1 neuronal survival of all groups. Our data support isoflurane neuroprotection, even when used at the lowest feasible level before TBI (i.e., when discontinued with recovery to tail pinch immediately before injury). Investigators using isoflurane must consider its beneficial effects in the design and interpretation of experimental TBI research.

  17. Parecoxib mitigates spatial memory impairment induced by sevoflurane anesthesia in aged rats.

    PubMed

    Gong, M; Chen, G; Zhang, X M; Xu, L H; Wang, H M; Yan, M

    2012-05-01

    Inflammation in brain plays a critical role in the pathogenesis of cognitive impairment. Anti-inflammatory therapy may thus constitute a novel approach for associated cognitive dysfunction. The present study investigated the effects of parecoxib in the prevention of cognitive impairments induced by sevoflurane in aged rats. Sixty-six aged rats were divided randomly into three groups: control group (n = 22, sham anesthesia), sevoflurane group (n = 22, received 2% sevoflurane for 5 h) and parecoxib group (n = 22, received intraperitoneal injections of 10 mg/kg parecoxib and then exposed to 2% sevoflurane for 5 h). Spatial learning performance was tested by Morris water maze. The expression of cyclooxygenase-2 protein and ultrastructure of synapse in hippocampus were measured. Sevoflurane anesthesia impaired the spatial learning and memory in aged rats. Compared with sevoflurane group, parecoxib group showed shorter escape latency and more number of crossings over the previous platform area. Furthermore, parecoxib treatment also significantly prevented the synaptic changes induced by sevoflurane. Parecoxib mitigates spatial memory impairment induced by sevoflurane anesthesia in aged rats. The synaptic morphometry change may be one of the mechanisms involved in learning and memory deficit. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  18. Sevoflurane-induced memory impairment in the postnatal developing mouse brain.

    PubMed

    Lu, Zhijun; Sun, Jihui; Xin, Yichun; Chen, Ken; Ding, Wen; Wang, Yujia

    2018-05-01

    The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.

  19. Response surface modeling of alfentanil-sevoflurane interaction on cardiorespiratory control and bispectral index.

    PubMed

    Dahan, A; Nieuwenhuijs, D; Olofsen, E; Sarton, E; Romberg, R; Teppema, L

    2001-06-01

    Respiratory depression is a serious side effect of anesthetics and opioids. The authors examined the influence of the combined administration of sevoflurane and alfentanil on ventilatory control, heart rate (HR), and Bispectral Index (BIS) in healthy volunteers. Step decreases in end-tidal partial pressure of oxygen from normoxia into hypoxia (approximately 50 mmHg) at constant end-tidal partial pressure of carbon dioxide (approximately 48 mmHg) were performed in nine male volunteers at various concentrations of alfentanil and sevoflurane, ranging from 0 to 50 ng/ml for alfentanil and from 0 to 0.4 end-tidal concentration (ET%) for sevoflurane, and with various combinations of alfentanil and sevoflurane. The alfentanil-sevoflurane interactions on normoxic resting (hypercapnic) ventilation (Vi), HR, hypoxic Vi, and HR responses and BIS were assessed by construction of response surfaces that related alfentanil and sevoflurane to effect using a population analysis. Concentration-effect relations were linear for alfentanil and sevoflurane. Synergistic interactions were observed for resting Vi and resting HR. Depression of Vi by 25% occurred at 38 +/- 11 ng/ml alfentanil (population mean +/- SE) and at 0.7 +/- 0.4 ET% sevoflurane. One possibility for 25% reduction when alfentanil and sevoflurane are combined is 13.4 ng/ml alfentanil plus 0.12 ET% sevoflurane. Additive interactions were observed for hypoxic Vi and HR responses and BIS. Depression of the hypoxic Vi response by 25% occurred at 16 +/- 1 ng/ml alfentanil and 0.14 +/- 0.05 ET% sevoflurane. The effect of sevoflurane on the BIS (25% reduction of BIS occurred at 0.45 +/- 0.08 ET%) was independent of the alfentanil concentration. Response surface modeling was used successfully to analyze the effect of interactions between two drugs on respiration. The combination of alfentanil and sevoflurane causes more depression of Vi and HR than does the summed effect of each drug administered separately. The effects of

  20. Influence of the halothane gene (HAL) on pork quality in two commercial crossbreeds.

    PubMed

    Silveira, A C P; Freitas, P F A; César, A S M; Cesar, A S M; Antunes, R C; Guimarães, E C; Batista, D F A; Torido, L C

    2011-01-01

    We evaluated the effect of the halothane (HAL) gene on the quality of pork in domestic pigs. Half-carcasses from two different commercial pig (Sus domestica) crossbreeds were analyzed, 46 of which were homozygous dominant (HAL(NN)) and 69 of which were heterozygous (HAL(Nn)) for the halothane gene. The measures included backfat thickness, lean meat percentage, carcass weight, pH 24 h after slaughtering, color, and drip loss; DNA was extracted from the haunch muscle. Swine with the HAL(Nn) genotype had less backfat thickness and higher lean meat percentages than swine with the HAL(NN) genotype. Yet, swine with the HAL(Nn) genotype had lower quality meat than those with the HAL(NN) swine. The pH at 24 h was lower in HAL(Nn) swine. The meat color was paler in HAL(Nn) animals, the drip loss was greater in those animals bearing the n allele, and the amount of intramuscular fat was not related to the halothane genotype. We conclude that bearers of the recessive allele of the halothane gene produce more meat, but with quality parameters that are inferior to those sought by consumers and industry.

  1. Electroencephalogram of Healthy Horses During Inhaled Anesthesia.

    PubMed

    Williams, D C; Aleman, M R; Brosnan, R J; Fletcher, D J; Holliday, T A; Tharp, B; Kass, P H; Steffey, E P; LeCouteur, R A

    2016-01-01

    Previous study of the diagnostic validity of electroencephalography (EEG) to detect abnormalities in equine cerebral cortical function relied on the administration of various drugs for sedation, induction, and maintenance of general anesthesia but used identical criteria to interpret recordings. To determine the effects of 2 inhalation anesthetics on the EEG of healthy horses. Six healthy horses. Prospective study. After the sole administration of one of either isoflurane or halothane at 1.2, 1.4, and 1.6 times the minimum alveolar concentration, EEG was recorded during controlled ventilation, spontaneous ventilation, and nerve stimulation. Burst suppression was observed with isoflurane, along with EEG events that resembled epileptiform discharges. Halothane results were variable between horses, with epileptiform-like discharges and bursts of theta, alpha, and beta recorded intermittently. One horse died and 2 were euthanized as the result of anesthesia-related complications. The results of this study indicate that the effects of halothane and isoflurane on EEG activity in the normal horse can be quite variable, even when used in the absence of other drugs. It is recommended that equine EEG be performed without the use of these inhalation anesthetics and that general anesthesia be induced and maintained by other contemporary means. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Effects of anesthesia with halothane and methoxyflurane on plasma corticosterone concentration in rats at rest and after exercise.

    PubMed

    Carlberg, K A; Gwosdow, A R; Alvin, B L

    1995-10-01

    To determine whether halothane and methoxyflurane are suitable anesthetics for cardiac puncture in studies of plasma corticosterone concentration in rats, four experiments were done. Blood samples were taken immediately after rats became anesthetized with halothane or methoxyflurane. Decapitation without anesthesia was used to determine baseline corticosterone concentration. Another group of rats was anesthetized with ether as a positive control (known to stimulate corticosterone secretion). Corticosterone values in halothane- and methoxyflurane-treated rats were not significantly different from those measured after decapitation. Corticosterone concentration in halothane-treated rats was significantly lower than that in either methoxyflurane- or ether-treated rats. Cardiac puncture was done after 3 min of exposure to each of the three anesthetics. The results indicated that there were no differences in corticosterone values among the three anesthetics, suggesting that corticosterone concentration was lower immediately after halothane was used as the anesthetic, because halothane induced anesthesia in less time than that required for activation of adrenocortical secretion. To determine whether there was a difference among anesthetics in stimulating corticosterone secretion when anesthesia was maintained for a period before blood sample collection, cardiac puncture was done after 15 min of exposure to each of the three anesthetics. Corticosterone values were similar, suggesting that any of the three anesthetics was acceptable in this situation. To determine whether halothane or methoxyflurane affected exercise-induced increases in corticosterone values, exercise-trained rats were run for 30 min; then blood samples were collected by cardiac puncture immediately after induction of anesthesia with halothane, methoxyflurane, or ether, or after decapitation without anesthesia. Corticosterone values were not different among the three anesthetics or decapitation.

  3. The effect of inhalant anesthetic and body temperature on peri-anesthetic serum concentrations of transdermally administered fentanyl in dogs.

    PubMed

    Pettifer, Glenn R; Hosgood, Giselle

    2004-04-01

    To determine whether moderate hypothermia during anesthesia significantly affects the serum concentration of transdermally delivered fentanyl and whether halothane or isoflurane affect these concentrations. Randomized cross-over experimental trial. Six mature, healthy Beagles (three males, three females) weighing 10.6 +/- 0.43 kg. A 50-microg hour(-1) fentanyl patch was applied 36 hours prior to anesthesia. Anesthesia was induced at time 0 (t = 0). Each dog received four treatments: isoflurane + normothermia (ISO-NORM), isoflurane + hypothermia (ISO-HYPO), halothane + normothermia (HAL-NORM), and halothane + hypothermia (HAL-HYPO). Dogs were intubated and maintained at 1.5 times MAC. Animals in the hypothermia treatments were cooled to 35 degrees C during anesthesia. Serum fentanyl analysis was performed at -36, -24, -12, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 18, and 26 hours. Direct arterial blood pressures and arterial blood gases were monitored. The mean body temperatures (+/-SEM) during the anesthetic period for the four treatments were: ISO-NORM = 37.7 +/- 0.07 degrees C, ISO-HYPO = 35.8 +/- 0.1 degrees C, HAL-NORM = 37.7 +/- 0.06 degrees C, and HAL-HYPO = 35.8 +/- 0.13 degrees C. The mean (+/-SEM) serum fentanyl concentrations (SFC) for both hypothermia treatments were significantly lower than baseline concentrations at t = 1 hour and persisted for the duration of anesthesia for the ISO-HYPO treatment but only from t = 1 to 2 hours for the HAL-HYPO treatment. Serum fentanyl concentrations returned to baseline within one hour of the end of anesthesia, regardless of body temperature. There were no significant differences between treatments for systolic or diastolic blood pressure but mean blood pressures were higher during normothermia versus hypothermia during the last hour of anesthesia. Hypothermia during inhalation anesthesia produced a significant reduction in SFC using transdermal administration and was more protracted with isoflurane

  4. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    PubMed Central

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  5. Measure of the electroencephalographic effects of sevoflurane using recurrence dynamics.

    PubMed

    Li, Xiaoli; Sleigh, Jamie W; Voss, Logan J; Ouyang, Gaoxiang

    2007-08-31

    This paper proposes a novel method to interpret the effect of anesthetic agents (sevoflurane) on the neural activity, by using recurrence quantification analysis of EEG data. First, we reduce the artefacts in the scalp EEG using a novel filter that combines wavelet transforms and empirical mode decomposition. Then, the determinism in the recurrence plot is calculated. It is found that the determinism increases gradually with increasing the concentration of sevoflurane. Finally, a pharmacokinetic and pharmacodynamic (PKPD) model is built to describe the relationship between the concentration of sevoflurane and the processed EEG measure ('determinism' of the recurrence plot). A test sample of nine patients shows the recurrence in EEG data may track the effect of the sevoflurane on the brain.

  6. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Cheng; Li, Zhengqian; Qian, Min

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased andmore » peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.« less

  7. Effects of Methadone on the Minimum Anesthetic Concentration of Isoflurane, and Its Effects on Heart Rate, Blood Pressure and Ventilation during Isoflurane Anesthesia in Hens (Gallus gallus domesticus)

    PubMed Central

    Pypendop, Bruno Henri; Zangirolami Filho, Darcio; Sousa, Samuel Santos; Valadão, Carlos Augusto Araújo

    2016-01-01

    The aim of this study was to measure the temporal effects of intramuscular methadone administration on the minimum anesthetic concentration (MAC) of isoflurane in hens, and to evaluate the effects of the isoflurane-methadone combination on heart rate and rhythm, blood pressure and ventilation. Thirteen healthy adult hens weighing 1.7 ± 0.2 kg were used. The MAC of isoflurane was determined in each individual using the bracketing method. Subsequently, the reduction in isoflurane MAC produced by methadone (3 or 6 mg kg-1, IM) was determined by the up-and-down method. Stimulation was applied at 15 and 30 minutes, and at 45 minutes if the bird had not moved at 30 minutes. Isoflurane MAC reduction was calculated at each time point using logistic regression. After a washout period, birds were anesthetized with isoflurane and methadone, 6 mg kg-1 IM was administered. Heart rate and rhythm, respiratory rate, blood gas values and invasive blood pressure were measured at 1.0 and 0.7 isoflurane MAC, and during 45 minutes after administration of methadone once birds were anesthetized with 0.7 isoflurane MAC. Fifteen minutes after administration of 3 mg kg-1 of methadone, isoflurane MAC was reduced by 2 (-9 to 13)% [logistic regression estimate (95% Wald confidence interval)]. Administration of 6 mg kg-1 of methadone decreased isoflurane MAC by 29 (11 to 46)%, 27 (-3 to 56)% and 10 (-8 to 28)% after 15, 30 and 45 minutes, respectively. Methadone (6 mg kg-1) induced atrioventricular block in three animals and ventricular premature contractions in two. Methadone caused an increase in arterial blood pressure and arterial partial pressure of carbon dioxide, while heart rate and pH decreased. Methadone, 6 mg kg-1 IM significantly reduced isoflurane MAC by 30% in hens 15 minutes after administration. At this dose, methadone caused mild respiratory acidosis and increase in systemic blood pressure. PMID:27018890

  8. Maintenance of equine anaesthesia over the last 50 years: Controlled inhalation of volatile anaesthetics and pulmonary ventilation.

    PubMed

    Mosing, M; Senior, J M

    2018-05-01

    In the first edition of this journal, Barbara Weaver wrote a review titled 'Equine Anaesthesia', stating that, at that time, it was quickly becoming accepted practice that many horses were being anaesthetised 'by essentially similar procedures, i.e. premedication, induction and then maintenance by controlled inhalation'. To celebrate the 50th anniversary of the first edition of this journal, this review covers the development of understanding and practice of inhalational anaesthesia and controlled ventilation in horses over the last 50 years. We review how the perceived benefits of halothane led to its widespread use, but subsequently better understanding of halothane's effects led to changes in equine anaesthetic practice and the utilisation of different inhalation agents (e.g. isoflurane and sevoflurane). We discuss how more recently, better understanding of the effects of the 'newer' inhalation agents' effects has led to yet more changes in equine anaesthetic practice, and while, further new inhalation agents are unlikely to appear in the near future, further enhancements to anaesthetic practice may still lead to improved outcomes. We review advances in our understanding of the anatomy and pathophysiology of the equine lung as well of the effects of anaesthesia on lung function and how these predispose to some of the common problems of gas exchange and ventilation during anaesthesia. We identify the aims of optimal mechanical ventilation for anaesthetic management and whether the various methods of ventilatory support during equine anaesthesia achieve them. We also highlight that further developments in equipment and optimal ventilator modes are likely in the near future. © 2017 EVJ Ltd.

  9. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics

    PubMed Central

    Pick, Jeremy; Chen, Yihan; Moore, Jason T.; Sun, Yi; Wyner, Abraham J.; Friedman, Eliot B.; Kelz, Max B.

    2011-01-01

    Background General anesthesia has been likened to a state in which anesthetized subjects are locked out of access to both rapid eye movement (REM) sleep and wakefulness. Were this true for all anesthetics, one might expect a significant REM rebound following anesthetic exposure. However, for the intravenous anesthetic propofol, studies demonstrate that no sleep debt accrues. Moreover, pre-existing sleep debts dissipate during propofol anesthesia. To determine whether these effects are specific to propofol or are typical of volatile anesthetics we tested the hypothesis that REM sleep debt would accrue in rodents anesthetized with volatile anesthetics. Methods Electroencephalographic and electromyographic electrodes were implanted in 10 mice. After 9–11 days of recovery and habituation to a 12h:12h light:dark cycle, baseline states of wakefulness, non-rapid eye movement sleep, and REM sleep were recorded in mice exposed to 6 hours of an oxygen control and on separate days to 6 hours of isoflurane, sevoflurane, or halothane in oxygen. All exposures were conducted at the onset of light. Results Mice in all three anesthetized groups exhibited a significant doubling of REM sleep during the first six-hours of the dark phase of the circadian schedule while only mice exposed to halothane displayed a significant increase in non-rapid eye movement sleep that peaked at 152% of baseline. Conclusion REM sleep rebound following exposure to volatile anesthetics suggests that these volatile anesthetics do not fully substitute for natural sleep. This result contrasts with the published actions of propofol for which no REM sleep rebound occurred. PMID:21934405

  10. Volatile Anesthetics Improve Survival after Cecal Ligation and Puncture

    PubMed Central

    Herrmann, Inge K.; Castellon, Maricela; Schwartz, David E.; Hasler, Melanie; Urner, Martin; Hu, Guochang; Minshall, Richard D.; Beck-Schimmer, Beatrice

    2016-01-01

    Background Sepsis remains a leading cause of death in intensive care units. There is growing evidence that volatile anesthetics have beneficial immunomodulatory effects on complex inflammation-mediated conditions. The authors investigated the effect of volatile anesthetics on the overall survival of mice in a sepsis model of cecal ligation and puncture (CLP). Methods Mice (N = 12 per treatment group) were exposed to anesthetic concentrations of desflurane, isoflurane, and sevoflurane either during induction of sepsis or when the mice showed pronounced symptoms of inflammation. Overall survival, as well as organ function and inflammation was compared with the CLP group without intervention. Results With desflurane and sevoflurane conditioning (1.2 minimal alveolar concentration for 2 h immediately after induction of CLP) overall survival was improved to 58% and 83%, respectively, compared with 17% in the untreated CLP group. Isoflurane did not significantly affect outcome. Application of sevoflurane 24 h after sepsis induction significantly improved overall survival to 66%. Conclusions Administration of the volatile anesthetics desflurane and sevoflurane reduced CLP-induced mortality. Anesthesia may be a critical confounder when comparing study data where different anesthesia protocols were used. PMID:23867232

  11. The action of volatile anaesthetics on stimulus-secretion coupling in bovine adrenal chromaffin cells.

    PubMed Central

    Pocock, G.; Richards, C. D.

    1988-01-01

    1. The action of four volatile anaesthetics, ethrane, halothane, isoflurane and methoxyflurane on stimulus-secretion coupling has been studied in isolated bovine adrenal medullary cells. All four agents inhibited the secretion of adrenaline and noradrenaline evoked by 500 microM carbachol at concentrations within the anaesthetic range. Total catecholamine secretion induced by stimulation with 77 mM potassium was also inhibited but at higher concentrations. All four agents inhibited the 45Ca influx evoked by stimulation with 500 microM carbachol and the 45Ca influx in response to K+-depolarization. 2. When total catecholamine secretion in response to potassium or carbachol was modulated by varying extracellular calcium or by adding halothane or methoxyflurane to the incubation medium, the amount of catecholamine secretion for a given Ca2+ entry was the same. 3. The action of methoxyflurane on the relationship between intracellular free Ca and exocytosis was examined using electropermeabilised cells, which were suspended in solutions containing a range of concentrations of ionised calcium between 10(-8) and 10(-4)M. The anaesthetic had no effect on the activation of exocytosis by intracellular free calcium. 4. Halothane and methoxyflurane inhibited the carbachol-induced secretion of catecholamines in a non-competitive manner. 5. Halothane and methoxyflurane inhibited the increase in 22Na influx evoked by carbachol. For halothane and methoxyflurane this inhibition of Na influx appears to be sufficient to account for the inhibition of the evoked catecholamine secretion. 6. We conclude that the volatile anaesthetics ethrane, halothane, isoflurane and methoxyflurane inhibit the secretion of adrenaline and noradrenaline induced by carbachol at concentrations that lie within the range encountered during general anaesthesia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2464384

  12. The effects of furosemide on remal blood flow and cortical perfusion during methoxyflurane and halothane anaesthesia.

    PubMed

    Leighton, K M; Bruce, C; Machin, R

    1976-01-01

    Nephrotoxicity due to methoxyflurane may be due in part to alterations in intra-renal perfusion. Furosemide is believed to alter the intra-renal distribution of blood flow. Studies have been carried out to observe the effects of systemic furosemide administration during methoxyflurane and halothane anaesthesia in normotensive animals and in animals made hypotensive by increasing inspired concentrations of the anaesthetics. During halothane anaesthesia normotensive dogs showed a rise in total renal blood flow during the infusion of furosemide. Hypotensive dogs showed no increase in flow. During methoxyflurane anaesthesia no change in total renal blood flow followed furosemide administration to normotensive animals. Some diminution in total blood flow followed the administration of furosemide in hypotensive dogs during methoxyflurane anaesthesia. In normotensive dogs during halothane anaesthesia there was a significant increase in deep cortical perfusion after furosemide. Furosemide, therefore, is unlikely to mitigate the potential for nephrotoxicity which methoxyflurane possesses. Furthermore, this diuretic may adversely influence renal function when administered during halothane anaesthesia.

  13. Romifidine, medetomidine or xylazine before propofol-halothane-N2O anesthesia in dogs.

    PubMed Central

    Redondo, J I; Gómez-Villamandos, R J; Santisteban, J M; Domínguez, J M; Ruiz, I; Avila, I

    1999-01-01

    The objective of this paper was to evaluate romifidine as a premedicant in dogs prior to propofol-halothane-N2O anesthesia, and to compare it with the other alpha2-agonists (medetomidine and xylazine). For this, ten healthy dogs were anesthetized. Each dog received 3 preanesthetic protocols: atropine (10 microg/kg BW, IM), and as a sedative, romifidine (ROM; 40 microg/kg BW, IM), xylazine (XYL; 1 microg/kg, IM), or medetomidine (MED; 20 microg/kg BW, IM). Induction of anesthesia was delivered with propofol 15 min later and maintained with halothane and N2O for one hour in all cases. The following variables were registered before preanesthesia, 10 min after the administration of preanesthesia, and at 5-minute intervals during maintenance: PR, RR, rectal temperature (RT), MAP, SAP, and DAP. During maintenance, arterial oxygen saturation (SpO2), end-tidal CO2 (EtCO2) and percentage of halothane necessary for maintaining anesthesia (%HAL) were also recorded. Induction dose of propofol (DOSE), time to extubation (TE), time to sternal recumbency (TSR) and time to standing (TS) were also registered. The statistical analysis was carried out during the anesthetic period. ANOVA for repeat measures revealed no differences between the 3 groups for PR and RR; however, MAP, SAP and DAP were higher in the MED group; SpO2 was lower in MED and EtCO2 was lower in ROM; %HAL was higher in XYL. No statistical differences were observed in DOSE, TE, TSR or TS. Percentage of halothane was lower in romifidine and medetomidine than in xylazine premedicated dogs also anesthetized with propofol. All the cardiorespiratory variables measured were within normal limits. The studied combination of romifidine, atropine, propofol, halothane and N2O appears to be a safe and effective drug combination for inducing and maintaining general anesthesia in healthy dogs. PMID:9918331

  14. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    PubMed Central

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  15. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2

    PubMed Central

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-01-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081

  16. Cryosolution infrared study of hydrogen bonded halothane acetylene complex

    NASA Astrophysics Data System (ADS)

    Melikova, S. M.; Rutkowski, K. S.; Rospenk, M.

    2018-05-01

    The interactions between halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) and acetylene (C2H2) are studied by FTIR spectroscopy. Results obtained in liquid cryosolutions in Kr suggest weak complex formation stabilized by H - bond. The complexation enthalpy (∼11 kJ/mol) is evaluated in a series of temperature measurements (T ∼ 120-160 K) of integrated intensity of selected bands performed in liquefied Kr. The quantum chemical MP2/6-311++G(2d,2p) calculations predict four different structures of the complex. The most stable and populated (94% at T∼120 K) structure corresponds to the H - bond between H atom of halothane and pi-electron of triple bond between C atoms of acetylene. Wave numbers of vibrational bands of the most stable structure are calculated in anharmonic approximation implemented in Gaussian program.

  17. Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats.

    PubMed

    Kenny, Jonathan D; Chemali, Jessica J; Cotten, Joseph F; Van Dort, Christa J; Kim, Seong-Eun; Ba, Demba; Taylor, Norman E; Brown, Emery N; Solt, Ken

    2016-11-01

    Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood-brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from δ (<4 Hz) to θ (4-8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP

  18. Malignant Hyperthermia: Report of Two Cases with a Neglected Complication in Cardiac Surgery

    PubMed Central

    Neshati, Mahdi; Azadeh, Manizheh; Neshati, Parinaz; Burnett, Tyrone; Saenz, Ryan; Karbasi, Bahman; Shahmohammadi, Ghader; Nourizadeh, Eskandar; Rostamzadeh, Mohsen

    2017-01-01

    Malignant hyperthermia (MH) can develop after contact with volatile anesthetics (halothane, enflurane, isoflurane, sevoflurane, and desflurane) as well as succinylcholine and cause hypermetabolism during anesthesia, which is associated with high mortality when untreated. Early diagnosis and treatment could be life-saving. During cardiac surgery, hypothermia and cardiopulmonary bypass make the diagnosis of MH extremely challenging compared with other settings such as general surgery. We herein report 2 cases of MH, graded as “very likely” or “almost certain” based on the MH clinical grading scale. A 14-month-old infant and a 53-year-old male underwent surgery for severe pulmonary valve stenosis and mitral valve replacement, respectively. Both of them were extubated on the operation day, but they deteriorated with the development of high-grade fever, hypotension, renal failure, and acidosis. The first case had muscle spasms. Unfortunately, the delayed symptoms of MH in the early postoperative course were not diagnosed in these 2 cases, which caused permanent neurologic damage in the first case and death in the second one. However, the infant was discharged from the hospital after 2 months. PMID:29576786

  19. 75 FR 1021 - Certain Other Dosage Form New Animal Drugs; Sevoflurane

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Halocarbon Products Corp. The ANADA provides for the use of sevoflurane inhalant anesthetic in dogs. DATES... anesthetic, in dogs. Halocarbon Products Corp.'s Sevoflurane is approved as a generic copy of SEVOFLO...

  20. Isoflurane: An Ideal Anesthetic for Rodent Orthotopic Liver Transplantation Surgery?

    PubMed

    Cao, D; Liu, Y; Li, J; Gong, J

    2016-10-01

    Because the choice of anesthetic affects the rodent orthotopic liver transplantation (OLT) model, we compared the effects of isoflurane, ketamine, chloral hydrate, and pentobarbital on the OLT model. OLT was performed using the two-cuff technique. Two hundred male rats were randomly divided into five groups: control, isoflurane, ketamine, chloral hydrate, and pentobarbital groups. Rectal temperatures, respiratory rates, arterial blood values (pH, PaCO 2 , PaO 2 , and SatO 2 ), liver function tests and histopathology, recovery times, and anhepatic stage mortality rates were assessed. Compared with controls, respiratory rates decreased by 20% in the isoflurane group, and decreased by 40%-50% in the ketamine, chloral hydrate, and pentobarbital groups. The PaO 2 , SatO 2 , and pH levels in the ketamine, chloral hydrate, and pentobarbital groups were significantly lower than those in the isoflurane and control groups (P < .05). Only the pentobarbital group displayed significant liver histopathologic changes along with significantly higher levels of serum alanine aminotransferase and total bilirubin, but a significantly lower level of serum albumin, compared with the control group (P < .05). The isoflurane group had a 0% anhepatic stage mortality rate compared with rates of 30%-40% in the other anesthetic groups. Isoflurane should be the preferred anesthetic for rodent OLT surgery due to its minimal respiratory and hepatic physiological effects as well as its low anhepatic phase mortality rate. Secondary to isoflurane, ketamine and chloral hydrate may be administered as donor anesthetics. Pentobarbital use should be avoided entirely in rodent OLT surgery due to its significant hepatotoxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of toxic threat nerve agents on anesthetic requirements of representative pr-anesthetic medicants and inhalant and parenteral general anesthetic in the cat. Annual report, 15 July 1985-14 July 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, A.I.

    1986-07-30

    The effect of soman on anesthetic requirements of halothane and isoflurane was studied before and after administration of acepromazine maleate (0.2 mg/kg). Insufficient data has been obtained to date to draw conclusions on any possible drug interactions.

  2. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure.

    PubMed

    Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia

    2016-08-01

    We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure.

  3. Effects of sevoflurane on carrageenan- and fentanyl-induced pain hypersensitivity in Sprague-Dawley rats.

    PubMed

    Richebé, Philippe; Rivalan, Bertrand; Rivat, Cyril; Laulin, Jean-Paul; Janvier, Gérard; Maurette, Pierre; Simonnet, Guy

    2009-02-01

    Opioids are widely used for anesthesia but paradoxically induce postoperative pain hypersensitivity via N-methyl-D: -aspartate (NMDA) receptor modulation. Sevoflurane effects on opioid-induced hyperalgesia have not been yet evaluated in vivo. Nevertheless, some experimental in vitro studies reported anti-NMDA receptor properties for sevoflurane. The aim of this study was to evaluate sevoflurane effects on fentanyl-induced hyperalgesia in opioid-naive rats and in rats with inflammatory pain. Sevoflurane effects on hyperalgesia were evaluated in Sprague-Dawley rats: opioid-naive rats, rats treated with fentanyl (4 x 60 microg kg(-1)) and rats with inflammatory pain (carrageenan) treated with fentanyl (4 x 60 microg kg(-1)). On day zero, subcutaneous fentanyl injections were administered and inflammatory pain was induced with one carrageenan injection in one hind paw. Rats were exposed to low concentrations of sevoflurane (1.0 or 1.5%) on day zero prior to fentanyl injections and inflammatory pain induction, and for the duration of the fentanyl analgesic effect. The nociceptive threshold (Randall-Selitto test) was evaluated daily for 7 days. On day seven, naloxone was injected and the nociceptive threshold was assessed 5 min later. In rats without inflammatory pain but treated with fentanyl on day zero, sevoflurane 1.0% reversed the early (day zero) and long-lasting (day zero to day three) hyperalgesia classically described after high-doses of fentanyl (P < 0.05). This sevoflurane concentration antagonized the hyperalgesia induced by naloxone on day seven (P = 0.33). In a second experiment in rats with inflammatory pain, exposure to low concentrations of sevoflurane (1.0 and 1.5%) did not reduce fentanyl-induced hyperalgesia (P > 0.05), but nevertheless antagonized the naloxone induced hyperalgesia on day seven (P = 0.061). Relatively low sevoflurane concentrations (1.0%) reverse fentanyl-induced hyperalgesia in rats without inflammatory pain. Nevertheless, the lack

  4. Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK.

    PubMed

    Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer

    2010-12-01

    We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.

  5. Using screen-based simulation of inhaled anaesthetic delivery to improve patient care.

    PubMed

    Philip, J H

    2015-12-01

    Screen-based simulation can improve patient care by giving novices and experienced clinicians insight into drug behaviour. Gas Man(®) is a screen-based simulation program that depicts pictorially and graphically the anaesthetic gas and vapour tension from the vaporizer to the site of action, namely the brain and spinal cord. The gases and vapours depicted are desflurane, enflurane, ether, halothane, isoflurane, nitrogen, nitrous oxide, sevoflurane, and xenon. Multiple agents can be administered simultaneously or individually and the results shown on an overlay graph. Practice exercises provide in-depth knowledge of the subject matter. Experienced clinicians can simulate anaesthesia occurrences and practices for application to their clinical practice, and publish the results to benefit others to improve patient care. Published studies using this screen-based simulation have led to a number of findings, as follows: changing from isoflurane to desflurane toward the end of anaesthesia does not accelerate recovery in humans; vital capacity induction can produce loss of consciousness in 45 s; simulated context-sensitive decrement times explain recovery profiles; hyperventilation does not dramatically speed emergence; high fresh gas flow is wasteful; fresh gas flow and not the vaporizer setting should be reduced during intubation; re-anaesthetization can occur with severe hypoventilation after extubation; and in re-anaesthetization, the anaesthetic redistributes from skeletal muscle. Researchers using screen-based simulations can study fewer subjects to reach valid conclusions that impact clinical care. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Distinctive Recruitment of Endogenous Sleep-Promoting Neurons by Volatile Anesthetics and a Non-immobilizer

    PubMed Central

    Han, Bo; McCarren, Hilary S.; O'Neill, Dan; Kelz, Max B.

    2014-01-01

    BACKGROUND Numerous studies demonstrate that anesthetic-induced unconsciousness is accompanied by activation of hypothalamic sleep-promoting neurons, which occurs through both pre- and postsynaptic mechanisms. However, the correlation between drug exposure, neuronal activation, and onset of hypnosis remains incompletely understood. Moreover, the degree to which anesthetics activate both endogenous populations of GABAergic sleep-promoting neurons within the ventrolateral preoptic (VLPO) and median preoptic (MnPO) nuclei remains unknown. METHODS Mice were exposed to oxygen, hypnotic doses of isoflurane or halothane, or 1,2-dicholorhexafluorocyclobutane (F6), a nonimmobilizer. Hypothalamic brain slices prepared from anesthetic-naïve mice were also exposed to oxygen, volatile anesthetics, or F6 ex vivo, both in the presence and absence of tetrodotoxin. Double-label immunohistochemistry was performed to quantify the number of c-Fos-immunoreactive nuclei in the GABAergic subpopulation of neurons in the VLPO and the MnPO to test the hypothesis that volatile anesthetics, but not non-immobilizers, activate sleep-promoting neurons in both nuclei. RESULTS In vivo exposure to isoflurane and halothane doubled the fraction of active, c-Fos-expressing GABAergic neurons in the VLPO, while F6 failed to affect VLPO c-Fos expression. Both in the presence and absence of tetrodotoxin, isoflurane dose-dependently increased c-Fos expression in GABAergic neurons ex vivo, while F6 failed to alter expression. In GABAergic neurons of the MnPO, c-Fos expression increased with isoflurane and F6, but not with halothane exposure. CONCLUSIONS Anesthetic unconsciousness is not accompanied by global activation of all putative sleep-promoting neurons. However, within the VLPO hypnotic doses of volatile anesthetics, but not non-immobilizers, activate putative sleep-promoting neurons, correlating with the appearance of the hypnotic state. PMID:25057841

  7. Propofol inhibits gap junctions by attenuating sevoflurane-induced cytotoxicity against rat liver cells in vitro.

    PubMed

    Huang, Fei; Li, Shangrong; Gan, Xiaoliang; Wang, Ren; Chen, Zhonggang

    2014-04-01

    Liver abnormalities are seen in a small proportion of patients following anaesthesia with sevoflurane. To investigate whether the cytotoxicity of sevoflurane against rat liver cells was mediated by gap junction intercellular communications, and the effect of propofol on sevoflurane-induced cytotoxicity. Experimental study. The study was carried out in the central laboratory of The Third Affiliated Hospital, Sun Yat-sen University. BRL-3A rat liver cells. Immortal rat liver cells BRL-3A were grown at low and high density. Colony-forming assays were performed to determine clonogenic growth of these cells. To investigate the effect of oleamide and propofol on gap junction function, we measured fluorescence transmission between cells using parachute dye-coupling assays. Immunoblotting assays were performed to determine connexin32 and connexin43 expression. Our colony formation assays revealed that, in low-density culture, sevoflurane caused no apparent inhibition of clonogenic growth of BRL-3A cells. In high-density culture, 2.2 to 4.4% sevoflurane markedly inhibited clonogenic growth of BRL-3A cells with 67.6 (0.34)% and 61.2 (0.17)% of the cells being viable, respectively (P = 0.003 vs. low-density culture), suggesting cell density dependency of sevoflurane-induced cytotoxicity. Our colony formation assays revealed that propofol markedly attenuated the suppression by sevoflurane of the clonogenic growth of BRL-3A cells (viability: propofol and sevoflurane, 91.5 (0.014)% vs. sevoflurane, 56.6 (0.019)%; P <0.01). Blocking gap junctions with 10 μmol l oleamide significantly attenuated 4.4% sevoflurane-induced suppression with a viability of 83.6 ± 0.138% (oleamide and sevoflurane vs. sevoflurane, P < 0.01). Immunoblotting assays further showed that propofol (3.2 μg ml) markedly reduced CX32 levels and significantly inhibited gap junctional intercellular communications as revealed by parachute dye-coupling assays. Values are mean (SD). This study

  8. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2012-01-01

    BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456

  9. Isoflurane post-treatment improves pulmonary vascular permeability via upregulation of heme oxygenase-1.

    PubMed

    Dong, Xiang; Hu, Rong; Sun, Yu; Li, Qifang; Jiang, Hong

    2013-09-01

    Isoflurane (ISO) has been shown to attenuate acute lung injury (ALI). Induction of heme oxygenase-1 (HO-1) and suppression of inducible nitric oxide synthase (iNOS) expression provide cytoprotection in lung and vascular injury. The aim of this study was to investigate the effect of post-treatment with isoflurane on lung vascular permeability and the role of HO-1 in an ALI rat model induced by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly assigned to one of four groups: sham group, sham rats post-treated with vehicle (Sham); CLP group, CLP rats post-treated with vehicle (CLP); ISO group, CLP rats post-treated with isoflurane (ISO); and ZnPP group, CLP rats injected with zinc protoporphyrin IX (ZnPP), a competitive inhibitor of HO-1, 1 hour before the operation, and post-treated with isoflurane (ZnPP). Isoflurane (1.4%) was administered 2 hour after CLP. At 24 hour after CLP, the extent of ALI was evaluated by lung wet/dry ratio, Evans blue dye (EBD) extravasation, lung permeability index (LPI), as well as histological and immunohistochemical examinations. We also determined pulmonary iNOS and HO-1 expression. Compared with the CLP group, the isoflurane post-treatment group showed improved pulmonary microvascular permeability as detected by EBD extravasation, LPI, as well as histological and immunohistochemical examinations. Furthermore, isoflurane decreased iNOS and increased HO-1 expression in lung tissue. Pretreatment with ZnPP prevented the protective effects of isoflurane in rats. These findings indicate that the protective role of isoflurane post-conditioning against CLP-induced lung injury may be associated with its role in upregulating HO-1 in ALI.

  10. Respiratory mechanics during sevoflurane anesthesia in children with and without asthma.

    PubMed

    Habre, W; Scalfaro, P; Sims, C; Tiller, K; Sly, P D

    1999-11-01

    We studied lung function in children with and without asthma receiving anesthesia with sevoflurane. Fifty-two children had anesthesia induced with sevoflurane (up to 8%) in a mixture of 50% nitrous oxide in oxygen and then maintained at 3% with children breathing spontaneously via face mask and Jackson-Rees modification of the T-piece. Airway opening pressure and flow were then measured. After insertion of an oral endotracheal tube under 5% sevoflurane, measurements were repeated at 3%, as well as after increasing to 4.2%. Respiratory system resistance (Rrs) and compliance during expiration were calculated using multilinear regression analysis of airway opening pressure and flow, assuming a single-compartment model. Data from 44 children were analyzed (22 asthmatics and 22 normal children). The two groups were comparable with respect to age, weight, ventilation variables, and baseline respiratory mechanics. Intubation was associated with a significant increase in Rrs in asthmatics (17% +/- 49%), whereas in normal children, Rrs slightly decreased (-4% +/- 39%). At 4.2%, Rrs decreased slightly in both groups with almost no change in compliance system resistance. We concluded that in children with mild to moderate asthma, endotracheal intubation during sevoflurane anesthesia was associated with increase in Rrs that was not seen in nonasthmatic children. Tracheal intubation using sevoflurane as sole anesthetic is possible and its frequency is increasing. When comparing children with and without asthma, tracheal intubation under sevoflurane was associated with an increase in respiratory system resistance in asthmatic children. However, no apparent clinical adverse event was observed.

  11. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2.

    PubMed

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-04-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway.

  12. EFFECTS OF TRAMADOL ON THE MINIMUM ANESTHETIC CONCENTRATION OF ISOFLURANE IN WHITE-EYED PARAKEETS (PSITTACARA LEUCOPHTHALMUS).

    PubMed

    Escobar, André; da Rocha, Rozana Wendler; Midon, Monica; de Almeida, Ricardo Miyasaka; Filho, Darcio Zangirolami; Werther, Karin

    2017-06-01

    The aim of this study was to determine the minimum anesthetic concentration (MAC) of isoflurane, and to investigate if tramadol changes the isoflurane MAC in white-eyed parakeets (Psittacara leucophthalmus). Ten adult birds weighing 157 ± 9 g were anesthetized with isoflurane in oxygen under mechanical ventilation. Isoflurane concentration for the first bird was adjusted to 2.2%, and after 15 min an electrical stimulus was applied in the thigh area to observe the response (movement or nonmovement). Isoflurane concentration for the subsequent bird was increased by 10% if the previous bird moved, or decreased by 10% if the previous bird did not move. This procedure was performed serially until at least four sequential crossover events were detected. A crossover event was defined as a sequence of two birds with different responses (positive or negative) to the electrical stimulus. Isoflurane MAC was calculated as the mean isoflurane concentration value at the crossover events. After 1 wk, the same birds were reanesthetized with isoflurane and MAC was determined at 15 and 30 min after intramuscular administration of 10 mg/kg of tramadol using the same method. A paired t-test (P < 0.05%) was used to detect significant differences for MAC between treatments. Isoflurane MAC in this population of white-eyed parakeets was 2.47 ± 0.09%. Isoflurane MAC values 15 and 30 min after tramadol administration were indistinguishable from each other (pooled value was 2.50 ± 0.18%); they were also indistinguishable from isoflurane MAC without tramadol. The isoflurane MAC value in white-eyed parakeets is higher than reported for other bird species. Tramadol (10 mg/kg, i.m.) does not change isoflurane MAC in these birds.

  13. Production of a novel neuromelanin at the sevoflurane-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ryan D.; Fibuch, Eugene E.; Elisabeth Heal, M.

    2007-11-09

    Postoperative cognitive dysfunction (POCD) occurs in the elderly following surgery that requires inhaled anesthetics. The molecular mechanism associated with this process is unknown. This study examined the possible role of serotonin, a neurotransmitter involved in cognition. We observed that sevoflurane, a common inhaled anesthetic, formed a separate phase in water similar to that of chloroform. Additionally, sevoflurane sequestered acrolein, which is a lipid peroxidation product associated with aging and is elevated in the elderly brain. The enhanced partitioning of acrolein increased the focal concentration and hence reactivity to serotonin which preferentially occurred at the sevoflurane-water interface. The resulting product exhibitedmore » unique properties similar to catecholamine-derived neuromelanin.« less

  14. DFT study on the adsorption behavior and electronic response of AlN nanotube and nanocage toward toxic halothane gas

    NASA Astrophysics Data System (ADS)

    Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.

    2018-04-01

    We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.

  15. Role of Steroids in Hyperexcitatory Adverse and Anesthetic Effects of Sevoflurane in Neonatal Rats.

    PubMed

    Zhang, Jiaqiang; Xu, Changqing; Puentes, Dyanet L; Seubert, Christoph N; Gravenstein, Nikolaus; Martynyuk, Anatoly E

    2016-01-01

    Recent studies have demonstrated that long-term developmental effects of neonatal anesthesia were more prominent in males. We tested whether steroids, in general, and sex steroids, in particular, are involved in the mediation of sevoflurane-caused paradoxical cortical seizures during the early postnatal period. Cortical electroencephalograms, hippocampal synaptic activity, serum levels of steroids and the loss of the righting reflex (LORR), a marker of anesthetic effect, were measured on postnatal days 4-6 in Sprague Dawley rats of both genders exposed to 2.1% sevoflurane. Episodes of seizures, persistent spikes in electroencephalograms and increases in serum corticosterone were similar in both genders. In the order of increasing potency, the corticosteroid receptor antagonist RU 28318, the estradiol receptor antagonist ICI 182780 and the estradiol synthesis inhibitor formestane decreased sevoflurane-induced seizures. Exogenous estradiol increased sevoflurane-caused seizures, spikes and serum levels of corticosterone. These estradiol-enhanced seizures and spikes were depressed by ICI 182780 and the NKCC1 inhibitor, bumetanide, while RU 28318 decreased seizures only. In hippocampal CA1 neurons, estradiol increased the amplitude, rise time and area under the curve of gamma-aminobutyric acid type A receptor (GABAAR)-mediated miniature postsynaptic currents. Exogenous estradiol shortened, while ICI 182780 and formestane lengthened the time needed for sevoflurane to induce LORR. These findings provide evidence for gender-independent acute electroencephalographic effects of sevoflurane at this age. Corticosterone and estradiol are involved in the mediation of sevoflurane-induced seizures. Estradiol, but not corticosterone, also contributes to sevoflurane-caused spikes, by enhancing GABAAR-mediated excitation in the cortex. By increasing GABAAR-mediated inhibition in more mature caudal regions of the brain, estradiol contributes to sevoflurane-induced LORR. © 2015 S

  16. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia.

    PubMed

    Bercker, Sven; Bert, Bettina; Bittigau, Petra; Felderhoff-Müser, Ursula; Bührer, Christoph; Ikonomidou, Chrysanthy; Weise, Mirjam; Kaisers, Udo X; Kerner, Thoralf

    2009-08-01

    Propofol and sevoflurane are commonly used drugs in pediatric anesthesia. Exposure of newborn rats to a variety of anesthetics has been shown to induce apoptotic neurodegeneration in the developing brain. Newborn Wistar rats were treated with repeated intraperitoneal injections of propofol or sevoflurane inhalation and compared to controls. Brains were examined histopathologically using the De Olmos cupric silver staining. Additionally, a summation score of the density of apoptotic cells was calculated for every brain. Spatial memory learning was assessed by the Morris Water Maze (MWM) test and the hole board test, performed in 7 weeks old animals who underwent the same anesthetic procedure. Brains of propofol-treated animals showed a significant higher neurodegenerative summation score (24,345) when compared to controls (15,872) and to sevoflurane-treated animals (18,870). Treated animals also demonstrated persistent learning deficits in the hole board test, whereas the MWM test revealed no differences between both groups. Among other substances acting via GABAA agonism and/or NMDA antagonism propofol induced neurodegeneration in newborn rat brains whereas a sevoflurane based anesthesia did not. The significance of these results for clinical anesthesia has not been completely elucidated. Future studies have to focus on the detection of safe anesthetic strategies for the developing brain.

  17. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane.

    PubMed

    Yang, Bin; Liang, Ge; Khojasteh, Soorena; Wu, Zhen; Yang, Wenqiong; Joseph, Donald; Wei, Huafeng

    2014-01-01

    While previous studies have demonstrated neuronal apoptosis and associated cognitive impairment after isoflurane or propofol exposure in neonatal rodents, the effects of these two anesthetics have not been directly compared. Here, we compare and contrast the effectiveness of isoflurane and propofol to cause neurodegeneration in the developing brain and associated cognitive dysfunction. Seven-day-old mice were used. Mice in the isoflurane treatment group received 6 h of 1.5% isoflurane, while mice in propofol treatment group received one peritoneal injection (150 mg/kg), which produced persistent anesthesia with loss of righting for at least 6 h. Mice in control groups received carrying gas or a peritoneal injection of vehicle (intralipid). At 6 h after anesthetic treatment, a subset of each group was sacrificed and examined for evidence of neurodegeneration, using plasma levels of S100β, and apoptosis using caspase-3 immunohistochemistry in the cerebral cortex and hippocampus and Western blot assays of the cortex. In addition, biomarkers for inflammation (interleukin-1, interleukin-6, and tumor necrosis factor alpha) were examined with Western blot analyses of the cortex. In another subset of mice, learning and memory were assessed 32 days after the anesthetic exposures using the Morris water maze. Isoflurane significantly increased plasma S100β levels compared to controls and propofol. Both isoflurane and propofol significantly increased caspase-3 levels in the cortex and hippocampus, though isoflurane was significantly more potent than propofol. However, there were no significant differences in the inflammatory biomarkers in the cortex or in subsequent learning and memory between the experimental groups. Both isoflurane and propofol caused significant apoptosis in the mouse developing brain, with isoflurane being more potent. Isoflurane significantly increased levels of the plasma neurodegenerative biomarker, S100β. However, these neurodegenerative effects of

  18. [Low flow anaesthesia with isoflurane in the dog].

    PubMed

    Kramer, Sabine; Alyakine, Hassan; Nolte, Ingo

    2005-01-01

    The aim of the present study was to compare the safety of two low flow (LF) regimes [fresh gas flow (FGF) 20 ml/kg/min (group 2) and 14 ml/kg/min (group 3)] with the high flow (HF) technique (FGF 50 ml/kg/min; group 1) of isoflurane anaesthesia. Data were gathered from ninety dogs assigned for surgery under general anaesthesia with an expected duration of 75 minutes or longer. All dogs had an anaesthetic induction with 0,6 mg/kg I-methadone (maximum 25 mg) and 1 mg/kg diazepam (maximum 25 mg) i.v. Anaesthesia was maintained with isoflurane in a mixture of 50% O2 and 50% N2O as carrier gases, with controlled ventilation. The Monitoring included electrocardiogramm, body temperature, the temperature of in- and exspired gases, arterial oxygen saturation, arterial blood pressure as well as a continuous monitoring of inhaled and exhaled gas concentrations (O2, N2O, CO2, isoflurane). The consumption of isoflurane and carrier gases as well as the recovery times were evaluated for the three groups. The inspired oxygen concentrations always ranged above the minimum value of 30 Vol.-% during low flow anaesthesia. The arterial oxygen saturation ranged between 92-98%, the end tidal concentration of CO2 between 35 and 45 mmHg. Heart rate and arterial blood pressure were within normal limits. Recovery time was significantly shorter after LF than after HF anaesthesia. The highest decrease in body temperature occurred in the HF group 1 because of a significantly lower anaesthetic gas temperature. Despite this, LF anaesthesia resulted in a reduced consumption of carrier gases and volatiles. In conclusion, low flow anaesthesia with isoflurane is a safe technique and offers substantial economic advantages over high flow techniques and is moreover better tolerated by the patients.

  19. Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities.

    PubMed

    Zhou, Zhi-Bin; Yang, Xiao-Yu; Yuan, Bao-Long; Niu, Li-Jun; Zhou, Xue; Huang, Wen-Qi; Feng, Xia; Zhou, Li-Hua

    2015-05-01

    Cumulative evidence indicates that early childhood anesthesia can alter a child's future behavioral performance. Animal researchers have found that sevoflurane, the most commonly used anesthetic for children, can produce damage in the neonatal brains of rodents. To further investigate this phenomenon, we focused on the influence of sevoflurane anesthesia on the development of juvenile social behavioral abilities and the pro-social proteins oxytocin (OT) and arginine vasopressin (AVP) in the neonatal hippocampus. A single 6-h sevoflurane exposure for postnatal day 5 mice resulted in decreased OT and AVP messenger RNA (mRNA) and protein levels in the hippocampus. OT and AVP proteins became sparsely distributed in the dorsal hippocampus after the exposure to sevoflurane. Compared with the air-treated group, mice in the sevoflurane-treated group showed signs of impairment in social recognition memory formation and social discrimination ability. Sevoflurane anesthesia reduces OT and AVP activities in the neonatal hippocampus and impairs social recognition memory formation and social discrimination ability in juvenile mice.

  20. The Effect of Sevoflurane Plus Propofol on Pain and Complications after Laminectomy: A Randomized Double Blind Clinical Trial.

    PubMed

    Vasigh, Aminolah; Najafi, Fatemeh; Jaafarpour, Molouk; Khajavikhan, Javaher; Khani, Ali

    2017-04-01

    Pain is one of the most important reasons for the patients concern after surgery. The perfect sedative should have properties like rapid onset, least pain and adverse effects. To assess the effect of sevoflurane plus propofol on postoperative pain, haemodynamic stability and complication after lumbar disc surgery. This was a randomized double- blind clinical trial. A total of 75 patients scheduled for elective lumbar disc surgery with simple random sampling design received sevoflurane (n=25, induced with Thiopentone and maintained with sevoflurane), propofol (n=25, induced and maintained with propofol) and sevoflurane plus propofol (n=25, induced with propofol and maintained with sevoflurane). Visual Analog Scale (VAS) was used to determine the intensity of postoperative pain. Complications after surgery and haemodynamic changes during surgery were recorded. The mean pain intensity and morphine consumption in the sevoflurane plus propofol group was lower compared to the propofol and sevoflurane groups at different intervals (p<0.001). The prevalence of shivering, nausea and vomiting in the sevoflurane plus propofol group was 24%, 28%, 28% respectively vs sevoflurane group 32%, 60%, 48% respectively and propofol group 32%, 16%, 12% respectively with p-value > 0.05, <0.001, <0.05 respectively. The mean blood pressure and heart rate were significantly lower in the sevoflurane plus propofol group compared to the propofol and sevoflurane groups (p<0.001). According to the effect on pain and complications after lumbar disc surgery sevoflurane plus propofol can be regarded as safe and alternative drug in general anaesthesia for these patients.

  1. Effects of carprofen and morphine on the minimum alveolar concentration of isoflurane in dogs.

    PubMed

    Ko, Jeff C H; Weil, Ann B; Inoue, Tomohito

    2009-01-01

    The minimum alveolar concentration (MAC) of isoflurane in dogs was determined following carprofen (2.2 mg/kg per os) alone, morphine (1 mg/kg intravenously) alone, carprofen and morphine, and no drug control in eight healthy adult dogs. Isoflurane MAC following administration of morphine alone (0.81%+/-0.18%) or carprofen and morphine (0.68%+/-0.31%) was significantly less than the control MAC (1.24%+/-0.15%). Isoflurane MAC after carprofen alone (1.13%+/-0.13%) was not significantly different from the control value. Results indicated that administration of morphine alone or in combination with carprofen significantly reduced the MAC of isoflurane in dogs. The isoflurane MAC reduction was additive between the effects of carprofen and morphine.

  2. Hyperventilation accelerates rise in arterial blood concentrations of sevoflurane in gynecologic patients.

    PubMed

    Lu, Chih-Cherng; Lin, Tso-Chou; Hsu, Che-Hao; Yu, Mu-Hsien; Ku, Chih-Hung; Chen, Ta-Liang; Chen, Ruei-Ming; Ho, Shung-Tai

    2013-02-01

    We investigated whether ventilation volumes affected arterial blood sevoflurane concentration (A (sev)) and its uptake into the body during general anesthesia. Thirty female patients undergoing elective gynecologic surgery were randomly allocated into three groups: hyperventilation, normal ventilation, and hypoventilation. Inspiratory (CI(sev)) and end-tidal ((sev)) sevoflurane concentrations were routinely measured by infrared analysis, and A (sev) were analyzed by gas chromatography for 40 min after intubation. Cardiac index and total peripheral vascular resistance were measured with a Finometer. During the first 10 min after sevoflurane administration, A (sev) in the hyperventilation group was the highest and differed significantly from those in the normal ventilation group, followed by those in the hypoventilation group. In addition, hyperventilation significantly increased the slope of A (sev) over time in the first 5 min, but there were no differences in slopes in the 5-10, 10-20, and 20-40 min periods, which indicates no difference in sevoflurane bodily uptake among the three groups after 5 min. Hyperventilation accelerated the rate of A (sev) increase immediately after sevoflurane administration, which was time dependent with respect to different alveolar ventilation levels.

  3. Fatal subacute liver failure after repeated administration of sevoflurane anaesthesia.

    PubMed

    Zizek, David; Ribnikar, Marija; Zizek, Bogomir; Ferlan-Marolt, Vera

    2010-01-01

    Sevoflurane is a widely used halogenated inhalation anaesthetic. In comparison with other similar anaesthetics, it is not metabolized to potentially hepatotoxic trifluoroacetylated proteins. In this case report, we present a 66-year-old woman with breast carcinoma, who underwent sevoflurane general anaesthesia twice in 25 days. Soon after the second elective surgical procedure, jaundice and marked elevations in serum transaminases developed. The patient died 66 days thereafter. Autopsy results denied evidence of major cardiovascular abnormality, and histological examination confirmed massive liver cell necrosis with no feature of chronic liver injury. Sevoflurane anaesthesia was imputed as the cause after exclusion of other possible aetiological agents. Besides, coexistent malignant tumours found in the patient could have modulated the immunological response to the applied anaesthetic followed by fatal consequences.

  4. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    PubMed

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  5. Modeling of recovery profiles in mentally disabled and intact patients after sevoflurane anesthesia; a pharmacodynamic analysis.

    PubMed

    Shin, Teo Jeon; Noh, Gyu-Jeong; Koo, Yong-Seo; Han, Dong Woo

    2014-11-01

    Mentally disabled patients show different recovery profiles compared to normal patients after general anesthesia. However, the relationship of dose-recovery profiles of mentally disabled patients has never been compared to that of normal patients. Twenty patients (10 mentally disabled patients and 10 mentally intact patients) scheduled to dental surgery under general anesthesia was recruited. Sevoflurane was administered to maintain anesthesia during dental treatment. At the end of the surgery, sevoflurane was discontinued. End-tidal sevoflurane and recovery of consciousness (ROC) were recorded after sevoflurane discontinuation. The pharmacodynamic relation between the probability of ROC and end-tidal sevoflurane concentration was analyzed using NONMEM software (version VII). End-tidal sevoflurane concentration associated with 50% probability of ROC (C₅₀) and γ value were lower in the mentally disabled patients (C₅₀=0.37 vol %, γ=16.5 in mentally intact patients, C₅₀=0.19 vol %, γ=4.58 in mentally disabled patients). Mentality was a significant covariate of C₅₀ for ROC and γ value to pharmacodynamic model. A sigmoid Emanx model explains the pharmacodynamic relationship between end-tidal sevoflurane concentration and ROC. Mentally disabled patients may recover slower from anesthesia at lower sevoflurane concentration at ROC an compared to normal patients.

  6. Modeling of Recovery Profiles in Mentally Disabled and Intact Patients after Sevoflurane Anesthesia; A Pharmacodynamic Analysis

    PubMed Central

    Shin, Teo Jeon; Noh, Gyu-Jeong; Koo, Yong-Seo

    2014-01-01

    Purpose Mentally disabled patients show different recovery profiles compared to normal patients after general anesthesia. However, the relationship of dose-recovery profiles of mentally disabled patients has never been compared to that of normal patients. Materials and Methods Twenty patients (10 mentally disabled patients and 10 mentally intact patients) scheduled to dental surgery under general anesthesia was recruited. Sevoflurane was administered to maintain anesthesia during dental treatment. At the end of the surgery, sevoflurane was discontinued. End-tidal sevoflurane and recovery of consciousness (ROC) were recorded after sevoflurane discontinuation. The pharmacodynamic relation between the probability of ROC and end-tidal sevoflurane concentration was analyzed using NONMEM software (version VII). Results End-tidal sevoflurane concentration associated with 50% probability of ROC (C50) and γ value were lower in the mentally disabled patients (C50=0.37 vol %, γ=16.5 in mentally intact patients, C50=0.19 vol %, γ=4.58 in mentally disabled patients). Mentality was a significant covariate of C50 for ROC and γ value to pharmacodynamic model. Conclusion A sigmoid Emanx model explains the pharmacodynamic relationship between end-tidal sevoflurane concentration and ROC. Mentally disabled patients may recover slower from anesthesia at lower sevoflurane concentration at ROC an compared to normal patients. PMID:25323901

  7. Anesthetic gas exposure in veterinary clinics.

    PubMed

    Korczynski, R E

    1999-06-01

    Concerns were raised by several workers from veterinary clinics in Manitoba, Canada, regarding potential exposure to isoflurane and halothane during anesthetic administration. There has been no guideline established for isoflurane by the American Conference of Governmental Industrial Hygienist (ACGIH) or a Permissible Exposure Limit by the Occupational Safety and Health Administration (OSHA) or a recommended exposure limit (REL) by the National Institute for Occupational Safety and Health (NIOSH). The ACGIH TLV-TWA for halothane is 50 ppm and NIOSH has established 2 ppm as a recommended level based on an one-hour sampling. OSHA has established no guideline for halothane. The Miran IB Portable Ambient Air Analyzer was used to conduct real-time sampling and to identify leaks during administration. All veterinary clinics inspected had installed the passive waste gas scavenging system. Ten clinics were each monitored during anesthetic gas delivery for one surgical procedure performed. Induction was 4 to 5 percent and maintenance 1.5 to 2.5 percent. Nine clinics were small animal practices and the tenth was an equine clinic. Veterinarians' personal exposures were higher than the assistants'. Veterinarians' personal exposures for isoflurane ranged from 1.3 to 13 ppm (AM = 5.3; SD +/- 2.7; GM = 4.6; GSD +/- 1.6) and for their assistants, personal exposures ranged from 1.2 to 9 ppm (AM = 4.7; SD +/- 2.5; GM = 3.9; GSD +/- 1.6). Veterinarians' personal exposures for halothane ranged from 0.7 to 12 ppm (AM = 4.2; SD +/- 3.6; GM = 2.9; GSD +/- 1.4) and for their assistants, personal exposures ranged from 0.4 to 3.2 ppm (AM = 1.8; SD +/- 1.0; GM = 1.5; GSD +/- 1.7). One clinic had significant leaks in the anesthetic gas delivery lines. Personal halothane exposure for the veterinarian at this clinic was 7.2 to 65 ppm (AM = 18.0; SD +/- 11.5; GM = 15.9; GSD +/- 1.8). Based on this study, worker exposures were acceptable. Peak exposures were recorded when the cuffed endotracheal

  8. Antidepressant and Neurocognitive Effects of Isoflurane Anesthesia versus Electroconvulsive Therapy in Refractory Depression

    PubMed Central

    Weeks, Howard R.; Tadler, Scott C.; Smith, Kelly W.; Iacob, Eli; Saccoman, Mikala; White, Andrea T.; Landvatter, Joshua D.; Chelune, Gordon J.; Suchy, Yana; Clark, Elaine; Cahalan, Michael K.; Bushnell, Lowry; Sakata, Derek; Light, Alan R.; Light, Kathleen C.

    2013-01-01

    Background Many patients have serious depression that is nonresponsive to medications, but refuse electroconvulsive therapy (ECT). Early research suggested that isoflurane anesthesia may be an effective alternative to ECT. Subsequent studies altered drug, dose or number of treatments, and failed to replicate this success, halting research on isoflurane's antidepressant effects for a decade. Our aim was to re-examine whether isoflurane has antidepressant effects comparable to ECT, with less adverse effects on cognition. Method Patients with medication-refractory depression received an average of 10 treatments of bifrontal ECT (n = 20) or isoflurane (n = 8) over 3 weeks. Depression severity (Hamilton Rating Scale for Depression-24) and neurocognitive responses (anterograde and retrograde memory, processing speed and verbal fluency) were assessed at Pretreatment, Post all treatments and 4-week Follow-up. Results Both treatments produced significant reductions in depression scores at Post-treatment and 4-week Follow-up; however, ECT had modestly better antidepressant effect at follow-up in severity-matched patients. Immediately Post-treatment, ECT (but not isoflurane) patients showed declines in memory, fluency, and processing speed. At Follow-up, only autobiographical memory remained below Pretreatment level for ECT patients, but isoflurane patients had greater test-retest neurocognitive score improvement. Conclusions Our data reconfirm that isoflurane has an antidepressant effect approaching ECT with less adverse neurocognitive effects, and reinforce the need for a larger clinical trial. PMID:23922809

  9. The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury.

    PubMed

    Xu, Zhijie; Yu, Jingui; Wu, Jianbo; Qi, Feng; Wang, Huanliang; Wang, Zhigang; Wang, Zhou

    2016-01-01

    Propofol and sevoflurane are widely used in clinical anesthesia, and both have been reported to exert a protective effect in organ ischemia/reperfusion (IR). This study aims to investigate and compare the effects of propofol and sevoflurane on liver ischemia/reperfusion and the precise molecular mechanism. Rats were randomized into four groups: the sham group, I/R group, propofol treatment group (infused with 1% propofol at 500 μg· kg-1· min-1), and sevoflurane treatment group (infused with 3% (2 L/min) sevoflurane). The liver ischemia/reperfusion model was used to evaluate the hepatoprotective effect on ischemic injury. Liver enzyme leakage, liver cytokines and histopathological examination were used to evaluate the extent of hepatic ischemia/reperfusion injury. Oxidative stress was investigated by evaluating the levels of Malondialdehyde(MDA), Superoxide Dismutase(SOD) and NO. The terminal dexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL) assay and western blot were applied to detect apoptosis in the ischemic liver tissue and its mechanism. Both propofol and sevoflurane attenuated the extent of hepatic ischemia/reperfusion injury which is evident from the hisopathological studies and alterations in liver enzymes such as AST and LDH by inhibiting Nuclear factor kappa B (NFx03BA;B) activation and subsequent alterations in inflammatory cytokines interleukin-1(IL-1), interleukin-6(IL-6), tumor necrosis factor-alpha (TNF-α) and increased IL10 release. Propofol exhibited a similar protective effect and a lower IL-1 release, while sevoflurane decreased TNF-α leakage more significantly. Meanwhile, oxidative stress was attenuated by reduced MDA and NO and elevated SOD release. The expression of antiapoptotic protein Bcl-2 and Bcl-xl were enhanced while that of apoptotic protein Bax and Bak were reduced by both propofol and sevoflurane to regulate hepatic apoptosis. In addition, propofol downregulated the phosphorylation of AKT and Bad protein

  10. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.

    PubMed

    Spracklin, D K; Thummel, K E; Kharasch, E D

    1996-09-01

    The anesthetic halothane undergoes extensive oxidative and reductive biotransformation, resulting in metabolites that cause hepatotoxicity. Halothane is reduced anaerobically by cytochrome P450 (P450) to the volatile metabolites 2-chloro-1,1-difluoroethene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE). The purpose of this investigation was to identify the human P450 isoform(s) responsible for reductive halothane metabolism. CDE and CTE formation from halothane metabolism by human liver microsomes was determined by GC/MS analysis. Halothane metabolism to CDE and CTE under reductive conditions was completely inhibited by carbon monoxide, which implicates exclusively P450 in this reaction. Eadie-Hofstee plots of both CDE and CTE formation were nonlinear, suggesting multiple P450 isoform involvement. Microsomal CDE and CTE formation were each inhibited 40-50% by P450 2A6-selective inhibitors (coumarin and 8-methoxypsoralen) and 55-60% by P450 3A4-selective inhibitors (ketoconazole and troleandomycin). P450 1A-, 2B6-, 2C9/10-, and 2D6-selective inhibitors (7,8-benzoflavone, furafylline, orphenadrine, sulfaphenazole, and quinidine) had no significant effect on reductive halothane metabolism. Measurement of product formation catalyzed by a panel of cDNA-expressed P450 isoforms revealed that maximal rates of CDE formation occurred with P450 2A6, followed by P450 3A4. P450 3A4 was the most effective catalyst of CTE formation. Among a panel of 11 different human livers, there were significant linear correlations between the rate of CDE formation and both 2A6 activity (r = 0.64, p < 0.04) and 3A4 activity (r = 0.64, p < 0.03). Similarly, there were significant linear correlations between CTE formation and both 2A6 activity (r = 0.55, p < 0.08) and 3A4 activity (r = 0.77, p < 0.005). The P450 2E1 inhibitors 4-methylpyrazole and diethyldithiocarbamate inhibited CDE and CTE formation by 20-45% and 40-50%, respectively; however, cDNA-expressed P450 2E1 did not catalyze

  11. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    PubMed

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  12. Rocuronium duration of action under sevoflurane, desflurane or propofol anaesthesia.

    PubMed

    Maidatsi, P G; Zaralidou, A Th; Gorgias, N K; Amaniti, E N; Karakoulas, K A; Giala, M M

    2004-10-01

    We conducted a prospective randomized study to evaluate whether the duration of action of a single bolus dose of rocuronium is influenced by maintenance of anaesthesia with sevoflurane, desflurane or propofol infusion. Fifty-seven ASA I-II patients undergoing elective abdominal surgery were enrolled in this study. Anaesthesia was induced with thiopental 3-5 mg kg(-1) or propofol 2.5 mg kg(-1) and fentanyl 5 microg kg(-1) and tracheal intubation was facilitated with rocuronium 0.9 mg kg(-1). Thereafter patients were randomly allocated to three different groups to receive sevoflurane, desflurane or propofol for maintenance of anaesthesia. Recovery of neuromuscular function was monitored by single twitch stimulation of the ulnar nerve and by recording the adductor pollicis response using accelerometry. Intergroup recovery times to 5% of control value of single twitch were analysed using analysis of variance with Bonferroni correction. The mean (95% confidence interval) recovery time to 5% of control value of single twitch during desflurane anaesthesia was 90.18 (86.11-94.25) min. Significantly shorter recovery times were observed during sevoflurane or propofol anaesthesia, 58.86 (54.73-62.99) min and 51.11 (45.47-56.74) min, respectively (P < 0.001). There were also significant differences in the recovery time between groups receiving desflurane vs. sevoflurane (P < 0.001) and desflurane vs. propofol (P < 0.001). Desflurane anaesthesia significantly prolongs the duration of action of rocuronium at 0.9 mg kg(-1) single bolus dose, compared to sevoflurane or propofol anaesthesia maintenance regimens.

  13. Prevention of thiopental and thiopental/halothane cardiac sensitization to epinephrine in the sheep.

    PubMed Central

    Rezakhani, A; Edjtehadi, M; Szabuniewicz, M

    1977-01-01

    The effects of epinephrine (5 microgram/kg of body weight) on ten unanesthetized sheep were experimentally tested: all sheep displayed serious arrhythmias. Sheep anesthetized with thiopental and thiopental/halothane combination displayed cardiac arrhythmias of the order of 10% and 20% respectively. Challenge injections of epinephrine (5 microgram/kg of body weight) to ten sheep anesthetized with thiopental, and to the same number of animals after 45 minutes of anesthesia with thiopental/halothane, produced serious arrhythmias. However, following preanesthetic treatment with acepromazine maleate (0.5 mg/kg) to 15 sheep, serious arrhythmias were prevented in all of them when they were given arrhythmic doses of epinephrine. Images Fig. 2. PMID:922556

  14. First use of halothane in the United States, C. Ronald Stephen, M.D. (1916-2006).

    PubMed

    Giesecke, Adolph H

    2008-01-01

    Anesthesia is one of the most valued discoveries in all of history. Almost immediately after the first public demonstration of ether anesthesia, a search for a better drug began. Ether, despite its flammability, persisted as the primary inhalation agent for over a hundred years. The breakthrough came with the introduction of a non-flammable volatile anesthetic called halothane in 1955. The drug was approved by the FDA in 1958 and quickly became the most commonly used agent in the United States. It was a quantum leap forward in the safety of anesthetic drugs. It became obsolete in 1988 because of hepatotoxicity. Three eminent anesthesiologists: Drs. Abajian of Vermont, Siker of Pittsburgh and Stephen of Duke could have been the first to use halothane in the USA. My review of the documents and writings of the three confirm that Dr. C. Ronald Stephen of Duke University was indeed the first to use and publish on halothane anesthesia in the USA.

  15. Changes in sevoflurane plasma concentration with delivery through the oxygenator during on-pump cardiac surgery.

    PubMed

    Nitzschke, R; Wilgusch, J; Kersten, J F; Trepte, C J; Haas, S A; Reuter, D A; Goetz, A E; Goepfert, M S

    2013-06-01

    It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. Stable delivery of sevoflurane was administered to 30 elective cardiac surgery patients at 1.8 vol% (inspiratory) via the anaesthetic circuit and ventilator. During CPB, sevoflurane was administered in the oxygenator fresh gas supply (Compactflo Evolution™; Sorin Group, Milano, Italy). Sevoflurane plasma concentration (SPC) was measured using gas chromatography. Changes were correlated with bispectral index (BIS), patient temperature, haematocrit, plasma albumin concentration, oxygenator fresh gas flow, and the sevoflurane concentration in the oxygenator exhaust at predefined time points. The mean SPC pre-bypass was 54.9 µg ml(-1) [95% confidence interval (CI): 50.6-59.1]. SPC decreased to 43.2 µg ml(-1) (95% CI: 40.3-46.1; P<0.001) after initiation of CPB, and was lower still during rewarming and weaning from bypass, 39.4 µg ml(-1) (95% CI: 36.6-42.3; P<0.001). BIS did not exceed a value of 55. SPCs were higher during hypothermia (P<0.001) and with an increase in oxygenator fresh gas flow (P=0.015), and lower with haemodilution (P=0.027). No correlation was found between SPC and the concentration of sevoflurane in the oxygenator exhaust gas (r=-0.04; 95% CI: -0.18 to 0.09; P=0.53). The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.

  16. Thumbnail Sketches: Consumer Application of Chemical Principles: Drugs.

    ERIC Educational Resources Information Center

    Hill, John W.; Jones, Susan M.

    1985-01-01

    Acid-base chemistry can be made more meaningful to beginning students by using familiar drugs as examples. They include: (1) drugs (nicotine, cocaine, and aspirin); (2) general anesthesia (nitrous oxide, enflurane, isoflurane, and halothane); (3) local anesthetics (procaine, lidocaine, and cocaine); and (4) intravenous anesthetics (thiopental,…

  17. MicroRNA-188-3p is involved in sevoflurane anesthesia-induced neuroapoptosis by targeting MDM2

    PubMed Central

    Wang, Lei; Zheng, Mengliang; Wu, Shuishui; Niu, Zhiqiang

    2018-01-01

    Sevoflurane is a commonly used inhalation anesthetic. Sevoflurane-induced neuroapoptosis and cognitive impairments in animals are widely reported, however, the underlying molecular mechanisms remain largely unknown. The results of the present study demonstrated that sevoflurane anesthesia induced spatial memory impairments in rats, as determined by the Morris water maze test. Mechanistically, the current study demonstrated that sevoflurane administration significantly enhanced the expression of microRNA (miR)-188-3p. Furthermore, inhibition of miR-188-3p using lentiviral miR-188-3p inhibitors attenuated sevoflurane-induced cognitive impairments in rats. The present study also demonstrated that miR-188-3p targeted MDM2 proto-oncogene (MDM2) and negatively regulated the expression of MDM2, as determined by luciferase assays, reverse transcription-quantitative polymerase chain reaction and western blot analysis. Furthermore, decreased abundance of MDM2 following transfection with miR-188-3p mimics was associated with increased stability of p53 protein. Suppression of p53 activity using the specific p53 inhibitor pifithrin-α alleviated sevoflurane-induced neuroapoptosis. These results indicate that the miR-188-3p-MDM2-p53 axis may have a critical role in sevoflurane-induced cognitive dysfunction. Therefore, miR-188-3p may be a potential target for the treatment of sevoflurane-induced cognitive impairment. PMID:29344658

  18. Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro.

    PubMed

    Joksovic, Pavle M; Todorovic, Slobodan M

    2010-06-01

    The thalamus has a key function in processing sensory information, sleep, and cognition. We examined the effects of a common volatile anesthetic, isoflurane, on modulation of neuronal excitability in reticular thalamic nucleus (nRT) in intact brain slices from immature rats. In current-clamp recordings, isoflurane (300-600 micromol/L) consistently depolarized membrane potential, decreased input resistance, and inhibited both rebound burst firing and tonic spike firing modes of nRT neurons. The isoflurane-induced depolarization persisted not only in the presence of tetrodotoxin, but after replacement of Ca(2+) with Ba(2+) ions in external solution; it was abolished by partial replacement of extracellular Na(+) ions with N-methyl-D-glucamine. In voltage-clamp recordings, we found that isoflurane slowed recovery from inactivation of T-type Ca(2+) current. Thus, at clinically relevant concentrations, isoflurane inhibits neuronal excitability of nRT neurons in developing brain via multiple ion channels. Inhibition of the neuronal excitability of thalamic cells may contribute to impairment of sensory information transfer in the thalamocortical network by general anesthetics. The findings may be important for understanding cellular mechanisms of anesthesia, such as loss of consciousness and potentially damaging consequences of general anesthetics on developing mammalian brains.

  19. Effects of halothane and methoxyflurane on regional brain and spinal cord substance P-like and beta-endorphin-like immunoreactivities in the rat.

    PubMed

    Karuri, A R; Agarwal, R K; Engelking, L R; Kumar, M S

    1998-03-15

    Effects of acute exposure (2 hr) to either 1.5% halothane or 0.5% methoxyflurane were investigated in the Sprague Dawley rat. Pituitary (PIT) and central nervous system (CNS) substance P (SP)-like and beta-endorphin (beta-end)-like immunoreactivities were evaluated immediately after anesthetic exposure (2 h), after righting reflex (4 h) or 24 hr postexposure (24 h). Only halothane significantly reduced SP-like immunoreactivity in olfactory bulbs in both the 2-h and 4-h groups. Halothane elevated SP-like immunoreactivity of hippocampus at all three time periods, and in the hypothalamus at 2 h. Both anesthetics significantly depleted thalamic concentrations of SP-like immunoreactivity. Methoxyflurane anesthesia resulted in a drastic decrease in SP-like immunoreactivity in PIT at all three time periods periods, while halothane elevated PIT concentrations of this peptide at 4 h. Both anesthetics significantly decreased beta-end-like immunoreactivity in the olfactory bulbs and thalami at 2, 4, and 24 h. However, halothane alone significantly elevated beta-end-like immunoreactivity in the spinal cord at 24 h. Halothane significantly elevated PIT beta-end-like immunoreactivity at 2 and 24 h, while methoxyflurane significantly lowered it in the 4-h group, but elevated the levels of the same in the 24-h group. Brain stem beta-end immunoreactivity were significantly reduced at 2 h by both anesthetics, and at 4 h by methoxyflurane. Results indicate that halothane and methoxyflurane may differ significantly in their actions on SP and beta-end secreting neurons in the CNS.

  20. Neuroprotective Effects of Sevoflurane against Electromagnetic Pulse-Induced Brain Injury through Inhibition of Neuronal Oxidative Stress and Apoptosis

    PubMed Central

    Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis. PMID:24614080

  1. Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis.

    PubMed

    Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

  2. Theoretical effect of hyperventilation on speed of recovery and risk of rehypnotization following recovery - a GasMan® simulation

    PubMed Central

    2012-01-01

    Background Hyperventilation may be used to hasten recovery from general anesthesia with potent inhaled anesthetics. However, its effect may be less pronounced with the newer, less soluble agents, and it may result in rehypnotization if subsequent hypoventilation occurs because more residual anesthetic will be available in the body for redistribution to the central nervous system. We used GasMan® simulations to examine these issues. Methods One MAC of isoflurane, sevoflurane, or desflurane was administered to a fictitious 70 kg patient for 8 h with normoventilation (alveolar minute ventilation [VA] 5 L.min-1), resulting in full saturation of the vessel rich group (VRG) and >95% saturation of the muscle group. After 8 h, agent administration was stopped, and fresh gas flow was increased to 10 L.min-1 to avoid rebreathing. At that same time, we continued with one simulation where normoventilation was maintained, while in a second simulation hyperventilation was instituted (10 L.min-1). We determined the time needed for the partial pressure in the VRG (FVRG; representing the central nervous system) to reach 0.3 MAC (MACawake). After reaching MACawake in the VRG, several degrees of hypoventilation were instituted (VA of 2.5, 1.5, 1, and 0.5 L.min-1) to determine whether FVRG would increase above 0.3 MAC(= rehypnotization). Results Time to reach 0.3 MAC in the VRG with normoventilation was 14 min 42 s with isoflurane, 9 min 12 s with sevoflurane, and 6 min 12 s with desflurane. Hyperventilation reduced these recovery times by 30, 18, and 13% for isoflurane, sevoflurane, and desflurane, respectively. Rehypnotization was observed with VA of 0.5 L.min-1 with desflurane, 0.5 and 1 L.min-1 with sevoflurane, and 0.5, 1, 1.5, and 2.5 L.min-1 with isoflurane. Only with isoflurane did initial hyperventilation slightly increase the risk of rehypnotization. Conclusions These GasMan® simulations confirm that the use of hyperventilation to hasten

  3. Theoretical effect of hyperventilation on speed of recovery and risk of rehypnotization following recovery - a GasMan® simulation.

    PubMed

    De Wolf, Andre M; Van Zundert, Tom C; De Cooman, Sofie; Hendrickx, Jan F

    2012-09-18

    Hyperventilation may be used to hasten recovery from general anesthesia with potent inhaled anesthetics. However, its effect may be less pronounced with the newer, less soluble agents, and it may result in rehypnotization if subsequent hypoventilation occurs because more residual anesthetic will be available in the body for redistribution to the central nervous system. We used GasMan® simulations to examine these issues. One MAC of isoflurane, sevoflurane, or desflurane was administered to a fictitious 70 kg patient for 8 h with normoventilation (alveolar minute ventilation [VA] 5 L.min-1), resulting in full saturation of the vessel rich group (VRG) and >95% saturation of the muscle group. After 8 h, agent administration was stopped, and fresh gas flow was increased to 10 L.min-1 to avoid rebreathing. At that same time, we continued with one simulation where normoventilation was maintained, while in a second simulation hyperventilation was instituted (10 L.min-1). We determined the time needed for the partial pressure in the VRG (FVRG; representing the central nervous system) to reach 0.3 MAC (MACawake). After reaching MACawake in the VRG, several degrees of hypoventilation were instituted (VA of 2.5, 1.5, 1, and 0.5 L.min-1) to determine whether FVRG would increase above 0.3 MAC(= rehypnotization). Time to reach 0.3 MAC in the VRG with normoventilation was 14 min 42 s with isoflurane, 9 min 12 s with sevoflurane, and 6 min 12 s with desflurane. Hyperventilation reduced these recovery times by 30, 18, and 13% for isoflurane, sevoflurane, and desflurane, respectively. Rehypnotization was observed with VA of 0.5 L.min-1 with desflurane, 0.5 and 1 L.min-1 with sevoflurane, and 0.5, 1, 1.5, and 2.5 L.min-1 with isoflurane. Only with isoflurane did initial hyperventilation slightly increase the risk of rehypnotization. These GasMan® simulations confirm that the use of hyperventilation to hasten recovery is marginally beneficial with the

  4. The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    PubMed Central

    Kim, Mihwa; Ham, Ahrom; Kim, Katelyn Yu-Mi; Brown, Kevin M.; Lee, H. Thomas

    2014-01-01

    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation. PMID:24945528

  5. Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3β in human neuron-like cells.

    PubMed

    Lin, D; Li, G; Zuo, Z

    2011-04-14

    Application of the volatile anesthetic isoflurane during the early phase of reperfusion reduces ischemic heart and brain injury (anesthetic post-conditioning). We hypothesize that inhibition of glycogen synthase kinase 3β (GSK3β), a protein whose activation can lead to cell death, participates in anesthetic post-conditioning-induced neuroprotection. SH-SY5Y cells, a human neuroblastoma cell line, were induced by retinoic acid to differentiate into terminal neuron-like cells. The cells were then subjected to a 1-h oxygen-glucose deprivation (OGD), a condition to simulate ischemia in vitro, and a 20-h simulated reperfusion. Isoflurane, sevoflurane or desflurane, three commonly used volatile anesthetics, were applied for 1 h during the early phase of simulated reperfusion. Cell injury was quantified by lactate dehydrogenase (LDH) release. Phospho-GSK3β at Ser9 and total GSK3β were quantified at 1 or 3 h after the OGD. OGD increased LDH release, suggesting that OGD induced cell injury. Post-treatment with isoflurane, sevoflurane or desflurane reduced this cell injury. This protection was apparent when 2% isoflurane was applied within 1 h after the onset of reperfusion. Isoflurane post-treatment also significantly increased the phosphorylation of GSK3β at Ser9 at 1 h after the OGD. GSK3β inhibitors reduced OGD and simulated reperfusion-induced LDH release. The combination of GSK3β inhibitors and isoflurane post-conditioning did not cause a greater protection than isoflurane post-conditioning alone. These results suggest that volatile anesthetic post-conditioning reduces OGD and simulated reperfusion-induced cell injury. Since phospho-GSK3β at Ser9 decreases GSK3β activity, our results suggest that volatile anesthetic post-conditioning in human neuron-like cells may be mediated by GSK3β inhibition. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo.

    PubMed

    Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E

    2008-12-01

    An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.

  7. Isoflurane administration before ischemia and during reperfusion attenuates ischemia/reperfusion-induced injury of isolated rabbit lungs.

    PubMed

    Liu, R; Ishibe, Y; Ueda, M; Hang, Y

    1999-09-01

    To investigate the effects of isoflurane on ischemia/ reperfusion (IR)-induced lung injury, we administered isoflurane before ischemia or during reperfusion. Isolated rabbit lungs were divided into the following groups: control (n = 6), perfused and ventilated for 120 min without ischemia; ISO-control (n = 6), 1 minimum alveolar anesthetic concentration (MAC) isoflurane was administered for 30 min before 120 min continuous perfusion; IR (n = 6), ischemia for 60 min, followed by 60 min reperfusion; IR-ISO1 and IR-ISO2, ischemia followed by reperfusion and 1 MAC (n = 6) or 2 MAC (n = 6) isoflurane for 60 min; ISO-IR (n = 6), 1 MAC isoflurane was administered for 30 min before ischemia, followed by IR. During these maneuvers, we measured total pulmonary vascular resistance (Rt), coefficient of filtration (Kfc), and lung wet to dry ratio (W/D). The results indicated that administration of isoflurane during reperfusion inhibited an IR-induced increase in Kfc and W/D ratio. Furthermore, isoflurane at 2 MAC, but not 1 MAC, significantly inhibited an IR-induced increase in Rt. The administration of isoflurane before ischemia significantly attenuated the increase in IR-induced Kfc, W/D, and Rt. Our results suggest that the administration of isoflurane before ischemia and during reperfusion protects against ischemia-reperfusion-induced injury in isolated rabbit lungs.

  8. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    PubMed

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  9. [Effects of nitrous oxide on electroencephalographic activity during sevoflurane anesthesia: a zero-crossing analysis].

    PubMed

    Kaneda, T; Ochiai, R; Takeda, J; Fukushima, K

    1995-11-01

    We have investigated the influence of nitrous oxide (N2O) on central nervous system (CNS) during sevoflurane anesthesia by using zero-crossing method of EEG in 31 patients. The study was divided into three parts: Study 1 (n = 18), Study 2 (n = 6) and Study 3 (n = 7). (Study 1) After induction of anesthesia, sevoflurane 1.0 % in oxygen (O2), and sevoflurane 1.0 % with 67 % N2O in O2 were given to the patients sequentially in a random fashion, and EEG was recorded. (Study 2) Sevoflurane 1.7 % in O2, and sevoflurane 0.7 % with 67 % N2O in O2, which were considered to be the same anesthetic depth (= sevoflurane 1 MAC), were inhaled, and EEG was recorded in the same manner as in the study 1. (Study 3) We compared the effects of N2O on EEG during intravenous administration of fentanyl and midazolam with 67 % N2O, and without N2O, and EEG was recorded in the same manner. In all studies, percentage of each frequency range (delta, theta, alpha, beta) and average frequency were calculated by zero-crossing method. During sevoflurane anesthesia, the EEG activity was decelerated with N2O, depending on minimum alveolar concentration (MAC). But there were no significant changes in EEG activity of the patient with and those without N2O during intravenous anesthesia. We concluded that the influences of N2O on CNS can be evaluated by quantitative analysis of EEG.

  10. Barbiturate Induction for the Prevention of Emergence Agitation after Pediatric Sevoflurane Anesthesia

    PubMed Central

    Nakahara, Haruna; Kimoto, Ayako; Beppu, Yuki; Yoshimura, Maki; Kojima, Toshiyuki; Fukano, Taku

    2015-01-01

    OBJECTIVES: Emergence agitation (EA) is a common and troublesome problem in pediatric patients recovering from general anesthesia. The incidence of EA is reportedly higher after general anesthesia maintained with sevoflurane, a popular inhalational anesthetic agent for pediatric patients. We conducted this prospective, randomized, double-blind study to test the effect of an intravenous ultra-short–acting barbiturate, thiamylal, administered during induction of general anesthesia on the incidence and severity of EA in pediatric patients recovering from Sevoflurane anesthesia. METHODS: Fifty-four pediatric patients (1 to 6 years of age) undergoing subumbilical surgeries were randomized into 2 groups. Patients received either intravenous thiamylal 5mg/kg (Group T) or inhalational Sevoflurane 5% (Group S) as an anesthetic induction agent. Following induction, general anesthesia was maintained with Sevoflurane and nitrous oxide (N2O) in both groups. To control the intra- and post-operative pain, caudal block or ilioinguinal/iliohypogastric block was performed. The incidence and severity of EA were evaluated by using the Modified Objective Pain Scale (MOPS: 0 to 6) at 15 and 30 min after arrival in the post-anesthesia care unit (PACU). RESULTS: Fifteen minutes after arrival in the PACU, the incidence of EA in Group T (28%) was significantly lower than in Group S (64%; p = 0.023) and the MOPS in Group T (median 0, range 0 to 6) was significantly lower than in Group S (median 4, range 0 to 6; p = 0.005). The interval from discontinuation of Sevoflurane to emergence from anesthesia was not significantly different between the 2 groups. CONCLUSIONS: Thiamylal induction reduced the incidence and severity of EA in pediatric patients immediately after Sevoflurane anesthesia. PMID:26472953

  11. Anaesthetic uptake and washout characteristics of patient circuit tubing with special regard to current decontamination techniques.

    PubMed

    Gilly, H; Weindlmayr-Goettel, M; Köberl, G; Steinbereithner, K

    1992-10-01

    The amounts of halothane and isoflurane trapped after exposure for up to 3 h at 2 MAC in commonly used anaesthesia circuit tubing were quantitated by gas chromatography. The decontaminating effects of procedures such as flushing with oxygen, thermal disinfection and/or routine storage were assessed in a similar way. After halothane exposure, anaesthetic content was highest in silicone (398 +/- 55 mg 100 g-1). Lower quantities were found in all other tubings investigated (electrically conductive latex: 64 +/- 4, conductive rubber: 62 +/- 4, polyethylene-vinyl-acetate (PEVA): 293 +/- 10 and 149 +/- 17 for non-conductive corrugated and spiral tubes, respectively, polysulfone (Hytrel): 155 +/- 10 mg 100 g-1). The isoflurane contents were substantially lower (silicone: 278 +/- 23; others: 55 +/- 7, 61 +/- 6, 163 +/- 9 and 86 +/- 8, 74 +/- 4 mg 100 g-1). The tubings' content did not correlate with the material's partition coefficient as full saturation was not achieved during exposure. Decontamination procedures reduced the content of volatile anaesthetics to a variable extent. Conductive latex and rubber showed the highest residual content, even after thermal disinfection and subsequent storage. Twenty-minute flushing with oxygen (8 l min-1) decreased effluent gas concentrations below 5 p.p.m. in all tubings. With silicone, after 1 h flushing, halothane concentrations still exceeded 10 p.p.m. (isoflurane: 8 p.p.m.). It is concluded that urgent decontamination by a 20-min flush warrants the safe re-use of previously 'contaminated' conductive rubber and latex as well as polysulfone tubings in critical situations, e.g. in malignant hyperthermia patients if disposable tubing is not immediately available.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Qualitative and Quantitative Characteristics of the Electroencephalogram in Normal Horses during Administration of Inhaled Anesthesia.

    PubMed

    Williams, D C; Brosnan, R J; Fletcher, D J; Aleman, M; Holliday, T A; Tharp, B; Kass, P H; LeCouteur, R A; Steffey, E P

    2016-01-01

    The effects of anesthesia on the equine electroencephalogram (EEG) after administration of various drugs for sedation, induction, and maintenance are known, but not that the effect of inhaled anesthetics alone for EEG recording. To determine the effects of isoflurane and halothane, administered as single agents at multiple levels, on the EEG and quantitative EEG (qEEG) of normal horses. Six healthy horses. Prospective study. Digital EEG with video and quantitative EEG (qEEG) were recorded after the administration of one of the 2 anesthetics, isoflurane or halothane, at 3 alveolar doses (1.2, 1.4 and 1.6 MAC). Segments of EEG during controlled ventilation (CV), spontaneous ventilation (SV), and with peroneal nerve stimulation (ST) at each MAC multiple for each anesthetic were selected, analyzed, and compared. Multiple non-EEG measurements were also recorded. Specific raw EEG findings were indicative of changes in the depth of anesthesia. However, there was considerable variability in EEG between horses at identical MAC multiples/conditions and within individual horses over segments of a given epoch. Statistical significance for qEEG variables differed between anesthetics with bispectral index (BIS) CV MAC and 95% spectral edge frequency (SEF95) SV MAC differences in isoflurane only and median frequency (MED) differences in SV MAC with halothane only. Unprocessed EEG features (background and transients) appear to be beneficial for monitoring the depth of a particular anesthetic, but offer little advantage over the use of changes in mean arterial pressure for this purpose. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Isoflurane anesthesia exacerbates learning and memory impairment in zinc-deficient APP/PS1 transgenic mice.

    PubMed

    Feng, Chunsheng; Liu, Ya; Yuan, Ye; Cui, Weiwei; Zheng, Feng; Ma, Yuan; Piao, Meihua

    2016-12-01

    Zinc (Zn) is known to play crucial roles in numerous brain functions including learning and memory. Zn deficiency is believed to be widespread throughout the world, particularly in patients with Alzheimer's disease (AD). A number of studies have shown that volatile anesthetics, such as isoflurane, might be potential risk factors for the development of AD. However, whether isoflurane exposure accelerates the process of AD and cognitive impairment in AD patients with Zn deficiency is yet to be documented. The aim of the present study was to explore the effects of 1.4% isoflurane exposure for 2 h on learning and memory function, and neuropathogenesis in 10-month-old Zn-adequate, Zn-deficient, and Zn-treated APP/PS1 mice with the following parameters: behavioral tests, neuronal apoptosis, Aβ, and tau pathology. The results demonstrated that isoflurane exposure showed no impact on learning and memory function, but induced transient elevation of neuroapoptosis in Zn-adequate APP/PS1 mice. Exposure of isoflurane exhibited significant neuroapoptosis, Aβ generation, tau phosphorylation, and learning and memory impairment in APP/PS1 mice in the presence of Zn deficiency. Appropriate Zn treatment improved learning and memory function, and prevented isoflurane-induced neuroapoptosis in APP/PS1 mice. Isoflurane exposure may cause potential neurotoxicity, which is tolerated to some extent in Zn-adequate APP/PS1 mice. When this tolerance is limited, like in AD with Zn deficiency, isoflurane exposure markedly exacerbated learning and memory impairment, and neuropathology, indicating that AD patients with certain conditions such as Zn deficiency may be vulnerable to volatile anesthetic isoflurane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain.

    PubMed

    Olutoye, Olutoyin A; Sheikh, Fariha; Zamora, Irving J; Yu, Ling; Akinkuotu, Adesola C; Adesina, Adekunle M; Olutoye, Oluyinka O

    2016-04-01

    Advances in surgery and technology have resulted in increased in-utero procedures. However, the effect of anesthesia on the fetal brain is not fully known. The inhalational anesthetic agent, isoflurane, other gamma amino butyric acid agonists (benzodiazepines, barbiturates, propofol, other inhalation anesthetics), and N-methyl D aspartate antagonists, eg, ketamine, have been shown to induce neuroapoptosis. The ovine model has been used extensively to study maternal-fetal physiologic interactions and to investigate different surgical interventions on the fetus. The purpose of this study was to determine effects of different doses and duration of isoflurane on neuroapoptosis in midgestation fetal sheep. We hypothesized that repeated anesthetic exposure and high concentrations of isoflurane would result in increased neuroapoptosis. Time-dated, pregnant sheep at 70 days gestation (term 145 days) received either isoflurane 2% × 1 hour, 4% × 3 hours, or 2% × 1 hour every other day for 3 exposures (repeated exposure group). Euthanasia occurred following anesthetic exposure and fetal brains were processed. Neuroapoptosis was detected by immunohistochemistry using anticaspase-3 antibodies. Fetuses unexposed to anesthesia served as controls. Another midgestation group with repeated 2% isoflurane exposure was examined at day 130 (long-term group) and neuronal cell density compared to age-matched controls. Representative sections of the brain were analyzed using Aperio Digital imaging (Leica Microsystems Inc, Buffalo Grove, IL). Data, reported by number of neurons per cubic millimeter of brain tissue are presented as means and SEM. Data were analyzed using the Mann-Whitney U and Kruskal-Wallis tests as appropriate. A total of 34 fetuses were studied. There was no significant difference in neuroapoptosis observed in fetuses exposed to 2% isoflurane for 1 hour or 4% isoflurane for 3 hours. Increased neuroapoptosis was observed in the frontal cortex following repeated 2

  15. A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia.

    PubMed

    Song, J C; Sun, Y M; Yang, L Q; Zhang, M Z; Lu, Z J; Yu, W F

    2010-10-01

    In this study, we compared liver function tests after hepatectomy with inflow occlusion as a function of propofol versus sevoflurane anesthesia. One hundred patients undergoing elective liver resection with inflow occlusion were randomized into a sevoflurane group or a propofol group. General anesthesia was induced with 3 μg/kg fentanyl, 0.2 mg/kg cisatracurium, and target-controlled infusion of propofol, set at a plasma target concentration of 4 to 6 μg/mL, or sevoflurane initially started at 8%. Anesthesia was maintained with target-controlled infusion of propofol (2-4 μg/mL) or sevoflurane (1.5%-2.5%). The primary end point was postoperative liver injury assessed by peak values of liver transaminases. Transaminase levels peaked between the first and the third postoperative day. Peak alanine aminotransferase was 504 and 571 U/L in the sevoflurane group and the propofol group, respectively. Peak aspartate aminotransferase was 435 U/L after sevoflurane and 581 U/L in the propofol group. There were no significant differences in peak alanine aminotransferase or peak aspartate aminotransferase between groups. Other liver function tests including bilirubin and alkaline phosphatase, and peak values of white blood cell counts and creatinine, were also not different between groups. Sevoflurane and propofol anesthetics resulted in similar patterns of liver function tests after hepatectomy with inflow occlusion. These data suggest that the 2 anesthetics are equivalent in this clinical context.

  16. Detomidine reduces isoflurane anesthetic requirement (MAC) in horses.

    PubMed

    Steffey, Eugene P; Pascoe, Peter J

    2002-10-01

    To quantitate the dose- and time-related magnitude of the anesthetic sparing effect of, and selected physiological responses to detomidine during isoflurane anesthesia in horses. Randomized cross-over study. Three, healthy, young adult horses weighing 485 ± 14 kg. Horses were anesthetized on two occasions to determine the minimum alveolar concentration (MAC) of isoflurane in O 2 and then to measure the anesthetic sparing effect (time-related MAC reduction) following IV detomidine (0.03 and 0.06 mg kg -1 ). Selected common measures of cardiopulmonary function, blood glucose and urinary output were also recorded. Isoflurane MAC was 1.44 ± 0.07% (mean ± SEM). This was reduced by 42.8 ± 5.4% and 44.8 ± 3.0% at 83 ± 23 and 125 ± 36 minutes, respectively, following 0.03 and 0.06 mg kg -1 , detomidine. The MAC reduction was detomidine dose- and time-dependent. There was a tendency for mild cardiovascular and respiratory depression, especially following the higher detomidine dose. Detomidine increased both blood glucose and urine flow; the magnitude of these changes was time- and dose-dependent CONCLUSIONS: Detomidine reduces anesthetic requirement for isoflurane and increases blood glucose concentration and urine flow in horses. These changes were dose- and time-related. The results imply potent anesthetic sparing actions by detomidine. The detomidine-related increased urine flow should be considered in designing anesthetic protocols for individual horses. Copyright © 2002 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  17. [Renal effects and metabolism of sevoflurane in Fisher 3444 rats: an in-vivo and in-vitro comparison with methoxyflurane].

    PubMed

    Cook, T L; Beppu, W J; Hitt, B A; Kosek, J C; Mazze, R I

    1975-07-01

    Sevoflurane, 1.4 per cent (MAC), was administered to groups of Fischer 344 rats for 10 hours, 4 hours, or 1 hour; additional rats received 0.5 per cent methoxyflurane for 3 hours or 1 hour. Urinary inorganic fluoride excretion of sevoflurane in vivo was a third to a fourth that of methoxyflurane. However, using hepatic microsomes, sevoflurane and methoxyflurane were defluorinated in vitro at essentially the same rate. The discrepancy between defluorination of sevoflurane and methoxyflurane in vivo and in vitro was probably due to differences in tissue solubility between the drugs. There were no renal functional or morphologic defects following sevoflurane administration. An unexplained adverse effect was significant weight loss, which occurred following all exposures to sevoflurane.

  18. The child's behavior during inhalational induction and its impact on the anesthesiologist's sevoflurane exposure.

    PubMed

    Herzog-Niescery, Jennifer; Vogelsang, Heike; Bellgardt, Martin; Botteck, Nikolaj Matthias; Seipp, Hans-Martin; Bartz, Horst; Weber, Thomas Peter; Gude, Philipp

    2017-12-01

    Sevoflurane is commonly used for inhalational inductions in children, but the personnel's exposure to it is potentially harmful. Guidance to reduce gas pollution refers mainly to technical aspects, but the impact of the child's behavior has not yet been studied. The purpose of this study was to determine how child behavior, according to the Frankl Behavioral Scale, affects the amount of waste sevoflurane in anesthesiologists' breathing zones. Sixty-eight children aged 36-96 months undergoing elective ENT surgery were recruited for this prospective, observational investigation. After oral midazolam premedication (0.5 mg/kg body weight), patients obtained sevoflurane using a facemask with an inspiratory concentration of 8 Vol.% in 100% oxygen (flow 10 L/min). Ventilation was manually supported and a venous catheter was placed. The inspiratory sevoflurane concentration was reduced, and remifentanil and propofol were administered before the facemask was removed and a cuffed tracheal tube inserted. The child's behavior toward the operating room personnel during induction was evaluated by the anesthesiologist (Frankl Behavioral Scale: 1-2 = negative behavior, 3-4 = positive behavior). During induction mean (c¯mean) and maximum (c¯max), sevoflurane concentrations were determined in the anesthesiologist's breathing zone by continuous photoacoustic gas monitoring. Mean and maximum sevoflurane concentrations were c¯mean = 4.38 ± 4.02 p.p.m and c¯max = 70.06 ± 61.08 p.p.m in patients with positive behaviors and sufficient premedications and c¯mean = 12.63 ± 8.66 p.p.m and c¯max = 242.86 ± 139.91 p.p.m in children with negative behaviors and insufficient premedications (c¯mean: P < .001; c¯max: P < .001). Negative behavior was accompanied by significantly higher mean and maximum sevoflurane concentrations in the anesthesiologist's breathing zone compared with children with positive attitudes. Consequently, the status of premedication influences the amount of

  19. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    PubMed

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  20. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons.

    PubMed

    Zimering, Jeffrey H; Dong, Yuanlin; Fang, Fang; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation.

  1. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity.

    PubMed

    Kharasch, E D; Hankins, D C; Thummel, K E

    1995-03-01

    Methoxyflurane nephrotoxicity is mediated by cytochrome P450-catalyzed metabolism to toxic metabolites. It is historically accepted that one of the metabolites, fluoride, is the nephrotoxin, and that methoxyflurane nephrotoxicity is caused by plasma fluoride concentrations in excess of 50 microM. Sevoflurane also is metabolized to fluoride ion, and plasma concentrations may exceed 50 microM, yet sevoflurane nephrotoxicity has not been observed. It is possible that in situ renal metabolism of methoxyflurane, rather than hepatic metabolism, is a critical event leading to nephrotoxicity. We tested whether there was a metabolic basis for this hypothesis by examining the relative rates of methoxyflurane and sevoflurane defluorination by human kidney microsomes. Microsomes and cytosol were prepared from kidneys of organ donors. Methoxyflurane and sevoflurane metabolism were measured with a fluoride-selective electrode. Human cytochrome P450 isoforms contributing to renal anesthetic metabolism were identified by using isoform-selective inhibitors and by Western blot analysis of renal P450s in conjunction with metabolism by individual P450s expressed from a human hepatic complementary deoxyribonucleic acid library. Sevoflurane and methoxyflurane did undergo defluorination by human kidney microsomes. Fluoride production was dependent on time, reduced nicotinamide adenine dinucleotide phosphate, protein concentration, and anesthetic concentration. In seven human kidneys studied, enzymatic sevoflurane defluorination was minima, whereas methoxyflurane defluorination rates were substantially greater and exhibited large interindividual variability. Kidney cytosol did not catalyze anesthetic defluorination. Chemical inhibitors of the P450 isoforms 2E1, 2A6, and 3A diminished methoxyflurane and sevoflurane defluorination. Complementary deoxyribonucleic acid-expressed P450s 2E1, 2A6, and 3A4 catalyzed methoxyflurane and sevoflurane metabolism, in diminishing order of activity

  2. Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC.

    PubMed

    Chen, Qiang; Kinde, Monica N; Arjunan, Palaniappa; Wells, Marta M; Cohen, Aina E; Xu, Yan; Tang, Pei

    2015-09-08

    Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6') and A244(13'). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6' or 13' support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs.

  3. Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC

    PubMed Central

    Chen, Qiang; Kinde, Monica N.; Arjunan, Palaniappa; Wells, Marta M.; Cohen, Aina E.; Xu, Yan; Tang, Pei

    2015-01-01

    Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6′) and A244(13′). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6′ or 13′ support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs. PMID:26346220

  4. Anesthetic biotransformation and renal function in obese patients during and after methoxyflurane or halothane anesthesia.

    PubMed

    Young, S R; Stoelting, R K; Peterson, C; Madura, J A

    1975-04-01

    Anesthetic biotransformation and renal function were studied in obese adult patients (148 plus or minus 8 kg; mean plus or minus SE) anesthetized for three hours with 60 per cent nitrous oxide plus either methoxyflurane or halothane for elective jejunoileal small-bowel-bypass operations. There was no evidence of persistent renal dysfunction in any patient postoperatively, but serum osmolality was elevated 72 hours after methoxyflurane anesthesia. Urine concentrating ability was not determined. Peak serum ionic fluoride concentration was 55.8 plus or minus 5.8 muM/1 two hours after discontinuation of methoxyflurane. Urinary ionic fluoride and oxalate excretions increased postoperatively. Compared with previously reported data from nonobese patients, serum ionic fluoride concentrations in obese patients increased more rapidly during methoxyflurane anesthesia and peaked higher and sooner after discontinuation of methoxyflurane. The peak serum ionic fluoride concentration was 10.4 plus or minus 1.5 muM/1 at the conclusion of halothane anesthesia, significantly more than the corresponding value in nonobese patients. Intraoperative liver biopsies from 23 of 27 patients showed moderate to severe fatty metamorphosis. Fatty liver infiltration may have increased hepatic anesthetic uptake and exposed more methoxyflurane or halothane to hepatic microsomal enzymes. The more rapid elevation and higher peak levels of serum ionic fluoride following methoxyflurane, and to a lesser extent following halothane, may reflect increased anesthetic biotransformation in obese compared with nonobese patients. To avoid excessive serum ionic fluoride elevations the authors recommended limiting low-dose methoxyflurane anesthesia delivered to obese patients with potential fatty liver infiltration to no more than three hours.

  5. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms

    PubMed Central

    Ying, Shui-Wang; Werner, David F.; Homanics, Gregg E.; Harrison, Neil L.; Goldstein, Peter A.

    2009-01-01

    Summary GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABAA receptor (GABAA-R) α1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABAA-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABAA-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the ½ width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABAA-Rs containing the α1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate α1-subunit containing GABAA-Rs into synapses. In RTN neurons, which lack the α1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABAA-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba2+-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABAA-R-dependent, but in RTN via GABAA-R-independent, mechanisms. PMID:18948126

  6. Reduced incidence of laryngospasm with remifentanil-midazolam anaesthesia compared to halothane-fentanyl.

    PubMed

    Ali, Shahriari

    2008-03-01

    To compare the incidence of laryngospasm by using halothane-fentanyl anaesthesia and midazolam-remifentanil anaesthesia in paediatric patients undergoing eye surgery. We enrolled 120 ASA physical status I children aged 7-12 years scheduled for eye surgery from March 2004 to February 2006 in this prospective clinical trial study. Children suffering from any medical condition that could affect airway reflexes such as active upper respiratory infection, symptomatic asthma, obesity, patients with predicted difficulty in tracheal intubation were not included in the study. Patients with prolonged or difficult intubation or those who received another drug before extubation were excluded from the study. Using a random numbers table, participants were allocated to two equal groups. After induction of anaesthesia, in one group Halothane 1% was administered for the maintenance of anaesthesia in addition with intravenous fentanyl 1.5 microg kg(-1), and for the patients of the other group midazolam with a dose of 0.1 mg kg(-1) and remifentanil infusion by a dose of 0.1 microg kg(-1) min(-1) was administered. The patients were extubated in a unique plan of anaesthesia, using the sign of swallowing as a clinical indicator for extubation of patients. The incidence of laryngospasm was lower in midazolam-remifentanil group (0%) in comparison with halothane-fentanyl group (6.6%). The results of our study suggest that remifentanil combined with midazolam in children undergoing eye surgery provided a better condition for extubation of the patients.

  7. GABAergic Neurotransmission in the Pontine Reticular Formation Modulates Hypnosis, Immobility, and Breathing during Isoflurane Anesthesia

    PubMed Central

    Vanini, Giancarlo; Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2009-01-01

    Background Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that: 1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and 2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. Methods To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer’s (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Results Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane co-varied with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Conclusion Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate. PMID:19034094

  8. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Strzalka, J; Tronin, A

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescencemore » is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form

  9. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    PubMed

    Lei, Xi; Zhang, Wenting; Liu, Tengyuan; Xiao, Hongyan; Liang, Weimin; Xia, Weiliang; Zhang, Jun

    2013-01-01

    To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively. Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood

  10. Absence of bronchodilation during desflurane anesthesia: a comparison to sevoflurane and thiopental.

    PubMed

    Goff, M J; Arain, S R; Ficke, D J; Uhrich, T D; Ebert, T J

    2000-08-01

    Bronchospasm is a potential complication in anyone undergoing general anesthesia. Because volatile anesthetics relax bronchial smooth muscle, the effects of two newer volatile anesthetics, desflurane and sevoflurane, on respiratory resistance were evaluated. The authors hypothesized that desflurane would have greater bronchodilating effects because of its ability to increase sympathetic nervous system activity. Informed consent was obtained from patients undergoing elective surgery with general anesthesia. We recorded airway flow and pressure after thiopental induction and tracheal intubation (baseline) and for 10 min after beginning volatile anesthesia ( approximately 1 minimum alveolar concentration inspired). Respiratory system resistance was determined using the isovolume technique. Fifty subjects were randomized to receive sevoflurane (n = 20), desflurane (n = 20), or thiopental infusion (n = 10, 0.25 mg. kg-1. h-1). There were no differences between groups for age, height, weight, smoking history, and American Society of Anesthesiologists physical class. On average, sevoflurane reduced respiratory resistance 15% below baseline, whereas both desflurane (+5%) and thiopental (+10%) did not decrease respiratory resistance. The respiratory resistance changes did not differ in patients with and without a history of smoking during sevoflurane or thiopental. In contrast, administration of desflurane to smokers resulted in the greatest increase in respiratory resistance. Sevoflurane causes moderate bronchodilation that is not observed with desflurane or sodium thiopental. The bronchoconstriction produced by desflurane was primarily noted in patients who currently smoked. (Key words: Bronchospasm; respiratory resistance; volatile anesthetics.)

  11. Dreaming during sevoflurane or propofol short-term sedation: a randomised controlled trial.

    PubMed

    Xu, G H; Liu, X S; Yu, F Q; Gu, E W; Zhang, J; Royse, A G; Wang, K

    2012-05-01

    Prior reports suggest that dreaming during anaesthesia is dependent on recovery time. Dreaming during sedation may impact patient satisfaction. The current study explores the incidence and content of dreaming during short-term sedation with sevoflurane or propofol and investigates whether dreaming is affected by recovery time. A total of 200 women undergoing first trimester abortion (American Society of Anesthesiologists physical status I) participated in the study. Patients were randomly assigned to receive either sevoflurane or propofol for short-term sedation. Patients were interviewed upon emergence with the modified Brice questionnaire. The results showed the incidence of dreaming was significantly different between anaesthesia groups with 60% (60/100) of the sevoflurane group and 33% (33/100) of the propofol group (P=0.000). However, recovery time did not significantly differ between groups. In the sevoflurane group, a greater number of dreamers could not recall what they had dreamed about (P=0.02) and more patients reported dreams that had no sound (P=0.03) or movement (P=0.001) compared with dreamers in the propofol group. Most participants reported dreams with positive emotional content and this did not significantly differ between groups. Anaesthesia administered had no effect on patient satisfaction. The results suggest that the incidence of dreaming was not affected by recovery time. Patient satisfaction was not influenced by choice of sedative and/or by the occurrence of dreaming during sevoflurane or propofol short-term sedation.

  12. Sevoflurane anesthesia during acute right ventricular ischemia in pigs preserves cardiac function better than propofol anesthesia.

    PubMed

    Haraldsen, Pernille; Metzsch, Carsten; Lindstedt, Sandra; Algotsson, Lars; Ingemansson, Richard

    2016-09-01

    The intention of the present study was to evaluate possible cardioprotective properties of inhalation anesthesia with sevoflurane. A porcine, open-chest model of right ventricular ischemia was used in 7 pigs receiving inhalation anesthesia with sevoflurane. The model was earlier developed and published by our group, using pigs receiving intravenous anesthesia with propofol. They served as controls. The animals were observed for three hours after the induction of right ventricular ischemia by ligation of the main branches supplying the right ventricular free wall. In the sevoflurane group, the cardiac output recovered 2 hours after the induction of ischemia and intact right ventricular stroke work was observed. In the propofol group, no such recovery occurred. The release of troponin T was significantly lower than in the sevoflurane group. Inhalation anesthesia with sevoflurane seems superior to intravenous anesthesia with propofol in acute right ventricular ischemic dysfunction. © The Author(s) 2016.

  13. Influence of halothane and methoxyflurane on regional brain and spinal cord concentrations of methionine-enkephalin in the rat.

    PubMed

    Agarwal, R K; Court, M; Chandna, V K; Mohan, A; Engelking, L R; Kumar, A M

    1994-01-01

    Rats were exposed to either oxygen (controls), 1.5% halothane in oxygen, or methoxyflurane (0.5%) in oxygen over a period of 2 h, then sacrificed at the end of exposure (2-h group), 4 h after removal from environmental chamber (4-h group), or at 24 h following anesthetic exposure (24-h group). Pituitary (excluding the neural lobe, Pit), brain, and spinal cord areas were isolated and processed with Met-enkephalin tissue concentrations determined. In halothane-exposed animals, Met-enkephalin concentrations in pit and across CNS areas studied were significantly lower at 2 h following anesthetic exposure than in control animals. Concentrations of Met-enkephalin in many areas of CNS and Pit of 4-h group approached control levels. Concentrations of Met-enkephalin in all areas studied except spinal cord returned to basal levels by 24 h following halothane exposure. Exposure to methoxyflurane resulted in less dramatic changes in Met-enkephalin concentrations across CNS regions examined. Exposure to methoxyflurane resulted in significant decreases in Met-enkephalin levels in olfactory bulb, thalamus, and hippocampus only. Met-Enkephalin levels did not change significantly in other areas of the central nervous system following methoxyflurane exposure. These results indicate that halothane and methoxyflurane may have differential effects on the endogenous opioid system.

  14. Chemical Aspects of General Anesthesia: Part 1. From Ether to Halothane

    ERIC Educational Resources Information Center

    Brunsvold, Robert; Ostercamp, Daryl L.

    2006-01-01

    The history and evolution of general anesthesia, which invokes a variety of drugs, each compound having a specific purpose from muscle relaxation to unconsciousness is discussed. Some of the popular anesthetics discussed are ether, chloroform, halocarbons, gaseous nitrous oxide, halothane, and mixture of 70% nitrous oxide and 30% oxygen.

  15. Predictive accuracy of a model of volatile anesthetic uptake.

    PubMed

    Kennedy, R Ross; French, Richard A; Spencer, Christopher

    2002-12-01

    A computer program that models anesthetic uptake and distribution has been in use in our department for 20 yr as a teaching tool. New anesthesia machines that electronically measure fresh gas flow rates and vaporizer settings allowed us to assess the performance of this model during clinical anesthesia. Gas flow, vaporizer settings, and end-tidal concentrations were collected from the anesthesia machine (Datex S/5 ADU) at 10-s intervals during 30 elective anesthetics. These were entered into the uptake model. Expired anesthetic vapor concentrations were calculated and compared with actual values as measured by the patient monitor (Datex AS/3). Sevoflurane was used in 16 patients and isoflurane in 14 patients. For all patients, the median performance error was -0.24%, the median absolute performance error was 13.7%, divergence was 2.3%/h, and wobble was 3.1%. There was no significant difference between sevoflurane and isoflurane. This model predicted expired concentrations well in these patients. These results are similar to those seen when comparing calculated and actual propofol concentrations in propofol infusion systems and meet published guidelines for the accuracy of models used in target-controlled anesthesia systems. This model may be useful for predicting responses to changes in fresh gas and vapor settings. We compared measured inhaled anesthetic concentrations with those predicted by a model. The method used for comparison has been used to study models of propofol administration. Our model predicts expired isoflurane and sevoflurane concentrations at least as well as common propofol models predict arterial propofol concentrations.

  16. [Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia].

    PubMed

    Nakagawa, Itsuo; Hidaka, Syozo; Okada, Hironori; Kubo, Takashi; Okamura, Kenta; Kato, Takahiro

    2006-06-01

    The effect of anesthetics on somatosensory evoked potential (SEP) and auditory brain stem response (ABR) has been a subject of intense reseach over the last two decades. In fact, volatile anesthetics have been repeatedly shown to decrease cortical amplitude in a dose-dependent fashion but the information regarding the effect of propofol is incomplete. The purpose of this study was to compare the effects of sevoflurane and propofol on evoked potentials during comparable depth of anesthesia guided by bispectral index (BIS). Forty four patients scheduled for neurosurgery were studied. Anesthesia was maintained with intravenous propofol using target controlled infusion (TCI). We measured the change of amplitude and latency of SEP(N20-P25), ABR (V wave) and visual evoked potential (VEP: P100) at three sets of sevoflurane (0%, 1%, 2%) or propofol concentrations (effect site concentration of 1.5, 2.0, 3.0 microug x ml(-1)). BIS monitor was used to measure relative depth of hypnosis. With increasing concentrations of sevoflurane (0, 1% and 2%), SEP showed dose-related reduction in its amplitude, ABR produced less marked changes and VEP showed a significant reduction at 1%. VEP at the propofol concentration of 3.0 microg x ml(-1) was decreased significantly compared with the amplitude at 1.5 microg x ml(-1) concentration. No significant change was observed with SEP and ABR during the change of propofol dosages. BIS values were almost the same with each anesthetics. VEP was most strongly affected with anesthetics, and ABR showed less marked influence of sevoflurane and propofol. Propofol based TIVA technique would induce less change in evoked potentials than sevoflurane.

  17. Isoflurane-Induced Caspase-3 Activation Is Dependent on Cytosolic Calcium and Can Be Attenuated by Memantine

    PubMed Central

    Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory

    2008-01-01

    Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534

  18. Headspace gas chromatography-mass spectrometry analysis of isoflurane enantiomers in blood samples after anesthesia with the racemic mixture.

    PubMed

    Schmidt, R; Wahl, H G; Häberle, H; Dieterich, H J; Schurig, V

    1999-01-01

    Several in vivo and in vitro studies on the stereoselective potency of isoflurane enantiomers suggest beneficial effects of the (+)-(S)-enantiomer. In order to detect possible differences in the pharmacokinetics of isoflurane enantiomers, a clinical study of 41 patients undergoing general anesthesia maintained with racemic isoflurane was performed. The isoflurane enantiomers were analyzed in blood samples drawn before induction, at cessation (day 0), and up to eight days after isoflurane anesthesia (day 1-8). A multipurpose sampler (Gerstel MPS) was used for the headspace gas chromatography-mass spectrometry (GC/MS) analysis, and it was combined with a cold injection system (Gerstel CIS 3) for coldtrapping, enrichment, and focusing of the analyte. The enantiomer separation was achieved by using a capillary column coated with octakis(3-O-butanoyl-2,6-di-O-pentyl)-gamma-cyclodextrin (Lipodex E) dissolved in the polysiloxane PS 255. Detection was done in the selected ion monitoring mode with ions m/z 117 and m/z 149. An enrichment of (+)-(S)-isoflurane in all blood samples drawn after anesthesia was found. The highest enantiomer bias, up to 52-54% (+)-(S)-isoflurane as compared to 50% for the racemate, was observed on day 2 for most of the patients. Furthermore, quantification of isoflurane in blood samples of five patients was done by enantiomer labeling, employing enantiomerically pure (+)-(S)-isoflurane as internal standard. The isoflurane concentration decreased rapidly from 383 nmol/ml to 0.6 nmol/ml (mean values) eight days after anesthesia. The present study shows differences in the pharmacokinetics of isoflurane enantiomers in man. However, it is not possible to distinguish between enantioselective distribution and enantioselective metabolism, if any.

  19. Intravenous sufentanil-midazolam versus sevoflurane anaesthesia in medetomidine pre-medicated Himalayan rabbits undergoing ovariohysterectomy.

    PubMed

    Hedenqvist, Patricia; Jensen-Waern, Marianne; Fahlman, Åsa; Hagman, Ragnvi; Edner, Anna

    2015-07-01

    To compare physiological effects of sufentanil-midazolam with sevoflurane for surgical anaesthesia in medetomidine premedicated rabbits. Prospective, randomized controlled experimental study. Eighteen female Himalayan rabbits, weight 2.1 ± 0.1 kg. Premedication with 0.1 mg kg(-1) medetomidine and 5 mg kg(-1) carprofen subcutaneously, was followed by intravenous anaesthetic induction with sufentanil (2.3 μg mL(-1)) and midazolam (0.45 mg mL(-1)). After endotracheal intubation, anaesthesia was maintained with sufentanil-midazolam (n = 9) or sevoflurane (n = 9). Ovariohysterectomy was performed. Intermittent positive pressure ventilation was performed as required. Physiological variables were studied perioperatively. Group means of physiologic data were generated for different anaesthetic periods. Data were compared for changes from sedation, and between groups by anova. Post-operatively, 0.05 mg kg(-1) buprenorphine was administered once and 5 mg kg(-1) carprofen once daily for 2-3 days. Rabbits were examined and weighed daily until one week after surgery. Smooth induction of anaesthesia was achieved within 5 minutes. Sufentanil and midazolam doses were 0.5 μg kg(-1) and 0.1 mg kg(-1), during induction and 3.9 μg kg(-1) hour(-1) and 0.8 mg kg(-1) hour(-1) during surgery, respectively. End-tidal sevoflurane concentration was 2.1% during surgery. Assisted ventilation was required in nine rabbits receiving sufentanil-midazolam and four receiving sevoflurane. There were no differences between groups in physiologic data other than arterial carbon dioxide. In rabbits receiving sevoflurane, mean arterial pressure decreased pre-surgical intervention, heart rate increased 25% during and after surgery and body weight decreased 4% post-operatively. Post-operative problems sometimes resulted from catheterization of the ear artery. Sevoflurane and sufentanil-midazolam provided surgical anaesthesia of similar quality. Arterial blood pressure was sustained during sufentanil

  20. Nitrous oxide has different effects on the EEG and somatosensory evoked potentials during isoflurane anaesthesia in patients.

    PubMed

    Porkkala, T; Jäntti, V; Kaukinen, S; Häkkinen, V

    1997-04-01

    Electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) are altered by inhalation anaesthesia. Nitrous oxide is commonly used in combination with volatile anaesthetics. We have studied the effects of nitrous oxide on both EEG and SEPs simultaneously during isoflurane burst-suppression anaesthesia. Twelve ASA I-II patients undergoing abdominal or orthopaedic surgery were anaesthetized with isoflurane by mask. After intubation and relaxation the isoflurane concentration was increased to a level at which an EEG burst-suppression pattern occurred (mean isoflurane end-tidal concentration 1.9 (SD 0.2) %. With a stable isoflurane concentration, the patients received isoflurane-air-oxygen and isoflurane-nitrous oxide-oxygen (FiO2 0.4) in a randomized cross-over manner. EEG and SEPs were simultaneously recorded before, and after wash-out or wash-in periods for nitrous oxide. The proportion of EEG suppressions as well as SEP amplitudes for cortical N20 were calculated. The proportion of EEG suppressions decreased from 53.5% to 34% (P < 0.05) when air was replaced by nitrous oxide. At the same time, the cortical N20 amplitude was reduced by 69% (P < 0.01). The results suggest that during isoflurane anaesthesia, nitrous oxide has a different effect on EEG and cortical SEP at the same time. The effects of nitrous oxide may be mediated by cortical and subcortical generators.

  1. Inhibition of MicroRNA-23 Contributes to the Isoflurane-Mediated Cardioprotection Against Oxidative Stress.

    PubMed

    Liu, Hai-Jian; Liu, Bin

    2018-04-07

    Isoflurane is one of the most frequently used volatile anesthetics in clinical practice for inhalational anesthesia. It is widely studied that isoflurane mediates cardioprotection during multiple pathological processes. However, the precise mechanisms have not been fully elucidated. Neonatal cardiomyocytes were isolated and cultured, followed by treatments with isoflurane at 0, 50, 100 or 200 µM. Rat cardiomyoblast cell line, H9c2, was treated with H 2 O 2 . Expression of miR-23 was measured by qRT-PCR. The cell survival rate of H9c2 in response to H 2 O 2 treatments was evaluated by MTT assay. The ROS and GSH/GSSG levels were measured using Superoxide Detection Kit and GSH/GSSG Ratio Detection Assay Kit. In this study, we report an isoflurane-miR-23-antioxidant axis in cardiomyocyte. We observed that miR-23 was suppressed by isoflurane treatments at 50, 100 or 200 µM. Moreover, cardiomyocyte with isoflurane exposure was insensitive to H 2 O 2 treatment in vitro. Inhibition of miR-23 protected cardiomyocyte against oxidative stress induced by H 2 O 2 treatments at 30, 60, 90 or 120 µM. In addition, overexpression of miR-23 induced ROS generation over twofolds and rendered cardiomyocyte sensitive to H 2 O 2 treatments. We demonstrate that miR-23 inhibited intracellular GSH, an antioxidant against oxidative stress. Our results reveal that with isoflurane exposure, overexpression of miR-23 rendered cardiomyocyte sensitive to H 2 O 2 treatments at 20, 30, 40, 50 µM. Pretreatments with GSH in miR-23 overexpressing cells rescued the cell death under oxidative stress. In summary, our results illustrate that the isoflurane-mediated protection of cardiomyocytes under oxidative stress is through inhibition of miR-23. This study provides an aspect for the miRNAs-modulated cardiomyocyte sensitivity to oxidative stress, contributing to the development of therapeutic agents.

  2. Anesthetic agent-specific effects on synaptic inhibition.

    PubMed

    MacIver, M Bruce

    2014-09-01

    Anesthetics enhance γ-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental, and propofol on paired-pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired-pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equieffective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Differing degrees of anesthetic effect on paired-pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all 5 anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single-pulse inhibition was enhanced by propofol, thiopental, and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired-pulse inhibition strongly, as did thiopental, but propofol, pentobarbital, and halothane were less effective. These observations support the idea that different GABA synapses use receptors with differing subunit compositions and that anesthetics exhibit differing degrees of selectivity for

  3. Sevoflurane therapy for life-threatening acute severe asthma: a case report.

    PubMed

    Ruszkai, Zoltán; Bokrétás, Gergely Péter; Bartha, Péter Töhötöm

    2014-10-01

    Acute severe asthma is a life-threatening form of bronchial constriction in which the progressively worsening airway obstruction is unresponsive to the usual appropriate bronchodilator therapy. Pathophysiological changes restrict airflow, which leads to premature closure of the airway on expiration, impaired gas exchange, and dynamic hyperinflation ("air-trapping"). Additionally, patients suffering from asthma for a prolonged period of time usually have serious comorbidities. These conditions constitute a challenge during the treatment of this disease. Therapeutic interventions are designed to reduce airway resistance and improve respiratory status. To achieve therapeutic goals, appropriate bronchodilator treatment is indispensable, and mechanical ventilation under adequate sedation may also be required. The volatile anesthetic agent, sevoflurane, meets both criteria; therefore, its use can be beneficial and should be considered. A 67-yr-old Caucasian male presented with acute life-threatening asthma provoked by an assumed upper airway infection and non-steroidal anti-inflammatory drug antipyretics, complicated by chronic atrial fibrillation and hemodynamic instability. Due to frequent premature ventricular contractions, conventional treatment was considered unsafe and discontinued, and sevoflurane inhalation was initiated via the AnaConDa (Anaesthetic Conserving Device). Symptoms of life-threatening bronchospasm resolved, and the patient's respiratory status improved within hours. Adequate sedation was also achieved without any hemodynamic adverse effects. The volatile anesthetic agent, sevoflurane, is used widely in anesthesia practice. Its utility for treatment of refractory bronchospasm has been appreciated for years; however, its administration was difficult within the environment of the intensive care unit due to the need for an anesthesia machine and a scavenging system. The introduction of the AnaConDa eliminates these obstacles and makes the use of

  4. Sevoflurane-induced isoelectric EEG and burst suppression: differential and antagonistic effect of added nitrous oxide.

    PubMed

    Niu, B; Xiao, J Y; Fang, Y; Zhou, B Y; Li, J; Cao, F; Tian, Y K; Mei, W

    2017-05-01

    The objective of this study was to investigate whether nitrous oxide influenced the ED50 of sevoflurane for induction of isoelectric electroencephalogram (ED50 isoelectric ) differently from its influence on the ED50 of sevoflurane for electroencephalogram burst suppression (ED50 burst ). In a prospective, randomised, double-blind, parallel group, up-down sequential allocation study, 77 ASA physical status 1 and 2 patients received sevoflurane induction and, after tracheal intubation, were randomly allocated to receive sevoflurane with either 40% oxygen in air (control group) or 60% nitrous oxide in oxygen mixture (nitrous group). The ED50 isoelectric in the two groups was determined using Dixon's up and down method, starting at 2.5% with 0.2% step size of end-tidal sevoflurane. The electroencephalogram was considered as isoelectric when a burst suppression ratio of 100% lasted > 1 min. The subsequent concentrations of sevoflurane administered were determined by the presence or absence of isoelectric electroencephalogram in the previous patient in the same group. The ED50 isoelectric in the nitrous group 4.08 (95%CI, 3.95-4.38)% was significantly higher than that in the control group 3.68 (95%CI, 3.50-3.78)% (p < 0.0001). The values for ED50 burst were 3.05 (95%CI, 2.66-3.90)% and 3.02 (95%CI, 3.00-3.05)% in nitrous group and control group, respectively (p = 0.52). The addition of 60% nitrous oxide increases ED50 isoelectric , but not the ED50 burst of sevoflurane. Neither result indicates an additive effect of anaesthetic agents, as might be expected, and possible reasons for this are discussed. © 2017 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.

  5. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    PubMed

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  6. A comparison of renal effects and metabolism of sevoflurane and methoxyflurane in enzyme-induced rats.

    PubMed

    Cook, T L; Beppu, W J; Hitt, B A; Kosek, J C; Mazze, R I

    1975-01-01

    Twenty-five 5-month-old male Fischer-344 rats were randomly divided into 5 groups: Group I, no anesthesia; Group II, 1.4 precent sevoflurane for 2 hours; Group III, 0.1 percent phenobarbital, ad lib, in drinking water for 7 days; followed by 1.4 percent sevoflurane for 2 hours; Group IV, 0.25 percent methoxyflurane, 1 hour; Group V, phenobarbital in water as in Group III, followed by methoxyflurane as in group IV. Pre- and postanesthetic serum and urinary osmolality, Na+, K+, urea nitrogen (BUN), inorganic fluoride (F-) levels, and 24-hour urine volume were measured. Kidney tissue was obtained for examination by light and electron microscopy. Sevoflurane was metabolized to F- to a lesser extent than was methoxyflurane; treatment with phenobarbital-sevoflurane doubled urinary F- excretion, resulting in a value similar to that seen after methoxyflurane alone. There was no functional or morphologic evidence of renal abnormalities in either group of rats anesthetized with sevoflurane. Methoxyflurane dosage was sufficiently low that renal abnormalities did not occur except in rats treated also with phenobarbital; these animals developed polyuria and the morphologic lesion typically associated with F--induced nephrotoxicity.

  7. Thiopental and halothane dose-sparing effects of magnesium sulphate in dogs.

    PubMed

    Anagnostou, Tilemahos L; Savvas, Ioannis; Kazakos, George M; Raptopoulos, Dimitris; Ververidis, Haralabos; Roubies, Nikolaos

    2008-03-01

    To evaluate the effect of pre- and intraoperatively administered magnesium sulphate (MgSO(4)) on the induction dose of thiopental and of halothane for maintenance of anaesthesia in dogs undergoing ovariohysterectomy (OHE). Prospective, double-blind, randomized, placebo-controlled study. Forty-six healthy, ASA physical status 1 dogs, scheduled for elective OHE. The dogs were randomly assigned to receive a bolus of 50 mg kg(-1) MgSO(4) intravenously (IV), just before induction of anaesthesia, followed by a constant rate infusion (CRI) of 12 mg kg(-1) hour(-1) MgSO(4) intraoperatively (group Mg, n = 27) or a placebo bolus and CRI of 0.9% sodium chloride (NaCl) (group C, n = 19), approximately 30 minutes after premedication with acepromazine (0.05 mg kg(-1), intramuscularly, IM) and carprofen (4 mg kg(-1), subcutaneously, SC). Anaesthesia was induced with thiopental administered to effect and maintained with halothane in oxygen. End-tidal halothane (ET(hal)) was adjusted to achieve adequate depth of anaesthesia. Blood samples were obtained pre- and postoperatively for measurement of total serum magnesium concentration. The mean dose of thiopental was statistically lower (p < 0.0005) and the mean standardized ET(hal) concentration and end-tidal carbon dioxide partial pressure (Pe'CO(2)) areas under the curve were statistically smaller (p < 0.0005 and 0.014 respectively) in group Mg. Postoperatively the mean total serum magnesium concentration was statistically higher than the preoperative value (p < 0.0005) in group Mg, but not in group C. Nausea, associated with the MgSO(4) bolus injection, was observed in six dogs in group Mg, two of which vomited prior to induction of anaesthesia. Magnesium sulphate administration reduced the induction dose of thiopental and ET(hal) concentration for maintenance of anaesthesia in dogs undergoing OHE. Observed side effects were nausea and vomiting.

  8. Mechanism of Interaction Between the General Anesthetic Halothane and a Model Ion Channel Protein, I: Structural Investigations via X-Ray Reflectivity from Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzalka, J.; Liu, J; Tronin, A

    2009-01-01

    We previously reported the synthesis and structural characterization of a model membrane protein comprised of an amphiphilic 4-helix bundle peptide with a hydrophobic domain based on a synthetic ion channel and a hydrophilic domain with designed cavities for binding the general anesthetic halothane. In this work, we synthesized an improved version of this halothane-binding amphiphilic peptide with only a single cavity and an otherwise identical control peptide with no such cavity, and applied x-ray reflectivity to monolayers of these peptides to probe the distribution of halothane along the length of the core of the 4-helix bundle as a function ofmore » the concentration of halothane. At the moderate concentrations achieved in this study, approximately three molecules of halothane were found to be localized within a broad symmetric unimodal distribution centered about the designed cavity. At the lowest concentration achieved, of approximately one molecule per bundle, the halothane distribution became narrower and more peaked due to a component of {approx}19Angstroms width centered about the designed cavity. At higher concentrations, approximately six to seven molecules were found to be uniformly distributed along the length of the bundle, corresponding to approximately one molecule per heptad. Monolayers of the control peptide showed only the latter behavior, namely a uniform distribution along the length of the bundle irrespective of the halothane concentration over this range. The results provide insight into the nature of such weak binding when the dissociation constant is in the mM regime, relevant for clinical applications of anesthesia. They also demonstrate the suitability of both the model system and the experimental technique for additional work on the mechanism of general anesthesia, some of it presented in the companion parts II and III under this title.« less

  9. Caudal thoracic air sac cannulation in zebra finches for isoflurane anesthesia.

    PubMed

    Nilson, Paige Crystal; Teramitsu, Ikuko; White, Stephanie Ann

    2005-04-30

    Small songbirds such as the zebra finch are commonly used for studies on the neural mechanisms that underlie vocal learning. For these studies, survival surgeries are often performed that involve animal anesthesia and stereotaxic stabilization for localization of specific brain regions. Here we describe air sac cannulation as a novel method for delivering isoflurane gas to zebra finches for anesthesia during neurosurgery. Advantages of this method include that it leaves the bird's head free for stereotaxic targeting and does not interfere with the beak clamps that are often used to position and stabilize the head. It additionally allows for the use of the inhalant anesthetic, isoflurane, which is an appealing alternative to injectable anesthetics because it provides fast, minimally stressful induction, and low subject and personnel toxicity. The use of isoflurane also prevents overdosing and lengthy postoperative recovery times.

  10. Effects of propofol and sevoflurane on isolated human umbilical arteries pre-contracted with dopamine, adrenaline and noradrenaline.

    PubMed

    Gunduz, Ergun; Arun, Oguzhan; Bagci, Sengal Taylan; Oc, Bahar; Salman, Alper; Yilmaz, Setenay Arzu; Celik, Cetin; Duman, Ates

    2015-05-01

    To assess the effects of propofol and sevoflurane on the contraction elicited by dopamine, adrenaline and noradrenaline on isolated human umbilical arteries. Umbilical arteries were cut into endothelium-denuded spiral strips and suspended in organ baths containing Krebs-Henseleit solution bubbled with O2 +CO2 mixture. Control contraction to phenylephrine (10(-5)  M) was recorded. Response curves were obtained to 10(-5)  M dopamine, 10(-5)  M adrenaline or 10(-5)  M noradrenaline. Afterwards, either cumulative propofol (10(-6)  M, 10(-5)  M and 10(-4)  M) or cumulative sevoflurane (1.2%, 2.4% and 3.6%) was added to the organ bath, and the responses were recorded. Responses are expressed percentage of phenylephrine-induced contraction (mean ± standard deviation) (P < 0.05 = significance). Propofol and sevoflurane elicited concentration-dependent relaxations in strips pre-contracted with dopamine, adrenaline and noradrenaline (P < 0.05). Highest (10(-4)  M) concentration of propofol caused significantly higher relaxation compared with the highest (3.6%) concentration of sevoflurane in the contraction elicited by dopamine. High (10(-5)  M) and highest concentrations of propofol caused significantly higher relaxation compared with the high (2.4%) and highest concentrations of sevoflurane on the contraction elicited by adrenaline. High and highest concentrations of sevoflurane caused significantly higher relaxation compared with the high and highest concentrations of propofol on the contraction elicited by noradrenaline. Dopamine, adrenaline and noradrenaline elicit contractions in human umbilical arteries, and noradrenaline causes the highest contraction. Both propofol and sevoflurane inhibit these contractions in a dose-dependent manner. Propofol caused greater relaxation in the contractions elicited by dopamine and adrenaline while sevoflurane caused greater relaxation in the contraction elicited by noradrenaline. © 2014 The Authors

  11. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory.

    PubMed

    Loepke, Andreas W; Istaphanous, George K; McAuliffe, John J; Miles, Lili; Hughes, Elizabeth A; McCann, John C; Harlow, Kathryn E; Kurth, C Dean; Williams, Michael T; Vorhees, Charles V; Danzer, Steve C

    2009-01-01

    Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice. Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials. Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco(2), lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss. Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions

  12. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    PubMed Central

    Ballesteros, Kristen A; Sikorski, Angela; Orfila, James E; Martinez, Joe L

    2012-01-01

    Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA) receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP) in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3). We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3) to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA), or 3-[(R)-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP). Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals anesthetized with isoflurane compared to those anesthetized with sodium pentobarbital. The results suggest that isoflurane may affect amplitude through activation of GABAA receptors or mechanisms important to LTP in CA3 afferent fibers. PMID:23204857

  13. Isoflurane in contrast to propofol promotes fluid extravasation during cardiopulmonary bypass in pigs.

    PubMed

    Brekke, Hege Kristin; Hammersborg, Stig Morten; Lundemoen, Steinar; Mongstad, Arve; Kvalheim, Venny Lise; Haugen, Oddbjørn; Husby, Paul

    2013-10-01

    A highly positive intraoperative fluid balance should be prevented as it negatively impacts patient outcome. Analysis of volume-kinetics has identified an increase in interstitial fluid volume after crystalloid fluid loading during isoflurane anesthesia. Isoflurane has also been associated with postoperative hypoxemia and may be associated with an increase in alveolar epithelial permeability, edema formation, and hindered oxygen exchange. In this article, the authors compare fluid extravasation rates before and during cardiopulmonary bypass (CPB) with isoflurane- versus propofol-based anesthesia. Fourteen pigs underwent 2 h of tepid CPB with propofol (P-group; n = 7) or isoflurane anesthesia (I-group; n = 7). Fluid requirements, plasma volume, colloid osmotic pressures in plasma and interstitial fluid, hematocrit levels, and total tissue water content were recorded, and fluid extravasation rates calculated. Fluid extravasation rates increased in the I-group from the pre-CPB level of 0.27 (0.13) to 0.92 (0.36) ml·kg·min, but remained essentially unchanged in the P-group with significant between-group differences during CPB (pb = 0.002). The results are supported by corresponding changes in interstitial colloid osmotic pressure and total tissue water content. During CPB, isoflurane, in contrast to propofol, significantly contributes to a general increase in fluid shifts from the intravascular to the interstitial space with edema formation and a possible negative impact on postoperative organ function.

  14. QT-RR relationships and suitable QT correction formulas for halothane-anesthetized dogs.

    PubMed

    Tabo, Mitsuyasu; Nakamura, Mikiko; Kimura, Kazuya; Ito, Shigeo

    2006-10-01

    Several QT correction (QTc) formulas have been used for assessing the QT liability of drugs. However, they are known to under- and over-correct the QT interval and tend to be specific to species and experimental conditions. The purpose of this study was to determine a suitable formula for halothane-anesthetized dogs highly sensitive to drug-induced QT interval prolongation. Twenty dogs were anesthetized with 1.5% halothane and the relationship between the QT and RR intervals were obtained by changing the heart rate under atrial pacing conditions. The QT interval was corrected for the RR interval by applying 4 published formulas (Bazett, Fridericia, Van de Water, and Matsunaga); Fridericia's formula (QTcF = QT/RR(0.33)) showed the least slope and lowest R(2) value for the linear regression of QTc intervals against RR intervals, indicating that it dissociated changes in heart rate most effectively. An optimized formula (QTcX = QT/RR(0.3879)) is defined by analysis of covariance and represents a correction algorithm superior to Fridericia's formula. For both Fridericia's and the optimized formula, QT-prolonging drugs (d,l-sotalol, astemizole) showed QTc interval prolongation. A non-QT-prolonging drug (d,l-propranolol) failed to prolong the QTc interval. In addition, drug-induced changes in QTcF and QTcX intervals were highly correlated with those of the QT interval paced at a cycle length of 500 msec. These findings suggest that Fridericia's and the optimized formula, although the optimized is a little bit better, are suitable for correcting the QT interval in halothane-anesthetized dogs and help to evaluate the potential QT prolongation of drugs with high accuracy.

  15. Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis.

    PubMed

    Fernández Del Río, R; O'Hara, M E; Pemberton, P; Whitehouse, T; Mayhew, C A

    2016-10-12

    Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether), C 3 H 2 ClF 5 O, is a commonly used inhalation anaesthetic. Using a proton transfer reaction mass spectrometer (PTR-MS) we have detected isoflurane in the breath of patients several weeks following major surgery. That isoflurane is detected in the breath of patients so long after being anaesthetised raises questions about when cognitive function has fully returned to a patient. Temporal profiles of isoflurane concentrations in breath are presented for five patients (F/M 3/2, mean age 50 years, min-max 36-58 years) who had undergone liver transplant surgery. In addition, results from a headspace analysis of isoflurane are presented so that the product ions resulting from the reactions of H 3 O + with isoflurane in PTR-MS could be easily identified in the absence of the complex chemical environment of breath. Six product ions were identified. In order of increasing m/z (using the 35 Cl isotope where appropriate) these are [Formula: see text] (m/z 51), CHFCl + (m/z 67), CF 3 CHCl + (m/z 117), C 3 F 4 OCl + (m/z 163), C 3 H 2 F 4 OCl + (m/z 165), and C 3 F 4 OCl + H 2 O (m/z 183). No protonated parent was detected. For the headspace study both clean air and CO 2 enriched clean air (4% CO 2 ) were used as buffer gases in the drift tube of the PTR-MS. The CO 2 enriched air was used to determine if exhaled breath would affect the product ion branching ratios. Importantly no significant differences were observed, and therefore for isoflurane the product ion distributions determined in a normal air mixture can be used for breath analysis. Given that PTR-MS can be operated under different reduced electric fields (E/N), the dependence of the product ion branching percentages for isoflurane on E/N (96-138 Td) are reported.

  16. Effects of butorphanol and carprofen on the minimal alveolar concentration of isoflurane in dogs.

    PubMed

    Ko, J C; Lange, D N; Mandsager, R E; Payton, M E; Bowen, C; Kamata, A; Kuo, W C

    2000-10-01

    To evaluate the effects of butorphanol and carprofen, alone and in combination, on the minimal alveolar concentration (MAC) of isoflurane in dogs. Randomized complete-block crossover study. 6 healthy adult dogs. Minimal alveolar concentration of isoflurane was determined following administration of carprofen alone, butorphanol alone, carprofen and butorphanol, and neither drug (control). Anesthesia was induced with isoflurane in oxygen, and MAC was determined by use of a tail clamp method. Three hours prior to induction of anesthesia, dogs were fed a small amount of canned food without any drugs (control) or with carprofen (2.2 mg/kg of body weight [1 mg/lb]). Following initial determination of MAC, butorphanol (0.4 mg/kg [0.18 mg/lb], i.v.) was administered, and MAC was determined again. Heart rate, respiratory rate, indirect arterial blood pressure, endtidal partial pressure of CO2, and saturation of hemoglobin with oxygen were recorded at the time MAC was determined. Mean +/- SD MAC of isoflurane following administration of butorphanol alone (1.03 +/- 0.22%) or carprofen and butorphanol (0.90 +/- 0.21%) were significantly less than the control MAC (1.28 +/- 0.14%), but MAC after administration of carprofen alone (1.20 +/- 0.13%) was not significantly different from the control value. The effects of carprofen and butorphanol on the MAC of isoflurane were additive. There were not any significant differences among treatments in regard to cardiorespiratory data. Results suggest that administration of butorphanol alone or in combination with carprofen significantly reduces the MAC of isoflurane in dogs; however, the effects of butorphanol and carprofen are additive, not synergistic.

  17. The volatile anesthetic isoflurane induces ecto-5′-nucleotidase (CD73) to protect against renal ischemia and reperfusion injury

    PubMed Central

    Kim, Mihwa; Ham, Ahrom; Kim, Joo Yun; Brown, Kevin M.; D’Agati, Vivette D.; Lee, H. Thomas

    2013-01-01

    The volatile anesthetic isoflurane protects against renal ischemia and reperfusion injury by releasing renal tubular TGF-β1. Since adenosine is a powerful cytoprotective molecule, we tested whether TGF-β1 generated by isoflurane induces renal tubular ecto-5′-nucleotidase (CD73) and adenosine to protect against renal ischemia and reperfusion injury. Isoflurane induced new CD73 synthesis and increased adenosine generation in cultured kidney proximal tubule cells and in mouse kidney. Moreover, a TGF-β1 neutralizing antibody prevented isoflurane-mediated induction of CD73 activity. Mice anesthetized with isoflurane after renal ischemia and reperfusion had significantly reduced plasma creatinine and decreased renal tubular necrosis, neutrophil infiltration and apoptosis compared to pentobarbital-anesthetized mice. Isoflurane failed to protect against renal ischemia and reperfusion injury in CD73 deficient mice, in mice pretreated with a selective CD73 inhibitor or mice treated with an adenosine receptor antagonist. The TGF-β1 neutralizing antibody or the CD73 inhibitor attenuated isoflurane-mediated protection against HK-2 cell apoptosis. Thus, isoflurane causes TGF-β1-dependent induction of renal tubular CD73 and adenosine generation to protect against renal ischemia and reperfusion injury. Modulation of this pathway may have important therapeutic implications to reduce morbidity and mortality arising from ischemic acute kidney injury. PMID:23423261

  18. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    PubMed Central

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under

  19. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study.

    PubMed

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate

  20. Effects of fentanyl on isoflurane minimum alveolar concentration in New Zealand White rabbits (Oryctolagus cuniculus).

    PubMed

    Barter, Linda S; Hawkins, Michelle G; Pypendop, Bruno H

    2015-02-01

    To determine effects of increasing plasma fentanyl concentrations on the minimum alveolar concentration (MAC) of isoflurane in rabbits. 6 adult female New Zealand White rabbits (Oryctolagus cuniculus). Rabbits were anesthetized with isoflurane in oxygen; ventilation was controlled and body temperature maintained between 38.5° and 39.5°C. Fentanyl was administered IV by use of a computer-controlled infusion system to achieve 6 target plasma concentrations. Isoflurane MAC was determined in duplicate by use of the bracketing technique with a supramaximal electrical stimulus. Blood samples were collected for measurement of plasma fentanyl concentration at each MAC determination. The MAC values were analyzed with a repeated-measures ANOVA followed by Holm-Sidak pairwise comparisons. Mean ± SD plasma fentanyl concentrations were 0 ± 0 ng/mL (baseline), 1.2 ± 0.1 ng/mL, 2.2 ± 0.3 ng/mL, 4.4 ± 0.4 ng/mL, 9.2 ± 0.4 ng/mL, 17.5 ± 2.6 ng/mL, and 36.8 ± 2.4 ng/mL. Corresponding mean values for isoflurane MAC were 1.92 ± 0.16%, 1.80 ± 0.16%, 1.60 ± 0.23%, 1.46 ± 0.22%, 1.12 ± 0.19%, 0.89 ± 0.14%, and 0.70 ± 0.15%, respectively. Isoflurane MAC for plasma fentanyl concentrations ≥ 2.2 ng/mL differed significantly from the baseline value. In 3 rabbits, excessive spontaneous movement prevented MAC determination at the highest plasma fentanyl concentration. Fentanyl reduced isoflurane MAC by approximately 60% in New Zealand White rabbits. Further studies will be needed to investigate the cardiorespiratory effects of isoflurane and fentanyl combinations in rabbits; however, fentanyl may prove to be a useful adjunct to inhalation anesthesia in this species.

  1. Role of endothelial nitric oxide synthase as a trigger and mediator of isoflurane-induced delayed preconditioning in rabbit myocardium.

    PubMed

    Chiari, Pascal C; Bienengraeber, Martin W; Weihrauch, Dorothee; Krolikowski, John G; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-07-01

    Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed

  2. Effect of low-dose atropine administration on dobutamine dose requirement in horses anesthetized with detomidine and halothane.

    PubMed

    Weil, A B; Keegan, R D; Greene, S A

    1997-12-01

    To determine whether a low dose of atropine is associated with decreased requirement for cardiovascular supportive treatment in horses given detomidine prior to maintenance of general anesthesia with halothane. 3 groups of 10 healthy horses. Detomidine (20 micrograms/kg of body weight, i.m.) was administered to all 30 horses. Then, 10 horses received atropine (0.006 mg/kg, i.v.) 1 hour after detomidine administration, 10 horses received atropine (0.012 mg/kg, i.m.) at the time of detomidine administration, and 10 horses served as a control group. Heart rate was measured prior to detomidine administration and at fixed intervals throughout anesthesia. The dobutamine infusion rate necessary to maintain mean arterial blood pressure between 70 and 80 mm of Hg was recorded. Systemic blood pressures, end-tidal halothane, end-tidal CO2, and arterial blood gas tensions were measured at fixed intervals. Mean heart rate was higher among horses receiving atropine i.v. or i.m., compared with that in control horses. Horses that received atropine i.v. had higher systemic arterial blood pressure and required a lower dobutamine infusion rate than did horses of the other groups. Detomidine-treated, halothane-anesthetized horses given atropine i.v. required less dobutamine, compared with horses receiving or not receiving atropine i.m. Complications, such as colic and dysrhythmias, from use of higher doses of atropine, were not observed at this lower dose of atropine. i.v. administration of a low dose of atropine prior to induction of general anesthesia may result in improved blood pressure in horses that have received detomidine before anesthesia with halothane.

  3. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia.

    PubMed

    Vanini, Giancarlo; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2008-12-01

    Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.

  4. Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice

    PubMed Central

    Chung, Woosuk; Yoon, Seunghwan

    2017-01-01

    Background Earlier studies have reported conflicting results regarding long-term behavioral consequences after anesthesia during the fetal period. Previous studies also suggest several factors that may explain such conflicting data. Thus, we examined the influence of age and sex on long-term behavioral consequences after multiple sevoflurane exposures during the fetal period. Methods C57BL/6J pregnant mice received oxygen with or without sevoflurane for 2 hours at gestational day (GD) 14-16. Offspring mice were subjected to behavioral assays for general activity (open field test), learning, and memory (fear chamber test) at postnatal day 30–35. Results Multiple sevoflurane exposures at GD 14–16 caused significant changes during the fear chamber test in young female offspring mice. Such changes did not occur in young male offspring mice. However, general activity was not affected in both male and female mice. Conclusions Multiple sevoflurane exposures in the second trimester of pregnancy affects learning and memory only in young female mice. Further studies focusing on diverse cognitive functions in an age-, sex-dependent manner may provide valuable insights regarding anesthesia-induced neurotoxicity. PMID:29225748

  5. Minimum alveolar concentration threshold of sevoflurane for postoperative dream recall.

    PubMed

    Aceto, P; Perilli, V; Lai, C; Sacco, T; Modesti, C; Luca, E; De Santis, P; Sollazzi, L; Antonelli, M

    2015-11-01

    Many factors affect postoperative dream recall, including patient characteristics, type of anesthesia, timing of postoperative interview and stress hormone secretion. Aims of the study were to determine whether Bispectral Index (BIS)-guided anesthesia might decrease sevoflurane minimum alveolar concentration (MAC) when compared with hemodynamically-guided anesthesia, and to search for a MAC threshold useful for preventing arousal, dream recall and implicit memory. One hundred thirty patients undergoing elective thyroidectomy were enrolled. Anesthesia was induced with propofol 2 mg kg(-1), fentanyl 3 mcg kg(-1) and cis-atracurium 0.15 mg kg(-1). For anesthesia maintenance, patients were randomly assigned to one of two groups: a BIS-guided group in which sevoflurane MAC was adjusted on the basis of BIS values, and a hemodynamic parameters (HP)-guided group in which MAC was adjusted based on HP. An auditory recording was presented to patients during anesthesia maintenance. Dream recall and explicit/implicit memory were investigated upon awakening and approximately after 24 h. Mean sevoflurane MAC during auditory presentation was similar in the two groups (0.85 ± 0.16 and 0.87 ± 0.17 [P = 0.53] in BIS-guided and HP-guided groups, respectively). Frequency of dream recall was similar in the two groups: 27% (N. = 17) in BIS-guided group, 18% (N. = 12) in HP-guided group, P = 0.37. In both groups, dream recall was less probable in patients anesthetized with MAC values ≥ 0.9 (area under ROC curve = 0.83, sensitivity = 90%, and specificity = 49%). BIS-guided anesthesia was not able to generate different MAC values compared to HP-guided anesthesia. Independent of the guide used for anesthesia, a sevoflurane MAC over 0.9 was required to prevent postoperative dream recall.

  6. Incomplete Spontaneous Recovery from Airway Obstruction During Inhaled Anesthesia Induction: A Computational Simulation.

    PubMed

    Kuo, Alexander S; Vijjeswarapu, Mary A; Philip, James H

    2016-03-01

    Inhaled induction with spontaneous respiration is a technique used for difficult airways. One of the proposed advantages is if airway patency is lost, the anesthetic agent will spontaneously redistribute until anesthetic depth is reduced and airway patency can be recovered. There are little and conflicting clinical or experimental data regarding the kinetics of this anesthetic technique. We used computer simulation to investigate this situation. We used GasMan, a computer simulation of inhaled anesthetic kinetics. For each simulation, alveolar ventilation was initiated with a set anesthetic induction concentration. When the vessel-rich group level reached the simulation specified airway obstruction threshold, alveolar ventilation was set at 0 to simulate complete airway obstruction. The time until the vessel-rich group anesthetic level decreased below the airway obstruction threshold was designated time to spontaneous recovery. We varied the parameters for each simulation, exploring the use of sevoflurane and halothane, airway obstruction threshold from 0.5 to 2 minimum alveolar concentration (MAC), anesthetic induction concentration 2 to 4 MAC sevoflurane and 4 to 6 MAC halothane, cardiac output 2.5 to 10 L/min, functional residual capacity 1.5 to 3.5 L, and relative vessel-rich group perfusion 67% to 85%. In each simulation, there were 3 general phases: anesthetic wash-in, obstruction and overshoot, and then slow redistribution. During the first 2 phases, there was a large gradient between the alveolar and vessel-rich group. Alveolar do not reflect vessel-rich group anesthetic levels until the late third phase. Time to spontaneous recovery varied between 35 and 749 seconds for sevoflurane and 13 and 222 seconds for halothane depending on the simulation parameters. Halothane had a faster time to spontaneous recovery because of the lower alveolar gradient and less overshoot of the vessel-rich group, not faster redistribution. Higher airway obstruction thresholds

  7. Anesthetic Sevoflurane Causes Neurotoxicity Differently in Neonatal Naïve and Alzheimer's Disease Transgenic Mice

    PubMed Central

    Lu, Yan; Wu, Xu; Dong, Yuanlin; Xu, Zhipeng; Zhang, Yiying; Xie, Zhongcong

    2010-01-01

    Background Recent studies have suggested that children having surgery under anesthesia could be at an increased risk for the development of learning disabilities, but whether anesthetics contribute to this learning disability is unclear. We therefore set out to assess effects of sevoflurane, the most commonly used inhalation anesthetic, on caspase activation, apoptosis, β-amyloid protein levels, and neuroinflammation in brain tissues of neonatal naïve and Alzheimer's disease (AD) transgenic mice. Methods Six-day-old naïve and AD transgenic [B6.Cg-Tg(amyloid precursor protein swe, PSEN1dE9)85Dbo/J] mice were treated with sevoflurane. The mice were euthanized at the end of the anesthesia and brain tissues were harvested, and were then subjected to Western blot, immunocytochemistry, ELISA and real-time polymerase chain reaction. Results Here we show for the first time that sevoflurane anesthesia induced caspase activation and apoptosis, altered amyloid precursor protein processing, and increased β-amyloid protein levels in the brain tissues of the neonatal mice. Furthermore, the sevoflurane anesthesia led to a greater degree of neurotoxicity in the brain tissues of the AD transgenic mice as compared to the naïve mice, and increased tumor necrosis factor-α levels only in the brain tissues of the AD transgenic mice. Finally, inositol 1,4,5-trisphosphate receptor antagonist 2-APB attenuated the sevoflurane-induced caspase-3 activation and β-amyloid protein accumulation in vivo. Conclusion These results suggest that sevoflurane may induce the neurotoxicity in neonatal mice. AD transgenic mice could be more venerable to such neurotoxicity. These findings should promote more studies to determine the potential neurotoxicity of anesthesia in animals and humans, especially in children. PMID:20460993

  8. The minimum alveolar concentration of sevoflurane in ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis).

    PubMed

    Chinnadurai, Sathya K; Williams, Cathy

    2016-01-01

    To determine the minimum alveolar concentration (MAC) of sevoflurane for ring-tailed lemurs (Lemur catta) and aye-ayes (Daubentonia madagascariensis). Prospective experimental trial. Six adult ring-tailed lemurs, aged 1.3-11.2 years (median age: 8.26) and weighing a mean ± standard deviation (SD) of 2283 ± 254 g. Five adult aye-ayes, aged 4.4-19.3 years (median age: 8.0) and weighing 2712 ± 191 g. Minimum alveolar concentration of sevoflurane was determined using a tail-clamp stimulus. The end-tidal sevoflurane (Fe'Sevo) concentration was increased or decreased by approximately 10% after a positive or negative response to tail clamping, respectively. This procedure was repeated until a positive and negative result were seen on two consecutive trials (i.e. a negative result was achieved and a single 10% decrease in Fe'Sevo concentration resulted in a positive test). The MAC for that animal was determined to be the mean of the concentrations at the two consecutive trials. The mean ± SD MAC of sevoflurane for ring-tailed lemurs was 3.48 ± 0.55% and 1.84 ± 0.17 for aye-ayes. This represents a 47.1% higher MAC in ring-tailed lemurs compared to aye-ayes. The sevoflurane MAC was significantly higher in ring-tailed lemurs, compared to aye-ayes. The MAC of sevoflurane in aye-ayes is consistent with reported MAC values in other species. Extrapolation of sevoflurane anesthetic dose between different species of lemurs could lead to significant errors in anesthetic dosing. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  9. Desflurane or isoflurane for paediatric ENT anaesthesia. A comparison of intubating conditions and recovery profile.

    PubMed

    Wilhelm, W; Berner, K; Grundmann, U; Palz, M; Larsen, R

    1998-12-01

    The inhaled anaesthetic desflurane is characterized by a rapid wash-in and wash-out and may be useful for short paediatric ENT procedures. Therefore, this study was designed to compare the effects of desflurane or isoflurane on intubating conditions and recovery characteristics in paediatric ENT patients. In this prospective, randomised investigation, we studied 44 children scheduled for ENT surgery, aged 4-12 yr and classified ASA I-II. After thiopentone induction (5-8 mg/kg) the lungs were ventilated by face mask and the vaporizer was dialed to 1 MAC (age-adapted) of desflurane of isoflurane. A reduced dose of vecuronium (0.05 mg/kg) was administered, and intubating conditions were rated 3 min later. Following tracheal intubation, 50% nitrous oxide were added, and the concentration of desflurane or isoflurane was adjusted according to clinical needs. At the end of surgery all anaesthetics were discontinued simultaneously and recovery times were recorded. Intubating conditions were rated significantly better for desflurane (excellent or good 20 of 22) than for isoflurane (12 of 22). Recovery times were significantly shorter for desflurane than for isoflurane (mean +/- SE): spontaneous ventilation 4.0 +/- 0.5 min vs. 6.0 +/- 0.7 min, extubation 8.4 +/- 0.7 vs. 11.4 +/- 1.1 min and arrival at PACU 11.5 +/- 0.8 vs. 16.6 +/- 1.5 min. No airway complications (coughing, laryngospasm, or desaturation < 97%) were noted for either anaesthetic. Following an intravenous induction improved intubating conditions, shorter recovery times and the lack of airway complications make desflurane a suitable alternative to isoflurane for paediatric ENT anaesthesia.

  10. Effects of high-dose gentamicin sulfate on neuromuscular blockade in halothane-anesthetized horses.

    PubMed

    Hague, B A; Martinez, E A; Hartsfield, S M

    1997-11-01

    To evaluate effects of a single high dose of gentamicin on neuromuscular function in horses anesthetized with halothane. 6 healthy adult horses. Halothane-anesthetized horses were positioned in left lateral recumbency, and the right hind limb was immobilized in a reusable fiberglass cast fixed to a steel frame. The hoof was attached to a force transducer, and resting tension of 0.93 +/- 0.16 kg was maintained. A supramaximal train-of-four stimulus of 2 Hz for a duration of 0.25 millisecond was applied to the superficial peroneal nerve every 20 seconds by a square-wave stimulator. The force of the evoked digital extensor tension was recorded to determine first muscle twitch tension, compared with the baseline value (T1%) and the ratio of the force of the fourth twitch to the first twitch (T4/T1). Data were recorded at 5, 10, 15, 30, and 60 minutes after i.v. administration of vehicle or gentamicin (6 mg/kg of body weight). There was a significant (P = 0.04) treatment-time interaction for the effect of gentamicin on T1%; T1% associated with vehicle decreased from 100% to 92% during the 60- minute study period, but no decrease was associated with gentamicin. For T4/T1, there was no significant effect of treatment or time or treatment-time interaction between gentamicin and vehicle. Gentamicin did not cause a decrease in initial muscular strength, nor did it impair the muscles' ability to sustain strength. A single high dose of gentamicin does not cause significant neuromuscular blockade when administered alone to healthy horses anesthetized with halothane.

  11. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway.

    PubMed

    Ma, Rong; Wang, Xiang; Peng, Peipei; Xiong, Jingwei; Dong, Hongquan; Wang, Lixia; Ding, Zhengnian

    2016-01-01

    Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α-lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long-term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α-lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α-lipoic acid, providing a promising way in the prevention and treatment of long-term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effects of carprofen and meloxicam with or without butorphanol on the minimum alveolar concentration of sevoflurane in dogs.

    PubMed

    Yamashita, Kazuto; Okano, Yoshihiko; Yamashita, Maiko; Umar, Mohammed A; Kushiro, Tokiko; Muir, William W

    2008-01-01

    Sparing effects of carprofen and meloxicam with or without butorphanol on the minimum alveolar concentration (MAC) of sevoflurane were determined in 6 dogs. Anesthesia was induced and maintained with sevoflurane in oxygen, and MAC was determined by use of a tail clamp method. The dogs were administered a subcutaneous injection of carprofen (4 mg/kg) or meloxicam (0.2 mg/kg), or no medication (control) one hour prior to induction of anesthesia. Following the initial determination of MAC, butorphanol (0.3 mg/kg) was administered intramuscularly, and MAC was determined again. The sevoflurane MACs for carprofen alone (2.10 +/- 0.26%) and meloxicam alone (2.06 +/- 0.20%) were significantly less than the control (2.39 +/- 0.26%). The sevoflurane MACs for the combination of carprofen with butorphanol (1.78 +/- 0.20%) and meloxicam with butorphanol (1.66 +/- 0.29%) were also significantly less than the control value after the administration of butorphanol (2.12 +/- 0.28%). The sevoflurane sparing effects of the combinations of carprofen with butorphanol and meloxicam with butorphanol were additive.

  13. Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats.

    PubMed

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Feng, Yunwei; Bizheva, Kostadinka; McCulloch, Daphne L; Joos, Karen M

    2017-10-01

    Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation. Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m 2 ) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation. Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p < 0.0001). The absolute interocular differences in IOP-associated enhancement of pSTR amplitudes for ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004). The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.

  14. Effect of day/night administration of three different inhalational anesthetics on melatonin levels in rats.

    PubMed

    Ocmen, Elvan; Erdost, Hale Aksu; Duru, Leyla S; Akan, Pinar; Cimrin, Dilek; Gokmen, Ali N

    2016-06-01

    The nocturnal peak of melatonin can be altered after anesthesia and surgery. We aimed to examine the melatonin levels during the day and night after anesthesia with three commonly used inhalational anesthetics. Forty-eight male Wistar albino rats were randomized into eight groups. Rats were administered anesthesia between 7:00 am and 1:00 pm (day groups) or 7:00 pm and 1:00 am (night groups) for 6 hours. At the end of the anesthesia, blood samples were collected for assessing melatonin levels. Mean values of melatonin levels after 6 hours of anesthesia during daytime were 43.17±12.95 for control, 59.79±27.83 for isoflurane, 50.75±34.28 for sevoflurane and 212.20±49.56 pg/mL for desflurane groups. The night groups' mean melatonin levels were 136.12±33.20 for control, 139.85±56.29 for isoflurane, 117.48±82.39 for sevoflurane and 128.70±44.63 pg/mL for desflurane groups. Desflurane anesthesia between 7:00 am and 1:00 pm significantly increased melatonin levels (p<0.001). Sevoflurane and desflurane anesthesia between 7:00 pm and 1:00 am decreased the melatonin levels but there were no significant differences (p=0.904 and p>0.99, respectively). Isoflurane anesthesia did not significantly change melatonin levels during day or night (p=0.718 and p>0.99, respectively). Our results demonstrate that during daytime desflurane anesthesia can alter melatonin levels. Altered melatonin rhythm following inhalational anesthesia can be related to sleep disorders observed after anesthesia. Copyright © 2016. Published by Elsevier Taiwan.

  15. A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance.

    PubMed

    Campanucci, Verónica A; Fearon, Ian M; Nurse, Colin A

    2003-05-01

    Modulation of K+ channels by hypoxia is a common O2-sensing mechanism in specialised cells. More recently, acid-sensitive TASK-like background K+ channels, which play a key role in setting the resting membrane potential, have been implicated in O2-sensing in certain cell types. Here, we report a novel O2 sensitivity mediated by a weakly pH-sensitive background K+ conductance in nitric oxide synthase (NOS)-positive neurones of the glossopharyngeal nerve (GPN). This conductance was insensitive to 30 mM TEA, 5 mM 4-aminopyridine (4-AP) and 200 microM Cd2+, but was reversibly inhibited by hypoxia (O2 tension (PO2) = 15 mmHg), 2-5 mM halothane, 10 mM barium and 1 mM quinidine. Notably, the presence of halothane occluded the inhibitory effect of hypoxia. Under current clamp, these agents depolarised GPN neurones. In contrast, arachidonic acid (5-10 microM) caused membrane hyperpolarisation and potentiation of the background K+ current. This pharmacological profile suggests the O2-sensitive conductance in GPN neurones is mediated by a class of background K+ channels different from the TASK family; it appears more closely related to the THIK (tandem pore domain halothane-inhibited K+) subfamily, or may represent a new member of the background K+ family. Since GPN neurones are thought to provide NO-mediated efferent inhibition of the carotid body (CB), these channels may contribute to the regulation of breathing during hypoxia via negative feedback control of CB function, as well as to the inhibitory effect of volatile anaesthetics (e.g. halothane) on respiration.

  16. [The effect of isoflurane on the secretion of TNF-alpha and IL-1 beta from LPS-stimulated human peripheral blood monocytes].

    PubMed

    Sato, W; Enzan, K; Masaki, Y; Kayaba, M; Suzuki, M

    1995-07-01

    The cytokines such as tumor necrosis factor and interleukin-1 secreted from macrophages/monocytes proved to play important roles in the pathogenesis of endotoxemia, severe pancreatitis and other surgical injuries. However, it is still unclear how inhalational anesthetic agents influence the secretion of these cytokines from macrophages/monocytes. We investigated the effects of isoflurane on TNF-alpha and IL-1 beta secretions from human peripheral blood monocytes stimulated by lipopolysaccharide. TNF-alpha and IL-1 beta secretions increased after LPS stimulation and this increase was inhibited by isoflurane in dose-dependent fashion. The inhibitory action of isoflurane disappeared between 1 and 3 hours after stopping isoflurane inhalation. We concluded that isoflurane could inhibit TNF-alpha and IL-1 beta secretions from peripheral blood monocytes stimulated by LPS in a dose-dependent fashion and that the inhibitory action of isoflurane was reversible.

  17. Effects of nitrous oxide on the production of cytokines and chemokines by the airway epithelium during anesthesia with sevoflurane and propofol.

    PubMed

    Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao

    2013-12-01

    The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.

  18. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta.

    PubMed

    Feng, Jianhua; Lucchinetti, Eliana; Ahuja, Preeti; Pasch, Thomas; Perriard, Jean-Claude; Zaugg, Michael

    2005-11-01

    Postischemic administration of volatile anesthetics activates reperfusion injury salvage kinases and decreases myocardial damage. However, the mechanisms underlying anesthetic postconditioning are unclear. Isolated perfused rat hearts were exposed to 40 min of ischemia followed by 1 h of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane (1.5 minimum alveolar concentration) administered at the onset of reperfusion. In some experiments, atractyloside (10 microm), a mitochondrial permeability transition pore (mPTP) opener, and LY294002 (15 microm), a phosphatidylinositol 3-kinase inhibitor, were coadministered with isoflurane. Western blot analysis was used to determine phosphorylation of protein kinase B/Akt and its downstream target glycogen synthase kinase 3beta after 15 min of reperfusion. Myocardial tissue content of nicotinamide adenine dinucleotide served as a marker for mPTP opening. Accumulation of MitoTracker Red 580 (Molecular Probes, Invitrogen, Basel, Switzerland) was used to visualize mitochondrial function. Anesthetic postconditioning significantly improved functional recovery and decreased infarct size (36 +/- 1% in unprotected hearts vs. 3 +/- 2% in anesthetic postconditioning; P < 0.05). Isoflurane-mediated protection was abolished by atractyloside and LY294002. LY294002 inhibited isoflurane-induced phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta and opened mPTP as determined by nicotinamide adenine dinucleotide measurements. Atractyloside, a direct opener of the mPTP, did not inhibit phosphorylation of protein kinase B/Akt and glycogen synthase kinase 3beta by isoflurane but reversed isoflurane-mediated cytoprotection. Microscopy showed accumulation of the mitochondrial tracker in isoflurane-protected functional mitochondria but no staining in mitochondria of unprotected hearts. Anesthetic postconditioning by isoflurane effectively protects against reperfusion damage by preventing

  19. The effect of pre- and after-treatment of sevoflurane on central ischemia tolerance and the underlying mechanisms

    PubMed Central

    2018-01-01

    In recent years, with continuous research efforts targeted at studying the effects of pre- and after-treatment of inhaled anesthetics, significant progress has been made regarding the common clinical use of low concentrations of inhaled sevoflurane and its effect on induced central ischemia tolerance by pre- and post-treatment. In this study, we collected, analyzed, classified, and summarized recent literature regarding the effect of sevoflurane on central ischemia tolerance and its related mechanisms. In addition, we provide a theoretical basis for the clinical application of sevoflurane to protect the central nervous system and other important organs against ischemic injury. PMID:29556553

  20. Breakdown of local information processing may underlie isoflurane anesthesia effects.

    PubMed

    Wollstadt, Patricia; Sellers, Kristin K; Rudelt, Lucas; Priesemann, Viola; Hutt, Axel; Fröhlich, Flavio; Wibral, Michael

    2017-06-01

    The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source-such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)-as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy-suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information

  1. Breakdown of local information processing may underlie isoflurane anesthesia effects

    PubMed Central

    Sellers, Kristin K.; Priesemann, Viola; Hutt, Axel

    2017-01-01

    The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source—such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)—as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy—suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in

  2. Low-dose sevoflurane promotes hippocampal neurogenesis and facilitates the development of dentate gyrus-dependent learning in neonatal rats.

    PubMed

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru; Wang, Ying-Wei

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4-6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. © The Author(s) 2015.

  3. Dose-dependent effects of the clinical anesthetic isoflurane on Octopus vulgaris: a contribution to cephalopod welfare.

    PubMed

    Polese, Gianluca; Winlow, William; Di Cosmo, Anna

    2014-12-01

    Recent progress in animal welfare legislation relating to invertebrates has provoked interest in methods for the anesthesia of cephalopods, for which different approaches to anesthesia have been tried but in most cases without truly anesthetizing the animals. For example, several workers have used muscle relaxants or hypothermia as forms of "anesthesia." Several inhalational anesthetics are known to act in a dose-dependent manner on the great pond snail Lymnaea stagnalis, a pulmonate mollusk. Here we report, for the first time, on the effects of clinical doses of the well-known inhalational clinical anesthetic isoflurane on the behavioral responses of the common octopus Octopus vulgaris. In each experiment, isoflurane was equilibrated into a well-aerated seawater bath containing a single adult O. vulgaris. Using a web camera, we recorded each animal's response to touch stimuli eliciting withdrawal of the arms and siphon and observed changes in the respiratory rate and the chromatophore pattern over time (before, during, and after application of the anesthetic). We found that different animals of the same size responded with similar behavioral changes as the isoflurane concentration was gradually increased. After gradual application of 2% isoflurane for a maximum of 5 min (at which time all the responses indicated deep anesthesia), the animals recovered within 45-60 min in fresh aerated seawater. Based on previous findings in gastropods, we believe that the process of anesthesia induced by isoflurane is similar to that previously observed in Lymnaea. In this study we showed that isoflurane is a good, reversible anesthetic for O. vulgaris, and we developed a method for its use.

  4. Anesthetic Agent-Specific Effects on Synaptic Inhibition

    PubMed Central

    MacIver, M. Bruce

    2014-01-01

    Background Anesthetics enhance gamma-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental and propofol on paired pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Methods Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equi-effective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Results Differing degrees of anesthetic effect on paired pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all five anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single pulse inhibition was enhanced by propofol, thiopental and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired pulse inhibition strongly, as did thiopental, but propofol, pentobarbital and halothane were less effective. Conclusions These observations support the idea that different GABA synapses use receptors with differing subunit compositions, and that anesthetics

  5. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats.

    PubMed

    Chen, Lin; Xie, Wenji; Xie, Wenqin; Zhuang, Weiqiang; Jiang, Changcheng; Liu, Naizhen

    2017-11-01

    Post operational cognitive dysfunction (POCD) occurs in patients after anesthesia and surgery. Abnormal histone acetylation and neuroinflammation are key factors in the pathogenesis of cognitive impairment. Apigenin not only has an anti-inflammatory activity but also modifies histone acetylation. We aimed to investigate whether apigenin can attenuate isoflurane exposure-induced cognitive decline by regulating histone acetylation and inflammatory signaling. Spatial learning and memory were assessed by Morris water maze test. Levels of histone acetylation, BDNF and downstream signaling, and inflammatory components were analyzed. Isoflurane exposure in aged rats lead to impaired spatial learning and memory. These rats exhibited dysregulated histone H3K9 and H4K12 acetylation, which was accompanied by reduced BDNF expression and suppressed BDNF downstream signaling pathway. Apigenin restored histone acetylation and BDNF signaling. Apigenin also suppressed isoflurane exposure induced upregulation of proinflammatory cytokines and NFκB signaling pathway. Memory impairment induced by isoflurane exposure is associated with dysregulated histone acetylation in the hippocampus, which affects BDNF expression and hence BDNF downstream signaling pathway. Apigenin recovers cognitive function by restoring histone acetylation and suppressing neuroinflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluating methods of mouse euthanasia on the oocyte quality: cervical dislocation versus isoflurane inhalation.

    PubMed

    Roustan, Audrey; Perrin, Jeanne; Berthelot-Ricou, Anaïs; Lopez, Erica; Botta, Alain; Courbiere, Blandine

    2012-04-01

    Cervical dislocation is a commonly used method of mouse euthanasia. Euthanasia by isoflurane inhalation is an alternative method which allows the sacrifice of several mice at the same time with an anaesthesia, in the aim to decrease pain and animal distress. The objective of our study was to assess the impact of these two methods of euthanasia on the quality of mouse oocytes. By administering gonadotropins, we induced a superovulation in CD1 female mice. Mice were randomly assigned to euthanasia with cervical dislocation and isoflurane inhalation. Oviducts were collected and excised to retrieve metaphase II oocytes. After microscopic examination, oocytes were classified into three groups: intact, fragmented/cleaved and atretic. Intact metaphase II oocytes were employed for biomedical research. A total of 1442 oocytes in the cervical dislocation group were compared with 1230 oocytes in the isoflurane group. In the cervical dislocation group, 93.1% of the oocytes were intact, versus 65.8% in the isoflurane group (P ≤ 0.001). In light of these results, we conclude that cervical dislocation is the best method of mouse euthanasia for obtaining intact oocytes for biomedical research.

  7. Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice.

    PubMed

    Jiang, Shan; Miao, Bei; Chen, Ying

    2017-05-03

    Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.

  8. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    PubMed

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  9. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain

    PubMed Central

    2016-01-01

    Abstract What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli (‘frequency tags’) allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain. PMID:27517084

  10. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain.

    PubMed

    Cohen, Dror; Zalucki, Oressia H; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2016-01-01

    What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli ('frequency tags') allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain.

  11. Anesthesia maintenance with 'induction dose only' sevoflurane during pediatric ophthalmic examination: comparison with standard low-flow technique through a randomized controlled trial.

    PubMed

    Datta, Priyankar K; Sinha, Renu; Ray, Bikash Ranjan; Jambunathan, Venkateswaran; Kundu, Riddhi

    2017-02-01

    Sevoflurane is preferred for pediatric day care procedures. However, financial and environmental costs remain major limitations. Induction dose of sevoflurane could itself be sufficient for maintaining anesthesia with low fresh gas flow during short noninvasive procedures. Fifty children, aged 1-5 years, scheduled for ophthalmic examination under anesthesia, were randomized into two groups. All children were induced with 8% sevoflurane in O 2 : N 2 O (40 : 60). In the Group S, anesthesia was maintained with 2% sevoflurane at 1 l·min -1 fresh gas flow [O 2 : N 2 O = 50 : 50]. In Group L, the sevoflurane vaporizer was turned off and fresh gas flow was reduced to 0.5 l·min -1 [O 2 : N 2 O = 50 : 50]. HR, BP, MAC, BIS, total sevoflurane consumption, ocular deviation, body movement, time to laryngeal mask airway removal (T WO ), and airway complications were compared between the groups. Rescue propofol bolus was used, if needed. Median duration of examination was 14 min (IQR = 9-17) in Group S and 15 min (IQR = 10-17) in Group L. Sevoflurane consumption was lower in the Group L (7 ml) compared to Group S (9 ml) [median difference = 2 ml, P < 0.001, 95% CI = 0.96-3.04]. T WO was lower in Group L (86 s) compared to Group S (131 s) [median difference = 45 s, P = 0.002, 95% CI = 19.85-70.15]. There was no difference in hemodynamic parameters, incidence of ocular deviation, movement or airway complications, and need for rescue propofol. Induction dose of sevoflurane is, in itself, adequate for maintaining anesthesia for short noninvasive ophthalmic examinations lasting approximately 15 min. This method significantly reduces sevoflurane consumption and cost. © 2016 John Wiley & Sons Ltd.

  12. Isoflurane anesthesia results in reversible ultrastructure and occludin tight junction protein expression changes in hippocampal blood-brain barrier in aged rats.

    PubMed

    Cao, Yiyun; Ni, Cheng; Li, Zhengqian; Li, Lunxu; Liu, Yajie; Wang, Chunyi; Zhong, Yanfeng; Cui, Dehua; Guo, Xiangyang

    2015-02-05

    The underlying mechanism of isoflurane-induced cognitive dysfunction in older individuals is unknown. In this study, the effects of isoflurane exposure on the hippocampal blood-brain barrier (BBB) in aged rats were investigated because it was previously shown that BBB disruption involves in cognitive dysfunction. Twenty-month-old rats randomly received 1.5% isoflurane or vehicle gas as control. Hippocampal BBB ultrastructure was analyzed by transmission electron microscopy and expression of tight junction proteins was measured by western blot analysis. BBB permeability was detected with sodium fluorescein extravasation and further confirmed by immunoglobulin G immunohistochemistry. Spatial learning and memory were assessed by the Morris water maze test. Isoflurane anesthesia resulted in reversible time-dependent BBB ultrastructure morphological damage and significant decreases in expression of the tight junction proteins occludin, which contributed to sodium fluorescein and IgG leakage. Rats with isoflurane exposure also showed significant cognitive deficits in the Morris water maze test. This in vivo data indicate that occludin down-regulation may be one of the mediators of isoflurane-induced hippocampus BBB disruption, and may contribute to hippocampus-dependent cognitive impairment after isoflurane exposure in aged rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.

    PubMed

    Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C

    2016-12-01

    Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.

  14. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels.

    PubMed

    Accorsi, Antonio; Valenti, Simona; Barbieri, Anna; Raffi, Giovanni Battista; Violante, Francesco Saverio

    2003-03-01

    Assessment of individual exposures to sevoflurane plus nitrous oxide (N(2)O) by biological monitoring of unmodified analytes in post-shift urine of exposed personnel. Anaesthetics in urine and breathing area were monitored in 124 subjects in 11 operating theatres. Passive samplers were collected after 2.5-7 h of exposure, at the same time as post-shift urinary samples, to evaluate the individual time-weighted average (TWA) exposures to sevoflurane and N(2)O. A static headspace sampler coupled with a gas chromatograph mass spectrometer was used for analytical determinations (sensitivity sufficient to reveal biological/environmental exposures of 0.1 microg/l(urine) and 50 ppb for sevoflurane, and 1 microg/l(urine) and 80 ppb for N(2)O). Median (range) post-shift urinary and environmental values were 1.2 microg/l(urine) (0.1-5.0) and 0.4 ppm (0.05-3.0) for sevoflurane ( n=107) and 10.9 microg/l(urine) (0.5-74.9) and 8.6 ppm (0.2-123.4) for N(2)O ( n=121) (all low-exposure range). At log-log regression, urinary levels closely correlated with environmental data (sevoflurane, r(2)=0.7538; N(2)O, r(2)=0.8749). Biological equivalent limits (BELs) based on National Institute for Occupational Safety and Health (NIOSH) TWA exposure limits, calculated as means of regression slope and y-intercept, were 3.6 microg/l(urine) for sevoflurane (corresponding to 2 ppm) and 22.3 microg/l(urine) for N(2)O (corresponding to 25 ppm). Individual "mixture BELs", which we calculated by applying the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) mix formula to biomarker values and using the obtained NIOSH-based BELs as a reference, closely correlated with mixture TLVs (rho=0.816, Lin's concordance test). CONCLUSIONS. We propose urinary sevoflurane as a new, specific, internal dose biomarker for routine biological monitoring of personal exposures among operating-theatre personnel, and use of reliable "mixture BELs" to provide safer levels of

  15. Comparison of adenosine, isoflurane, and desflurane on myocardial tissue oxygen pressure during coronary artery constriction in dogs.

    PubMed

    Hoffman, William E; Albrecht, Ronald F; Jonjev, Zivojin S

    2003-08-01

    To compare adenosine-, isoflurane-, or desflurane-induced hypotension with and without left anterior descending (LAD) coronary artery constriction for the effects on myocardial tissue oxygen pressure (PmO(2)) in dogs. Prospective, randomized, nonblinded. University teaching hospital. Male nonpurpose-bred dogs (n = 18). Dogs were anesthetized with 1.5% isoflurane (n = 12) or 8% desflurane (n = 6). A flow probe and balloon occluder were placed on the LAD artery. A probe that measured myocardial oxygen pressure was inserted into the middle myocardium in the LAD region. Myocardial oxygen consumption (MVO(2)) was calculated as LAD flow x arterial minus coronary sinus oxygen content. Measures were made during hypotension produced by adenosine infusion, 2.8% isoflurane, or 14% desflurane with and without LAD constriction to decrease blood flow 30%. Without LAD artery constriction, adenosine infusion increased LAD flow 90% and MVO(2) 70%, 2.8% isoflurane produced no change in MVO(2), and 14% desflurane decreased MVO(2) 25%, but no treatment changed PmO(2). LAD artery constriction decreased PmO(2) 50% by itself. Adenosine infusion during LAD constriction decreased tissue oxygen pressure an additional 60%, 2.8% isoflurane produced no change, and 14% desflurane increased PmO(2) 100%. There was an inverse relationship between the effect of adenosine, 2.8% isoflurane, and 14% desflurane on MVO(2) and PmO(2) during ischemia. This is consistent with reports that increasing oxygen demand worsens myocardial ischemia.

  16. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    PubMed

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    PubMed

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  18. Role of GSK-3β in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats.

    PubMed

    Li, Shi-yong; Chen, Xin; Chen, Ye-ling; Tan, Lei; Zhao, Yi-lin; Wang, Jin-tao; Xiang, Qiang; Luo, Ai-lin

    2013-08-01

    This study investigated the role of glycogen synthase kinase-3β (GSK-3β) in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats. The hippocampi were dissected from aged rats which had been intraperitoneally administered lithium chloride (LiCl, 100 mg/kg) and then exposed to 1.4% isoflurane for 6 h. The expression of GSK-3β was detected by Western blotting. The mRNA and protein expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Morris water maze was employed to detect spatial memory ability of rats. The results revealed that the level of GSK-3β was upregulated after isofurane exposure. Real-time PCR analysis demonstrated that isoflurane anesthesia increased mRNA levels of TNF-α, IL-1β and IL-6, which was consistent with the ELISA results. However, these changes were reversed by prophylactic LiCl, a non-selective inhibitor of GSK-3β. Additionally, we discovered that LiCl alleviated isoflurane-induced cognitive impairment in aged rats. Furthermore, the role of GSK-3β in isoflurae-induced neuroinflammation and cognitive dysfunction was associated with acetylation of NF-κB p65 (Lys310). In conclusion, these results suggested that GSK-3β is associated with isoflurane-induced upregulation of proinflammatory cytokines and cognitive disorder in aged rats.

  19. Different effects of propofol and isoflurane on cochlear blood flow and hearing function in Guinea pigs.

    PubMed

    Xiao, Ying; Wen, Jian; Bai, Yanxia; Duan, Na; Jing, G X

    2014-01-01

    To investigate the effects of isoflurane and propofol on mean arterial pressure (MAP), cochlear blood flow (CoBF), distortion-product otoacoustic emission (DPOAE), and the ultrastructure of outer hair cells (OHCs) in guinea pig cochleae. Forty-eight male guinea pigs were randomly assigned to one of six treatment groups. Groups 1 to 3 were infused (i.v.) with a loading dose of propofol (5 mg/kg) for 5 min and three maintenance doses (10, 20, or 40 mg kg-1·h-1, respectively) for 115 min. Groups 4 to 6 were inhaled with isoflurane at concentrations of 1.15 vol%, 2.30 vol% or 3.45 vol% respectively for 120 min. CoBF and MAP were recorded prior to and at 5 min intervals during drug administration. DPOAE was measured before, immediately after, and 1 h after administration. Following the final DPOAE test, cochleae were examined using scanning electron microscopy. Propofol treatment reduced MAP in a dose-dependent manner. CoBF and DPOAE showed increases at propofol maintenance doses of 10 and 20 mg kg-1·h-1. Inhalation of isoflurane at concentrations of 2.30 vol% and 3.45 vol% reduced MAP and CoBF. DPOAE amplitude increased following inhalation of 1.15 vol% isoflurane, but decreased following inhalations of 2.30 vol% and 3.45 vol%. Cochlear structure was changed following inhalation of either 2.30 vol% or 3.45 vol% isoflurane. Propofol could decrease MAP and increase both CoBF and DPOAE without affecting OHC structure. Inhalation of isoflurane at concentrations >2.30 vol% decreased CoBF and DPOAE, and produced injury to OHCs.

  20. Comparison of Effects of Low-Flow Sevoflurane and Low-Flow Desflurane Anaesthesia on Renal Functions Using Cystatin C

    PubMed Central

    Duymaz, Gökçen; Yağar, Seyhan; Özgök, Ayşegül

    2017-01-01

    Objective Numerous studies have indicated nephrotoxic effects of sevoflurane because of its two bioproducts compound A and fluoride. Cystatin C (CyC) is a more sensitive biomarker than creatinine to show early and mild changes in kidney function. We designed this prospective randomised study to compare the effects of low-flow sevoflurane anaesthesia and low-flow desflurane anaesthesia on renal functions based on CyC levels. No studies have evaluated the effects of low-flow sevoflurane anaesthesia on renal functions based on CyC levels to date. Methods Thirty American Society of Anesthesiologists (ASA) physical status I–II patients who were scheduled for urological procedures were enrolled in this study. The patients were randomly assigned to 2 groups: low-flow sevoflurane anaesthesia or low-flow desflurane anaesthesia. Serum urea, creatinine and CyC levels were measured before the operation, just before extubation and 24 h after the operation. Creatinine clearance was calculated in the first 24-h urine sample. Results There were no significant differences in serum urea, creatinine and CyC levels or 24 h creatinine clearance between the groups. Conclusion Our study demonstrates with a more sensitive biomarker, CyC, that low-flow sevoflurane anaesthesia is safe in terms of the effects on renal function. PMID:28439441

  1. Partial Nephrogenic Diabetes Insipidus in a Burned Patient Receiving Sevoflurane Sedation With an Anesthetic Conserving Device-A Case Report.

    PubMed

    Muyldermans, Marie; Jennes, Serge; Morrison, Stuart; Soete, Olivier; François, Pierre-Michel; Keersebilck, Elkana; Rose, Thomas; Pantet, Olivier

    2016-12-01

    To describe a case of partial nephrogenic diabetes insipidus in a burned patient after prolonged delivery of low inspired concentrations of sevoflurane via an Anesthetic Conserving Device. Clinical observation. Case report. Relevant clinical information. A 34-year-old man was admitted with burns covering 52% of his total body surface area. Mechanical ventilation was provided during sedation with continuous infusions of sufentanil and midazolam. Sedation became increasingly difficult, and in order to limit administration of IV agents, sevoflurane was added to the inspiratory gas flow. This was provided using an Anesthetic Conserving Device and continued for 8 days. The patient rapidly developed polyuria and hypernatremia with an inappropriate decrease in urinary osmolality. Administration of desmopressin resulted in only a modest effect on renal concentrating ability. After cessation of sevoflurane, all variables returned to normal within 5 days. The results of further investigations (cerebral computed tomographic scan, cerebral magnetic resonance imaging, and serum arginine vasopressin concentration) were compatible with a diagnosis of partial nephrogenic diabetes insipidus. The temporal sequence of clinical findings in relation to sevoflurane administration suggests that the sevoflurane was the probable underlying cause. Clinicians should be aware of the possibility of sevoflurane-induced diabetes insipidus not only during general anesthesia but also in the intensive care setting of sedation in critically ill patients. This is especially important in patients, such as those with severe burns, in whom preserved renal concentrating ability is important to ensure compensation for extrarenal fluid losses.

  2. Optimal dose of rocuronium bromide undergoing adenotonsillectomy under 5% sevoflurane with fentanyl.

    PubMed

    Huh, Hyub; Park, Jeong Jun; Kim, Ji Yeong; Kim, Tae Hoon; Yoon, Seung Zhoo; Shin, Hye Won; Lee, Hye-Won; Lim, Hye-Ja; Cho, Jang Eun

    2017-10-01

    Adenotonsillectomy is a short surgical procedure under general anaesthesia in children. An ideal muscle relaxant for adenotonsillectomy would create an intense neuromuscular block while having a quick recovery time without postoperative morbidity. We compared the effect of different doses of rocuronium for the tracheal intubation in children under 5% sevoflurane and fentanyl. 75 children (aged 3-10 years, ASA I) scheduled for adenotonsillectomy were enrolled. Anaesthesia was induced with propofol 2.5 mg/kg, followed by fentanyl 2 μg/kg. After mask ventilation with 5 vol% sevoflurane in 100% oxygen for 2 min, 2 ml of study drug was administered intravenously, i.e., either normal saline (S Group) or one of two doses (0.15 or 0.3 mg/kg) of rocuronium. We assessed conditions during tracheal intubation and also recorded the surgical condition, the time from discontinuation of sevoflurane to extubation and PAED scale, pain scores in PACU. Rocuronium groups (96% and 100%, respectively; P < 0.01) showed statistically superior clinically acceptable intubating conditions than the saline group (72%). The 0.3 mg/kg rocuronium (80%) treatment clearly resulted in excellent intubating conditions compared with the 0.15 mg/kg group (44%; p = 0.028). There was no significant difference in the time to extubation and surgical condition, and in the postoperative measures of emergence delirium, pain, and recovery time among the three groups. A dose of 0.3 mg/kg rocuronium may provide optimal intubating conditions without delayed recovery in 5% sevoflurane anaesthesia with fentanyl in children undergoing adenotonsillectomy. NCT02467595. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Incubation temperature effects on physical characteristics of normal, dark, firm and dry, and halothane-carrier pork longissimus.

    PubMed

    McCaw, J; Ellis, M; Brewer, M S; McKeith, F K

    1997-06-01

    Pigs (n = 18) were selected to represent three different muscle conditions (six pigs per condition): normal: dark, firm, and dry; and halothane carrier. A 45-cm-long longissimus section was excised from each side of the carcass at 30 min postmortem and cut into six sections. Right side sections were assigned to the intermediate temperature incubation (23 degrees C), and left side sections were designated high temperature incubation (40 degrees C). Sections were randomly assigned to incubation times (0, 1, 2, 4, 6, or 8 h). The 0 h section from each incubation treatment was designated as a control and was placed directly into a 4 degree C cooler. Temperature and pH were evaluated on the control section and for each loin section a the end of the incubation time. Color (L*, a*, and b* values), percentage of purge loss, water-holding capacity, and drip loss were determined. Incubation treatment did not alter pH decline in dark, firm, and dry muscle; however, high temperature increased pH decline in normal and halothane carrier samples. Results suggest that there is a strong interaction between pH and temperature that affects pork quality attributes. High incubation temperature had a negative effect on most quality variables; however, muscle condition (normal or halothane carrier) had limited effects on muscle quality.

  4. Survey of the sevoflurane sedation status in one provincial dental clinic center for the disabled.

    PubMed

    Park, Chang-Hyun; Kim, Seungoh

    2016-12-01

    Sevoflurane sedation in pediatric and disabled patients has the advantage of faster induction and recovery compared to general anesthesia, as well as minimum influence on the respiratory and cardiovascular functions, and airway protective reflexes. This study aimed to evaluate the clinical efficacy of sevoflurane sedation used in dental treatment at one provincial dental clinic center for the disabled. We investigated patients' gender, age, reasons for undergoing sedation, medication history prior to treatment, duration of anesthesia, treatment length, type of treatment, and yearly patterns, for 387 cases of dental treatment performed using sevoflurane sedation from January 2013 to October 2016. We analyzed 387 cases (215 male patients, 172 female patients). Male patients aged 20 year or older accounted for 39.0% of all patients, marking the highest proportion. Patient's lack of cooperation was the most common reason for performing dental sedation. Prosthetic treatment was the most frequently practiced, accounting for 174 treatment cases. The mean lengths of the entire treatment and of the dental procedure were 55.2 min and 39.8 min, respectively. Sevoflurane sedation has the advantage of fast anesthesia induction and recovery compared to general anesthesia; therefore, it can be used efficiently to induce anesthesia in pediatric and disabled patients during short dental procedures, enabling stable treatment of these patients.

  5. A possible molecular mechanism for the pressure reversal of general anaesthetics: Aggregation of halothane in POPC bilayers at high pressure

    NASA Astrophysics Data System (ADS)

    Tu, K. M.; Matubayasi, N.; Liang, K. K.; Todorov, I. T.; Chan, S. L.; Chau, P.-L.

    2012-08-01

    We placed halothane, a general anaesthetic, inside palmitoyloleoylphosphatidylcholine (POPC) bilayers and performed molecular dynamics simulations at atmospheric and raised pressures. We demonstrated that halothane aggregated inside POPC membranes at 20 MPa but not at 40 MPa. The pressure range of aggregation matches that of pressure reversal in whole animals, and strongly suggests that this could be the mechanism for this effect. Combining these results with previous experimental data, we describe a testable hypothesis of how aggregation of general anaesthetics at high pressure can lead to pressure reversal, the effect whereby these drugs lose the efficacy at high pressure.

  6. Effect of fentanyl target-controlled infusions on isoflurane minimum anaesthetic concentration and cardiovascular function in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Pavez, Juan C; Hawkins, Michelle G; Pascoe, Peter J; Knych, Heather K DiMaio; Kass, Philip H

    2011-07-01

    To determine the impact of three different target plasma concentrations of fentanyl on the minimum anaesthetic concentration (MAC) for isoflurane in the red-tailed hawk and the effects on the haemodynamic profile. Experimental study. Six healthy adult red-tailed hawks (Buteo jamaicensis) of unknown sex with body weights (mean ± SD) of 1.21 ± 0.15 kg. This study was undertaken in two phases. In the first phase anaesthesia was induced with isoflurane in oxygen via facemask and maintained with isoflurane delivered in oxygen via a Bain circuit. Following instrumentation baseline determination of the MAC for isoflurane was made for each animal using the bracketing method and a supramaximal electrical stimulus. End-tidal isoflurane concentration (E'Iso) was then set at 0.75 × MAC and after an appropriate equilibration period a bolus of fentanyl (20 μg kg(-1)) was administered intravenously (IV) in order to determine the pharmacokinetics of fentanyl in the isoflurane-anaesthetized red-tailed hawk. During the second phase anaesthesia was induced in a similar manner and E'Iso was set at 0.75 × MAC for each individual. Fentanyl was infused IV to achieve target plasma concentrations between 8 and 32 ng mL(-1). At each fentanyl plasma concentration, the MAC for isoflurane and cardiovascular variables were determined. Data were analyzed by use of repeated-measures anova. Mean ± SD fentanyl plasma concentrations and isoflurane MACs were 0 ± 0, 8.51 ± 4, 14.85 ± 4.82 and 29.25 ± 11.52 ng mL(-1), and 2.05 ± 0.45%, 1.42 ± 0.53%, 1.14 ± 0.31% and 0.93 ± 0.32% for the target concentrations of 0, 8, 16 and 32 ng mL(-1), respectively. At these concentrations fentanyl significantly (p = 0.0016) decreased isoflurane MAC by 31%, 44% and 55%, respectively. Dose had no significant effect on heart rate, systolic, diastolic or mean arterial blood pressure. Fentanyl produced a dose-related decrease of isoflurane MAC with minimal effects on measured cardiovascular parameters in

  7. [Inductions and intubating conditions with sevoflurane and different doses of remifentanil without muscle relaxant in children].

    PubMed

    Wei, Ling-Xin; Deng, Xiao-Ming; Liu, Ju-Hui; Luo, Mao-Ping; Tong, Shi-Yi; Zhang, Yan-Ming; Liao, Xu; Xu, Kun-Lin

    2008-12-01

    To observe the clinical effectiveness of inductions and tracheal intubating conditions with 3% sevoflurane and different doses of remifentanil without muscle relaxant in children. Totally 120 peadiatric patients (aged 4-10 years, American Society of Anesthesiologists grade I for inhalational induction) were randomly allocated into group I (remifentanil 1 microg/kg), group II (remifentanil 2 microg/kg), group III (remifentanil 3 microg/kg), and control group (vecuronium bromide 0.1 mg/kg). After inhalational induction with 3% sevoflurane and 60% nitrous oxide in 40% oxygen for 2 minutes, remifentanil 1 microg/kg, 2 microg/ kg, and 3 microg/kg were intravenously injected over 1 minute into patients in group I , group II, and group III, respectively. After remifentanil administration and manual ventilation for 1 minute, the trachea was intubated. In the control group, 2 minutes after intravenous administration of vecuronium bromide 0.1 mg/kg, tracheal intubation was attempted. Agitation, intubating satisfactoriness, and the circulation changes after tracheal intubation and anesthesia induction were observed. In these four groups, agitation occurred in 37.5% of patients during sevoflurane induction. Satisfactory intubation rate was 70.0% in group I, 86.7% in group II, 90.0% in group III, and 93.3% in the control group. Compared with the control group, the impact of tracheal intubation on the circulatory system was smaller in group I , II , and III. Induction with 3% sevoflurane combined with remifentanil can be smoothly performed, followed by the successful tracheal intubation. The intubating conditions are more satisfactory with 3% sevoflurane combined with remifentanil 2 microg/kg or 3 microg/kg.

  8. How water interacts with halogenated anesthetics: the rotational spectrum of isoflurane-water.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Vallejo-López, Montserrat; Spada, Lorenzo; Lesarri, Alberto; Cocinero, Emilio J; Caminati, Walther

    2014-02-10

    The rotational spectra of several isotopologues of the 1:1 complex between the inhaled anesthetic isoflurane and water have been recorded and analyzed by using Fourier transform microwave spectroscopy. The rotational spectrum showed a single rotamer, corresponding to the configuration in which the most stable conformer of isolated isoflurane is linked to the water molecule through an almost linear C-H⋅⋅⋅O weak hydrogen bond. All transitions display a hyperfine structure due to the (35)Cl (or (37)Cl) nuclear quadrupole effects. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of age on both BIS values and EEG bispectrum during anaesthesia with sevoflurane in children

    PubMed Central

    Wodey, Eric; Tirel, Olivier; Bansard, Jean-Yves; Terrier, Anne; Chanavaz, Charles; Harris, Rupert; Ecoffey, Claude; Senhadji, Lotfi

    2005-01-01

    The aim of this study was to evaluate the potential relationship between age, BIS (Aspect™) and the EEG bispectrum during anesthesia with sevoflurane. BIS and raw EEG sampled at 400 Hz were recorded at a steady state of 1 MAC sevoflurane in 100 children, and during a decrease from 2 MAC to 0.5 MAC in a sub-group of 29 children. The bispectrum of the EEG was estimated on successive epochs of 20 seconds using MATLAB© software, independently of the Aspect™ device. For analysis, the bispectrum was divided into 36 frequencies of coupling (Pi) - the MatBis. A multiple correspondence analysis (MCA) was used to establish an underlying structure of the pattern of each individual’s MatBis at the steady state of 1 MAC. Clustering of children into homogeneous groups was conducted by a hierarchical ascending classification (HAC). The level of statistical significance was set at 0.05. At the steady state of 1 MAC sevoflurane, the BIS values for all 100 children ranged from 20 to 74 (median 40). Projection of both age and BIS value recorded at 1 MAC (T10) onto the structured model of the MCA showed them to be distributed along axis F1 of this model. In contrast, projection of children’s position during the decrease in sevoflurane concentration was linked to axis F2. At 1 MAC sevoflurane, six homogeneous groups of children were obtained through the HAC. Groups 5 (30 months; range 23–49) and 6 (18 months; range 6–180) were the younger children and group 1 (97 months; range 46–162) the older. Groups 5 and 6 had the highest median values of BIS (54; range 50–59)(55; range 26–74) and the group 1 the lowest values (29; range 22–37). The EEG bispectrum, as well as the BIS (Aspect XP™) measured at 1 MAC sevoflurane appeared to be strongly related to the age of children. PMID:15833781

  10. Repeated inhalation of sevoflurane inhibits the information transmission of Purkinje cells and delays motor development via the GABAA receptor ε subunit in neonatal mice.

    PubMed

    Fang, Hong; Wang, Ze-Hua; Bu, Ying-Jiang; Yuan, Zhi-Jun; Wang, Guo-Qiang; Guo, Yan; Cheng, Xiao-Yun; Qiu, Wen-Jie

    2018-01-01

    General anesthesia is widely used in pediatric surgery, although the influence of general anesthesia on cerebellar information transmission and motor function is unclear. In the present study, neonatal mice received repeated inhalation of sevoflurane, and electrophysiological alterations in Purkinje cells (PCs) and the development of motor functions were detected. In addition, γ‑aminobutyric acidA receptor ε (GABAA‑R ε) subunit knockout mice were used to investigate the mechanism of action of sevoflurane on cerebellar function. In the neonatal mice, the field potential response of PCs induced by sensory stimulation and the motor function indices were markedly inhibited by sevoflurane, and the inhibitory effect was positively associated with the number of repetitions of anesthesia. In additional the GABAA‑R ε subunit level of PCs was promoted by sevoflurane in a dose‑dependent manner, and the inhibitory effects of sevoflurane on PC field potential response and motor function were alleviated in GABAA‑R ε subunit knockout mice. The GABAA‑R ε subunit was activated by sevoflurane, leading to inhibition of sensory information transmission in the cerebellar cortex, field potential responses of PCs and the development of cerebellar motor function. The present study provided experimental evidence for the safe usage of sevoflurane in clinical anesthesia, and suggested that GABAA‑R ε subunit antagonists may be considered for combined application with general anesthesia with repeated inhalation of sevoflurane, for adverse effect prevention in the clinic.

  11. Sudden death in the presence of overt beta-adrenergic receptor activation in guinea pigs immediately following isoflurane anesthesia.

    PubMed

    Overholser, Brian R; Zheng, Xiaomei; Pell, Carrie; Blickman, Andrew

    2010-05-01

    A case series of sudden death is reported in five consecutive guinea pigs following anesthesia with inhalational isoflurane during beta-adrenergic receptor stimulation with isoproterenol. Sustained-release isoproterenol pellets or mini-osmotic pumps were implanted subcutaneously in male Dunkin-Hartley guinea pigs as part of a research study to assess the interplay of adrenergic receptor activation and the development of atrial arrhythmias. The continuous exposure to isoproterenol resulted in a similar presentation and eventual sudden death in all guinea pigs exposed to inhalational isoflurane between 15 to 40 minutes after discontinuation of anesthesia. Death occurred in guinea pigs in this case series despite the fact that doses of isoproterenol used were more than 10-fold lower than previously reported in guinea pigs in the absence of isoflurane anesthesia. The cause of death was suspected to be due to an interaction of isoproterenol with isoflurane anesthesia, as placebo implantation or anesthesia alone did not result in cardiac arrest. Of four subsequent guinea pigs anesthetized with the combination of xylazine and ketamine (X/K), three survived isoproterenol implantation for the full 21-day study period while one died perioperatively. There was an increased rate of post-anesthetic mortality associated with isoproterenol pellet implantation in guinea pigs anesthetized with isoflurane compared to X/K. This may be due to the detrimental effects of the combination of isoflurane during overt beta-adrenergic receptor activation or cardioprotective effects of X/K anesthesia during beta-adrenergic receptor hyperactivity.

  12. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats.

    PubMed

    Shi, Yiwei; Wang, Gang; Li, Jinyuan; Yu, Wenli

    2017-12-06

    Anesthesia neurotoxicity in developing brain has gained increasing attention. However, knowledge regarding its mitigating strategies remains scant. Sevoflurane, a commonly used anesthetic, is responsible for learning and memory deficits in neonates. Molecular hydrogen is reported to be a potential neuroprotective agent because of its antioxidative and anti-inflammatory activities. This study aimed to investigate the effect of hydrogen gas on sevoflurane neurotoxicity. The newborn rats were treated with sevoflurane and/or hydrogen gas for 2 h. Spatial recognition memory and fear memory were determined by Y-maze and fear conditioning tests at 10 weeks of age. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and proinflammatory cytokine levels were detected using western blot analysis. The data showed that the spatial recognition memory and fear memory of the rats treated with sevoflurane decreased compared with the control, and the cognitive function of the rats treated with sevoflurane and hydrogen gas significantly increased in comparison with treatment with sevoflurane alone. Moreover, hydrogen gas suppressed NF-κB phosphorylation and nuclear translocation and reduced the production of interleukin-1β, interleukin-6, and tumor necrosis factor-α following sevoflurane administration. Thus, the results proposed that hydrogen gas might protect against sevoflurane neurotoxicity by inhibiting NF-κB activation and proinflammatory cytokine release, providing a novel therapeutic strategy for anesthesia neurotoxicity.

  13. Sevoflurane represses the self-renewal ability by regulating miR-7a,7b/Klf4 signalling pathway in mouse embryonic stem cells.

    PubMed

    Wang, Qimin; Li, Guifeng; Li, Baolin; Chen, Qiu; Lv, Dongdong; Liu, Jiaying; Ma, Jieyu; Sun, Nai; Yang, Longqiu; Fei, Xuejie; Song, Qiong

    2016-10-01

    Sevoflurane is a frequently-used clinical inhalational anaesthetic and can cause toxicity to embryos during foetal development. Embryonic stem cells (ESCs) are derived from the inner cell mass of blastospheres and can be used as a useful model of early development. Here, we found that sevoflurane significantly influenced self-renewal ability of mESCs on stemness maintenance and cell proliferation. The cell cycle was arrested via G1 phase delay. We further found that sevoflurane upregulated expression of miR-7a,7b to repress self-renewal. Next we performed rescue experiments and found that after adding miR-7a,7b inhibitor into mESCs treated with sevoflurane, its influence on self-renewal could be blocked. Further we identified stemness factor Klf4 as the direct target of miR-7a,7b. Overexpression of Klf4 restored self-renewal ability repressed by miR-7a,7b or sevoflurane. In this work, we determined that sevoflurane repressed self-renewal ability by regulating the miR-7a,7b/Klf4 signalling pathway in mESCs. Our study demonstrated molecular mechanism underlying the side effects of sevoflurane during early development, laying the foundation for studies on safe usage of inhalational anaesthetic during non-obstetric surgery. © 2016 John Wiley & Sons Ltd.

  14. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma.

    PubMed

    Burburan, Shirley Moreira; Xisto, Debora Gonçalves; Ferreira, Halina Cidrini; Riva, Douglas Dos Reis; Carvalho, Giovanna Marcella Cavalcante; Zin, Walter Araujo; Rocco, Patricia Rieken Macêdo

    2007-03-01

    There are no studies examining the effects of sevoflurane on a chronically inflamed and remodeled airway, such as that found in asthma. In the present study, we sought to define the respiratory effects of sevoflurane in a model of chronic allergic asthma. For this purpose, pulmonary mechanics were studied and lung morphometry analyzed to determine whether the physiological modifications reflected underlying morphological changes. Thirty-six BALB/c mice (20-25 g) were randomly divided into four groups. In OVA groups, mice were sensitized with ovalbumin and exposed to repeated ovalbumin challenges. In SAL groups, mice received saline using the same protocol. Twenty-four hours after the last challenge, the animals were anesthetized with pentobarbital sodium (PENTO, 20 mg/kg i.p.) or sevoflurane (SEVO, 1 MAC). Lung static elastance (Est), resistive ([DELTA]P1) and viscoelastic/inhomogeneous ([DELTA]P2) pressure decreases were analyzed by an end-inflation occlusion method. Lungs were fixed and stained for histological analysis. Animals in the OVASEVO group showed lower [DELTA]P1 (38%), [DELTA]P2 (24%), and Est (22%) than animals in the OVAPENTO group. Histology demonstrated greater airway dilation (16%) and a lower degree of alveolar collapse (25%) in the OVASEVO compared with OVAPENTO group. [DELTA]P1 was lower (35%) and airway diameters larger (12%) in the SALSEVO compared with SALPENTO group. Sevoflurane anesthesia acted both at airway level and lung periphery reducing ([DELTA]P1 and [DELTA]P2 pressures, and Est in chronic allergic asthma.

  15. Effects of Moderate Hyperventilation on Jugular Bulb Gases under Propofol or Isoflurane Anesthesia during Supratentorial Craniotomy

    PubMed Central

    Meng, Lan; Li, Shu-Qin; Ji, Nan; Luo, Fang

    2015-01-01

    Background: The optimal ventilated status under total intravenous or inhalation anesthesia in neurosurgical patients with a supratentorial tumor has not been ascertained. The purpose of this study was to intraoperatively compare the effects of moderate hyperventilation on the jugular bulb oxygen saturation (SjO2), cerebral oxygen extraction ratio (O2ER), mean arterial blood pressure (MAP), and heart rate (HR) in patients with a supratentorial tumor under different anesthetic regimens. Methods: Twenty adult patients suffered from supratentorial tumors were randomly assigned to receive a propofol infusion followed by isoflurane anesthesia after a 30-min stabilization period or isoflurane followed by propofol. The patients were randomized to one of the following two treatment sequences: hyperventilation followed by normoventilation or normoventilation followed by hyperventilation during isoflurane or propofol anesthesia, respectively. The ventilation and end-tidal CO2 tension were maintained at a constant level for 20 min. Radial arterial and jugular bulb catheters were inserted for the blood gas sampling. At the end of each study period, we measured the change in the arterial and jugular bulb blood gases. Results: The mean value of the jugular bulb oxygen saturation (SjO2) significantly decreased, and the oxygen extraction ratio (O2ER) significantly increased under isoflurane or propofol anesthesia during hyperventilation compared with those during normoventilation (SjO2: t = −2.728, P = 0.011 or t = −3.504, P = 0.001; O2ER: t = 2.484, P = 0.020 or t = 2.892, P = 0.009). The SjO2 significantly decreased, and the O2ER significantly increased under propofol anesthesia compared with those values under isoflurane anesthesia during moderate hyperventilation (SjO2: t = −2.769, P = 0.012; O2ER: t = 2.719, P = 0.013). In the study, no significant changes in the SjO2 and the O2ER were observed under propofol compared with those values under isoflurane during

  16. Effects of Moderate Hyperventilation on Jugular Bulb Gases under Propofol or Isoflurane Anesthesia during Supratentorial Craniotomy.

    PubMed

    Meng, Lan; Li, Shu-Qin; Ji, Nan; Luo, Fang

    2015-05-20

    The optimal ventilated status under total intravenous or inhalation anesthesia in neurosurgical patients with a supratentorial tumor has not been ascertained. The purpose of this study was to intraoperatively compare the effects of moderate hyperventilation on the jugular bulb oxygen saturation (SjO 2 ), cerebral oxygen extraction ratio (O 2 ER), mean arterial blood pressure (MAP), and heart rate (HR) in patients with a supratentorial tumor under different anesthetic regimens. Twenty adult patients suffered from supratentorial tumors were randomly assigned to receive a propofol infusion followed by isoflurane anesthesia after a 30-min stabilization period or isoflurane followed by propofol. The patients were randomized to one of the following two treatment sequences: hyperventilation followed by normoventilation or normoventilation followed by hyperventilation during isoflurane or propofol anesthesia, respectively. The ventilation and end-tidal CO 2 tension were maintained at a constant level for 20 min. Radial arterial and jugular bulb catheters were inserted for the blood gas sampling. At the end of each study period, we measured the change in the arterial and jugular bulb blood gases. The mean value of the jugular bulb oxygen saturation (SjO 2 ) significantly decreased, and the oxygen extraction ratio (O 2 ER) significantly increased under isoflurane or propofol anesthesia during hyperventilation compared with those during normoventilation (SjO 2 : t = -2.728, P = 0.011 or t = -3.504, P = 0.001; O 2 ER: t = 2.484, P = 0.020 or t = 2.892, P = 0.009). The SjO 2 significantly decreased, and the O 2 ER significantly increased under propofol anesthesia compared with those values under isoflurane anesthesia during moderate hyperventilation (SjO 2 : t = -2.769, P = 0.012; O 2 ER: t = 2.719, P = 0.013). In the study, no significant changes in the SjO 2 and the O 2 ER were observed under propofol compared with those values under isoflurane during normoventilation. Our

  17. Dose-dependent effects of isoflurane and dobutamine on cardiovascular function in dogs with experimental mitral regurgitation.

    PubMed

    Goya, Seijirow; Wada, Tomoki; Shimada, Kazumi; Hirao, Daiki; Tanaka, Ryou

    2018-04-18

    To investigate the dose-dependent effects of isoflurane and dobutamine on haemodynamics in dogs with experimentally induced mitral valve insufficiency (MI). Experimental, dose-response study. Six healthy Beagle dogs. Dogs with surgically induced MI were anaesthetized once. First, anaesthesia was maintained at an end-tidal isoflurane concentration (Fe'Iso) 1.0% (ISO1.0) for 20 minutes. Then, dobutamine was infused successively at 2, 4, 8 and 12 μg kg -1 minute -1 (DOB2-12) for 10 minutes at each dose rate. Measurements were recorded at each stage. Dobutamine was discontinued and Fe'Iso was increased to 1.5% (ISO1.5) for 20 minutes. Dobutamine was administered similarly to ISO1.0, and cardiovascular variables were recorded. The same sequence was repeated for Fe'Iso 2.0% (ISO2.0). Aortic pressure (AoP) and left atrial pressure (LAP) were recorded by radiotelemetry. The combination method of the pressure-volume loop analysis and transoesophageal echocardiography was used to measure cardiovascular variables: end-systolic elastance (Ees), effective arterial elastance (Ea), Ea/Ees, forward stroke volume (FSV), heart rate (HR), and cardiac output (CO). High isoflurane concentration resulted in reduced Ees and increased Ea/Ees, which indicated low arterial pressure. High-dose dobutamine administration resulted in increased Ees and FSV at all isoflurane concentrations. In ISO1.5 and ISO2.0, HR was lower at DOB4 than baseline (BL) but increased at DOB12 compared with DOB4. CO increased at ≥ DOB8 compared with BL. In ISO1.5 and ISO2.0, systolic and mean AoP increased at ≥ DOB4 and ≥ DOB8, respectively. LAP did not change under all conditions. The dose-dependent hypotensive effect of isoflurane in MI dogs was mainly derived from the decrease in contractility. Dobutamine increased AoP without increasing LAP by increasing the contractility attenuated by isoflurane. Our findings may improve the cardiovascular management of dogs with MI undergoing general anaesthesia with

  18. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.

    PubMed

    Canas, Paula T; Velly, Lionel J; Labrande, Christelle N; Guillet, Benjamin A; Sautou-Miranda, Valérie; Masmejean, Frédérique M; Nieoullon, André L; Gouin, François M; Bruder, Nicolas J; Pisano, Pascale S

    2006-11-01

    The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

  19. Pathway-related modules involved in the application of sevoflurane or propofol in off-pump coronary artery bypass graft surgery.

    PubMed

    Bu, Xiangmei; Wang, Bo; Wang, Yaoqi; Wang, Zhigang; Gong, Chunzhi; Qi, Feng; Zhang, Caixia

    2017-07-01

    Off-pump coronary artery bypass graft (CABG) surgery has recently emerged as a means to avoid the sequelae of extracorporeal circulation, including the whole-body inflammatory response, coagulation disorders and multiple organ dysfunction. At present, gas anesthesia, sevoflurane and intravenous anesthesia and propofol have been widely used during the CABG. To further understand the underlying mechanisms of these anesthetics on the gene level, the present study conducted pathway-related module analysis based on a co-expression network. This was performed in order to identify significant pathways in coronary artery disease patients who had undergone off-pump CABG surgery before and after applying sevoflurane or propofol. A total of 269 and 129 differentially expressed genes were obtained in the sevoflurane and propofol groups, respectively. In total, eight and seven pathways (P<0.05) in the sevoflurane and propofol groups were separately obtained via Kyoto Encyclopedia of Genes and Genome pathway analysis. Finally, eight and seven pathway-related modules in the sevoflurane and propofol groups were obtained, respectively. Furthermore, the mean degree of complement and coagulation cascades pathway-related module in both of the groups was the highest. It was predicted that during the CABG, the anesthetics might activate the complement and coagulation systems in order to possess some cardioprotective properties.

  20. Neuroprotective effect of sevoflurane in general anaesthesia.

    PubMed

    Ramos Ramos, Victoria; Mesa Suárez, Pablo; Santotoribio, José Diego; González García, María Ángela; Muñoz Hoyos, Antonio

    2017-02-23

    The aim of this study was to evaluate the brain damage caused by inhaled sevoflurane, by determining the concentration of serum S100B protein before and after the exposure to this drug as the only anaesthetic agent. Paediatric patients undergoing general anaesthesia for the conduct of a nuclear magnetic resonance were included in the study. A venous blood sample was taken from each patient before (basal sample) and after (post-exposure sample) administering the general anaesthesia. The concentration of serum S100B protein was determined in the basal (S100Bb) and post-exposure sample (S100Bp). A total of 72 patients were included in the study, with a mean patient age of 2 to 13 years (median=6), 28 males and 44 females. S100Bp values (median=66.5ng/L) were significantly lower (P=.0059) than those of S100Bb (median=84.0ng/L). The median of the difference between S100Bp and S100Bb was -11.0ng/L. Inhaled sevoflurane at low doses causes a decrease of serum S100B protein levels, hence, this drug could have a neuroprotective effect in the central nervous system. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  2. Survey of the sevoflurane sedation status in one provincial dental clinic center for the disabled

    PubMed Central

    Park, Chang-hyun

    2016-01-01

    Background Sevoflurane sedation in pediatric and disabled patients has the advantage of faster induction and recovery compared to general anesthesia, as well as minimum influence on the respiratory and cardiovascular functions, and airway protective reflexes. This study aimed to evaluate the clinical efficacy of sevoflurane sedation used in dental treatment at one provincial dental clinic center for the disabled. Methods We investigated patients' gender, age, reasons for undergoing sedation, medication history prior to treatment, duration of anesthesia, treatment length, type of treatment, and yearly patterns, for 387 cases of dental treatment performed using sevoflurane sedation from January 2013 to October 2016. Results We analyzed 387 cases (215 male patients, 172 female patients). Male patients aged 20 year or older accounted for 39.0% of all patients, marking the highest proportion. Patient's lack of cooperation was the most common reason for performing dental sedation. Prosthetic treatment was the most frequently practiced, accounting for 174 treatment cases. The mean lengths of the entire treatment and of the dental procedure were 55.2 min and 39.8 min, respectively. Conclusions Sevoflurane sedation has the advantage of fast anesthesia induction and recovery compared to general anesthesia; therefore, it can be used efficiently to induce anesthesia in pediatric and disabled patients during short dental procedures, enabling stable treatment of these patients. PMID:28879316

  3. Anaesthetic management in asthma.

    PubMed

    Burburan, S M; Xisto, D G; Rocco, P R M

    2007-06-01

    Anaesthetic management in asthmatic patients has been focused on avoiding bronchoconstriction and inducing bronchodilation. However, the definition of asthma has changed over the past decade. Asthma has been defined as a clinical syndrome characterized by an inflammatory process that extends beyond the central airways to the distal airways and lung parenchyma. With this concept in mind, and knowing that asthma is a common disorder with increasing prevalence rates and severity worldwide, a rational choice of anaesthetic agents and procedures is mandatory. Thus, we pursued an update on the pharmacologic and technical anaesthetic approach for the asthmatic patient. When feasible, regional anaesthesia should be preferred because it reduces airway irritation and postoperative complications. If general anaesthesia is unavoidable, a laryngeal mask airway is safer than endotracheal intubation. Lidocaine inhalation, alone or combined with albuterol, minimizes histamine-induced bronchoconstriction. Propofol and ketamine inhibit bronchoconstriction, decreasing the risk of bronchospasm during anaesthesia induction. Propofol yields central airway dilation and is more reliable than etomidate or thiopental. Halothane, enflurane, and isoflurane are potent bronchodilators and can be helpful even in status asthmaticus. Sevoflurane has shown controversial results in asthmatic patients. Vecuronium, rocuronium, cisatracurium, and pancuronium do not induce bronchospasm, while atracurium and mivacurium can dose-dependently release histamine and should be cautiously administered in those patients. Further knowledge about the sites of action of anaesthetic agents in the lung, allied with our understanding of asthma pathophysiology, will establish the best anaesthetic approach for people with asthma.

  4. Structural Basis for High Affinity Volatile Anesthetic Binding in a Natural 4-helix Bundle Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,R.; Loll, P.; Eckenhoff, R.

    2005-01-01

    Physiologic sites for inhaled anesthetics are presumed to be cavities within transmembrane 4-{alpha}-helix bundles of neurotransmitter receptors, but confirmation of binding and structural detail of such sites remains elusive. To provide such detail, we screened soluble proteins containing this structural motif, and found only one that exhibited evidence of strong anesthetic binding. Ferritin is a 24-mer of 4-{alpha}-helix bundles; both halothane and isoflurane bind with K{sub A} values of {approx}10{sup 5} M{sup -1, } higher than any previously reported inhaled anesthetic-protein interaction. The crystal structures of the halothane/apoferritin and isoflurane/apoferritin complexes were determined at 1.75 Angstroms resolution, revealing a commonmore » anesthetic binding pocket within an interhelical dimerization interface. The high affinity is explained by several weak polar contacts and an optimal host/guest packing relationship. Neither the acidic protons nor ether oxygen of the anesthetics contribute to the binding interaction. Compared with unliganded apoferritin, the anesthetic produced no detectable alteration of structure or B factors. The remarkably high affinity of the anesthetic/apoferritin complex implies greater selectivity of protein sites than previously thought, and suggests that direct protein actions may underlie effects at lower than surgical levels of anesthetic, including loss of awareness.« less

  5. Effects of Lidocaine, Dexmedetomidine or Their Combination on the Minimum Alveolar Concentration of Sevoflurane in Dogs

    PubMed Central

    MORAN-MUÑOZ, Rafael; IBANCOVICHI, J. A.; Gutierrez-BLANCO, Eduardo; ACEVEDO-ARCIQUE, Carlos M.; Victoria MORA, J. Mauro; TENDILLO, Francisco J.; SANTOS-GONZALEZ, Martin; YAMASHITA, Kazuto

    2014-01-01

    ABSTRACT The aim of this study was to determine the effects of lidocaine (LIDO) and dexmedetomidine (DEX) or their combination (LIDO–DEX), administered by constant-rate infusion (CRI), on the minimum alveolar concentration (MAC) of sevoflurane in dogs. Seven healthy mongrel dogs were used with a 2-week washout interval between treatments in this study. Anesthesia was induced with propofol and maintained with sevoflurane in oxygen, and MAC of sevoflurane was determined after 90 min equilibration period in the dogs (SEV-MACBASAL). Then, sevoflurane MAC was determined again in the dogs after 45 min equilibration period of one of the following treatments: an intravenous loading dose of lidocaine 2 mg/kg followed by 6 mg/kg/hr CRI (SEV-MACLIDO); an intravenous loading dose of dexmedetomidine 2 µg/kg followed by 2 µg/kg/hr CRI (SEV-MACDEX); or their combination (SEV-MACLIDO-DEX). These SEV-MACs were determined in duplicate. Data were analyzed using ANOVA and post hoc Tuckey test when appropriate. The SEV-MACBASAL was 1.82 ± 0.06%, SEV-MACLIDO was 1.38 ± 0.08%, SEV-MACDEX was 1.22 ± 0.10%, and SEV-MACLIDO-DEX was 0.78 ± 0.06%. The CRI administration of lidocaine, dexmedetomidine and their combination produced a significant reduction in the MAC of sevoflurane by 26.1 ± 9.0% (P<0.0001), 43.7 ± 11.8% (P<0.0002) and 54.4 ± 9.8% (P<0.0001), respectively. The MAC reduction was significantly greater after the CRI combination of lidocaine and dexmedetomidine when compared with lidocaine CRI (P<0.0001) or dexmedetomidine CRI treatments (P<0.025). PMID:24572631

  6. Benefits of 21% Oxygen Compared with 100% Oxygen for Delivery of Isoflurane to Mice (Mus musculus) and Rats (Rattus norvegicus)

    PubMed Central

    Wilding, Laura A; Hampel, Joe A; Khoury, Basma M; Kang, Stacey; Machado‑Aranda, David; Raghavendran, Krishnan; Nemzek, Jean A

    2017-01-01

    At research institutions, isoflurane delivered by precision vaporizer to a face mask is the standard for rodent surgery and for procedures with durations that exceed a few minutes. Pure oxygen is often used as the carrier gas for isoflurane anesthesia, despite documented complications from long-term 100% oxygen use in humans and known occupational safety risks. We therefore examined the effect of anesthetic delivery gas on physiologic variables in mice and rats. Rodents were anesthetized for 60 min with isoflurane delivered in either 21% or 100% oxygen by means of a nose cone. We noted no difference between carrier gasses in physiologic variables in mice, including body temperature, respiratory rate, mean arterial pressure, surgical recovery time, pH, or PaCO2.However, blood gas analysis revealed evidence of a ventilation–perfusion mismatch in the 100% oxygen group. Pressure–volume hysteresis and histomorphometric analyses confirmed the presence of increased atelectasis in mice that received 100% oxygen. Unlike mice, rats that received isoflurane in 100% oxygen had acute respiratory acidosis and elevated mean arterial pressure, but atelectasis was similar between carrier gasses. Our data suggest that both 100% and 21% oxygen are acceptable for the delivery of isoflurane to mice. However, mice anesthetized for studies focused on lung physiology or architecture would benefit from the delivery of isoflurane in 21% oxygen to reduce absorption atelectasis and the potential associated downstream inflammatory effects. For rats, delivery of isoflurane in 21% and 100% oxygen both caused perturbations in physiologic variables, and choosing a carrier gas is not straightforward. PMID:28315643

  7. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    PubMed

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain

  8. Monitoring Mitochondrial Electron Fluxes Using NAD(P)H-Flavoprotein Fluorometry Reveals Complex Action of Isoflurane on Cardiomyocytes

    PubMed Central

    Sedlic, Filip; Pravdic, Danijel; Hirata, Naoyuki; Mio, Yasushi; Sepac, Ana; Camara, Amadou K.; Wakatsuki, Tetsuro; Bosnjak, Zeljko J.; Bienengraeber, Martin

    2010-01-01

    Mitochondrial bioenergetic studies mostly rely on isolated mitochondria thus excluding the regulatory role of other cellular compartments important for the overall mitochondrial function. In intact cardiomyocytes, we followed the dynamics of electron fluxes along specific sites of the electron transport chain (ETC) by simultaneous detection of NAD(H)P and flavoprotein (FP) fluorescence intensities using a laser-scanning confocal microscope. This method was used to delineate the effects of isoflurane, a volatile anesthetic and cardioprotective agent, on the ETC. Comparison to the effects of well-characterized ETC inhibitors and uncoupling agent revealed two distinct effects of isoflurane: uncoupling-induced mitochondrial depolarization and inhibition of ETC at the level of complex I. In correlation, oxygen consumption measurements in cardiomyocytes confirmed a dose-dependent, dual effect of isoflurane, and in isolated mitochondria an obstruction of the ETC primarily at the level of complex I. These effects are likely responsible for the reported mild stimulation of mitochondrial reactive oxygen species (ROS) production required for the cardioprotective effects of isoflurane. In conclusion, isoflurane exhibits complex effects on the ETC in intact cardiomyocytes, altering its electron fluxes, and thereby enhancing ROS production. The NAD(P)H-FP fluorometry is a useful method for exploring the effect of drugs on mitochondria and identifying their specific sites of action within the ETC of intact cardiomyocytes. PMID:20646994

  9. The effects of intravenous anesthetics on QT interval during anesthetic induction with sevoflurane.

    PubMed

    Terao, Yoshiaki; Higashijima, Ushio; Toyoda, Tomomi; Ichinomiya, Taiga; Fukusaki, Makoto; Hara, Tetsuya

    2016-12-01

    Sevoflurane is known to prolong the QT interval. This study aimed to determine the effect of the interaction between intravenous anesthetics and sevoflurane on the QT interval. The study included 48 patients who underwent lumbar spine surgery. Patients received 3 μg/kg fentanyl and were then randomly allocated to either Group T, in which they received 5 mg/kg thiamylal, or Group P, in which they received 1.5 mg/kg propofol, at 2 min after administration of fentanyl injection for anesthetic induction. Vecuronium (1.5 mg/kg) and sevoflurane (3 % inhaled concentration) were administered immediately after loss of consciousness and tracheal intubation was performed 3 min after vecuronium injection. Heart rate (HR), mean arterial pressure (MAP), bispectral index score (BIS), and the heart rate-corrected QT (QTc) interval on a 12-lead electrocardiogram were recorded immediately before fentanyl administration (T1), 2 min after fentanyl injection (T2), immediately before intubation (T3), and 2 min after intubation (T4). There were no significant differences between the two groups in baseline patient characteristics. BIS and MAP significantly decreased after anesthesia induction in both groups. At T3, MAP in Group T was higher than in Group P, while HR had reduced in both groups. The QTc interval was prolonged after anesthesia induction in Group T, but did not change at any time point in Group P. The QTc interval after anesthesia induction in Group T was longer than in Group P. We concluded that an injection of propofol could counteract QTc interval prolongation associated with sevoflurane anesthesia induction.

  10. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    PubMed

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  11. Preconditioning by isoflurane elicits mitochondrial protective mechanisms independent of sarcolemmal KATP channel in mouse cardiomyocytes

    PubMed Central

    Muravyeva, Maria; Sedlic, Filip; Dolan, Nicholas; Bosnjak, Zeljko J; Stadnicka, Anna

    2013-01-01

    Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning (APC). Changes in mitochondrial bioenergetics influence the sarcKATP channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial ROS production and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180±14% and 190±15% and ROS production to 118±2% and 124±6% of baseline in WT and Kir6.2 KO myocytes, respectively. TMRE fluorescence decreased to 84±6% in WT and to 86±4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31±1% to 21±1% in WT and from 44±2% to 35±2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases sensitivity of intact cardiomyocytes t o oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in APC by isoflurane. PMID:23318991

  12. Effects of hyperventilation on cerebral oxygen saturation estimated using near-infrared spectroscopy: A randomised comparison between propofol and sevoflurane anaesthesia.

    PubMed

    Ishiyama, Tadahiko; Kotoda, Masakazu; Asano, Nobumasa; Ikemoto, Kodai; Shintani, Noriyuki; Matsuoka, Toru; Matsukawa, Takashi

    2016-12-01

    Near-infrared spectroscopy estimates cerebral regional tissue oxygen saturation (rSO2), which may decrease under hyperventilation. Propofol and sevoflurane act differently on cerebral blood vessels. Consequently, cerebral blood flow during hyperventilation with propofol and sevoflurane anaesthesia may differ. The first aim of this study was to compare the changes in rSO2 between propofol and sevoflurane anaesthesia during hyperventilation. The second aim was to assess changes in rSO2 with ventilation changes. A randomised, open-label study. University of Yamanashi Hospital, Yamanashi, Japan from January 2014 to September 2014. Fifty American Society of Anesthesiologists physical status 1 or 2 adult patients who were scheduled for elective abdominal surgery were assigned randomly to receive either propofol or sevoflurane anaesthesia. Exclusion criterion was a known history of cerebral disease such as cerebral infarction, cerebral haemorrhage, transient ischaemic attack and subarachnoid haemorrhage. After induction of anaesthesia but before the start of surgery, rSO2, arterial carbon dioxide partial pressure (PaCO2) and arterial oxygen saturation were measured. Measurements were repeated at 5-min intervals during 15 min of hyperventilation with a PaCO2 around 30 mmHg (4 kPa), and again after ventilation was normalised. The primary outcome was the difference of changes in rSO2 between propofol anaesthesia and sevoflurane anaesthesia during and after hyperventilation. The second outcome was change in rSO2 after the initiation of hyperventilation and after the normalisation of ventilation. Changes of rSO2 during hyperventilation were -10 ± 7% (left) and -11 ± 8% (right) in the propofol group, and -10 ± 8% (left) and -9 ± 7% (right) in the sevoflurane group. After normalisation of PaCO2, rSO2 returned to baseline values. Arterial oxygen saturation remained stable throughout the measurement period. The rSO2 values were similar in the propofol and

  13. Isoflurane and Ketamine Anesthesia have Different Effects on Ventilatory Pattern Variability in Rats

    PubMed Central

    Chung, Augustine; Fishman, Mikkel; Dasenbrook, Elliot C.; Loparo, Kenneth A.; Dick, Thomas E.; Jacono, Frank J.

    2013-01-01

    We hypothesize that isoflurane and ketamine impact ventilatory pattern variability (VPV) differently. Adult Sprague-Dawley rats were recorded in a whole-body plethysmograph before, during and after deep anesthesia. VPV was quantified from 60-s epochs using a complementary set of analytic techniques that included constructing surrogate data sets that preserved the linear structure but disrupted nonlinear deterministic properties of the original data. Even though isoflurane decreased and ketamine increased respiratory rate, VPV as quantified by the coefficient of variation decreased for both anesthetics. Further, mutual information increased and sample entropy decreased and the nonlinear complexity index (NLCI) increased during anesthesia despite qualitative differences in the shape and period of the waveform. Surprisingly mutual information and sample entropy did not change in the surrogate sets constructed from isoflurane data, but in those constructed from ketamine data, mutual information increased and sample entropy decreased significantly in the surrogate segments constructed from anesthetized relative to unanesthetized epochs. These data suggest that separate mechanisms modulate linear and nonlinear variability of breathing. PMID:23246800

  14. Desflurane Allows for a Faster Emergence When Compared to Sevoflurane without Affecting the Baseline Cognitive Recovery Time.

    PubMed

    Werner, Joseph G; Castellon-Larios, Karina; Thongrong, Cattleya; Knudsen, Bodo E; Lowery, Deborah S; Antor, Maria A; Bergese, Sergio Daniel

    2015-01-01

    We compared the effect of desflurane and sevoflurane on anesthesia recovery time in patients undergoing urological cystoscopic surgery. The Short Orientation-Memory-Concentration Test (SOMCT) measured and compared cognitive impairment between groups and coughing was assessed throughout the anesthetic. This investigation included 75 ambulatory patients. Patients were randomized to receive either desflurane or sevoflurane. Inhalational anesthetics were discontinued after removal of the cystoscope and once repositioning of the patient was final. Coughing assessment and awakening time from anesthesia were assessed by a blinded observer. Statistical analysis was performed by using t-test for parametric variables and Mann-Whitney U test for non-parametric variables. The primary endpoint, mean time to eye-opening, was 5.0 ± 2.5 min for desflurane and 7.9 ± 4.1 min for sevoflurane (p < 0.001). There were no significant differences in time to SOMCT recovery (p = 0.109), overall time spent in the post-anesthesia care unit (PACU) (p = 0.924) or time to discharge (p = 0.363). Median time until readiness for discharge was 9 min in the desflurane group, while the sevoflurane group had a median time of 20 min (p = 0.020). The overall incidence of coughing during the perioperative period was significantly higher in the desflurane (p = 0.030). We re-confirmed that patients receiving desflurane had a faster emergence and met the criteria to be discharged from the PACU earlier. No difference was found in time to return to baseline cognition between desflurane and sevoflurane.

  15. Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels.

    PubMed

    Cao, Jianfang; Xie, Hong; Sun, Ying; Zhu, Jiang; Ying, Ming; Qiao, Shigang; Shao, Qin; Wu, Haorong; Wang, Chen

    2015-12-01

    The protective effects of sevoflurane post-conditioning against myocardial ischemia/reperfusion (I/R) injury (MIRI) have been previously reported. However, the mechanisms responsible for these protective effects remain elusive. In this study, in order to investigate the molecular mechanisms responsible for the protective effects of sevoflurane post-conditioning on isolated rat hearts subjected to MIRI, Sprague-Dawley rat hearts were randomly divided into the following 6 groups: i) the sham-operated control; ii) 2.5% sevoflurane; iii) ischemia/reperfusion (I/R); iv) 2.5% sevoflurane post-conditioning plus I/R; v) 2.5% sevoflurane post-conditioning + NG-nitro-L-arginine methyl ester (L-NAME) plus I/R; and vi) L-NAME plus I/R. The infarct size was measured using 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Additionally, the myocardial nitric oxide (NO), NO synthase (NOS) and nicotinamide adenine dinucleotide (NAD+) levels were determined. Autophagosomes and apoptosomes in the myocardium were detected by transmission electron microscopy. The levels of Bcl-2, cleaved caspase-3, Beclin-1, microtubule-associated protein light chain 3 (LC3)‑I/II, Na+/H+ exchanger 1 (NHE1) and phosphorylated NHE1 protein were measured by western blot analysis. NHE1 mRNA levels were measured by reverse transcription-quantitative polymerase chain reaction. Compared with the I/R group, 15 min of exposure to 2.5% sevoflurane during early reperfusion significantly decreased the myocardial infarct size, the autophagic vacuole numbers, the NHE1 mRNA and protein expression of cleaved caspase-3, Beclin-1 and LC3-I/II. Post-conditioning with 2.5% sevoflurane also increased the NO and NOS levels and Bcl-2 protein expression (p<0.05 or p<0.01). Notably, the cardioprotective effects of sevoflurane were partly abolished by the NOS inhibitor, L-NAME. The findings of the present study suggest that sevoflurane post-conditioning protects the myocardium against I/R injury and reduces the myocardial

  16. Intraoperative end-tidal concentration of isoflurane in cats undergoing ovariectomy that received tramadol, buprenorphine or a combination of both.

    PubMed

    Bellini, Luca; Mollo, Antonio; Contiero, Barbara; Busetto, Roberto

    2017-02-01

    Objectives The aim of the study was to evaluate the end-tidal concentration of isoflurane required to maintain heart and respiratory rate within ± 20% of basal measurement in cats undergoing ovariectomy that received buprenorphine, tramadol or a combination of both. Methods Thirty cats, divided into three groups, were enrolled in a simple operator-blinded, randomised study. Cats received acepromazine (0.03 mg/kg) and one of the following treatments: buprenorphine (0.02 mg/kg), tramadol (2 mg/kg) or a combination of both. Anaesthesia was induced with propofol and maintained with isoflurane titrated in order to maintain heart and respiratory rate within the target values recorded before premedication. Results Groups were similar for age, weight, dose of propofol administered, sedation and recovery scores. Cats receiving tramadol with buprenorphine were extubated earlier after isoflurane discontinuation. No statistical differences were detected in end-tidal fraction of isoflurane between buprenorphine alone or with tramadol. In cats that received tramadol or buprenorphine alone, ovarian pedicle traction caused a statistical increase in end-tidal isoflurane concentration compared with that measured during incision and suture of the skin. In cats that received the combination of tramadol plus buprenorphine no differences among surgical time points were observed. Conclusions and relevance Tramadol added to buprenorphine did not provide any advantage in decreasing the end-tidal fraction of isoflurane compared with buprenorphine alone, although it is speculated there may be an infra-additive interaction between tramadol and buprenorphine in cats.

  17. [The effect of halothane on the fructose metabolism in the liver].

    PubMed

    Götz, E; Scholz, R

    1975-10-01

    Glucose production from frutose (2 mmol) and fructolysis was studied in perfused rat liver. In the presence of halothane (0.5, 1.5, and 4.0 vol%) glucose production was inhibited, whereas lactate production was stimulated. Total fructose metabolism was unchanged. Since halogenated hydrocarbon compounds are known to inhibit the mitochondrial respiratory chain, it is concluded that glucose synthesis is inhibited due to decreased supply of energy-rich phosphates from oxidative phosphorylation. On the other hand, this depletion of energy may be partially compensated for by an increased extramitochondrial energy production due to fructolysis.

  18. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury

    PubMed Central

    Zheng, Beijie; Zhan, Qionghui; Chen, Jue; Xu, Huan; He, Zhenzhou

    2015-01-01

    Ischemia/reperfusion (I/R) injury often occurs, which is one of the major causes of acute kidney injury, thus increasing in-hospital mortality. HIF-2α has a protective role against ischemia of the kidney. Renal ischemia/reperfusion under sevoflurane anesthesia resulted in drastic improvements in renal function. We hypothesized that underlying mechanism responsible for renal protection from sevoflurane pretreatment involves the upregulation of HIF-2α. Sevoflurane pretreatment were performed on WT and HIF-2α knockout mice before renal ischemia/reperfusion. Levels of blood urea nitrogen (BUN) and serum creatinine (Cr) were determined with a standard clinical automatic analyzer. The left kidneys were taken for morphological examination. Expression of HIF-2α in kidney tissue was examined by western blotting. In WT mice, group I/R injury had significantly higher BUN and Cr levels than group control, whereas group I/R + Sev had significantly lower BUN and Cr levels than group I/R injury. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. In HIF-2α-/- mice, group I/R + Sev showed much higher BUN and Cr levels and severer histological damage than group I/R and group control. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. Our findings suggested that HIF-2α might contribute to the beneficial effect of sevoflurane in renal ischemia/reperfusion injury. PMID:26722509

  19. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongmin; Astrof, Nathan S.; Liu, Jin-Huan

    2009-09-15

    Volatile anesthetics (VAs), such as isoflurane, induce a general anesthetic state by binding to specific targets (i.e., ion channels) in the central nervous system (CNS). Simultaneously, VAs modulate immune functions, possibly via direct interaction with alternative targets on leukocytes. One such target, the integrin lymphocyte function-associated antigen-1 (LFA-1), has been shown previously to be inhibited by isoflurane. A better understanding of the mechanism by which isoflurane alters protein function requires the detailed information about the drug-protein interaction at an atomic level. Here, we describe the crystal structure of the LFA-1 ligand-binding domain (I domain) in complex with isoflurane at 1.6more » {angstrom}. We discovered that isoflurane binds to an allosteric cavity previously implicated as critical for the transition of LFA-1 from the low- to the high-affinity state. The isoflurane binding site in the I domain involves an array of amphiphilic interactions, thereby resembling a 'common anesthetic binding motif' previously predicted for authentic VA binding sites. These results suggest that the allosteric modulation of protein function by isoflurane, as demonstrated for the integrin LFA-1, might represent a unified mechanism shared by the interactions of volatile anesthetics with targets in the CNS. Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems.« less

  20. Comparison of isoflurane and propofol for maintenance of anesthesia in dogs with intracranial disease undergoing magnetic resonance imaging.

    PubMed

    Caines, Deanne; Sinclair, Melissa; Valverde, Alexander; Dyson, Doris; Gaitero, Luis; Wood, Darren

    2014-09-01

    To compare isoflurane and propofol for maintenance of anesthesia and quality of recovery in client-owned dogs with intracranial disease undergoing magnetic resonance imaging (MRI). Prospective, randomized, clinical trial. Twenty-five client-owned dogs with intracranial pathology, 13 females and 12 males, ages 11 months to 13 years, weighing between 3.0 and 48.0 kg. Each dog was randomly assigned to receive propofol or isoflurane for maintenance of anesthesia. All dogs were not premedicated, were administered propofol intravenously to effect for induction, intubated and mechanically ventilated to maintain an end-tidal carbon dioxide tension 30-35 mmHg (4.0-4.7 kPa). Temperature and cardiac output were measured pre- and post-MRI. Scores for mentation, neurological status, ease of maintenance, and recovery were obtained pre- and post-anesthesia. Pulse oximetry, end-tidal gases, arterial blood pressure, heart rate (HR) and requirements for dopamine administration to maintain mean arterial pressure (MAP) >60 mmHg were recorded throughout anesthesia. End-tidal isoflurane concentration was 0.73 ± 0.35% and propofol infusion rate was 292 ± 119 μg kg(-1)  minute(-1) . Cardiac index was higher, while HR was lower, with propofol than isoflurane in dogs younger than 5 years, but not in older dogs. Dogs maintained with isoflurane were 14.7 times more likely to require dopamine than propofol dogs. Mentation and maintenance scores and temperature were not different. MAP and diastolic arterial pressure were higher in the propofol group. Recovery scores were better with propofol, although times to extubation were similar. Change in neurological score from pre- to post-anesthesia was not different between treatments. Dogs maintained with propofol during MRI had higher arterial pressures, decreased requirements for dopamine, and better recovery scores, compared to dogs maintained with isoflurane. Propofol anesthesia offered cardiovascular and recovery advantages over

  1. Cardiopulmonary effects of reverse Trendelenburg position at 5° and 10° in sevoflurane-anesthetized steers.

    PubMed

    Araújo, Marcelo A; Deschk, Maurício; Wagatsuma, Juliana T; Floriano, Beatriz P; Siqueira, Carlos E; Oliva, Valéria Nls; Santos, Paulo Sp

    2017-07-01

    To assess the cardiopulmonary effects caused by reverse Trendelenburg position (RTP) at 5° and 10° in sevoflurane-anesthetized yearling steers. Prospective, experimental study. Eight Holstein steers aged (mean ± standard deviation) 12 ± 2 months and weighing 145 ± 26 kg. In the first phase of the study, the individual minimum alveolar concentration (MAC) of sevoflurane was determined using electrical stimulation. In the second phase, the effects of RTP were assessed. The animals were anesthetized on three separate events separated by ≥7 days in an incomplete crossover design: control treatment using a table without tilt (RTP0); treatment with the table at 5° RTP (RTP5) and table tilted 10° RTP (RTP10). Subjects were physically restrained in dorsal recumbency on the table, which was already tilted according to each treatment. Anesthesia was induced with sevoflurane at 8% in 5 L minute -1 oxygen via face mask followed by maintenance with sevoflurane at 1.3 MAC and spontaneous breathing. Cardiopulmonary variables were obtained immediately after instrumentation (T 0 ) and then after 30, 60, 120 and 180 minutes (T 30 , T 60 , T 120 and T 180 , respectively). The mean sevoflurane MAC for the eight steers was 2.12 ± 0.31%. Cardiac output was lower at all time points and the systemic vascular resistance index was higher at T 120 and T 180 in RTP10 compared with RTP0. Oxygen consumption was lower at T 0 and at T 180 in RTP10 compared with RTP0 and at all time points except T 30 compared with RTP5. Oxygen extraction was lower at T 0 in RTP10 compared with RTP0 and RTP5, and at T 60 and T 180 compared with RTP5. RTP 5° and 10° did not improve ventilatory and oxygenation variables in sevoflurane-anesthetized steers when compared with no tilt, however the cardiovascular variables were adversely affected in RTP10. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All

  2. Short-term memory impairment after isoflurane in mice is prevented by the α5 γ-aminobutyric acid type A receptor inverse agonist L-655,708.

    PubMed

    Saab, Bechara J; Maclean, Ashley J B; Kanisek, Marijana; Zurek, Agnieszka A; Martin, Loren J; Roder, John C; Orser, Beverley A

    2010-11-01

    Memory blockade is an essential component of the anesthetic state. However, postanesthesia memory deficits represent an undesirable and poorly understood adverse effect. Inhibitory α5 subunit-containing γ-aminobutyric acid subtype A receptors (α5GABAA) are known to play a critical role in memory processes and are highly sensitive to positive modulation by anesthetics. We postulated that inhibiting the activity of α5GABAA receptors during isoflurane anesthesia would prevent memory deficits in the early postanesthesia period. Mice were pretreated with L-655,708, an α5GABAA receptor-selective inverse agonist, or vehicle. They were then exposed to isoflurane for 1 h (1.3%, or 1 minimum alveolar concentration, or air-oxygen control). Then, either 1 or 24 h later, mice were conditioned in fear-associated contextual and cued learning paradigms. In addition, the effect of L-655,708 on the immobilizing dose of isoflurane was studied. Motor coordination, sedation, anxiety, and the concentration of isoflurane in the brain at 5 min, 1 h, and 24 h after isoflurane were also examined. Motor and sensory function recovered within minutes after termination of isoflurane administration. In contrast, a robust deficit in contextual fear memory persisted for at least 24 h. The α5GABAA receptor inverse agonist, L-655,708, completely prevented memory deficits without changing the immobilizing dose of isoflurane. Trace concentrations of isoflurane were measured in the brain 24 h after treatment. Memory deficits occurred long after the sedative, analgesic, and anxiolytic effects of isoflurane subsided. L-655,708 prevented memory deficit, suggesting that an isoflurane interaction at α5GABAA receptors contributes to memory impairment during the early postanesthesia period.

  3. Isoflurane unveils a critical role of glutamate transporter type 3 in regulating hippocampal GluR1 trafficking and context-related learning and memory in mice.

    PubMed

    Cao, J; Wang, Z; Mi, W; Zuo, Z

    2014-07-11

    Glutamate transporter type 3 (EAAT3) may play a role in cognition. Isoflurane enhances EAAT3 trafficking to the plasma membrane. Thus, we used isoflurane to determine how EAAT3 might regulate learning and memory and the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, such as GluR1, to the plasma membrane, a fundamental biochemical process for learning and memory. Here, isoflurane increased EAAT3 but did not change GluR1 levels in the plasma membrane of wild-type mouse hippocampus. Isoflurane increased protein phosphatase activity in the wild-type and EAAT3(-/-) mouse hippocampus. Also, isoflurane reduced GluR1 in the plasma membrane and decreased phospho-GluR1 in EAAT3(-/-) mice. The phosphatase inhibitor okadaic acid attenuated these effects. Finally, isoflurane inhibited context-related fear conditioning in EAAT3(-/-) mice but not in wild-type mice. Thus, isoflurane may increase GluR1 trafficking to the plasma membrane via EAAT3 and inhibit GluR1 trafficking via protein phosphatase. Lack of EAAT3 effects leads to decreased GluR1 trafficking and impaired cognition after isoflurane exposure in EAAT3(-/-) mice. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Experimental ex vivo lung perfusion with sevoflurane: effects on damaged donor lung grafts.

    PubMed

    Wang, Xingyu; Parapanov, Roumen; Francioli, Cyril; Perentes, Jean Yannis; Letovanec, Igor; Gonzalez, Michel; Kern, Christian; Ris, Hans-Beat; Piquilloud, Lise; Marcucci, Carlo; Krueger, Thorsten; Liaudet, Lucas; Gronchi, Fabrizio

    2018-06-01

    Volatile anaesthetics can provide significant protection against reperfusion injury in various experimental settings. The aim of this study was to assess the potential of sevoflurane treatment, the most commonly used volatile anaesthetic in modern anaesthesia, in rat lungs donated after circulatory death and reconditioned in an ex vivo lung perfusion (EVLP) system. Fifteen rats were sacrificed and divided into 3 groups. In the control and sevoflurane groups, the heart-lung blocks were exposed to 1 h of warm ischaemia and 2 h of cold ischaemia and were mounted on an EVLP circuit for 3 h, in the absence or in the presence of 2% sevoflurane. In the baseline group, heart-lung blocks were harvested immediately after euthanasia. Physiological data, lung nitro-oxidative stress, lactate dehydrogenase (LDH), expression of cytokines, oedema and histopathological findings were assessed during or post-EVLP. The sevoflurane group showed significantly reduced LDH (8.82 ± 3.58 arbitrary unit vs 3.80 ± 3.02 arbitrary unit, P = 0.03), protein carbonyl (1.17 ± 0.44 nmol⋅mg-1 vs 0.55 ± 0.11 nmol⋅mg-1, P = 0.006), 3-nitrotyrosine (197.44 ± 18.47 pg⋅mg-1 vs 151.05 ± 23.54 pg⋅mg-1, P = 0.004), cytokine-induced neutrophil chemoattractant factor 1 (1.17 ± 0.32 ng⋅mg-1 vs 0.66 ± 0.28 ng⋅mg-1, P = 0.03) and tumour necrosis factor alpha (1.50 ± 0.59 vs 0.59 ± 0.38 ng⋅mg-1, P = 0.02) when compared with the control group. In addition, sevoflurane lungs gained significantly less weight (0.72 ± 0.09 g vs 0.72 ± 0.09 g, P = 0.044), had less perivascular oedema (0.58 ± 0.09 vs 0.47 ± 0.07, P = 0.036), and improved static pulmonary compliance (+0.215 ml⋅cmH2O-1, P = 0.003) and peak airways pressure (-1.33 cmH2O, P = 0.04) but similar oxygenation capacity (+1.61 mmHg, P = 0.77) and pulmonary vascular resistances (+0.078 mmHg⋅min⋅ml-1, P

  5. Effect-site half-time for burst suppression is longer than for hypnosis during anaesthesia with sevoflurane.

    PubMed

    Kennedy, R R; Minto, C; Seethepalli, A

    2008-01-01

    The relationship between measures of drug effect such as bispectral index (BIS) and end-tidal (ET) levels of anaesthetic agents is described by the 'effect site equilibrium half-time', t(1/2)(ke0). There are limited data available on sevoflurane t(1/2)(ke0) during routine anaesthesia and surgery. Preliminary observations suggested t(1/2)(ke0) for the degree of hypnosis as estimated by BIS is different from that for burst suppression of the electroencephalograph, occurring at 'deep' levels of anaesthesia. This study aimed to determine and compare t(1/2)(ke0) for these two 'effects'. Large changes in ET sevoflurane were produced in 13 subjects during surgery. ET sevoflurane, BIS, and burst suppression ratio (BSR) were recorded every 10 s. Data were divided into epochs with BIS>30 (BIS) or with BSR>10% (burst suppression). Using a non-parametric modelling technique, t(1/2)(ke0) was determined for each epoch. There were 36 'BIS' and 20 burst suppression zones. Mean (sd) t(1/2)(ke0) for BIS was 3.48 (1.12) min and for BSR 9.9 (6.4) min. In all subjects, t(1/2)(ke0) BISsevoflurane concentration producing a BIS of 50 was 1.23 (sd 0.34) vol% and for a BSR of 50% was 3.3 (0.50) vol%. There were considerable intra- and inter-subject variabilities. The different values of t(1/2)(ke0) for these effects suggest different sites or mechanisms of action. These results also establish values of t(1/2)(ke0) which can be used to provide the real-time estimates of effect-site sevoflurane concentration in clinical practice.

  6. A comparative study of effect of sevoflurane on intubating conditions with rocuronium in neurosurgical patients.

    PubMed

    Mitra, Saikat; Purohit, Shobha; Bhatia, Sonali; Kalra, Poonam; Sharma, Satya Prakash

    2015-12-01

    Rocuronium may not always be the preferred relaxant for rapid sequence intubation. When 2% sevoflurane is used in conjunction with rocuronium, it may reduce the time required for achieving complete skeletal muscle relaxation with the intubating dose of rocuronium. This study was prospective, randomised, double-blind in nature and compared the effect of sevoflurane on intubation time and intubating conditions when used along with rocuronium. Thirty adult patients belonging to American Society of Anesthesiologists physical status Grades 1 and 2, of either gender aged between 30 and 65 years undergoing neurosurgical operations were randomly allocated into two equal groups: Group R received 0.8 mg/kg rocuronium, and Group RS received 0.8 mg/kg of rocuronium with 2% sevoflurane. Onset time of intubation was assessed using train-of-four stimuli. The intubating conditions were compared using the Cooper scoring system and the haemodynamic responses were compared between the two groups. The onset time of intubation was 101.73 ± 10.28 s in Group R and 60.4 ± 4.1 s in Group RS (P < 0.001), with excellent intubating conditions in both groups and without any adverse effects. Significant differences in heart rate and mean arterial pressure were seen immediately after intubation, at 1 and 3 min (P < 0.05) between the two groups. Rocuronium 0.8 mg/kg along with 2% sevoflurane provides excellent intubating conditions within 60-66 s from its administration.

  7. Isoflurane anesthesia has long-term consequences on motor and behavioral development in infant rhesus macaques

    PubMed Central

    Coleman, Kristine; Robertson, Nicola D.; Dissen, Gregory A.; Neuringer, Martha D.; Martin, L. Drew; Cuzon Carlson, Verginia C.; Kroenke, Christopher; Fair, Damien; Brambrink, Ansgar

    2016-01-01

    Background Experimental evidence correlates anesthetic exposure during early development with neuronal and glial injury and death as well as behavioral and cognitive impairments in young animals. Several, although not all, retrospective human studies of neurocognitive and behavioral disorders following childhood exposure to anesthesia suggest a similar association. Few studies have specifically investigated the effects of infant anesthesia exposure on subsequent neurobehavioral development. Using a highly translational nonhuman primate model, we investigated the potential dose-dependent effects of anesthesia across the first year of development. Methods We examined effects of single or multiple early postnatal isoflurane exposures on subsequent behavioral development in 24 socially reared rhesus macaques. Infants were exposed to 5-h of isoflurane anesthesia either once, three times, or not at all (control). We assessed reflex development and anxiety using standardized tests. At approximately one year, infants (n=23) were weaned and housed indoors with 5-6 other subjects. We recorded their response to this move and re-assessed anxiety. Results Compared to controls, animals exposed to repeated isoflurane (ISO-3) presented with motor reflex deficits at 1 month (median, range: ISO-3= 2 [1–5] versus control= 5 [3–7], p<0.005) and responded to their new social environment with increased anxiety (median, range: ISO-3=0.4 bouts/minute [0.2–0.6]; control= 0.25 [0.1–0.3], p,0.05) and affiliative/appeasement behavior (median, range: ISO-3=0.1 bouts/min [0–0.2]; control= 0 [0–0.1], p<0.01) at 12 months. There were no statistically significant behavioral alterations after single isoflurane exposure. Conclusions Neonatal exposure to isoflurane, particularly when repeated, has long-term behavioral consequences affecting both motor and socio-emotional aspects of behavior. PMID:27749311

  8. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia.

    PubMed

    Chi, Oak Z; Mellender, Scott J; Kiss, Geza K; Liu, Xia; Weiss, Harvey R

    2017-05-01

    One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (K i ) of 14 C-α-aminoisobutyric acid ( 14 C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the K i both in the isoflurane and pentobarbital anesthetized rats. However, the value of K i was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The K i of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the K i (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. [Comparison of effects on the oxidant/antioxidant system of sevoflurane, desflurane and propofol infusion during general anesthesia].

    PubMed

    Erbas, Mesut; Demiraran, Yavuz; Yildirim, Hayriye Ak; Sezen, Gulbin; Iskender, Abdulkadir; Karagoz, Ibrahim; Kandis, Hayati

    2015-01-01

    Desflurane and sevoflurane are frequently used for maintenance of anesthesia and studies have shown that these anesthetics cause a variety of changes to the oxidative stress and antioxidative defense mechanisms. This study aims to compare the effects of sevoflurane, desflurane and propofol infusion anesthesia on the oxidant and antioxidant systems of patients undergoing laparoscopic cholecystectomy. 45 patients between 18 and 50 years with planned laparoscopic cholecystectomy under general anesthetic were included in the study. Patients were divided into three groups on the way to surgery: propofol (group P, n=15), sevoflurane (group S, n=15) and desflurane (group D, n=15). All groups were given hypnotic 2mg/kg propofol IV, 1mcg/kg fentanyl IV and 0.1mg/kg vecuronium IV for induction. For maintenance of anesthesia group S were ventilated with 2% sevoflurane, group D cases were given 6% desflurane and group P were given propofol infusions of 12mg/kg/h for the first 10minutes, 9mg/kg/h for the second 10minutes and 6mg/kg/h after that. Before induction and after the operation venous blood samples were taken to evaluate the levels of glutation peroxidase, total oxidants and antioxidants. The 45 patients included in the study were 22 male and 23 female patients. The demographic characteristics of the groups were similar. In the postoperative period we observed that while sevoflurane and propofol increased antioxidants by a statistically significant level, desflurane increased the total oxidants level by a significant amount compared to levels before the operation. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2-related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning.

    PubMed

    Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong

    2017-03-01

    The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch

  11. [Effects of sevoflurane and desflurane on pharmacodynamics of rocuronium in children].

    PubMed

    Kang, D X; Rao, Y Q; Ji, B; Li, J

    2017-02-14

    Objective: To observe the intraoperative influences on pharmacodynamics of rocuronium in children inhaling sevoflurane and desflurane for 40 min balance. Methods: Ninety children (ASAⅠ-Ⅱ) undergoing elective surgery with general anesthesia in Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University from July 2015 to May 2016 were randomly assigned into six groups ( n =15): Sevoflurane group (group S1 and S2), Desflurane group (group D1 and D2) and Propofol group (group P1 and P2). Children in group D1, S1 and P1 were allocated to research the dose-effect relationship of rocuronium, children in group D2, S2 and P2 were allocated to research the time-effect relationship of rocuronium. TOF-Watch SX monitor was used to exert a train-of-four stimulation (TOF) at ulnar nerve in wrist, then the adductor pollicis muscle appeared muscle twitch 4 times in turn which was recorded T(1, )T(2, )T(3) and T(4) respectively. After the success of the muscle relaxant calibration, 1.3 MAC sevoflurane and desflurane were inhaled and maintained for 40 min respectively in children in Sevoflurane group (group S1 and S2) and Desflurane group (group D1 and D2), Plasma target controlled infusion of 3.5-4.0 μg/ml propofol was always administered in Propofol group (group P1 and P2). 75 μg/kg rocuronium was injected each time in group S1, D1 and P1 respectively. Maximum inhibited effect of T(1) was recorded after every injection until inhibition of T(1) more than 95% eventually. The method of cumulative dose four times was used to calculate the efficiency curve of rocuronium[median effective dose (ED(50)), 90% effective dose (ED(90)) and 95% effective dose (ED(95))]. 0.6 mg/kg rocuronium was injected respectively through vein in group S2, D2 and P2. The recovery times of muscle relaxant were recorded which including time of T(1) disappeared (onset time), T(1) from 0% to 5% (peak effect time), T(1) from 0% to 25% (clinical effect time), T(1) from 25% to 75

  12. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in

  13. The effect of dexmedetomidine continuous infusion as an adjuvant to general anesthesia on sevoflurane requirements: A study based on entropy analysis.

    PubMed

    Patel, Chirag Ramanlal; Engineer, Smita R; Shah, Bharat J; Madhu, S

    2013-07-01

    Dexmedetomidine, a α2 agonist as an adjuvant in general anesthesia, has anesthetic and analgesic-sparing property. To evaluate the effect of continuous infusion of dexmedetomidine alone, without use of opioids, on requirement of sevoflurane during general anesthesia with continuous monitoring of depth of anesthesia by entropy analysis. Sixty patients were randomly divided into 2 groups of 30 each. In group A, fentanyl 2 mcg/kg was given while in group B, dexmedetomidine was given intravenously as loading dose of 1 mcg/kg over 10 min prior to induction. After induction with thiopentone in group B, dexmedetomidine was given as infusion at a dose of 0.2-0.8 mcg/kg. Sevoflurane was used as inhalation agent in both groups. Hemodynamic variables, sevoflurane inspired fraction (FIsevo), sevoflurane expired fraction (ETsevo), and entropy (Response entropy and state entropy) were continuously recorded. Statistical analysis was done by unpaired student's t-test and Chi-square test for continuous and categorical variables, respectively. A P-value < 0.05 was considered significant. The use of dexmedetomidine with sevoflurane was associated with a statistical significant decrease in ETsevo at 5 minutes post-intubation (1.49 ± 0.11) and 60 minutes post-intubation (1.11 ±0.28) as compared to the group A [1.73 ±0.30 (5 minutes); 1.68 ±0.50 (60 minutes)]. There was an average 21.5% decrease in ETsevo in group B as compared to group A. Dexmedetomidine, as an adjuvant in general anesthesia, decreases requirement of sevoflurane for maintaining adequate depth of anesthesia.

  14. Loss of Intralipid®- but Not Sevoflurane-Mediated Cardioprotection in Early Type-2 Diabetic Hearts of Fructose-Fed Rats: Importance of ROS Signaling

    PubMed Central

    Zhang, Liyan; Affolter, Andreas; Gandhi, Manoj; Hersberger, Martin; Warren, Blair E.; Lemieux, Hélène; Sobhi, Hany F.; Clanachan, Alexander S.; Zaugg, Michael

    2014-01-01

    Background Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. Methods Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. Results Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. Conclusions Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection. PMID:25127027

  15. Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations.

    PubMed

    Ambrisko, Tamas D; Klide, Alan M

    2011-10-01

    To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. SAMPLE-4 IAGMs of the same type and 1 refractometer. Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N(2)O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, -0.03 ± 0.18 volume percent; sevoflurane, -0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N(2)O, -0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N(2)O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.

  16. Pharmacological properties of various anesthetic protocols in 10-day-old neonatal rats.

    PubMed

    Tsukamoto, Atsushi; Konishi, Yui; Kawakami, Takako; Koibuchi, Chiharu; Sato, Reiichiro; Kanai, Eiichi; Inomata, Tomo

    2017-10-30

    In general, the anesthesia in neonates involves high risk. Although hypothermic anesthesia is recommended in rats up to the age of 7 days, neonatal anesthesia for later periods has not been standardized. The present study investigated the pharmacological properties of conventional anesthetic protocols in 10-day-old SD rats. The rats were anesthetized with four anesthetics: a combination of ketamine and xylazine (K/X); a combination of medetomidine, midazolam, and butorphanol (M/M/B); isoflurane; and sevoflurane. Anesthetic depth was scored by reflex response to noxious stimuli. Induction and recovery times were recorded. Vital signs and mortality rate were evaluated for safety assessment. All rats died after administration of K/X at a dose of 60/6 mg/kg, whereas K/X at 40/4 mg/kg resulted in insufficient anesthetic depth, indicating inappropriate for neonatal anesthesia. Although M/M/B at the adult rat dose (0.15/2/2.5 mg/kg) did not provide surgical anesthetic depth, the mouse dose (0.3/4/5 mg/kg) showed sufficient anesthetic depth with relatively stable vital signs. Isoflurane required a long induction period, and caused remarkable respiratory depression and hypothermia, resulted in a 25% mortality rate. In contrast, sevoflurane provided consistent surgical anesthetic depth with rapid induction. Although respiratory rate decrease was markedly observed, all rats survived. Among the anesthetic protocols investigated in the present study, sevoflurane and M/M/B at the mouse dose were recommended for the neonatal anesthesia. Compared with adult rats, the required dose of both anesthetics in neonates was higher, possibly associated with their lower anesthetic sensitivity.

  17. Effect of Desflurane versus Sevoflurane in Pediatric Anesthesia: A Meta-Analysis.

    PubMed

    He, Jiaxuan; Zhang, Yong; Xue, Rongliang; Lv, Jianrui; Ding, Xiaoying; Zhang, Zhenni

    2015-01-01

    To compare the effect of desflurane versus sevoflurane in pediatric anesthesia by conducting meta-analysis. Studies were searched from PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library and Google Scholar up to July 2014. Weighted mean difference (WMD) or risk ratio (RR) and 95% confidence intervals (CIs) were considered as effect sizes. Heterogeneity across studies was assessed by Cochran Q test and I2 statistic. The random effects model was performed in the meta-analysis when heterogeneity was observed, or the fixed effect model was used. Review Manager 5.1 software was applied for the meta-analysis. A total of 11 studies (13 comparisons) involving 1,273 objects were included in this meta-analysis. No heterogeneity was observed between studies for any comparison but for postoperative extubation time. The results showed significant differences between desflurane and sevoflurane groups for postoperative extubation time (WMD = -3.87, 95%CI = -6.14 to -1.60, P < 0.01), eye opening time (WMD = -1.11, 95%CI = -1.49 to -0.72, P < 0.01), awakening time (WMD = -4.27, 95%CI = -5.28 to -3.26, P < 0.01) and agitation (RR = 1.44, 95%CI = 1.05 to 1.96, P = 0.02). No significant differences (P > 0.05) were detected for discharge from the recovery room, oculocardiac reflex, nausea and vomiting and severe pain. Desflurane may have less adverse effects than sevoflurane when used in pediatric anesthesia with significantly shorter postoperative extubation time, eye opening time and awakening time as well as slighter agitation.

  18. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    PubMed

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 1.7%, 2.1% and 2.0% in phase 2, respectively (P<0.001). End-tidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 46.2, 36 and 33.5 mm Hg in phase 2, respectively (P<0.001). When sevoflurane is administered with tidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  19. Cardiovascular function during maintenance of anaesthesia with isoflurane or alfaxalone infusion in greyhounds experiencing blood loss.

    PubMed

    Raisis, Anthea L; Smart, Lisa; Drynan, Eleanor; Hosgood, Giselle

    2015-03-01

    To compare adequacy of oxygen delivery and severity of shock during maintenance of anaesthesia with isoflurane or alfaxalone infusion in greyhounds experiencing blood loss. Prospective, randomised study. Twenty-four greyhounds (ASA I). All greyhounds were premedicated with methadone (0.2 mg kg(-1) ) intramuscularly. Anaesthesia was induced with alfaxalone 2.5 mg kg(-1) intravenously. Following endotracheal intubation, the dogs were connected to an anaesthetic circle circuit delivering oxygen. Dogs were allocated to receive inhaled isoflurane or an intravenous infusion of alfaxalone for maintenance of anaesthesia. Isoflurane was initially administered to achieve an end-tidal concentration of 1.4% and alfaxalone was initially administered at 0.13 mg kg(-1)  minute(-1) . The dose of isoflurane or alfaxalone was adjusted during instrumentation to produce a clinically equivalent depth of anaesthesia. All dogs were mechanically ventilated to normocapnia (Pa CO2 35-40 mmHg; 4.67-5.33 kPa). Passive warming maintained core body temperature between 37 and 38 °C. Measured and calculated indices of cardiovascular function, including mean arterial blood pressure (MAP), cardiac index (CI), systemic vascular resistance index (SVRI), oxygen delivery index (D˙O2I), oxygen consumption index (V˙O2I) and oxygen extraction ratio (OER), were determined at baseline (60 minutes after start of anaesthesia) and after removal of 32 mL kg(-1) and 48 mL kg(-1) of blood. In all dogs, blood loss resulted in a significant decrease in MAP, CI, D˙O2 , and a significant increase in SVRI, V˙O2I , and OER. The changes in each of the indices did not differ significantly between dogs receiving isoflurane and dogs receiving alfaxalone. No difference in oxygen delivery or severity of shock was observed when either inhaled isoflurane or intravenous alfaxalone infusion was used for maintenance of anaesthesia in greyhounds experiencing blood loss. There appears to be no clinical advantage to

  20. The effect of dexmedetomidine continuous infusion as an adjuvant to general anesthesia on sevoflurane requirements: A study based on entropy analysis

    PubMed Central

    Patel, Chirag Ramanlal; Engineer, Smita R; Shah, Bharat J; Madhu, S

    2013-01-01

    Background: Dexmedetomidine, a α2 agonist as an adjuvant in general anesthesia, has anesthetic and analgesic-sparing property. Aims: To evaluate the effect of continuous infusion of dexmedetomidine alone, without use of opioids, on requirement of sevoflurane during general anesthesia with continuous monitoring of depth of anesthesia by entropy analysis. Materials and Methods: Sixty patients were randomly divided into 2 groups of 30 each. In group A, fentanyl 2 mcg/kg was given while in group B, dexmedetomidine was given intravenously as loading dose of 1 mcg/kg over 10 min prior to induction. After induction with thiopentone in group B, dexmedetomidine was given as infusion at a dose of 0.2-0.8 mcg/kg. Sevoflurane was used as inhalation agent in both groups. Hemodynamic variables, sevoflurane inspired fraction (FIsevo), sevoflurane expired fraction (ETsevo), and entropy (Response entropy and state entropy) were continuously recorded. Statistical analysis was done by unpaired student's t-test and Chi-square test for continuous and categorical variables, respectively. A P-value < 0.05 was considered significant. Results: The use of dexmedetomidine with sevoflurane was associated with a statistical significant decrease in ETsevo at 5 minutes post-intubation (1.49 ± 0.11) and 60 minutes post-intubation (1.11 ±0.28) as compared to the group A [1.73 ±0.30 (5 minutes); 1.68 ±0.50 (60 minutes)]. There was an average 21.5% decrease in ETsevo in group B as compared to group A. Conclusions: Dexmedetomidine, as an adjuvant in general anesthesia, decreases requirement of sevoflurane for maintaining adequate depth of anesthesia. PMID:24106354

  1. Isoflurane preconditioning protects neurons from male and female mice against oxygen and glucose deprivation and is modulated by estradiol only in neurons from female mice.

    PubMed

    Johnsen, D; Murphy, S J

    2011-12-29

    The volatile anesthetic, isoflurane, can protect the brain if administered before an insult such as an ischemic stroke. However, this protective "preconditioning" response to isoflurane is specific to males, with females showing an increase in brain damage following isoflurane preconditioning and subsequent focal cerebral ischemia. Innate cell sex is emerging as an important player in neuronal cell death, but its role in the sexually dimorphic response to isoflurane preconditioning has not been investigated. We used an in vitro model of isoflurane preconditioning and ischemia (oxygen and glucose deprivation, OGD) to test the hypotheses that innate cell sex dictates the response to isoflurane preconditioning and that 17β-estradiol attenuates any protective effect from isoflurane preconditioning in neurons via nuclear estrogen receptors. Sex-segregated neuron cultures derived from postnatal day 0-1 mice were exposed to either 0% or 3% isoflurane preconditioning for 1 h. In separate experiments, 17β-estradiol and the non-selective estrogen receptor antagonist ICI 182,780 were added 24 h before preconditioning and then removed at the end of the preconditioning period. Twenty-three hours after preconditioning, all cultures underwent 2 h of OGD. Twenty-four hours following OGD, cell viability was quantified using calcein-AM fluorescence. We observed that isoflurane preconditioning increased cell survival following subsequent OGD regardless of innate cell sex, but that the presence of 17β-estradiol before and during isoflurane preconditioning attenuated this protection only in female neurons independent of nuclear estrogen receptors. We also found that independent of preconditioning treatment, female neurons were less sensitive to OGD compared with male neurons and that transient treatment with 17β-estradiol protected both male and female neurons from subsequent OGD. More studies are needed to determine how cell type, cell sex, and sex steroids like 17β-estradiol may

  2. Interaction between maropitant and carprofen on sparing of the minimum alveolar concentration for blunting adrenergic response (MAC-BAR) of sevoflurane in dogs

    PubMed Central

    FUKUI, Sho; OOYAMA, Norihiko; TAMURA, Jun; UMAR, Mohammed Ahmed; ISHIZUKA, Tomohito; ITAMI, Takaharu; MIYOSHI, Kenjiro; SANO, Tadashi; YAMASHITA, Kazuto

    2017-01-01

    Maropitant, a neurokinin-1 receptor antagonist, may provide analgesic effects by blocking pharmacological action of substance P. Carprofen is a non-steroidal anti-inflammatory drug commonly used for pain control in dogs. The purpose of this study was to evaluate the effect of a combination of maropitant and carprofen on the minimum alveolar concentration for blunting adrenergic response (MAC-BAR) of sevoflurane in dogs. Six healthy adult beagle dogs were anesthetized with sevoflurane four times with a minimum of 7-day washout period. On each occasion, maropitant (1 mg/kg) alone, carprofen (4 mg/kg) alone, a combination of maropitant (1 mg/kg) and carprofen (4 mg/kg), or saline (0.1 ml/kg) was subcutaneously administered at 1 hr prior to the first electrical stimulation for the sevoflurane MAC-BAR determination. The sevoflurane MAC-BAR was significantly reduced by maropitant alone (2.88 ± 0.73%, P=0.010), carprofen alone (2.96 ± 0.38%, P=0.016) and the combination (2.81 ± 0.51%, P=0.0003), compared with saline (3.37 ± 0.56%). There was no significant difference in the percentage of MAC-BAR reductions between maropitant alone, carprofen alone and the combination. The administration of maropitant alone and carprofen alone produced clinically significant sparing effects on the sevoflurane MAC-BAR in dogs. However, the combination of maropitant and carprofen did not produce any additive effect on the sevoflurane MAC-BAR reduction. Anesthetic premedication with a combination of maropitant and carprofen may not provide any further sparing effect on anesthetic requirement in dogs. PMID:28111373

  3. Interaction between maropitant and carprofen on sparing of the minimum alveolar concentration for blunting adrenergic response (MAC-BAR) of sevoflurane in dogs.

    PubMed

    Fukui, Sho; Ooyama, Norihiko; Tamura, Jun; Umar, Mohammed Ahmed; Ishizuka, Tomohito; Itami, Takaharu; Miyoshi, Kenjiro; Sano, Tadashi; Yamashita, Kazuto

    2017-03-18

    Maropitant, a neurokinin-1 receptor antagonist, may provide analgesic effects by blocking pharmacological action of substance P. Carprofen is a non-steroidal anti-inflammatory drug commonly used for pain control in dogs. The purpose of this study was to evaluate the effect of a combination of maropitant and carprofen on the minimum alveolar concentration for blunting adrenergic response (MAC-BAR) of sevoflurane in dogs. Six healthy adult beagle dogs were anesthetized with sevoflurane four times with a minimum of 7-day washout period. On each occasion, maropitant (1 mg/kg) alone, carprofen (4 mg/kg) alone, a combination of maropitant (1 mg/kg) and carprofen (4 mg/kg), or saline (0.1 ml/kg) was subcutaneously administered at 1 hr prior to the first electrical stimulation for the sevoflurane MAC-BAR determination. The sevoflurane MAC-BAR was significantly reduced by maropitant alone (2.88 ± 0.73%, P=0.010), carprofen alone (2.96 ± 0.38%, P=0.016) and the combination (2.81 ± 0.51%, P=0.0003), compared with saline (3.37 ± 0.56%). There was no significant difference in the percentage of MAC-BAR reductions between maropitant alone, carprofen alone and the combination. The administration of maropitant alone and carprofen alone produced clinically significant sparing effects on the sevoflurane MAC-BAR in dogs. However, the combination of maropitant and carprofen did not produce any additive effect on the sevoflurane MAC-BAR reduction. Anesthetic premedication with a combination of maropitant and carprofen may not provide any further sparing effect on anesthetic requirement in dogs.

  4. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurumaji, A.; McCulloch, J.

    1989-12-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic (14C)-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas inmore » the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus.« less

  5. Pulse perfusion value predicts eye opening after sevoflurane anaesthesia: an explorative study.

    PubMed

    Enekvist, Bruno; Johansson, Anders

    2015-08-01

    The variables measured in modern pulse oximetry apparatuses include a graphical pulse curve and a specified perfusion value (PV) that could be a sensitive marker for detecting differences in sympathetic activity. We hypothesized that there is a correlation between a reduction of PV and the time to eye opening after general anaesthesia. The objective was to investigate whether PV can predict eye opening after sevoflurane anaesthesia. Prospective, explorative clinical study included 20 patients, ASA physical status 1 or 2, at Skåne University Hospital, Lund, Sweden, from November 2012 to January 2013 scheduled for elective breast tumour surgery. A general anaesthesia was delivered with inhalation of oxygen, nitrous oxide and sevoflurane anaesthesia to a depth of 1.2 minimal alveolar concentration. Sevoflurane inspiratory and expiratory concentrations were measured. Bispectral index monitoring, PV as measured by pulse oximeter, heart rate and carbon dioxide were registered at before anaesthesia, 15 min after induction (at 1.2 minimal alveolar concentration), at end of surgery and at eye opening at the end of anaesthesia. PV values were lower before anaesthesia and at eye opening compared to at 15 min after induction and at end of surgery (P < 0.05). The reduction of PV between end of surgery and eye opening was 0.76. We conclude that the pulse oximeter PV could be a useful variable to assess the timing of recovery, in terms of eye opening after a general anaesthesia.

  6. Influence of isoflurane on the diastolic pressure-flow relationship and critical occlusion pressure during arterial CABG surgery: a randomized controlled trial.

    PubMed

    Hinz, José; Mansur, Ashham; Hanekop, Gerd G; Weyland, Andreas; Popov, Aron F; Schmitto, Jan D; Grüne, Frank F G; Bauer, Martin; Kazmaier, Stephan

    2016-01-01

    The effects of isoflurane on the determinants of blood flow during Coronary Artery Bypass Graft (CABG) surgery are not completely understood. This study characterized the influence of isoflurane on the diastolic Pressure-Flow (P-F) relationship and Critical Occlusion Pressure (COP) during CABG surgery. Twenty patients undergoing CABG surgery were studied. Patients were assigned to an isoflurane or control group. Hemodynamic and flow measurements during CABG surgery were performed twice (15 minutes after the discontinuation of extracorporeal circulation (T15) and again 15 minutes later (T30)). The zero flow pressure intercept (a measure of COP) was extrapolated from a linear regression analysis of the instantaneous diastolic P-F relationship. In the isoflurane group, the application of isoflurane significantly increased the slope of the diastolic P-F relationship by 215% indicating a mean reduction of Coronary Vascular Resistance (CVR) by 46%. Simultaneously, the Mean Diastolic Aortic Pressure (MDAP) decreased by 19% mainly due to a decrease in the systemic vascular resistance index by 21%. The COP, cardiac index, heart rate, Left Ventricular End-Diastolic Pressure (LVEDP) and Coronary Sinus Pressure (CSP) did not change significantly. In the control group, the parameters remained unchanged. In both groups, COP significantly exceeded the CSP and LVEDP at both time points. We conclude that short-term application of isoflurane at a sedative concentration markedly increases the slope of the instantaneous diastolic P-F relationship during CABG surgery implying a distinct decrease with CVR in patients undergoing CABG surgery.

  7. Determination of optimum time for intravenous cannulation after induction with sevoflurane and nitrous oxide in children premedicated with midazolam.

    PubMed

    Kilicaslan, Alper; Gök, Funda; Erol, Atilla; Okesli, Selmin; Sarkilar, Gamze; Otelcioglu, Seref

    2014-06-01

    It has been shown that early placement of an intravenous line in children administered sevoflurane anesthesia increased the incidence of laryngospasm and movement. However, the optimal time for safe cannulation after the loss of the eyelash reflex during the administration of sevoflurane and nitrous oxide is not known. The aim of the study was to determine the optimum time for intravenous cannulation after the induction of anesthesia with sevoflurane and nitrous oxide in children premedicated with oral midazolam. We performed a prospective, observer-blinded, up-down sequential, allocation study, and children, aged 2-6 years, ASA physical status I, scheduled for an elective procedure undergoing inhalational induction were included in the study. Anesthesia was induced with sevoflurane and nitrous oxide after premedication with oral midazolam. For the first child, 4 min after the loss of the eyelash reflex, the intravenous cannulation was attempted by an experienced anesthesiologist. The time for intravenous cannulation was considered adequate if movement, coughing, or laryngospasm did not occur. The time for cannulation was increased by 15 s if the time was inadequate in the previous patient, and conversely, the time for cannulation was decreased by 15 s if the time was adequate in the previous patient. The probit test was used in the analysis of up-down sequences. A total of 32 children were enrolled sequentially during the study period. The adequate time for effective intravenous cannulation after induction with sevoflurane and nitrous oxide in 50% and 95% of patients were 1.29 min (95% confidence interval, 0.96-1.54 min) and 1.86 min (95% confidence interval 1.58-4.35 min), respectively. We recommend waiting 2 min for attempting intravenous placement following the loss of the eyelash reflex in children sedated with midazolam and receiving an inhalation induction with sevoflurane and nitrous oxide. © 2014 John Wiley & Sons Ltd.

  8. Linear transformation of the encoding mechanism for light intensity underlies the paradoxical enhancement of cortical visual responses by sevoflurane.

    PubMed

    Arena, Alessandro; Lamanna, Jacopo; Gemma, Marco; Ripamonti, Maddalena; Ravasio, Giuliano; Zimarino, Vincenzo; De Vitis, Assunta; Beretta, Luigi; Malgaroli, Antonio

    2017-01-01

    The mechanisms of action of anaesthetics on the living brain are still poorly understood. In this respect, the analysis of the differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity might provide important and novel cues. Here we show that the anaesthetic sevoflurane strongly silences the brain but potentiates in a dose- and frequency-dependent manner the cortical visual response. Such enhancement arises from a linear scaling by sevoflurane of the power-law relation between light intensity and the cortical response. The fingerprint of sevoflurane action suggests that circuit silencing can boost linearly synaptic responsiveness presumably by scaling the number of responding units and/or their correlation following a sensory stimulation. General anaesthetics, which are expected to silence brain activity, often spare sensory responses. To evaluate differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity, we characterized their modulation by sevoflurane and propofol. Power spectra and the bust-suppression ratio from EEG data were used to evaluate anaesthesia depth. ON and OFF cortical responses were elicited by light pulses of variable intensity, duration and frequency, during light and deep states of anaesthesia. Both anaesthetics reduced spontaneous cortical activity but sevoflurane greatly enhanced while propofol diminished the ON visual response. Interestingly, the large potentiation of the ON visual response by sevoflurane was found to represent a linear scaling of the encoding mechanism for light intensity. To the contrary, the OFF cortical visual response was depressed by both anaesthetics. The selective depression of the OFF component by sevoflurane could be converted into a robust potentiation by the pharmacological blockade of the ON pathway, suggesting that the temporal order of ON and OFF responses leads to a depression of the latter. This hypothesis agrees with the finding that the

  9. Isoflurane anaesthesia in an African wild dog, Lycaon pictus.

    PubMed

    Stegmann, G F

    2000-12-01

    Anaesthesia was required in a captive female African wild dog (Lycaon pictus) for surgical wound treatment. After it was immobilised with a medetomidine-ketamine combination, bradycardia, hypothermia, systolic hypertension and metabolic acidosis were observed. Surgical anaesthesia was maintained with a 1% end-tidal isoflurane concentration. A decrease in the arterial blood pressure, rectal temperature and pH occurred during maintenance of anaesthesia.

  10. Slowing of the hippocampal θ-rhythm correlates with anesthetic-induced amnesia

    PubMed Central

    Perouansky, Misha; Rau, Vinuta; Ford, Tim; Oh, S. Irene; Perkins, Mark; Eger, Edmond I.; Pearce, Robert A.

    2010-01-01

    Background Temporary, antegrade amnesia is one of the core desirable endpoints of general anesthesia. Multiple lines of evidence support a role for the hippocampal θ-rhythm, a synchronized rhythmic oscillation of field potentials at 4–12 Hz, in memory formation. Previous studies have revealed a disruption of the θ-rhythm at surgical levels of anesthesia. We hypothesized that modulation of θ-rhythm would also occur at subhypnotic but amnestic concentrations. Therefore we examined the effect of three inhaled agents on properties of the θ-rhythm that are considered to be critical for the formation of hippocampus-dependent memories. Methods We studied the effects of halothane and nitrous oxide, two agents known to modulate different molecular targets (GABAergic vs. non-GABAergic, respectively), and isoflurane (both GABAergic and non-GABAergic targets), on fear-conditioned learning and θ-oscillations in freely behaving rats. Results All three anesthetics slowed θ-peak frequency in proportion to their inhibition of fear conditioning (by 1 Hz, 0.7 Hz and 0.5 Hz for 0.32% isoflurane, 60% N2O and 0.24% halothane). The anesthetics inconsistently affected other characteristics of θ-oscillations. Conclusions At sub-hypnotic amnestic concentrations, θ-oscillation frequency was the parameter most consistently affected by these three anesthetics. These results are consistent with the hypothesis that modulation of the θ-rhythm contributes to anesthetic-induced amnesia. PMID:21042201

  11. Goalpha regulates volatile anesthetic action in Caenorhabditis elegans.

    PubMed Central

    van Swinderen, B; Metz, L B; Shebester, L D; Mendel, J E; Sternberg, P W; Crowder, C M

    2001-01-01

    To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets. PMID:11404329

  12. An Improved Analysis of the Sevoflurane-Benzene Structure by Chirped Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando; Kleiner, Isabelle

    2013-06-01

    Recent improvements to the 2-8 GHz CP-FTMW spectrometer at University of Virginia have improved the structural and spectroscopic analysis of the sevoflurane-benzene cluster. Previously reported results, although robust, were limited to a fit of the a-type transitions of the normal species in the determination of the six-fold barrier to benzene internal rotation. Structural analysis was limited to the benzene hydrogen atom positions using benzene-d_{1}. The increased sensitivity of the new 2-8 GHz setup allows for a full internal rotation analysis of the a- and c-type transitions of the normal species, which was performed with BELGI. A fit value for V_{6} of 32.868(11) cm^{-1} is determined. Additionally, a full substitution structure of the benzene carbon atom positions was determined in natural abundance. Also, new measurements of a sevoflurane/benzene-d_{1} mixture enabled detection of 33 of the 60 possible ^{2}D / ^{13}C double isotopologues. This abundance of isotopic data, a total of 45 isotopologues, enabled a full heavy atom least-squares r_{0} structure fit for the complex, including positions for all seven fluorines in sevoflurane. N. A. Seifert, D. P. Zaleski, J. L. Neill, B. H. Pate, A. Lesarri, M. Vallejo, E. J. Cocinero, F. Castańo. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  13. [Long-term dental interventions in mentally retarded children under general anesthesia with sevoflurane].

    PubMed

    Sitkin, S I; Gasparian, A L; Ivanova, T Iu; Nesterova, E Iu; Drozdova, N I

    2015-01-01

    Dental procedures in mentally retarded children is challenging for both dentist and for anesthesiologist. The aim of the study was to evaluate the efficacy and safety of dental care procedures under general anesthesia with sevoflurane by means of laryngeal mask in mentally retarded children. The randomized controlled study included 65 mentally retarded children with ASA 2-3 who underwent dental treatment. All patients had multiple caries. The children were divided into two groups. The first group included 35 children with normal body weigh while the second one - 30 obese children. All patients received a rapid induction with sevoflurane with the subsequent installation of the laryngeal mask. In the second group the signs of hypoventilation recorded an average of 10 ± 4 minutes after induction of anesthesia, which was manifested in increasing Pсо₂greater than 50 mm Hg. In the first group, the signs of hypoventilation marked an average of 18 ± 3.5 minutes from the start of induction of anesthesia. All patients were transferred to the artificial lung ventilation through the LMA. By dental treatment under general anesthesia with sevoflurane and laryngeal mask all mentally retarded children had respiratory depression with increased levels of carbon dioxide greater than 50 mmHg, but obese children developed these signs of hypoventilation twice as fast. Conducting long dental treatment in mentally retarded children require artificial lung ventilation.

  14. Optimization of initial propofol bolus dose for EEG Narcotrend Index-guided transition from sevoflurane induction to intravenous anesthesia in children.

    PubMed

    Dennhardt, Nils; Boethig, Dietmar; Beck, Christiane; Heiderich, Sebastian; Boehne, Martin; Leffler, Andreas; Schultz, Barbara; Sümpelmann, Robert

    2017-04-01

    Sevoflurane induction followed by intravenous anesthesia is a widely used technique to combine the benefits of an easier and less traumatic venipuncture after sevoflurane inhalation with a recovery with less agitation, nausea, and vomiting after total intravenous anesthesia (TIVA). Combination of two different anesthetics may lead to unwanted burst suppression in the electroencephalogram (EEG) during the transition phase. The objective of this prospective clinical observational study was to identify the optimal initial propofol bolus dose for a smooth transition from sevoflurane induction to TIVA using the EEG Narcotrend Index (NI). Fifty children aged 1-8 years scheduled for elective pediatric surgery were studied. After sevoflurane induction and establishing of an intravenous access, a propofol bolus dose range 0-5 mg·kg -1 was administered at the attending anesthetist's discretion to maintain a NI between 20 and 64, and sevoflurane was stopped. Anesthesia was continued as TIVA with a propofol infusion dose of 15 mg·kg -1 ·h -1 for the first 15 min, followed by stepwise reduction according to McFarlan's pediatric infusion regime, and remifentanil 0.25 μg·kg -1 ·min -1 . Endtidal concentration of sevoflurane, NI, and hemodynamic data were recorded during the whole study period using a standardized case report form. Propofol plasma concentrations were calculated using the paedfusor dataset and a TIVA simulation program. Median endtidal concentration of sevoflurane at the time of administration of the propofol bolus was 5.1 [IQR 4.7-5.9] Vol%. The median propofol bolus dose was 1.2 [IQR 0.9-2.5] mg·kg -1 and median NI thereafter was 33 [IQR 23-40]. Nine children presented with a NI 13-20 and three children with burst suppression in the EEG (NI 0-12); all of them received an initial propofol bolus dose >2 mg·kg -1 . Regression equation demonstrated that NI 20-64 was achieved with a 95% probability when using a propofol bolus dose of 1 mg·kg -1 after

  15. The effect of experimentally induced hypothyroidism on the isoflurane minimum alveolar concentration in dogs.

    PubMed

    Berry, Stephanie H; Panciera, David L

    2015-01-01

    To determine the effect of experimentally induced hypothyroidism on isoflurane (ISO) minimum alveolar concentration (MAC) in dogs. Prospective experimental study. Eighteen adult female mongrel dogs, age 2-4 years and weighing 8.2-13.1 kg. Hypothyroidism was induced in nine dogs by the intravenous administration of 1 mCi kg(-1) of (131) Iodine. The remaining nine dogs served as controls. Dogs were studied 9-12 months after the induction of hypothyroidism. Anesthesia was induced with ISO in oxygen via a mask. The trachea was intubated, and anesthesia was maintained using ISO in oxygen using a semi-closed rebreathing circle system. The dogs were mechanically ventilated to maintain an end-tidal carbon dioxide concentration between 35 and 45 mmHg. End-tidal ISO concentrations were measured with an infrared gas analyzer. The MAC was determined in duplicate using a tail clamp technique. The mean values for the groups were compared using a two sample t-test. The mean ± SD MAC of isoflurane in the hypothyroid and euthyroid dogs was 0.98 ± 0.31% and 1.11 ± 0.26%, respectively. The mean MAC of isoflurane in hypothyroid dogs was not significantly different from the mean MAC of isoflurane in the control dogs (p = 0.3553). The MAC of ISO in dogs was not significantly affected by experimentally induced hypothyroidism. The dose of ISO in dogs with hypothyroidism does not need to be altered. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  16. Nicotinamide improves sevoflurane-induced cognitive impairment through suppression of inflammation and anti-apoptosis in rat

    PubMed Central

    Wang, Ying; Zuo, Min

    2015-01-01

    Nicotinamide is amide form of vitamin B3, participate in oxidation-reduction reaction, and it plays an important role in the maintenance of normal life activities in cells; it has broad application prospects in the treatment of heart blood-vessel disease, respiratory disease, type 1 diabetes and inflammatory autoimmune diseases. Thus the present study aimed to identify whether the nicotinamide improves sevoflurane-induced cognitive impairment and its potential mechanisms in rat. Firstly, Male Sprague-Dawley rats were induced by 2.1% sevoflurane for 6 h. Protective function of nicotinamide on cognitive impairment was evaluated using Morris water maze test in the rats. Next, NF-κB and caspase-3 activities, and p53, Bax and Bcl-2 protein expression was executed using commercial kits and Western blot analysis, respectively. Preconditioning with nicotinamide could improve cognitive impairment in the rats. Administrate of nicotinamide suppressed the activation of NF-κB and caspase-3, reduced the protein expression of Bax, and promoted Bcl-2 protein expression in rats. The present results suggested nicotinamide improves sevoflurane-induced cognitive impairment and has an anti-inflammatory and anti-apoptotic effect against sevoflrane-induced damages. PMID:26884920

  17. Cardiopulmonary effects of administration of a combination solution of xylazine, guaifenesin, and ketamine or inhaled isoflurane in mechanically ventilated calves.

    PubMed

    Kerr, Carolyn L; Windeyer, Claire; Bouré, Ludovic P; Mirakhur, Kuldip K; McDonell, Wayne

    2007-12-01

    To compare the cardiopulmonary effects of administration of a solution of xylazine, guaifenesin, and ketamine (XGK) or inhaled isoflurane in mechanically ventilated calves undergoing surgery. 13 male calves 2 to 26 days of age. Procedures-In calves in the XGK group, anesthesia was induced (0.5 mL/kg) and maintained (2.5 mL/kg/h) with a combination solution of xylazine (0.1 mg/mL), guaifenesin (50 mg/mL), and ketamine (1.0 mg/mL). For calves in the isoflurane group, anesthesia was induced and maintained with isoflurane in oxygen. The rates of XGK infusion and isoflurane administration were adjusted to achieve suitable anesthetic depth. All calves received 100% oxygen and were mechanically ventilated to maintain end-tidal carbon dioxide concentrations from 35 to 40 mm Hg and underwent laparoscopic bladder surgery through an abdominal approach. Cardiopulmonary variables were measured before induction and at intervals up to 90 minutes after anesthetic induction. The quality of induction was excellent in all calves. The XGK requirements were 0.57 +/- 0.18 mL/kg and 2.70 +/- 0.40 mL/kg/h to induce and maintain anesthesia, respectively. Heart rate was significantly lower than baseline throughout the anesthetic period in the XGK group. Systolic arterial blood pressure was significantly higher in the XGK group, compared with the isoflurane group, from 5 to 90 minutes. Cardiac index was lower than baseline in both groups. Differences between groups in cardiac index and arterial blood gas values were not significant. Administration of XGK resulted in excellent anesthetic induction and maintenance with cardiopulmonary alterations similar to those associated with isoflurane in mechanically ventilated calves.

  18. Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with isoflurane.

    PubMed

    Gentilini, A; Rossoni-Gerosa, M; Frei, C W; Wymann, R; Morari, M; Zbinden, A M; Schnider, T W

    2001-08-01

    A model-based closed-loop control system is presented to regulate hypnosis with the volatile anesthetic isoflurane. Hypnosis is assessed by means of the bispectral index (BIS), a processed parameter derived from the electroencephalogram. Isoflurane is administered through a closed-circuit respiratory system. The model for control was identified on a population of 20 healthy volunteers. It consists of three parts: a model for the respiratory system, a pharmacokinetic model and a pharmacodynamic model to predict BIS at the effect compartment. A cascaded internal model controller is employed. The master controller compares the actual BIS and the reference value set by the anesthesiologist and provides expired isoflurane concentration references to the slave controller. The slave controller maneuvers the fresh gas anesthetic concentration entering the respiratory system. The controller is designed to adapt to different respiratory conditions. Anti-windup measures protect against performance degradation in the event of saturation of the input signal. Fault detection schemes in the controller cope with BIS and expired concentration measurement artifacts. The results of clinical studies on humans are presented.

  19. Optimum time for intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide in children without any premedication.

    PubMed

    Hasan, Abm Kamrul; Sivasankar, Raman; Nair, Salil G; Hasan, Wamia U; Latif, Zulaidi

    2018-02-01

    Intravenous cannulation is usually done in children after inhalational induction with volatile anesthetic agents. The optimum time for safe intravenous cannulation after induction with sevoflurane, oxygen, and nitrous oxide has been studied in premedicated children, but there is no information for the optimum time for cannulation with inhalational induction in children without premedication. The aim of this study was to determine the optimum time for intravenous cannulation after the induction of anesthesia with sevoflurane, oxygen, and nitrous oxide in children without any premedication. This is a prospective, observer-blinded, up-and-down sequential allocation study in unpremedicated ASA grade 1 children aged 2-6 years undergoing elective dental surgery. Intravenous cannulation was attempted after inhalational induction with sevoflurane, oxygen, and nitrous oxide. The timing of cannulation was considered adequate if there was no movement, coughing, or laryngospasm. The cannulation attempt for the first child was set at 4 minutes after the loss of eyelash reflex and the time for intravenous cannulation was determined by the up-and-down method using 15 seconds as step size. Probit test was used to analyze the up-down sequences for the study. The adequate time for effective cannulation after induction with sevoflurane, oxygen, and nitrous oxide in 50% and 95% of patients was 53.02 seconds (95% confidence limits, 20.23-67.76 seconds) and 87.21 seconds (95% confidence limits, 70.77-248.03 seconds), respectively. We recommend waiting for 1 minute 45 seconds (105 seconds) after the loss of eyelash reflex before attempting intravenous cannulation in pediatric patients induced with sevoflurane, oxygen, and nitrous oxide without any premedication. © 2018 John Wiley & Sons Ltd.

  20. Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2.

    PubMed

    Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W

    2014-09-05

    Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Hypercapnia shortens emergence time from inhaled anesthesia in pigs.

    PubMed

    Gopalakrishnan, Nishant A; Sakata, Derek J; Orr, Joseph A; McJames, Scott; Westenskow, Dwayne R

    2007-04-01

    Anesthetic clearance from the lungs and the circle rebreathing system can be maximized using hyperventilation and high fresh gas flows. However, the concomitant clearance of CO2 decreases PAco2, thereby decreasing cerebral blood flow and slowing the clearance of anesthetic from the brain. This study shows that in addition to hyperventilation, hypercapnia (CO2 infusion or rebreathing) is a significant factor in decreasing emergence time from inhaled anesthesia. We anesthetized seven pigs with 2 MACPIG of isoflurane and four with 2 MACPIG of sevoflurane. After 2 h, anesthesia was discontinued, and the animals were hyperventilated. The time to movement of multiple limbs was measured under hypocapnic (end-tidal CO2 = 22 mm Hg) and hypercapnic (end-tidal CO2 = 55 mm Hg) conditions. The time between turning off the vaporizer and to movement of multiple limbs was faster with hypercapnia during hyperventilation. Emergence time from isoflurane and sevoflurane anesthesia was shortened by an average of 65% with rebreathing or with the use of a CO2 controller (P < 0.05). Hypercapnia, along with hyperventilation, may be used clinically to decrease emergence time from inhaled anesthesia. These time savings might reduce drug costs. In addition, higher PAco2 during emergence may enhance respiratory drive and airway protection after tracheal extubation.

  2. Effects of Sevoflurane Exposure During Mid-Pregnancy on Learning and Memory in Offspring Rats: Beneficial Effects of Maternal Exercise.

    PubMed

    Wu, Ziyi; Li, Xingyue; Zhang, Yi; Tong, Dongyi; Wang, Lili; Zhao, Ping

    2018-01-01

    Fetal exposure to general anesthetics may pose significant neurocognitive risks but methods to mitigate against these detrimental effects are still to be determined. We set out, therefore, to assess whether single or repeated in utero exposure to sevoflurane triggers long-term cognitive impairments in rat offspring. Since maternal exercise during pregnancy has been shown to improve cognition in offspring, we hypothesized that maternal treadmill exercise during pregnancy would protect against sevoflurane-induced neurotoxicity. In the first experiment, pregnant rats were exposed to 3% sevoflurane for 2 h on gestational (G) day 14, or to sequential exposure for 2 h on G13, G14 and G15. In the second experiment, pregnant rats in the exercise group were forced to run on a treadmill for 60 min/day during the whole pregnancy. The TrkB antagonist ANA-12 was used to investigate whether the brain-derived neurotrophic factor (BDNF)/TrkB/Akt signaling pathway is involved in the neuroprotection afforded by maternal exercise. Our data suggest that repeated, but not single, exposure to sevoflurane caused a reduction in both histone acetylation and BDNF expression in fetal brain tissues and postnatal hippocampus. This was accompanied by decreased numbers of dendritic spines, impaired spatial-dependent learning and memory dysfunction. These effects were mitigated by maternal exercise but the TrkB antagonist ANA-12 abolished the beneficial effects of maternal exercise. Our findings suggest that repeated, but not single, exposure to sevoflurane in pregnant rats during the second trimester caused long-lasting learning and memory dysfunction in the offspring. Maternal exercise ameliorated the postnatal neurocognitive impairment by enhancing histone acetylation and activating downstream BDNF/TrkB/Akt signaling.

  3. Sevoflurane and bradycardia in infants with trisomy 21: A case report and review of the literature.

    PubMed

    Walia, Hina; Ruda, James; Tobias, Joseph D

    2016-01-01

    Various perioperative concerns have been reported in patients with trisomy 21 including associated congenital heart disease, atlantoaxial instability, tracheal and subglottic stenosis, a predisposition to respiratory complications, hypothyroidism, and macroglossia leading to sleep disordered breathing. The recent literature has also suggested a propensity for the development of significant bradycardia during inhalation induction with sevoflurane. We present a 2-year-old girl with trisomy 21 who developed the rapid onset of bradycardia during anesthetic induction with sevoflurane. Previous reports are reviewed, postulated mechanisms discussed, and preventative strategies presented. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Sevoflurane anaesthesia for nasal surgery in a patient with multiple chemical sensitivity.

    PubMed

    Fernández Martín, M T; Álvarez López, J C

    2018-01-01

    Multiple chemical sensitivity syndrome is a group of complex disorders that include psychiatric disorders, chronic fatigue and/or respiratory problems. This syndrome could be triggered by specific allergens and toxins that cause neurophysiological sensitization and the appearance of the clinical symptomatology. Anaesthesia for these patients always poses a challenge for the anaesthetist, because they need to find and use drugs that do not trigger or aggravate the symptoms of the disease. Therefore, sevoflurane in these circumstances might be "the ideal anaesthetic". Performing general anaesthesia with sevoflurane as the sole anaesthetic agent, together with a series of environmental measures formed the basis for successful anaesthesia and surgery in our patient with a multiple chemical sensitivity syndrome. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.

    PubMed

    Kobayashi, Motomu; Takeda, Yoshimasa; Taninishi, Hideki; Takata, Ken; Aoe, Hisami; Morita, Kiyoshi

    2007-07-01

    Although propofol and thiopental are commonly used as neuroprotective agents, it has not been determined which is more neuroprotective. This study was designed to quantitatively evaluate the neuroprotective effects of thiopental, propofol, and halothane on brain ischemia by determining P50, ischemic time necessary for causing 50% neuronal damage. Gerbils were anesthetized with thiopental, propofol, or halothane and underwent 2-vessel occlusion (0, 3, 5 or 10 min). Direct current potentials were measured in bilateral CA1 regions, in which histologic evaluation was performed 5 days later. In some animals, extracellular glutamate concentrations (microdialysis) were measured during 7.5 minutes of ischemia. P50 in the thiopental, propofol, and halothane groups were estimated to be 8.4, 6.5 (P<0.05, vs. thiopental), and 5.1 (P<0.05) minutes, respectively. Durations of ischemic depolarization were equally reduced in the thiopental and propofol groups compared with that in the halothane group. Severity of neuronal damage with identical duration of ischemic depolarization was attenuated by thiopental compared with the effect of propofol. Maximum glutamate concentrations in the thiopental and propofol group were significantly reduced compared with that in the halothane groups but were comparable. By using P50, we found that the neuroprotective effect of thiopental was greater than that of propofol. Although duration of ischemic depolarization was equally reduced in thiopental and propofol groups, thiopental has a greater suppressive effect on neuronal injury during identical duration of ischemic depolarization than propofol does. Glutamate concentration during brain ischemia tended to be attenuated more by thiopental than by propofol, but it was not statistically significant.

  6. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial.

    PubMed

    Fahlenkamp, A V; Coburn, M; Rossaint, R; Stoppe, C; Haase, H

    2014-02-01

    While most anaesthetics are known to suppress immune reactions, data from experimental studies indicate the enhancement of reactivity to inflammatory stimulators under xenon treatment. We investigated the effect of xenon anaesthesia on leucocyte function in surgical patients. We performed a subgroup analysis of subjects undergoing xenon or sevoflurane anaesthesia in a randomized clinical trial. After oral premedication with midazolam, two separate blood samples were obtained from subjects undergoing elective abdominal surgery, directly before and 1 h after induction of anaesthesia. General anaesthesia was maintained with either 60% xenon or 2.0% sevoflurane in 30% O2. Leucocyte count, phagocytotic function, and pro-inflammatory cytokine release after ex vivo lipopolysaccharide (LPS) stimulation were determined. Except for lymphocyte numbers, leucocyte subpopulations did not differ between the groups. Phagocytosis and oxidative burst of granulocytes were reduced in both groups after 1 h of anaesthesia, whereas monocytes were not affected. Pro-inflammatory cytokine release in response to LPS was not affected. In vivo, xenon and sevoflurane anaesthesia did not have a pro-inflammatory effect, at least in combination with the types of surgery performed in this study. Notably, the impact of xenon anaesthesia did not differ significantly from sevoflurane anaesthesia with regard to leucocyte function. However, an underestimation of treatment effects due to limited sample sizes cannot be fully excluded.

  7. Physiological alteration, quality of anesthesia and economy of isoflurane in domestic chickens (Gallus domesticus).

    PubMed

    Deori, Parag; Sarma, Kushal Konwar; Nath, Parsha Jyoti; Singh, Chandan Kumar; Nath, Rita

    2017-05-01

    Aim of the study was to evaluate the effect of isoflurane anesthesia on physiological parameters, assessment of anesthetic qualities, and economy of use of isoflurane in domestic chickens ( Gallus domesticus ). In this study, 18 apparently healthy adult domestic chickens were selected randomly and divided into three groups. The birds were anesthetized by masked induction with isoflurane at a dose rate of 3.5%, 4%, and 5% and were maintained with 1.5%, 2%, and 2.5% isoflurane with oxygen by endotracheal intubation in Groups I, II, and III, respectively. Physiological parameters, viz., cloacal temperature, heart rate, and respiration rate were recorded at 0, 5, 10, 20, 30, 40, 50, and 60 min. The quality of anesthesia was assessed on the basis of induction time, induction behavior, quality of sedation, production of analgesia, degree of muscle relaxation, palpebral reflex, recovery time, and recovery behavior. The economy of anesthesia was calculated in terms of quantity of isoflurane utilized during 60 min of study. Statistical analysis was performed by analysis of variance, Duncan's multiple range tests. There was significant decrease (p<0.01) in physiological parameters such as in cloacal temperature, heart rate and respiration rate in the birds of all the groups from 0 to 60 min. The induction time was 5.83±0.33, 2.37±0.18, and 0.87±0.15 min, respectively, in Groups I, II, and III. Induction behavior was smooth in Group III, whereas mildly stormy in Group II and I. Quality of sedation was excellent in Group III, better in Group II as compared to Group I. Analgesia was moderate in Group III whereas poor in Group II and I. Degree of muscle relaxation was excellent in Group III, whereas good in Group I and II. Palpebral reflexes were absent in all the groups. Recovery time was 15.33±0.84, 18.83±0.94, and 26.50±0.85 in Groups I, II, and III respectively. Recovery behavior was smooth in birds of all the groups. The cost of the anesthesia was 158.22±1.04, 194

  8. Effects of ketamine-xylazine and isoflurane on insulin sensitivity in dehydroepiandrosterone sulfate-treated minipigs (Sus scrofa domestica).

    PubMed

    Heim, Kelly E; Morrell, Jesse S; Ronan, Anne M; Tagliaferro, Anthony R

    2002-06-01

    Isoflurane and ketamine-xylazine (KX) combinations are widely used veterinary anesthetics, KX being the particularly common agent for immobilizing swine. Results of previous studies indicate that KX and xylazine suppress insulin release. The steroid hormones, dehydroepiandrosterone (DHEA) and its sulfated form, dehydroepiandrosterone-sulfate (DHEAS), have variable effects on insulin sensitivity in animals. We evaluated the effect of DHEAS on plasma glucose and insulin concentrations in female Yucatan swine under KX and isoflurane anesthesia. A 2 x 2 factorial design was used. Twenty-four 17-week-old gilts were randomly assigned to receive vehicle (placebo) or DHEAS as part of an ongoing study. The KX was given intramuscularly to all animals prior to blood sample collection at weeks two and four. At week three, all animals received isoflurane by inhalation. During KX anesthesia, mean insulin concentration in DHEAS-treated and control groups approximated half the postisoflurane values (P < 0.001). While under isoflurane, the DHEAS group had significantly higher mean plasma insulin concentration and mean insulin-to-glucose ratio, compared with values for controls (P < 0.05). These findings are consistent with changes in insulin values following DHEAS treatment observed previously in nonanesthetized swine. The effect of DHEAS treatment was absent in animals under KX anesthesia. These results suggest that KX significantly decreases plasma insulin concentration and blunts DHEAS-associated insulin resistance in female minipigs.

  9. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway.

    PubMed

    Wang, Chun-Mei; Cai, Xiao-Lan; Wen, Qing-Ping

    2016-05-01

    Astaxanthin is an oxygen-containing derivative of carotenoids that effectively suppresses reactive oxygen and has nutritional and medicinal value. The mechanisms underlying the effects of astaxanthin on isoflurane‑induced neuroapoptosis remain to be fully understood. The present study was conducted to evaluate the protective effect of astaxanthin to reduce isoflurane‑induced neuroapoptosis and to investigate the underlying mechanisms. The results demonstrated that isoflurane induced brain damage, increased caspase‑3 activity and suppressed the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway in an in vivo model. However, treatment with astaxanthin significantly inhibited brain damage, suppressed caspase‑3 activity and upregulated the PI3K/Akt pathway in the isoflurane‑induced rats. Furthermore, isoflurane suppressed cell growth, induced cell apoptosis, enhanced caspase‑3 activity and downregulated the PI3K/Akt pathway in organotypic hippocampal slice culture. Administration of astaxanthin significantly promoted cell growth, reduced cell apoptosis and caspase‑3 activity, and upregulated the PI3K/Akt pathway and isoflurane‑induced neuroapoptosis. The present study demonstrated that downregulation of the PI3K/Akt pathway reduced the effect of astaxanthin to protect against isoflurane‑induced neuroapoptosis in the in vitro model. The results of the current study suggested that the protective effect of astaxanthin reduces the isoflurane-induced neuroapoptosis via activation of the PI3K/Akt signaling pathway.

  10. Effects of carprofen on renal function during medetomidine-propofol-isoflurane anesthesia in dogs.

    PubMed

    Frendin, Jan H M; Boström, Ingrid M; Kampa, Naruepon; Eksell, Per; Häggström, Jens U; Nyman, Görel C

    2006-12-01

    To investigate effects of carprofen on indices of renal function and results of serum bio-chemical analyses and effects on cardiovascular variables during medetomidine-propofol-isoflurane anesthesia in dogs. 8 healthy male Beagles. A randomized crossover study was conducted with treatments including saline (0.9% NaCl) solution (0.08 mL/kg) and carprofen (4 mg/kg) administered IV. Saline solution or carprofen was administered 30 minutes before induction of anesthesia and immediately before administration of medetomidine (20 microg/kg, IM). Anesthesia was induced with propofol and maintained with inspired isoflurane in oxygen. Blood gas concentrations and ventilation were measured. Cardiovascular variables were continuously monitored via pulse contour cardiac output (CO) measurement. Renal function was assessed via glomerular filtration rate (GFR), renal blood flow (RBF), scintigraphy, serum biochemical analyses, urinalysis, and continuous CO measurements. Hematologic analysis was performed. Values did not differ significantly between the carprofen and saline solution groups. For both treatments, sedation and anesthesia caused changes in results of serum biochemical and hematologic analyses; a transient, significant increase in urine alkaline phosphatase activity; and blood flow diversion to the kidneys. The GFR increased significantly in both groups despite decreased CO, mean arterial pressure, and absolute RBF variables during anesthesia. Carprofen administered IV before anesthesia did not cause detectable, significant adverse effects on renal function during medetomidine-propofol-isoflurane anesthesia in healthy Beagles.

  11. Activation of the canonical nuclear factor-κB pathway is involved in isoflurane-induced hippocampal interleukin-1β elevation and the resultant cognitive deficits in aged rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng-Qian; Rong, Xiao-Ying; Liu, Ya-Jie

    Highlights: •Isoflurane induces hippocampal IL-1β elevation and cognitive deficits in aged rats. •Isoflurane transiently activates the canonical NF-κB pathway in aged rat hippocampus. •NF-κB inhibitor mitigates isoflurane-induced IL-1β elevation and cognitive deficits. •We report a linkage between NF-κB signaling, IL-1β expression, and cognitive changes. -- Abstract: Although much recent evidence has demonstrated that neuroinflammation contributes to volatile anesthetic-induced cognitive deficits, there are few existing mechanistic explanations for this inflammatory process. This study was conducted to investigate the effects of the volatile anesthetic isoflurane on canonical nuclear factor (NF)-κB signaling, and to explore its association with hippocampal interleukin (IL)-1β levels andmore » anesthetic-related cognitive changes in aged rats. After a 4-h exposure to 1.5% isoflurane in 20-month-old rats, increases in IκB kinase and IκB phosphorylation, as well as a reduction in the NF-κB inhibitory protein (IκBα), were observed in the hippocampi of isoflurane-exposed rats compared with control rats. These events were accompanied by an increase in NF-κB p65 nuclear translocation at 6 h after isoflurane exposure and hippocampal IL-1β elevation from 1 to 6 h after isoflurane exposure. Nevertheless, no significant neuroglia activation was observed. Pharmacological inhibition of NF-κB activation by pyrrolidine dithiocarbamate markedly suppressed the IL-1β increase and NF-κB signaling, and also mitigated the severity of cognitive deficits in the Morris water maze task. Overall, our results demonstrate that isoflurane-induced cognitive deficits may stem from upregulation of hippocampal IL-1β, partially via activation of the canonical NF-κB pathway, in aged rats.« less

  12. Cardiorespiratory effects of epidural administration of morphine and fentanyl in dogs anesthetized with sevoflurane.

    PubMed

    Naganobu, Kiyokazu; Maeda, Noriaki; Miyamoto, Toru; Hagio, Mitsuyoshi; Nakamura, Tadashi; Takasaki, Mayumi

    2004-01-01

    To determine the cardiorespiratory effects of epidural administration of morphine alone and in combination with fentanyl in dogs anesthetized with sevoflurane. Prospective study. 6 dogs. Dogs were anesthetized with sevoflurane and allowed to breathe spontaneously. After a stable plane of anesthesia was achieved, morphine (0.1 mg/kg [0.045 mg/lb]) or a combination of morphine and fentanyl (10 microg/kg [4.5 microg/lb]) was administered through an epidural catheter, the tip of which was positioned at the level of L6 or L7. Cardiorespiratory variables were measured for 90 minutes. Epidural administration of morphine alone did not cause any significant changes in cardiorespiratory measurements. However, epidural administration of morphine and fentanyl induced significant decreases in diastolic and mean arterial blood pressures and total peripheral resistance. Stroke volume was unchanged, PaCO2 was significantly increased, and arterial pH and base excess were significantly decreased. Heart rate was significantly lower after epidural administration of morphine and fentanyl than after administration of morphine alone. None of the dogs had any evidence of urine retention, vomiting, or pruritus after recovery from anesthesia. Results suggest that epidural administration of morphine at a dose of 0.1 mg/kg in combination with fentanyl at a dose of 10 microg/kg can cause cardiorespiratory depression in dogs anesthetized with sevoflurane.

  13. Propofol and Sevoflurane Differentially Modulate Cortical Depolarization following Electric Stimulation of the Ventrobasal Thalamus.

    PubMed

    Kratzer, Stephan; Mattusch, Corinna; Garcia, Paul S; Schmid, Sebastian; Kochs, Eberhard; Rammes, Gerhard; Schneider, Gerhard; Kreuzer, Matthias; Haseneder, Rainer

    2017-01-01

    The neuronal mechanisms how anesthetics lead to loss of consciousness are unclear. Thalamocortical interactions are crucially involved in conscious perception; hence the thalamocortical network might be a promising target for anesthetic modulation of neuronal information pertaining to arousal and waking behavior. General anesthetics affect the neurophysiology of the thalamus and the cortex but the exact mechanisms of how anesthetics interfere with processing thalamocortical information remain to be elucidated. Here we investigated the effect of the anesthetic agents sevoflurane and propofol on thalamocortical network activity in vitro . We used voltage-sensitive dye imaging techniques to analyze the cortical depolarization in response to stimulation of the thalamic ventrobasal nucleus in brain slices from mice. Exposure to sevoflurane globally decreased cortical depolarization in a dose-dependent manner. Sevoflurane reduced the intensity and extent of cortical depolarization and delayed thalamocortical signal propagation. In contrast, propofol neither affected area nor amplitude of cortical depolarization. However, propofol exposure resulted in regional changes in spatial distribution of maximum fluorescence intensity in deep regions of the cortex. In summary, our experiments revealed substance-specific effects on the thalamocortical network. Functional changes of the neuronal network are known to be pivotally involved in the anesthetic-induced loss of consciousness. Our findings provide further evidence that the mechanisms of anesthetic-mediated loss of consciousness are drug- and pathway-specific.

  14. Effects of ampicillin/sulbactam and enrofloxacin on the blood pressure of isoflurane anesthetized dogs.

    PubMed

    Moorer, Jeremiah D; Towle-Millard, Heather A; Gross, Marjorie E; Payton, Mark E

    2013-01-01

    A blinded, prospective, randomized crossover study was performed to determine the effects of ampicillin Na/sulbactam Na and enrofloxacin on the blood pressure (BP) of healthy anesthetized dogs. Eight dogs were anesthetized three different times. They randomly received enrofloxacin, ampicillin Na/sulbactam Na, and saline. Systolic, diastolic, and mean arterial BPs (SAP, DAP, and MAP, respectively), heart rate (HR), O2 saturation of hemoglobin, end-tidal CO2 (ETCO2) concentration, inspired isoflurane concentration, end-tidal isoflurane (ETiso) concentration, respiratory rate, electrocardiogram, and body temperature were measured for 20 min prior to administration of treatment, during administration over 30 min, and for 30 min after administration. There was no significant difference in the SAP or ETiso. There was no significant change in the arterial pressure values over time in the enrofloxacin and ampicillin Na/sulbactam Na groups. The control group's MAP increased over time and was increased compared with the enrofloxacin group at times 25, 35, 45, and 55. The statistical difference between the enrofloxacin and the control groups was due to an increase in the MAP in the control group, not a decrease in the enrofloxacin group's BP. Neither enrofloxacin nor ampicillin Na/sulbactam Na caused hypotension in healthy dogs anesthetized with isoflurane and fentanyl.

  15. Inhaled Anesthetic Responses of Recombinant Receptors and Knockin Mice Harboring α2(S270H/L277A) GABAA Receptor Subunits That Are Resistant to Isoflurane

    PubMed Central

    Werner, D. F.; Swihart, A.; Rau, V.; Jia, F.; Borghese, C. M.; McCracken, M. L.; Iyer, S.; Fanselow, M. S.; Oh, I.; Sonner, J. M.; Eger, E. I.; Harrison, N. L.; Harris, R. A.

    2011-01-01

    The mechanism by which the inhaled anesthetic isoflurane produces amnesia and immobility is not understood. Isoflurane modulates GABAA receptors (GABAA-Rs) in a manner that makes them plausible targets. We asked whether GABAA-R α2 subunits contribute to a site of anesthetic action in vivo. Previous studies demonstrated that Ser270 in the second transmembrane domain is involved in the modulation of GABAA-Rs by volatile anesthetics and alcohol, either as a binding site or a critical allosteric residue. We engineered GABAA-Rs with two mutations in the α2 subunit, changing Ser270 to His and Leu277 to Ala. Recombinant receptors with these mutations demonstrated normal affinity for GABA, but substantially reduced responses to isoflurane. We then produced mutant (knockin) mice in which this mutated subunit replaced the wild-type α2 subunit. The adult mutant mice were overtly normal, although there was evidence of enhanced neonatal mortality and fear conditioning. Electrophysiological recordings from dentate granule neurons in brain slices confirmed the decreased actions of isoflurane on mutant receptors contributing to inhibitory synaptic currents. The loss of righting reflex EC50 for isoflurane did not differ between genotypes, but time to regain the righting reflex was increased in N2 generation knockins. This effect was not observed at the N4 generation. Isoflurane produced immobility (as measured by tail clamp) and amnesia (as measured by fear conditioning) in both wild-type and mutant mice, and potencies (EC50) did not differ between the strains for these actions of isoflurane. Thus, immobility or amnesia does not require isoflurane potentiation of the α2 subunit. PMID:20807777

  16. Protein sparing during general anesthesia with a propofol solution containing medium-chain triglycerides for gastrectomy: comparison with sevoflurane anesthesia.

    PubMed

    Nagao, Yoshiaki; Tatara, Tsuneo; Fujita, Kimihiko; Sugi, Takashi; Kotani, Joji; Hirose, Munetaka

    2013-06-01

    Despite the importance of the inhibition of catabolic response to surgery, the effects of different anesthetic techniques on the catabolic response in surgical patients are controversial. This study compared the endocrine-metabolic responses and protein catabolism during gastrectomy in patients who received either sevoflurane or propofol anesthesia with remifentanil. Thirty-seven patients (American Society of Anesthesiologists status I-III) aged 20-79 years undergoing elective gastrectomy were randomly assigned to receive sevoflurane anesthesia with remifentanil (n = 19) or intravenous propofol anesthesia (Propofol-Lipuro(®) 1 %; B. Braun, Melshungen AG, Germany) with remifentanil (n = 18). Urine samples were collected every 1 h after skin incision (0 h) and the urinary 3-methylhistidine:creatinine ratio (3-MH/Cr ratio) was used as a marker of protein catabolism. Respiratory quotient was measured during a 1 h period following skin incision. The 3-MH/Cr ratio significantly increased at 1-2 and 2-3 h compared to 0 and 0-1 h in both groups, but the propofol group exhibited a lower 3-MH/Cr ratio (nmol/μmol) than the sevoflurane group at 1-2 h (15.7 vs. 18.2, P = 0.012) and 2-3 h (15.9 vs. 18.1, P = 0.025). A difference was observed in the respiratory quotient between the sevoflurane and propofol groups (0.726 vs. 0.707, P = 0.003). A lower 3-MH/Cr ratio and a lower respiratory quotient during propofol anesthesia, compared to those exhibited during sevoflurane anesthesia, suggest that protein sparing probably occurs through the utilization of medium-chain triglycerides contained in the fat emulsion of propofol solution as a fuel source.

  17. Xylazine infusion in isoflurane-anesthetized and ventilated healthy horses: Effects on cardiovascular parameters and intestinal perfusion

    PubMed Central

    Hopster, Klaus; Wittenberg-Voges, Liza; Kästner, Sabine B.R.

    2017-01-01

    To investigate the effects of a xylazine infusion during isoflurane anesthesia on global perfusion parameters and gastrointestinal oxygenation and microperfusion, 8 adult warmblood horses were sedated with xylazine and anesthesia induced with midazolam and ketamine. Horses were mechanically ventilated during anesthesia. After 3 h of stable isoflurane anesthesia (FEIso 1.3 Vol %), a xylazine infusion with 1 mg/kg body weight (BW) per hour was started for 1 h and then stopped. Before, during, and after xylazine infusion, heart rate (HR), arterial blood pressure (MAP), cardiac output (CO), central venous pressure (CVP), and pulmonary artery pressure (PAP) were measured and systemic vascular resistance (SVR) was calculated. Arterial blood gases were taken and oxygen delivery (DO2) and alveolar dead space (VDalv) were calculated. Further intestinal oxygen and microperfusion were measured using white light spectroscopy and laser Doppler flowmetry. Surface probes were placed via median laparotomy on the stomach, the jejunum, and the colon. Wilcoxon rank-sum test was used to compare values over time (P < 0.05). During xylazine infusion, MAP, CVP, PAP, SVR, and VDalv increased significantly, whereas CO, DO2, and intestinal microperfusion decreased. Intestinal oxygenation remained unchanged. All parameters returned to pre-xylazine values within 1 h after stopping xylazine infusion. A xylazine infusion during constant isoflurane anesthesia in horses impairs global and intestinal perfusion without changing tissue oxygenation in normoxic healthy horses. Further studies are necessary, however, to evaluate whether a possible reduction of isoflurane concentration by xylazine infusion will ameliorate these negative effects. PMID:29081581

  18. Pre- and postconditioning effect of Sevoflurane on myocardial dysfunction after cardiopulmonary resuscitation in rats.

    PubMed

    Knapp, Jürgen; Bergmann, Greta; Bruckner, Thomas; Russ, Nicolai; Böttiger, Bernd W; Popp, Erik

    2013-10-01

    Post-resuscitation myocardial dysfunction is an important cause of death in the intensive care unit after initially successful cardiopulmonary resuscitation (CPR) of pre-hospital cardiac arrest (CA) patients. Volatile anaesthetics reduce ischaemic-reperfusion injury in regional ischaemia in beating hearts. This effect, called anaesthetic-induced pre- or postconditioning, can be shown when the volatile anaesthetic is given either before regional ischaemia or in the reperfusion phase. However, up to now, little data exist for volatile anaesthetics after global ischaemia due to CA. Therefore, the goal of this study was to clarify whether Sevoflurane improves post-resuscitation myocardial dysfunction after CA in rats. Following institutional approval by the Governmental Animal Care Committee, 144 male Wistar rats (341±19g) were randomized either to a control group or to one of the 9 interventional groups receiving 0.25 MAC, 0.5 MAC or 1 MAC of Sevoflurane for 5min either before resuscitation (SBR), during resuscitation (SDR) or after resuscitation (SAR). After 6min of electrically induced ventricular fibrillation CPR was performed. Before CA (baseline) as well as 1h and 24h after restoration of spontaneous circulation (ROSC), continuous measurement of ejection fraction (EF), and preload adjusted maximum power (PAMP) as primary outcome parameters and end systolic pressure (ESP), end diastolic volume (EDV) and maximal slope of systolic pressure increment (dP/dtmax) as secondary outcome parameters was performed using a conductance catheter. EF was improved in all Sevoflurane treated groups 1h after ROSC in comparison to control, except for the 0.25 MAC SDR and 0.25 MAC SAR group (0.25 MAC SBR: 38±8, p=0.02; 0.5 MAC SBR: 39±7, p=0.04; 1 MAC SBR: 40±6, p=0.007; 0.5 MAC SDR: 38±7, p=0.02; 1 MAC SDR: 40±6, p=0.006; 0.5 MAC SAR: 39±6, p=0.01; 1 MAC SAR: 39±6, p=0.002, vs. 30±7%). Twenty-four hours after ROSC, EF was higher than control in all interventional groups (p

  19. Isoflurane-induced post-conditioning in senescent hearts is attenuated by failure to activate reperfusion injury salvage kinase pathway.

    PubMed

    Chang, D J; Chang, C H; Kim, J S; Hong, Y W; Lee, W K; Shim, Y H

    2012-08-01

    We investigated the cardioprotective effects of isoflurane administered at the onset of reperfusion in senescent rat in vivo, and the activation of the reperfusion injury salvage kinase (RISK) pathway to address a possible mechanism underlying age-related differences. Male Wistar rats were assigned to age groups (young, 3-5 months; old, 20-24 months), and randomly selected to receive isoflurane (1 minimum alveolar concentration) or not for 3 min before and 2 min after reperfusion (ISO postC). Rats were subjected to coronary occlusion for 30 min followed by 2 h of reperfusion. Western blot analysis was used to assess the phosphorylation of extracellular signal-regulated kinase (ERK1/2), Akt, and GSK3β 15 min after reperfusion. Brief administration of isoflurane 3 min before and 2 min after the initiation of early reperfusion reduced infarct size (56 ± 8% of left ventricular area at risk, mean ± standard deviation) compared with controls (68 ± 4%) in young rats, but had no effect in old rats (56 ± 8% in ISO postC and 56 ± 10% in control, respectively). Phosphorylation of ERK1/2, Akt, and GSK3β were increased in the young ISO postC group but not in the old ISO postC group compared with control groups of the respective ages. We demonstrated that isoflurane post-conditions the heart in young but not in senescent rats. Failure to activate RISK pathway may contribute to attenuation of isoflurane-induced post-conditioning effect in senescent rats. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  20. Effects of a constant rate infusion of detomidine on cardiovascular function, isoflurane requirements and recovery quality in horses.

    PubMed

    Schauvliege, Stijn; Marcilla, Miguel Gozalo; Verryken, Kirsten; Duchateau, Luc; Devisscher, Lindsey; Gasthuys, Frank

    2011-11-01

    To examine the influence of a detomidine constant rate infusion (CRI) on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing elective surgery. Prospective, randomized, blinded, clinical trial. Twenty adult healthy horses. After sedation (detomidine, 10 μg kg(-1) intravenously [IV]) and induction of anaesthesia (midazolam 0.06 mg kg(-1) , ketamine 2.2 mg kg(-1) IV), anaesthesia was maintained with isoflurane in oxygen/air (inspiratory oxygen fraction 55%). When indicated, the lungs were mechanically ventilated. Dobutamine was administered when MAP<70 mmHg. The horses were randomly allocated to one of two groups and throughout anaesthesia, received either a detomidine (5 μg kg(-1)  hour(-1) ) (D) or saline (S) CRI, with the anaesthetist unaware of the treatment. Monitoring included end-tidal isoflurane concentration, arterial pH, PaCO(2) , PaO(2) , dobutamine administration rate, heart rate (HR), arterial pressure, cardiac index (CI), systemic vascular resistance (SVR), stroke index and oxygen delivery index (ḊO(2) I). For recovery from anaesthesia, all horses received 2.5 μg kg(-1) detomidine IV. Recovery quality and duration were recorded in each horse. For statistical analysis, anova, Pearson chi-square and Wilcoxon rank sum tests were used as relevant. Heart rate (p=0.0176) and ḊO(2) I (p= 0.0084) were lower and SVR higher (p=0.0126) in group D, compared to group S. Heart rate (p=0.0011) and pH (p=0.0187) increased over time. Significant differences in isoflurane requirements were not detected. Recovery quality and duration were comparable between treatments. A detomidine CRI produced cardiovascular effects typical for α(2) -agonists, without affecting isoflurane requirements, recovery duration or recovery quality. © 2011 The Authors. Veterinary Anaesthesia and Analgesia. © 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  1. Effect of enzyme induction on nephrotoxicity of halothane-related compounds.

    PubMed Central

    Hitt, B A; Mazze, R I

    1977-01-01

    Nephrotoxicity following administration of methoxyflurane has been shown to be directly related to anesthetic metabolism to inorganic fluoride. Enzyme induction should increase metabolic rate and the amount of inorganic fluoride that is released. In vivo studies in Fischer 344 rats show that enzyme induction with phenobarbital or phenytoin increases defluorination following methoxyflurane anesthesia but not after enflurane or isoflurane. In vitro, methoxyflurane defluorinase activity was increased far more than that of any of the other anesthetics. These data suggest that treatment with enzyme inducing drugs increases the risk of nephrotoxocity only if methoxyflurane is the anesthetic agent. PMID:612443

  2. Isoflurane is a suitable alternative to ether for anesthetizing rats prior to euthanasia for gene expression analysis.

    PubMed

    Nakatsu, Noriyuki; Igarashi, Yoshinobu; Aoshi, Taiki; Hamaguchi, Isao; Saito, Masumichi; Mizukami, Takuo; Momose, Haruka; Ishii, Ken J; Yamada, Hiroshi

    2017-01-01

    Diethyl ether (ether) had been widely used in Japan for anesthesia, despite its explosive properties and toxicity to both humans and animals. We also had used ether as an anesthetic for euthanizing rats for research in the Toxicogenomics Project (TGP). Because the use of ether for these purposes will likely cease, it is required to select an alternative anesthetic which is validated for consistency with existing TGP data acquired under ether anesthesia. We therefore compared two alternative anesthetic candidates, isoflurane and pentobarbital, with ether in terms of hematological findings, serum biochemical parameters, and gene expressions. As a result, few differences among the three agents were observed. In hematological and serum biochemistry analysis, no significant changes were found. In gene expression analysis, four known genes were extracted as differentially expressed genes in the liver of rats anesthetized with ether, isoflurane, or pentobarbital. However, no significant relationships were detected using gene ontology, pathway, or gene enrichment analyses by DAVID and TargetMine. Surprisingly, although it was expected that the lung would be affected by administration via inhalation, only one differentially expressed gene was extracted in the lung. Taken together, our data indicate that there are no significant differences among ether, isoflurane, and pentobarbital with respect to effects on hematological parameters, serum biochemistry parameters, and gene expression. Based on its smallest affect to existing data and its safety profile for humans and animals, we suggest isoflurane as a suitable alternative anesthetic for use in rat euthanasia in toxicogenomics analysis.

  3. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane.

    PubMed

    Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J

    2014-07-01

    While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Low Dose Isoflurane Exerts Opposing Effects on Neuronal Network Excitability in Neocortex and Hippocampus

    PubMed Central

    Ranft, Andreas; von Meyer, Ludwig; Zieglgänsberger, Walter; Kochs, Eberhard; Dodt, Hans-Ulrich

    2012-01-01

    The anesthetic excitement phase occurring during induction of anesthesia with volatile anesthetics is a well-known phenomenon in clinical practice. However, the physiological mechanisms underlying anesthetic-induced excitation are still unclear. Here we provide evidence from in vitro experiments performed on rat brain slices that the general anesthetic isoflurane at a concentration of about 0.1 mM can enhance neuronal network excitability in the hippocampus, while simultaneously reducing it in the neocortex. In contrast, isoflurane tissue concentrations above 0.3 mM expectedly caused a pronounced reduction in both brain regions. Neuronal network excitability was assessed by combining simultaneous multisite stimulation via a multielectrode array with recording intrinsic optical signals as a measure of neuronal population activity. PMID:22723999

  5. Cardiocerebral protection by emulsified isoflurane during cardiopulmonary resuscitation.

    PubMed

    Zhang, Ya-Jie; Wu, Meng-Jun; Li, Yi; Yu, Hai

    2015-01-01

    Although improvement in cardiopulmonary resuscitation (CPR) performance and the increasing success at achieving return of spontaneous circulation (ROSC) have been possible in recent years, the survival and discharge rates of post-cardiac arrest (CA) patients remain disappointing. The high mortality rate is attributed to whole-body ischemia/reperfusion (I/R) induced multi-organ dysfunction that is well known as post-cardiac arrest syndrome. Post-cardiac arrest myocardial dysfunction and brain injury are the main clinical features of this complex pathophysiological process. Previous evidences have shown that volatile anesthetics, such as isoflurane, trigger a powerful and highly integrated cell survival response during I/R period in multiple organs, including heart and brain, which reduces I/R injury. This effect that called anesthetic-induced postconditioning can be shown when volatile anesthetics are administered after the onset of ischemia and at the time of reperfusion. Emulsified isoflurane (EIso) is a new anesthetic for intravenous administration, which is conveniently feasible outside operating room. Therefore, we hypothesize that EIso postconditioning could provide the cardiocerebral protection, and combined with therapeutic hypothermia as sedative agent could produce enhanced cardiocerebral protection, which can result in significant improvement of neurologically intact post-cardiac arrest survival. We consider that it would become a feasible, safe and efficient cardiocerebral protective intervention in the prevention and alleviation of post-cardiac arrest syndrome, which would also improve the outcomes after CA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial.

    PubMed

    Fahlenkamp, Astrid V; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02-5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663.

  7. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial

    PubMed Central

    Fahlenkamp, Astrid V.; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A.; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C.; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Objective Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. Methods 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Results Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02–5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. Conclusion In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. Trial Registration EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT

  8. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents.

    PubMed

    Zhu, Changlian; Gao, Jianfeng; Karlsson, Niklas; Li, Qian; Zhang, Yu; Huang, Zhiheng; Li, Hongfu; Kuhn, H Georg; Blomgren, Klas

    2010-05-01

    Isoflurane and related anesthetics are widely used to anesthetize children, ranging from premature babies to adolescents. Concerns have been raised about the safety of these anesthetics in pediatric patients, particularly regarding possible negative effects on cognition. The purpose of this study was to investigate the effects of repeated isoflurane exposure of juvenile and mature animals on cognition and neurogenesis. Postnatal day 14 (P14) rats and mice, as well as adult (P60) rats, were anesthetized with isoflurane for 35 mins daily for four successive days. Object recognition, place learning and reversal learning as well as cell death and cytogenesis were evaluated. Object recognition and reversal learning were significantly impaired in isoflurane-treated young rats and mice, whereas adult animals were unaffected, and these deficits became more pronounced as the animals grew older. The memory deficit was paralleled by a decrease in the hippocampal stem cell pool and persistently reduced neurogenesis, subsequently causing a reduction in the number of dentate gyrus granule cell neurons in isoflurane-treated rats. There were no signs of increased cell death of progenitors or neurons in the hippocampus. These findings show a previously unknown mechanism of neurotoxicity, causing cognitive deficits in a clearly age-dependent manner.

  9. Trehalose protects from aggravation of amyloid pathology induced by isoflurane anesthesia in APP(swe) mutant mice.

    PubMed

    Perucho, Juan; Casarejos, Maria J; Gomez, Ana; Solano, Rosa M; de Yébenes, Justo Garcia; Mena, Maria A

    2012-03-01

    There is an open controversy about the role of surgery and anesthesia in the pathogenesis of Alzheimer's disease (AD). Clinical studies have shown a high prevalence of these procedures in subjects with AD but the interpretation of these studies is difficult because of the co-existence of multiple variables. Experimental studies in vitro and in vivo have shown that small molecular weight volatile anesthetics enhance amyloidogenesis in vitro and produce behavioral deficits and brain lesions similar to those found in patients with AD. We examined the effect of co-treatment with trehalose on isoflurane-induced amyloidogenesis in mice. WT and APP(swe) mice, of 11 months of age, were exposed to 1% isoflurane, 3 times, for 1.5 hours each time and sacrificed 24 hours after their last exposure to isoflurane. The right hemi-brain was used for histological analysis and the contra-lateral hemi-brain used for biochemical studies. In this study, we have shown that repetitive exposure to isoflurane in pre-symptomatic mature APP(swe) mice increases apoptosis in hippocampus and cerebral cortex, enhances astrogliosis and the expression of GFAP and that these effects are prevented by co-treatment with trehalose, a disaccharide with known effects as enhancer of autophagy. We have also confirmed that in our model the co-treatment with trehalose increases the expression of autophagic markers as well as the expression of chaperones. Cotreatment with trehalose reduces the levels of β amyloid peptide aggregates, tau plaques and levels of phospho-tau. Our study, therefore, provides new therapeutic avenues that could help to prevent the putative pro-amyloidogenic properties of small volatile anesthetics.

  10. Isocapnic hyperventilation shortens washout time for sevoflurane - an experimental in vivo study.

    PubMed

    Hallén, K; Stenqvist, O; Ricksten, S-E; Lindgren, S

    2016-10-01

    Isocapnic hyperventilation (IHV) is a method that fastens weaning from inhalation anaesthesia by increasing airway concentration of carbon dioxide (CO2 ) during hyperventilation (HV). In an animal model, we evaluated a technique of adding CO2 directly to the breathing circuit of a standard anaesthesia apparatus. Eight anaesthetised pigs weighing 28 ± 2 kg were intubated and mechanically ventilated. From a baseline ventilation of 5 l/min, HV was achieved by doubling minute volume and fresh gas flow. Respiratory rate was increased from 15 to 22/min. The CO2 absorber was disconnected and CO2 was delivered (DCO2 ) to the inspiratory limb of a standard breathing circuit via a mixing box. Time required to decrease end-tidal sevoflurane concentration from 2.7% to 0.2% was defined as washout time. Respiration and haemodynamics were monitored by blood gas analysis, spirometry, electric impedance tomography and pulse contour analysis. A DCO2 of 261 ± 19 ml/min was necessary to achieve isocapnia during HV. The corresponding FICO2 -level remained stable at 3.1 ± 0.3%. During IHV, washout of sevoflurane was three times faster, 433 ± 135 s vs. 1387 ± 204 s (P < 0.001). Arterial CO2 tension and end-tidal CO2 , was 5.2 ± 0.4 kPa and 5.6 ± 0.4%, respectively, before IHV and 5.1 ± 0.3 kPa and 5.7 ± 0.3%, respectively, during IHV. In this experimental in vivo model of isocapnic hyperventilation, the washout time of sevoflurane anaesthesia was one-third compared to normal ventilation. The method for isocapnic hyperventilation described can potentially be transferred to a clinical setting with the intention to decrease emergence time from inhalation anaesthesia. © 2016 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Evidence for the Use of Isoflurane as a Replacement for Chloral Hydrate Anesthesia in Experimental Stroke: An Ethical Issue

    PubMed Central

    Maud, Pétrault; Thavarak, Ouk; Cédrick, Lachaud; Michèle, Bastide; Vincent, Bérézowski; Olivier, Pétrault; Régis, Bordet

    2014-01-01

    Since an ethical issue has been raised regarding the use of the well-known anesthetic agent chloral hydrate, owing to its mutagenic and carcinogenic effects in animals, attention of neuroscientists has turned to finding out an alternative agent able to meet not only potency, safety, and analgesic efficacy, but also reduced neuroprotective effect for stroke research. The aim of this study was to compare the potential of chloral hydrate and isoflurane for both modulating the action of the experimental neuroprotectant MK801 and exerting analgesia. After middle cerebral artery occlusion in rats, no difference was observed in 24 h survival rate, success of ischemia, or infarct volume reduction between both anesthetics. However, isoflurane exerted a more pronounced analgesic effect than chloral hydrate as evidenced by formalin test 3 hours after anesthesia onset, thus encouraging the use of isoflurane in experimental stroke models. PMID:24719888

  12. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  13. The effects of ketamine on the minimum alveolar concentration of isoflurane in cats.

    PubMed

    Pascoe, Peter J; Ilkiw, Janet E; Craig, Carolyn; Kollias-Baker, Cynthia

    2007-01-01

    To determine the minimum alveolar concentration (MAC) of isoflurane during the infusion of ketamine. Prospective, experimental trial. Twelve adult spayed female cats weighing 5.1 +/- 0.9 kg. Six cats were anesthetized with isoflurane in oxygen, intubated and attached to a circle-breathing system with mechanical ventilation. Catheters were placed in a peripheral vein for the infusion of fluids and ketamine, and the jugular vein for blood sampling for the measurement of ketamine concentrations. An arterial catheter was placed to allow blood pressure measurement and sampling for the measurement of PaCO2, PaO2 and pH. PaCO2 was maintained between 29 and 41 mmHg (3.9-5.5 kPa) and body temperature was kept between 37.8 and 39.3 degrees C. Following instrumentation, the MAC of isoflurane was determined in triplicate using a tail clamp method. A loading dose (2 mg kg(-1) over 5 minutes) and an infusion (23 microg kg(-1) minute(-1)) of ketamine was started and MAC was redetermined starting 30 minutes later. Two further loading doses and infusions were used, 2 mg kg(-1) and 6 mg kg(-1) with 46 and 115 microg kg(-1) minute(-1), respectively and MAC was redetermined. Cardiopulmonary measurements were taken before application of the noxious stimulus. The second group of six cats was used for the measurement of steady state plasma ketamine concentrations at each of the three infusion rates used in the initial study and the appropriate MAC value determined from the first study. The MAC decreased by 45 +/- 17%, 63 +/- 18%, and 75 +/- 17% at the infusion rates of 23, 46, and 115 microg kg(-1) minute(-1). These infusion rates corresponded to ketamine plasma concentrations of 1.75 +/- 0.21, 2.69 +/- 0.40, and 5.36 +/- 1.19 microg mL(-1). Arterial blood pressure and heart rate increased significantly with ketamine. Recovery was protracted. The MAC of isoflurane was significantly decreased by an infusion of ketamine and this was accompanied by an increase in heart rate and blood

  14. Direct Activation of Sleep-Promoting VLPO Neurons by Volatile Anesthetics Contributes to Anesthetic Hypnosis

    PubMed Central

    Moore, Jason T; Chen, Jingqiu; Han, Bo; Meng, Qing Cheng; Veasey, Sigrid C; Beck, Sheryl G; Kelz, Max B

    2013-01-01

    Summary Background Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep. Results Using c-Fos immunohistochemistry as a biomarker for antecedent neuronal activity, we show that isoflurane and halothane increase the number of active neurons in the VLPO, but only when mice are sedated or unconscious. Destroying VLPO neurons produces an acute resistance to isoflurane-induced hypnosis. Electrophysiological studies prove that the neurons depolarized by isoflurane belong to the subpopulation of VLPO neurons responsible for promoting natural sleep, while neighboring non-sleep-active VLPO neurons are unaffected by isoflurane. Finally, we show that this anesthetic-induced depolarization is not solely due to a presynaptic inhibition of wake-active neurons as previously hypothesized, but rather is due to a direct postsynaptic effect on VLPO neurons themselves arising from the closing of a background potassium conductance. Conclusions Cumulatively, this work demonstrates that anesthetics are capable of directly activating endogenous sleep-promoting networks and that such actions contribute to their hypnotic properties. PMID:23103189

  15. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis.

    PubMed

    Moore, Jason T; Chen, Jingqiu; Han, Bo; Meng, Qing Cheng; Veasey, Sigrid C; Beck, Sheryl G; Kelz, Max B

    2012-11-06

    Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep. Using c-Fos immunohistochemistry as a biomarker for antecedent neuronal activity, we show that isoflurane and halothane increase the number of active neurons in the VLPO, but only when mice are sedated or unconscious. Destroying VLPO neurons produces an acute resistance to isoflurane-induced hypnosis. Electrophysiological studies prove that the neurons depolarized by isoflurane belong to the subpopulation of VLPO neurons responsible for promoting natural sleep, whereas neighboring non-sleep-active VLPO neurons are unaffected by isoflurane. Finally, we show that this anesthetic-induced depolarization is not solely due to a presynaptic inhibition of wake-active neurons as previously hypothesized but rather is due to a direct postsynaptic effect on VLPO neurons themselves arising from the closing of a background potassium conductance. Cumulatively, this work demonstrates that anesthetics are capable of directly activating endogenous sleep-promoting networks and that such actions contribute to their hypnotic properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs.

    PubMed

    Hengen, Keith B; Nelson, Nathan R; Stang, Kyle M; Johnson, Stephen M; Smith, Stephanie M; Watters, Jyoti J; Mitchell, Gordon S; Behan, Mary

    2015-01-01

    The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.

  17. Propofol-remifentanil or sevoflurane for children undergoing magnetic resonance imaging? A randomised study.

    PubMed

    Pedersen, N A; Jensen, A G; Kilmose, L; Olsen, K S

    2013-09-01

    Magnetic resonance imaging (MRI) of children is generally performed under sedation or with general anaesthesia (GA), but the ideal regimen has not been found. The aim of this study was to see if propofol-remifentanil would be a suitable alternative for the maintenance of anaesthesia in this category of patients. Children aged 1-10 years, American Society of Anesthesiologists physical status 1-2 were included. After induction with thiopental or sevoflurane, the children were randomised to maintenance of anaesthesia with an infusion of propofol and remifentanil (group PR) (56 μg/kg/min of propofol and 0.06 μg/kg/min of remifentanil) or with sevoflurane 1.3 MAC (group S). A binasal catheter was placed in group PR and a laryngeal mask airway in group S. The children breathed spontaneously. The Paediatric Anaesthesia Emergence Delirium (PAED) score (primary end point), the number of movements during MRI, and the length of stay in the recovery room (secondary endpoints) were recorded. Sixty children were included in each group. A lower level of emergence delirium (measured as a lower PAED score) was found in group PR compared with group S, and the children in group PR were discharged earlier from the recovery room than the children in group S. However, 15 children in group PR vs. 0 in group S moved during the scan (P < 0.001). The PR infusion ensured a satisfactory stay in the recovery room, but additional boluses were necessary during the MRI. Sevoflurane was reliable during the MRI, but emergence delirium was a concern. © 2013 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Desflurane and sevoflurane in elderly patients during general anesthesia: a double blind comparison.

    PubMed

    Iannuzzi, E; Iannuzzi, M; Viola, G; Cerulli, A; Cirillo, V; Chiefari, M

    2005-04-01

    To investigate pulmonary wash-out of sevoflurane and desflurane and the quality of recovery from anesthesia in elderly patients. Thirty-six patients aged >65 years, ASA II, were assigned in a double blind fashion to either desflurane (n=18) or sevoflurane (n=18) anesthesia. All received propofol 2 mg/kg and remifentanil 0.2 microg/kg/min for induction and 0.6 mg/kg of rocuronium. When the trachea was intubated volatile anaesthetic was administered. All data were recorded 1, 3, 5, 15, 30 min after intubation and then every 15 min. All data were recorded 1, 2, 3, 4, 5 min after suspension of all agents. Once extubated simple orders and questions were given every minute, times of appropriate response were noted. The patients were then transferred to the recovery room, until discharge to the floor. Postoperative pain control was obtained by a continuous iv infusion of ketorolac 60 mg and tramadol 100 mg. The latter was incremented by supplemental boluses of 50 mg according to patient needs (VAS <4) up to a maximum of 300 mg/24h. The F(A)/F(A0) ratio was lower in the desflurane group after halogenated agent suspension (p= or <0.05). Desflurane proved to have a faster wash out curve with respect to sevoflurane. Early recovery, as indicated by the time necessary to appropriately answer simple questions after the discontinuation of anesthetics, showed a significant advantage for desflurane (p= or <0.05). VAS was higher in the desflurane group as well as the needs for postoperative analgesia. Patients receiving desflurane reported faster recovery from anesthesia but an earlier and more intense perception of pain after surgery.

  19. Intubating conditions and side effects of propofol, remifentanil and sevoflurane compared with propofol, remifentanil and rocuronium: a randomised, prospective, clinical trial

    PubMed Central

    2014-01-01

    Background Tracheal intubation without muscle relaxants is usually performed with remifentanil and propofol or sevoflurane. Remifentanil 1.0 to 4.0 μg·kg-1 and propofol 2.0-3.0 mg·kg-1 or sevoflurane up to 8.0 Vol% provide acceptable, i.e. excellent or good intubating conditions. We hypothesized that sevoflurane 1.0 MAC would provide acceptable intubating conditions when combined with propofol and remifentanil. Methods Eighty-three patients to be intubated were randomised to two groups. The SEVO group received propofol 1.5 mg kg-1, remifentanil 0.30 μg kg min-1 and sevoflurane 1.0 MAC; the MR group received the same doses of propofol and remifentanil plus rocuronium 0.45 mg kg-1. We evaluated intubation and extubation conditions, mean arterial pressure (MAP), heart rate (HR) and bispectral index (BIS). The vocal cords were examined for injury by videolaryngoscopy before and 24 hours after surgery. Results Acceptable intubating conditions were seen more frequently with rocuronium than with sevoflurane: 97% versus 82%; p = 0.03; the subscore for vocal cords was comparable: 100% versus 98%. MAP before intubation decreased significantly compared with the MAP at baseline to the same extent in both groups; ephedrine IV was given in 15 (SEVO) versus 16 (MR) patients; p = 0.93. BIS at tracheal intubation was 27 (13-65) in the SEVO group, 29 (14-62) in the MR group; p = 0.07. Vocal cord injuries (oedema, haematoma) were similar: 4 patients in each group. Conclusions Overall intubating conditions were better when rocuronium was used; the subscore for vocal cords was comparable. The incidence of side effects was the same in the two groups. Trial registration ClinicalTrials.Gov: NCT 01591031. PMID:24860256

  20. Automated, real-time fresh gas flow recommendations alter isoflurane consumption during the maintenance phase of anesthesia in a simulator-based study.

    PubMed

    Luria, Isaac; Lampotang, Samsun; Schwab, Wilhelm; Cooper, Lou Ann; Lizdas, David; Gravenstein, Nikolaus

    2013-11-01

    The Low Flow Wizard (LFW) provides real-time guidance for user optimization of fresh gas flow (FGF) settings during general inhaled anesthesia. The LFW can continuously inform users whether it determines their FGF to be too little, efficient, or too much, and its color-coded recommendations respond in real time to changes in FGF performed by users. Our study objective was to determine whether the LFW feature, as implemented in the Dräger Apollo workstation, alters FGF selection and thereby volatile anesthetic consumption without affecting patient care. To reduce potentially confounding variables, we used a human patient simulator that consumes and exhales volatile anesthetics. Standard monitoring was provided for the patient initially with invasive arterial blood pressure added after anesthetic induction. In this within-group study, each of 17 participants acted as his or her own control. Each participant was asked to anesthetize an identical simulated patient twice using a Dräger Apollo workstation, first with the LFW feature disabled and subsequently enabled. The volatile anesthetic was isoflurane. Both simulation runs were set up to have similar time durations for the different phases of anesthesia: induction, incision, and maintenance. Emergence was not simulated. The isoflurane vaporizer was weighed before and after each simulation run on a digital scale to verify total computed volatile liquid anesthetic consumption. In addition, the product of FGF (reported by the Apollo) times the isoflurane volumetric concentration (sampled by a multigas analyzer at the equivalent of the FGF hose for the Apollo) was integrated over time to obtain isoflurane consumption rate (on-the-fly anesthetic consumption rate measurement). The maintenance isoflurane consumption rate and FGF were significantly lower with the LFW display enabled than without (P = 0.005). The mean reduction in FGF was 53.6% (95% confidence interval, 39.2%-67.9%). There was no significant difference in

  1. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia

    NASA Astrophysics Data System (ADS)

    Li, Duan; Li, Xiaoli; Liang, Zhenhu; Voss, Logan J.; Sleigh, Jamie W.

    2010-08-01

    Electroencephalogram (EEG) monitoring of the effect of anesthetic drugs on the central nervous system has long been used in anesthesia research. Several methods based on nonlinear dynamics, such as permutation entropy (PE), have been proposed to analyze EEG series during anesthesia. However, these measures are still single-scale based and may not completely describe the dynamical characteristics of complex EEG series. In this paper, a novel measure combining multiscale PE information, called CMSPE (composite multi-scale permutation entropy), was proposed for quantifying the anesthetic drug effect on EEG recordings during sevoflurane anesthesia. Three sets of simulated EEG series during awake, light and deep anesthesia were used to select the parameters for the multiscale PE analysis: embedding dimension m, lag τ and scales to be integrated into the CMSPE index. Then, the CMSPE index and raw single-scale PE index were applied to EEG recordings from 18 patients who received sevoflurane anesthesia. Pharmacokinetic/pharmacodynamic (PKPD) modeling was used to relate the measured EEG indices and the anesthetic drug concentration. Prediction probability (Pk) statistics and correlation analysis with the response entropy (RE) index, derived from the spectral entropy (M-entropy module; GE Healthcare, Helsinki, Finland), were investigated to evaluate the effectiveness of the new proposed measure. It was found that raw single-scale PE was blind to subtle transitions between light and deep anesthesia, while the CMSPE index tracked these changes accurately. Around the time of loss of consciousness, CMSPE responded significantly more rapidly than the raw PE, with the absolute slopes of linearly fitted response versus time plots of 0.12 (0.09-0.15) and 0.10 (0.06-0.13), respectively. The prediction probability Pk of 0.86 (0.85-0.88) and 0.85 (0.80-0.86) for CMSPE and raw PE indicated that the CMSPE index correlated well with the underlying anesthetic effect. The correlation

  2. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    PubMed

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P < 0.05) and lactate dehydrogenase release. This protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  3. Multiscale rescaled range analysis of EEG recordings in sevoflurane anesthesia.

    PubMed

    Liang, Zhenhu; Li, Duan; Ouyang, Gaoxiang; Wang, Yinghua; Voss, Logan J; Sleigh, Jamie W; Li, Xiaoli

    2012-04-01

    The Hurst exponent (HE) is a nonlinear method measuring the smoothness of a fractal time series. In this study we applied the HE index, extracted from electroencephalographic (EEG) recordings, as a measure of anesthetic drug effects on brain activity. In 19 adult patients undergoing sevoflurane general anesthesia, we calculated the HE of the raw EEG; comparing the maximal overlap discrete wavelet transform (MODWT) with the traditional rescaled range (R/S) analysis techniques, and with a commercial index of depth of anesthesia - the response entropy (RE). We analyzed each wavelet-decomposed sub-band as well as the combined low frequency bands (HEOLFBs). The methods were compared in regard to pharmacokinetic/pharmacodynamic (PK/PD) modeling, and prediction probability. All the low frequency band HE indices decreased when anesthesia deepened. However the HEOLFB was the best index because: it was less sensitive to artifacts, most closely tracked the exact point of loss of consciousness, showed a better prediction probability in separating the awake and unconscious states, and tracked sevoflurane concentration better - as estimated by the PK/PD models. The HE is a useful measure for estimating the depth of anesthesia. It was noted that HEOLFB showed the best performance for tracking drug effect. The HEOLFB could be used as an index for accurately estimating the effect of anesthesia on brain activity. Copyright © 2011 International Federation of Clinical Neurophysiology. All rights reserved.

  4. Anesthetic management with sevoflurane combined with alfaxalone-medetomidine constant rate infusion in a Thoroughbred racehorse undergoing a long-time orthopedic surgery

    PubMed Central

    WAKUNO, Ai; MAEDA, Tatsuya; KODAIRA, Kazumichi; KIKUCHI, Takuya; OHTA, Minoru

    2017-01-01

    ABSTRACT A three-year old Thoroughbred racehorse was anesthetized with sevoflurane and oxygen inhalation anesthesia combined with constant rate infusion (CRI) of alfaxalone-medetomidine for internal fixation of a third metacarpal bone fracture. After premedication with intravenous (IV) injections of medetomidine (6.0 µg/kg IV), butorphanol (25 µg/kg IV), and midazolam (20 µg/kg IV), anesthesia was induced with 5% guaifenesin (500 ml/head IV) followed immediately by alfaxalone (1.0 mg/kg IV). Anesthesia was maintained with sevoflurane and CRIs of alfaxalone (1.0 mg/kg/hr) and medetomidine (3.0 µg/kg/hr). The total surgical time was 180 min, and the total inhalation anesthesia time was 230 min. The average end-tidal sevoflurane concentration during surgery was 1.8%. The mean arterial blood pressure was maintained above 70 mmHg throughout anesthesia, and the recovery time was 65 min. In conclusion, this anesthetic technique may be clinically applicable for Thoroughbred racehorses undergoing a long-time orthopedic surgery. PMID:28955163

  5. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice.

    PubMed

    Hu, Frances Y; Hanna, George M; Han, Wei; Mardini, Feras; Thomas, Steven A; Wyner, Abraham J; Kelz, Max B

    2012-11-01

    Multiple lines of evidence suggest that the adrenergic system can modulate sensitivity to anesthetic-induced immobility and anesthetic-induced hypnosis as well. However, several considerations prevent the conclusion that the endogenous adrenergic ligands norepinephrine and epinephrine alter anesthetic sensitivity. Using dopamine β-hydroxylase knockout (Dbh) mice genetically engineered to lack the adrenergic ligands and their siblings with normal adrenergic levels, we test the contribution of the adrenergic ligands upon volatile anesthetic induction and emergence. Moreover, we investigate the effects of intravenous dexmedetomidine in adrenergic-deficient mice and their siblings using both righting reflex and processed electroencephalographic measures of anesthetic hypnosis. We demonstrate that the loss of norepinephrine and epinephrine and not other neuromodulators co-packaged in adrenergic neurons is sufficient to cause hypersensitivity to induction of volatile anesthesia. However, the most profound effect of adrenergic deficiency is retarding emergence from anesthesia, which takes two to three times as long in Dbh mice for sevoflurane, isoflurane, and halothane. Having shown that Dbh mice are hypersensitive to volatile anesthetics, we further demonstrate that their hypnotic hypersensitivity persists at multiple doses of dexmedetomidine. Dbh mice exhibit up to 67% shorter latencies to loss of righting reflex and up to 545% longer durations of dexmedetomidine-induced general anesthesia. Central rescue of adrenergic signaling restores control-like dexmedetomidine sensitivity. A novel continuous electroencephalographic analysis illustrates that the longer duration of dexmedetomidine-induced hypnosis is not due to a motor confound, but occurs because of impaired anesthetic emergence. Adrenergic signaling is essential for normal emergence from general anesthesia. Dexmedetomidine-induced general anesthesia does not depend on inhibition of adrenergic neurotransmission.

  6. Hypnotic Hypersensitivity to Volatile Anesthetics and Dexmedetomidine in Dopamine β-Hydroxylase Knockout Mice

    PubMed Central

    Hu, Frances Y.; Hanna, George M.; Han, Wei; Mardini, Feras; Thomas, Steven A.; Wyner, Abraham J.; Kelz, Max B.

    2012-01-01

    BACKGROUND Multiple lines of evidence suggest that the adrenergic system can modulate sensitivity to anesthetic-induced immobility and anesthetic-induced hypnosis as well. However, several considerations prevent the conclusion that the endogenous adrenergic ligands norepinephrine and epinephrine alter anesthetic sensitivity. METHODS Using dopamine β-hydroxylase (Dbh−/−) mice genetically engineered to lack the adrenergic ligands and their siblings with normal adrenergic levels, we test the contribution of the adrenergic ligands upon volatile anesthetic induction and emergence. Moreover, we investigate the effects of intravenous dexmedetomidine in adrenergic-deficient mice and their siblings using both righting reflex and processed electroencephalographic measures of anesthetic hypnosis. RESULTS We demonstrate that the loss of norepinephrine and epinephrine and not other neuromodulators copackaged in adrenergic neurons is sufficient to cause hypersensitivity to induction of volatile anesthesia. However, the most profound effect of adrenergic deficiency is retarding emergence from anesthesia, which takes two to three times as long in Dbh−/− mice for sevoflurane, isoflurane, and halothane. Having shown that Dbh−/− mice are hypersensitive to volatile anesthetics, we further demonstrate that their hypnotic hypersensitivity persists at multiple doses of dexmedetomidine. Dbh−/− mice exhibit up to 67% shorter latencies to loss of righting reflex and up to 545% longer durations of dexmedetomidine-induced general anesthesia. Central rescue of adrenergic signaling restores control-like dexmedetomidine sensitivity. A novel continuous electroencephalographic analysis illustrates that the longer duration of dexmedetomidine-induced hypnosis is not due to a motor confound, but occurs because of impaired anesthetic emergence. CONCLUSIONS Adrenergic signaling is essential for normal emergence from general anesthesia. Dexmedetomidine-induced general anesthesia does

  7. Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts.

    PubMed

    Fang, Neng-Xin; Yao, Yun-Tai; Shi, Chun-Xia; Li, Li-Huan

    2010-12-01

    Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.

  8. Propofol and sevoflurane during epidural/general anesthesia: comparison of early recovery characteristics and pain relief.

    PubMed

    Hepağuşlar, Hasan; Ozzeybek, Deniz; Ozkardeşler, Sevda; Taşdöğen, Aydin; Duru, Seden; Elar, Zahide

    2004-06-01

    We investigated the early recovery characteristics and pain relief of adult patients during combined anesthesia with (epidural and general), either with propofol or sevoflurane for maintenance in major abdominal surgery. Twenty-two patients (ASA I-III) were enrolled in this randomized, prospective study. After fluid preloading, 10 ml of bupivacaine 0.5% + 5 ml of prilocaine 0.5% + 1 ml of fentanyl 50 microg mL(-1) were administered via an epidural catheter. General anesthesia was induced with fentanyl and propofol after T6 sensorial blockade. Propofol group (n = 11) received propofol (2-5 mg kg(-1) h(-1)), sevoflurane group (n = 11) received sevoflurane (1-2%) for maintenance. Anesthesia was supplemented with N2O in O2 and intravenous fentanyl. Continuous epidural infusion of 0.125% bupivacaine + 1 microg fentanyl (5-7 mL h(-1)) was started forty-five min after the epidural bolus dose and 5 ml of it was given at the start of the wound closure. All anesthetics were discontinued except epidural infusion during the last suture. After emergence time was determined, the patients were transferred to the PACU. They were observed for orientation times of person and place. The pain scores (verbal analogue scale, 0-10) were assessed with 30 min intervals. When the patient's pain score was >3, rescue analgesic protocol (diclofenac Na 75 mg im followed by meperidine HCI approximately 0.25 mg kg(-1) iv at the latter period) was applied. In the case of inadequate pain relief during the latter assessment periods, meperidine HCI approximately 0.25 mg kg(-1) was administered. Mann-Whitney U test and Fisher's exact test were used for the statistical analysis. A value of p<0.05 was considered significant. Between the groups no statistical differences were observed in the emergence time (5 vs. 6 min, median) and in the orientation time to person (6 vs. 10 min). Recovery of orientation to place was found faster in propofol group (7 vs. 12 min, p = 0.041). Pain scores of the patients

  9. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane.

    PubMed

    Mowrey, David D; Liu, Qiang; Bondarenko, Vasyl; Chen, Qiang; Seyoum, Edom; Xu, Yan; Wu, Jie; Tang, Pei

    2013-12-13

    Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.

  10. Cardiovascular tolerance of intravenous bupivacaine in broiler chickens (Gallus gallus domesticus) anesthetized with isoflurane.

    PubMed

    DiGeronimo, Peter M; da Cunha, Anderson F; Pypendop, Bruno; Brandão, João; Stout, Rhett; Rinaldi, Max; Tully, Thomas N

    2017-03-01

    To determine the median effective dose (ED 50 ) of intravenous (IV) bupivacaine associated with a 50% probability of causing clinically relevant cardiovascular effects [defined as 30% change in heart rate (HR) or mean arterial pressure (MAP)] in chickens anesthetized with isoflurane. Randomized up-and-down study. A total of 14 Ross-708 broiler chickens (Gallus gallus domesticus) weighing 1.70-2.75 kg. Anesthesia was induced and maintained with isoflurane. Monitoring included the electrocardiogram and invasive arterial pressures. Chickens were administered bupivacaine IV over 2 minutes using a dose based on the response of the previous animal. Dose was decreased when HR and/or MAP in the previous animal increased or decreased ≥30% after bupivacaine administration, or increased when HR or MAP changed <30%. The ED 50 was defined as the dose resulting in ≥30% variation in HR or MAP in 50% of the population studied. The IV ED 50 of bupivacaine was 1.94 mg kg -1 using Dixon's up-and-down method and 1.96 mg kg -1 by logistic regression. These results suggest that 1.33 and 1.96 mg kg -1 of IV bupivacaine are associated with a respective 1 or 50% probability of a clinically significant change in MAP in isoflurane-anesthetized chickens. Identification of the cardiovascular changes associated with different doses of bupivacaine can be used as the basis for studies of therapeutic applications in the domestic chicken. Further studies are required to determine interspecies variation. Published by Elsevier Ltd.

  11. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.

    PubMed

    Bresnen, Andrew; Duong, Timothy Q

    2015-02-01

    The creatine kinase rate of metabolic adenosine triphosphate (ATP) synthesis is an important metabolic parameter but is challenging to measure in vivo due to limited signal-to-noise ratio and long measurement time. This study reports the implementation of an accelerated (31) P Four Angle Saturation Transfer (FAST) method to measure the forward creatine kinase (CK) rate of ATP synthesis. Along with a high-field scanner (11.7 Tesla) and a small sensitive surface coil, the forward CK rate in the rat brain was measured in ∼5 min. Under 1.2% isoflurane, the forward CK rate constant and metabolic flux were, respectively, kf , CK =0.26 ± 0.02 s(-1) and Ff,CK =70.8 ± 4.6 μmol/g/min. As a demonstration of utility and sensitivity, measurements were made under graded isoflurane. Under 2.0% isoflurane, kf , CK =0.16 ± 0.02 s(-1) and Ff,CK =410.0 ± 4.2 μmol/g/min, corresponding to a 38% and 42% reduction, respectively, relative to 1.2% isoflurane. By contrast, the ATP and phosphocreatine concentrations were unaltered. This study demonstrated the (31) P FAST measurement of creatine kinase rate of ATP synthesis in rat brain with reasonable temporal resolution. Different isoflurane levels commonly used in animal models significantly alter the CK reaction rate but not ATP and phosphocreatine concentrations. © 2014 Wiley Periodicals, Inc.

  12. Under "real world" conditions, desflurane increases drug cost without speeding discharge after short ambulatory anesthesia compared to isoflurane.

    PubMed

    Schwarz, Stephan K W; Butterfield, Noam N; Macleod, Bernard A; Kim, Edward Y; Franciosi, Luigi G; Ries, Craig R

    2004-11-01

    To compare the measured "real world" perioperative drug cost and recovery associated with desflurane- and isoflurane-based anesthesia in short (less than one hour) ambulatory surgery. We conducted a prospective, randomized, blinded trial with patients undergoing arthroscopic meniscectomy under general anesthesia. Following iv induction, patients received either isoflurane (group I; n = 25) or desflurane (group D; n = 20) for maintenance. The primary outcome variable was total perioperative drug cost per patient in Canadian dollars. Secondary outcome variables included volatile agent consumption and cost, adjuvant anesthetic and postanesthesia care unit (PACU) drug cost, readiness for PACU discharge, and incidence of adverse events. Total perioperative drug cost per patient was 14.58 +/- 6.83 Canadian dollars (mean +/- standard deviation) for group I, and 21.47 +/- 5.18 Canadian dollars for group D (P < 0.001). Isoflurane consumption per patient was 6.0 +/- 3.0 mL compared to 18.6 +/- 7.7 mL for desflurane (P < 0.0001); corresponding costs were 0.83 +/- 0.42 Canadian dollars vs 7.61 +/- 3.15 Canadian dollars (P < 0.0001). There were no differences in adjuvant anesthetic or PACU drug cost. All but one patient from each group were deemed ready for PACU discharge at 15 min postoperatively (Aldrete score >or= 9). One patient in group D experienced postoperative nausea. No other adverse events were noted. Measured total perioperative drug cost for a short ambulatory procedure (less than one hour) under general anesthesia was higher when desflurane rather than isoflurane was used for maintenance, essentially due to volatile agent cost. Desflurane use did not translate into faster PACU discharge under "real world" conditions.

  13. Diabetes abolishes the cardioprotection induced by sevoflurane postconditioning in the rat heart in vivo: roles of glycogen synthase kinase-3β and its upstream pathways.

    PubMed

    Tai, Wenjun; Shi, Enyi; Yan, Lihui; Jiang, Xiaojing; Ma, Hong; Ai, Chunyu

    2012-11-01

    We measured the cardioprotection afforded by sevoflurane postconditioning in streptozotocin-induced diabetic rats (DRs) and determined the roles of glycogen synthase kinase (GSK), phosphatidylinositol-3-kinase/Akt, and extracellular signal-regulated kinase (ERK1/2) in such a procedure. DRs and nondiabetic rats (NDRs) were subjected to a 30-min coronary artery occlusion followed by a 120-min reperfusion. Postconditioning was achieved by inhalation of 1 minimum alveolar concentration sevoflurane at the first 5 min of reperfusion. The infarct size was determined by triphenyltetrazolium chloride staining. Expressions of GSK-3β, Akt, and ERK1/2 were measured using Western blotting. In NDRs, the infarct size was significantly decreased from 53.4% ± 7.6% to 34.9% ± 5.6% by sevoflurane postconditioning (P < 0.01). Such an anti-infarct effect was abolished completely in the DRs, as evidenced by a similar infarct size observed between the sevoflurane-treated and untreated DRs (49.3% ± 8.6% and 49.6% ± 9.3%, respectively, P > 0.05). Direct inhibition of GSK-3β by injection of SB216763 just before the start of reperfusion induced equivalent infarct-sparing effects in both NDRs (37.8% ± 3.9% and 53.4% ± 7.6% in SB216763-treated and untreated NDRs, respectively; P < 0.01) and DRs (38.8% ± 3.2% and 49.3% ± 8.6% in SB216763-treated and untreated DRs, respectively; P < 0.05). Sevoflurane postconditioning remarkably enhanced the phosphorylation of GSK-3β Ser(9), Akt Ser(473), and ERK1/2 in NDRs, which were blocked in DRs. The cardioprotection induced by sevoflurane postconditioning is abolished by diabetes. This might be due to the impairment of phosphorylation of GSK-3β and its upstream signaling pathways of phosphatidylinositol-3-kinase/Akt and ERK1/2 in the presence of diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The cardiovascular status of isoflurane-anaesthetized horses with and without dexmedetomidine constant rate infusion evaluated at equivalent depths of anaesthesia.

    PubMed

    Risberg, Åse I; Ranheim, Birgit; Krontveit, Randi I; Lervik, Andreas; Haga, Henning A

    2016-07-01

    To compare cardiac index and oxygen extraction at equivalent depths of anaesthesia between isoflurane-anaesthetized horses and horses anesthetized with isoflurane and dexmedetomidine CRI. Sequential, blinded, randomized, balanced, crossover study. Eight horses weighing a mean ± standard deviation of 478 ± 58 kg. Horses were premedicated with 0.03 mg kg(-1) acepromazine intramuscularly (IM) and 8 μg kg(-1) dexmedetomidine intravenously (IV). Anaesthesia was induced with 2.5 mg kg(-1) ketamine and 0.1 mg kg(-1) midazolam IV and maintained with isoflurane in oxygen and air. Horses were mechanically ventilated. Fractional concentration of end-tidal isoflurane (Fe'Iso) was stabilized at 1.7% with a CRI of 0.9% NaCl (IsoNaCl), or at 1.1% with 1.75 μg kg(-1)  hour(-1) dexmedetomidine (IsoDex). Mean arterial blood pressure was maintained above 60 mmHg by dobutamine infusion. Following nociceptive electrical stimulation, Fe'Iso was stabilized at a 0.1% lower concentration and nociceptive stimulation was repeated. This procedure was continued until the horse moved. Fe'Iso values prior to the concentration at which movement occurred were considered to indicate equivalent depths of anaesthesia between treatments. Cardiac index and oxygen extraction were compared at equivalent depths of anaesthesia using a paired Student's t-test. Cardiac index differed between IsoNaCl at 61 ± 12 mL kg(-1)  minute(-1) and IsoDex at 48 ± 10 mL kg(-1)  minute(-1) (p = 0.047). In addition, oxygen extraction differed between IsoNaCl at 3.4 ± 0.8 mL kg(-1)  minute(-1) and IsoDex at 4.5 ± 0.5 mL kg(-1)  minute(-1) (p = 0.0042). Two horses receiving IsoNaCl were administered dobutamine at equivalent depths of anaesthesia (7.0 and 28.8 μg kg(-1)  hour(-1) , respectively). Cardiovascular function in horses receiving isoflurane and 1.75 μg kg(-1)  minute(-1) dexmedetomidine is more compromised than in horses receiving a higher concentration of

  15. Tracking the coupling of two electroencephalogram series in the isoflurane and remifentanil anesthesia.

    PubMed

    Liang, Zhenhu; Liang, Shujuan; Wang, Yinghua; Ouyang, Gaoxiang; Li, Xiaoli

    2015-02-01

    Coupling in multiple electroencephalogram (EEG) signals provides a perspective tool to understand the mechanism of brain communication. In this study, we propose a method based on permutation cross-mutual information (PCMI) to investigate whether or not the coupling between EEG series can be used to quantify the effect of specific anesthetic drugs (isoflurane and remifentanil) on brain activities. A Rössler-Lorenz system and surrogate analysis was first employed to compare histogram-based mutual information (HMI) and PCMI for estimating the coupling of two nonlinear systems. Then, the HMI and the PCMI indices of EEG recordings from two sides of the forehead of 12 patients undergoing combined remifentanil and isoflurane anesthesia were demonstrated for tracking the effect of drug on the coupling of brain activities. Performance of all indices was assessed by the correlation coefficients (Rij) and relative coefficient of variation (CV). The PCMI can track the coupling strength of two nonlinear systems, and it is sensitive to the phase change of the coupling systems. Compared to the HMI, the PCMI has a better correlation with the coupling strength in nonlinear systems. The PCMI could track the effect of anesthesia and distinguish the consciousness state from the unconsciousness state. Moreover, at the embedding dimension m=4 and lag τ=1, the PCMI had a better performance than HMI in tracking the effect of anesthesia drugs on brain activities. As a measure of coupling, the PCMI was able to reflect the state of consciousness from two EEG recordings. The PCMI is a promising new coupling measure for estimating the effect of isoflurane and remifentanil anesthetic drugs on the brain activity. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  16. Lidocaine, Dexmedetomidine and Their Combination Reduce Isoflurane Minimum Alveolar Concentration in Dogs

    PubMed Central

    Acevedo-Arcique, Carlos M.; Ibancovichi, José A.; Chavez, Julio R.; Gutierrez-Blanco, Eduardo; Moran-Muñoz, Rafael; Victoria-Mora, José M.; Tendillo-Cortijo, Francisco; Santos-González, Martín; Sanchez-Aparicio, Pedro

    2014-01-01

    The effects of intravenous (IV) lidocaine, dexmedetomidine and their combination delivered as a bolus followed by a constant rate infusion (CRI) on the minimum alveolar concentration of isoflurane (MACISO) in dogs were evaluated. Seven healthy adult dogs were included. Anaesthesia was induced with propofol and maintained with isoflurane. For each dog, baseline MAC (MACISO/BASAL) was determined after a 90-minute equilibration period. Thereafter, each dog received one of the following treatments (loading dose, CRI): lidocaine 2 mg kg−1, 100 µg kg−1 minute−1; dexmedetomidine 2 µg kg−1, 2 µg kg−1 hour−1; or their combination. MAC was then determined again after 45- minutes of treatment by CRI. At the doses administered, lidocaine, dexmedetomidine and their combination significantly reduced MACISO by 27.3% (range: 12.5–39.2%), 43.4% (33.3–53.3%) and 60.9% (46.1–78.1%), respectively, when compared to MACISO/BASAL. The combination resulted in a greater MACISO reduction than the two drugs alone. Their use, at the doses studied, provides a clinically important reduction in the concentration of ISO during anaesthesia in dogs. PMID:25232737

  17. The effect of thiopental sodium, methoxyflurane and halothane on the acid-base status in sheep.

    PubMed Central

    Edjtehadi, M; Howard, B R

    1978-01-01

    Experiments have been carried out on 20 adult fat-tailed ewes to determine the effects of thiopental sodium, methoxyflurane and halothane on acid-base status of the saliva loss during prolonged surgical anaesthesia. The rate of loss of base in saliva depends on the volume of saliva produced, which fell sharply at the onset of anesthesia with the volatile anaesthesia. Plasma pH and plasma pvCO2 excess were both increased by the volatile anaesthetics but fell sharply during thiopental anaesthesia. Plasma pH and plasma PvCO2 showed no consistent relationship. PMID:688076

  18. Desflurane Hepatitis Associated with Hapten and Autoantigen-Specific IgG4 Antibodies

    PubMed Central

    Anderson, James S.; Rose, Noel R.; Martin, Jackie L.; Eger, Edmond I.; Njoku, Dolores B.

    2013-01-01

    BACKGROUND Three cases of drug-induced liver injury (DILI) have been reported after desflurane anesthesia. However, no previous reports have detected serum autoantibodies such as that reported with DILI from halothane or isoflurane. METHODS AND RESULTS We describe the first documentation of cytochrome P450 2E1 IgG4 autoantibodies, as well as 58 kDa endoplasmic reticulum protein and trifluoroacetyl chloride hapten-specific IgG4 antibodies, in a patient who developed DILI after desflurane anesthesia. CONCLUSIONS These findings suggest that allergic and autoimmune mechanisms have critical roles in the development of desflurane DILI. PMID:17513640

  19. The Effect of Anesthetic Choice (Sevoflurane Versus Desflurane) and Neuromuscular Management on Speed of Airway Reflex Recovery.

    PubMed

    McKay, Rachel Eshima; Hall, Kathryn T; Hills, Nancy

    2016-02-01

    Nonintubated patients receiving sevoflurane have slower protective airway reflex recovery after anesthesia compared with patients receiving desflurane. We asked whether this difference would remain significant among intubated patients receiving rocuronium or whether the impact of variable neuromuscular recovery would predominate and thus minimize differences between anesthetics. After obtaining written informed consent, patients were randomly assigned to receive sevoflurane (n = 41) or desflurane (n = 40), with neuromuscular monitoring by quantitative train-of-four (TOF) method using accelerometry. Intubation was facilitated by administration of 1 mg/kg rocuronium. Neuromuscular block was produced, with the goal of maintaining 10% to 15% of baseline function. After surgery, neostigmine 70 µg/kg + glycopyrrolate 14 µg/kg was administered. When TOF ratio reached ≥ 0.7, anesthetic was discontinued and fresh gas flow was raised to 15 L/m. The time of first response to command was noted, after which patients were given a 20-mL water swallowing test at 2, 6, 14, 22, 30, and 60 minutes. The following average time intervals were compared between the 2 intervention groups: anesthetic discontinuation to first response to command (T1); first response to command to first successful passing of swallow test (T2); and anesthetic discontinuation to first successful passing of swallow test (T3). We also compared the rates of successful swallow tests at 2 minutes after first response to command in the 2 groups, first categorizing as failures all those who were unable to take the test at 2 minutes, and then excluding 10 patients unable to take the test at this time for reasons other than somnolence (n = 10). Patients receiving desflurane passed the swallowing test at shorter time intervals after first response to command than did patients receiving sevoflurane (Wilcoxon-Mann-Whitney odds = 1.60; 95% confidence interval [CI], 1.01-2.69; P = 0.054). Two minutes after the first

  20. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huwyler, J.; Gut, J.

    1992-05-15

    Hydrochlorofluorocarbons (HCFCs) that are structural analogues of the anesthetic agent halothane may follow a common pathway of bioactivation and formation of adducts to cellular targets of distinct tissues. Exposure of rats to a single dose of HCFC 123 (2,2-dichloro- 1,1,1-trifluoroethane) or its structural analogue halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in vivo resulted in the formation of one prominent trifluoroacetylated protein adduct (TFA-protein adduct) in the heart. In contrast, a variety of distinct TFA-protein adducts were formed in the liver and the kidney of the same animals. The TFA-protein adduct in the heart was processed rapidly; t1/2 of the intact TFA-protein adduct was lessmore » than 12 h.« less

  1. Vapor Pressures of Anesthetic Agents at Temperatures below Zero Degrees Celsius and a Novel Anesthetic Delivery Device

    PubMed Central

    Schenning, Katie J.; Casson, Henry; Click, Sarah V.; Brambrink, Lucas; Chatkupt, Thomas T.; Alkayed, Nabil J.; Hutchens, Michael P.

    2016-01-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below zero, but the vapor pressure-temperature relationship is unknown below zero. Secondarily, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent thereby identifying the saturated vapor concentration of each agent at any temperature below zero. To test our hypothesis, we measured the saturated vapor concentration at 1 atmosphere of pressure for temperatures between -60°C and 0°C thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all three agents. To test the empiric data we constructed a digitally-controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype based on this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures. PMID:27632346

  2. Vapor Pressures of Anesthetic Agents at Temperatures Below 0°C and a Novel Anesthetic Delivery Device.

    PubMed

    Schenning, Katie J; Casson, Henry; Click, Sarah V; Brambrink, Lucas; Chatkupt, Thomas T; Alkayed, Nabil J; Hutchens, Michael P

    2017-02-01

    At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below 0°C, but the vapor pressure-temperature relationship is unknown below 0. Second, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent, thereby identifying the saturated vapor concentration of each agent at any temperature below 0°C. To test our hypothesis, we measured the saturated vapor concentration at 1 atm of pressure for temperatures between -60 and 0°C, thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all 3 agents. To test the empiric data, we constructed a digitally controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype on the basis of this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures.

  3. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.

    PubMed

    Goettel, Nicolai; Patet, Camille; Rossi, Ariane; Burkhart, Christoph S; Czosnyka, Marek; Strebel, Stephan P; Steiner, Luzius A

    2016-06-01

    Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P < 0.001). Effective autoregulation was found in a blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200).

  4. Hypercapnic hyperventilation shortens emergence time from isoflurane anesthesia.

    PubMed

    Sakata, Derek J; Gopalakrishnan, Nishant A; Orr, Joseph A; White, Julia L; Westenskow, Dwayne R

    2007-03-01

    To shorten emergence time after a procedure using volatile anesthesia, 78% of anesthesiologists recently surveyed used hyperventilation to rapidly clear the anesthetic from the lungs. Hyperventilation has not been universally adapted into clinical practice because it also decreases the Paco2, which decreases cerebral bloodflow and depresses respiratory drive. Adding deadspace to the patient's airway may be a simple and safe method of maintaining a normal or slightly increased Paco2 during hyperventilation. We evaluated the differences in emergence time in 20 surgical patients undergoing 1 MAC of isoflurane under mild hypocapnia (ETco2 approximately 28 mmHg) and mild hypercapnia (ETco2 approximately 55 mmHg). The minute ventilation in half the patients was doubled during emergence, and hypercapnia was maintained by insertion of additional airway deadspace to keep the ETco2 close to 55 mmHg during hyperventilation. A charcoal canister adsorbed the volatile anesthetic from the deadspace. Fresh gas flows were increased to 10 L/min during emergence in all patients. The time between turning off the vaporizer and the time when the patients opened their eyes and mouths, the time of tracheal extubation, and the time for normalized bispectral index to increase to 0.95 were faster whenever hypercapnic hyperventilation was maintained using rebreathing and anesthetic adsorption (P < 0.001). The time to tracheal extubation was shortened by an average of 59%. The emergence time after isoflurane anesthesia can be shortened significantly by using hyperventilation to rapidly clear the anesthetic from the lungs and CO2 rebreathing to induce hypercapnia during hyperventilation. The device should be considered when it is important to provide a rapid emergence, especially after surgical procedures where a high concentration of the volatile anesthetic was maintained right up to the end of the procedure, or where surgery ends abruptly and without warning.

  5. Mutations M287L and Q266I in the Glycine Receptor α1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice

    PubMed Central

    Borghese, Cecilia M.; Xiong, Wei; Oh, S. Irene; Ho, Angel; Mihic, S. John; Zhang, Li; Lovinger, David M.; Homanics, Gregg E.; Eger, Edmond I; Harris, R. Adron

    2012-01-01

    Background Volatile anesthetics (VAs) alter the function of key central nervous system proteins but it is not clear which, if any, of these targets mediates the immobility produced by VAs in the face of noxious stimulation. A leading candidate is the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal GlyRs with strychnine affects the minimal alveolar concentration (an anesthetic EC50) in proportion to the degree of enhancement. Methods We produced single amino acid mutations into the glycine receptorα1 subunit that increased (M287L, third transmembrane region) or decreased (Q266I, second transmembrane region) sensitivity to isoflurane in recombinant receptors, and introduced such receptors into mice. The resulting knockin mice presented impaired glycinergic transmission, but heterozygous animals survived to adulthood, and we determined the effect of isoflurane on glycine-evoked responses of brain stem neurons from the knockin mice, and the minimal alveolar concentration for isoflurane and other VAs in the immature and mature knockin mice. Results Studies of glycine-evoked currents in brain stem neurons from knock-in mice confirmed the changes seen with recombinant receptors. No increases in the minimal alveolar concentration were found in knockin mice, but the minimal alveolar concentration for isoflurane and enflurane (but not halothane) decreased in 2-week-old Q266I mice. This change is opposite to the one expected for a mutation that decreases the sensitivity to volatile anesthetics. Conclusion Taken together, these results indicate that glycine receptors containing the α1 subunit are not likely to be crucial for the action of isoflurane and other VAs. PMID:22885675

  6. The effect of maropitant on intraoperative isoflurane requirements and postoperative nausea and vomiting in dogs: a randomized clinical trial.

    PubMed

    Swallow, Adam; Rioja, Eva; Elmer, Tim; Dugdale, Alex

    2017-07-01

    To establish if preoperative maropitant significantly reduced intraoperative isoflurane requirements and reduced clinical signs associated with postoperative nausea and vomiting (PONV) in dogs. Randomized clinical trial. Twenty-four healthy, client-owned dogs undergoing routine ovariohysterectomy. Premedication involved acepromazine (0.03 mg kg -1 ) combined with methadone (0.3 mg kg -1 ) intramuscularly 45 minutes before anaesthetic induction with intravenous (IV) propofol, dosed to effect. Meloxicam (0.2 mg kg -1 ) was administered intravenously. Dogs were randomly assigned to administration of saline (group S; 0.1 mL kg -1 , n=12) or maropitant (group M; 1 mg kg -1 , n=12) subcutaneously at time of premedication. Methadone (0.1 mg kg -1 IV) was repeated 4 hours later. Anaesthesia was maintained with isoflurane in oxygen, dosed to effect by an observer unaware of group allocation. The dogs were assessed hourly, starting 1 hour postoperatively, using the short form of the Glasgow Composite Pain Score (GCPS), and for ptyalism and signs attributable to PONV [score from 0 (none) to 3 (severe)] by blinded observers. Owners completed a questionnaire at the postoperative recheck. Overall mean±standard deviation end-tidal isoflurane percentage was lower in group M (1.19±0.26%) than group S (1.44±0.23%) (p=0.022), but was not significantly different between groups at specific noxious events (skin incision, ovarian pedicle clamp application, cervical clamp application, wound closure). Cardiorespiratory variables and postoperative GCPS were not significantly different between groups. Overall, 50% of dogs displayed signs attributable to PONV, with no difference in PONV scores between groups (p=0.198). No difference in anaesthetic recovery was noted by owners between groups. Maropitant reduced overall intraoperative isoflurane requirements but did not affect the incidence of PONV. Maropitant provided no significant benefits to dogs undergoing ovariohysterectomy

  7. Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs

    PubMed Central

    Becker, Lisa F; Schwarz, Dennis H

    2014-01-01

    Summary Methyl and ethyl thioether groups were introduced at all primary positions of α-, β-, and γ-cyclodextrin by nucleophilic displacement reactions starting from the corresponding per-(6-deoxy-6-bromo)cyclodextrins. Further modification of all 2-OH positions by etherification with iodo terminated triethylene glycol monomethyl ether (and tetraethylene glycol monomethyl ether, respectively) furnished water-soluble hosts. Especially the β-cyclodextrin derivatives exhibit very high binding potentials towards the anaesthetic drugs sevoflurane and halothane. Since the resulting inclusion compounds are highly soluble in water at temperatures ≤37 °C they are good candidates for new aqueous dosage forms which would avoid inhalation anaesthesia. PMID:25550759

  8. Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway

    PubMed Central

    Lim, Sanghee; Kwak, Minhye; Gray, Christy D.; Xu, Michael; Choi, Jun H.; Junn, Sue; Kim, Jieun; Xu, Jing; Schaefer, Michele; Johns, Roger A.; Song, Hongjun; Ming, Guo-Li; Mintz, C. David

    2017-01-01

    Clinical and preclinical studies indicate that early postnatal exposure to anesthetics can lead to lasting deficits in learning and other cognitive processes. The mechanism underlying this phenomenon has not been clarified and there is no treatment currently available. Recent evidence suggests that anesthetics might cause persistent deficits in cognitive function by disrupting key events in brain development. The hippocampus, a brain region that is critical for learning and memory, contains a large number of neurons that develop in the early postnatal period, which are thus vulnerable to perturbation by anesthetic exposure. Using an in vivo mouse model we demonstrate abnormal development of dendrite arbors and dendritic spines in newly generated dentate gyrus granule cell neurons of the hippocampus after a clinically relevant isoflurane anesthesia exposure conducted at an early postnatal age. Furthermore, we find that isoflurane causes a sustained increase in activity in the mechanistic target of rapamycin pathway, and that inhibition of this pathway with rapamycin not only reverses the observed changes in neuronal development, but also substantially improves performance on behavioral tasks of spatial learning and memory that are impaired by isoflurane exposure. We conclude that isoflurane disrupts the development of hippocampal neurons generated in the early postnatal period by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition. PMID:28683067

  9. Low-flow anesthesia and reduced animal size increase carboxyhemoglobin levels in swine during desflurane and isoflurane breakdown in dried soda lime.

    PubMed

    Bonome, C; Belda, J; Alvarez-Refojo, F; Soro, M; Fernández-Goti, C; Cortés, A

    1999-10-01

    After institutional approval, we studied the effect of animal size, anesthetic concentration, and fresh gas flow (FGF) rate on inspired carbon monoxide (CO) and carboxyhemoglobin (COHb) during anesthesia in swine, using soda lime previously dried to 1 +/- 0.1% water content. To ascertain the effect of anesthesia, eight adult pigs were anesthetized with either 1 minimum alveolar anesthetic concentration (MAC) desflurane or isoflurane and, to characterize the effect of the FGF rate, it was doubled in four pigs. To determine the effect of animal size, four small and four large pigs received 1 MAC desflurane or isoflurane, and to determine the effect of the anesthetic concentration, a group of four swine was exposed to 0.5 MAC. CO and COHb concentrations were larger with desflurane (5500 +/- 980 ppm and 57.90% +/- 0.50%, respectively) than with isoflurane (800 ppm and 17.8% +/- 2.14%, respectively), especially in the small animals. Increasing the FGF rate significantly reduced peak CO and COHb concentrations resulting from both anesthetics; however, when each anesthetic was reduced to 0.5 MAC, the concentrations obtained were similar. We conclude that CO intoxication is more severe with desflurane than with isoflurane, that small animals are at higher risk for CO poisoning, and that low FGF can increase COHb concentrations. The present study shows that the use of desflurane with desiccated carbon dioxide absorbents in pediatric anesthesia can produce a dangerous carbon dioxide intoxication, especially with low-flow anesthesia.

  10. An evaluation of the influence of medetomidine hydrochloride and atipamezole hydrochloride on the arrhythmogenic dose of epinephrine in dogs during halothane anesthesia.

    PubMed Central

    Pettifer, G R; Dyson, D H; McDonell, W N

    1996-01-01

    Alterations in the arrhythmogenic dose of epinephrine (ADE) were determined following administration of medetomidine hydrochloride (750 micrograms/M2) and a saline placebo, or medetomidine hydrochloride (750 micrograms/M2), followed by specific medetomidine reversal agent, atipamezole hydrochloride (50 micrograms/kg) 20 min later, in halothane-anesthetized dogs (n = 6). ADE determinations were made prior to the administration of either treatment, 20 min and 4 h following medetomidine/saline or medetomidine/atipamezole administration. Epinephrine was infused for 3 min at increasing dose rates (2.5 and 5.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached. The interinfusion interval was 20 min. There were no significant differences in the amount of epinephrine required to reach the arrhythmia criterion following the administration of either treatment. In addition, the ADE at each determination was not different between treatment groups. In this study, the administration of medetomidine to halothane-anesthetized dogs did not alter their arrhythmogenic response to infused epinephrine. PMID:8825986

  11. Isoflurane waste anesthetic gas concentrations associated with the open-drop method.

    PubMed

    Taylor, Douglas K; Mook, Deborah M

    2009-01-01

    The open-drop technique is used frequently for anesthetic delivery to small rodents. Operator exposure to waste anesthetic gas (WAG) is a potential occupational hazard if this method is used without WAG scavenging. This study was conducted to determine whether administration of isoflurane by the open-drop technique without exposure controls generates significant WAG concentrations. We placed 0.1, 0.2, or 0.3 ml of liquid isoflurane into screw-top 500 or 1000 ml glass jars. WAG concentration was measured at the opening of the container and 20 and 40 cm from the opening, a distance at which users likely would operate, at 1, 2, or 3 min WAG was measured by using a portable infrared gas analyzer. Mean WAG concentrations at the vessel opening were as high as 662 +/- 168 ppm with a 500 ml jar and 122 +/- 87 ppm with a 1000 ml jar. At operator levels, WAG concentrations were always at or near 0 ppm. For measurements made at the vessel opening, time was the only factor that significantly affected WAG concentration when using the 500 ml jar. Neither time nor liquid volume were significant factors when using 1000 ml jar. At all liquid volumes and time points, the WAG concentration associated with using the 500 ml container was marginally to significantly greater than that for the 1000 ml jar.

  12. The AAI index, the BIS index and end-tidal concentration during wash in and wash out of sevoflurane.

    PubMed

    Anderson, R E; Barr, G; Assareh, H; Jakobsson, J

    2003-06-01

    The bispectral index (BIS), auditory evoked potential index (AAI) and the end-tidal sevoflurane concentration were studied during induction and emergence in 10 ASA I-II patients. Both during 'wash-in' and 'wash-out' of sevoflurane, the AAI and BIS indices show huge variability and an overlap of indices between awake and not responding to command. This was the most pronounced during induction and the range of values was larger for the AAI index as compared with the BIS index. Mean (range) BIS was 85 (73-98) and 48 (10-83) awake and unconscious, respectively, and mean AAI index was 71 (43-99) and 21 (4-85), respectively. This study demonstrates the difficulties of using processed EEG variables in real time in a clinical situation of non-steady state pharmacodynamics.

  13. Spatial Nonuniformity of the Resting CBF and BOLD Responses to Sevoflurane: In Vivo Study of Normal Human Subjects With Magnetic Resonance Imaging

    PubMed Central

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2009-01-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF–BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. PMID:17948882

  14. Spatial nonuniformity of the resting CBF and BOLD responses to sevoflurane: in vivo study of normal human subjects with magnetic resonance imaging.

    PubMed

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2008-12-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF-BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. Copyright 2007 Wiley-Liss, Inc.

  15. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreasedmore » pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.« less

  16. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Li, Huihui; Sun, Xiaoru; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2016-05-15

    Mitochondrial dysfunction has been linked to the earliest pathogenesis of isoflurane-induced cognitive impairments in developing or aging mammalian brain. However, its molecular mechanism is poorly understood and a pharmacologic treatment to rapidly reverse mitochondrial dysfunction is lacking. Fifteen-month-old male C57BL/6 mice were exposed to isoflurane for two hours following intraperitoneal administration of mitochondrion-targeted peptide SS-31 or vehicle with 30min interval. The hippocampus was immediately removed for biochemical assays and mitochondria isolation after inhalation. Behavioral tests were evaluated by the open field test and fear conditioning test 24h after the experiment. We showed that cognitive deficits induced by exposure of the aging mice to isoflurane were accompanied by mitochondrial dysfunction in hippocampus due to loss of the enzymatic activity of complex I. This loss resulted in the increase of reactive oxygen species production, decrease of ATP production and mitochondrial membrane potential, and opening of mitochondrial permeability transition pore. Further, we provided evidence that the BDNF signaling pathway was involved in this process to regulate synaptic plasticity-related proteins, for instance, downregulation of synapsin 1, PSD-95 and p-CREB, and upregulation of NR2A, NR2B, CaMKIIα and CaMKIIβ. Of note, the isoflurane-induced cognitive deficits were rescued by SS-31 through reversal of mitochondrial dysfunction, which facilitated the regulation of BDNF signaling including the expression reversal of aforementioned important synaptic-signaling proteins in aging mice. Our data demonstrate that reversing mitochondrial dysfunction by SS-31 enhances BDNF signaling pathway and synaptic plasticity, and provides protective effects on cognitive function, thereby support the notion that SS-31 may have therapeutic benefits for elderly humans undertaking anesthesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of Home Cage Bedding in the Induction Chamber on Serum Cortisol and Corticosterone Levels in Response to Isoflurane-induced Anesthesia in C57BL/6J Mice.

    PubMed

    Reiter, Cara P; Christy, Amanda C; Olsen, Cara H; Bentzel, David E

    2017-03-01

    Mice are routinely anesthetized with isoflurane in an induction chamber. The AVMA Guidelines for the Euthanasia of Animals states that distress should be minimized during euthanasia but does not address this point in regard to induction of anesthesia. Here we evaluated the potential for familiar surroundings to reduce the adrenocortical response of mice during anesthesia induction with isoflurane. However, adding bedding from the animals' home cage to the induction chamber failed to significantly reduce serum cortisol or corticosterone levels in male and female C57BL/6J mice. These results indicate that familiar surroundings do not appear sufficient to reduce the adrenocortical response of mice during anesthesia induction with isoflurane.

  18. Effects of dopamine and dobutamine on isoflurane-induced hypotension in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Schnellbacher, Rodney W; da Cunha, Anderson F; Beaufrère, Hugues; Queiroz, Patricia; Nevarez, Javier G; Tully, Thomas N

    2012-07-01

    To assess the effects of dopamine and dobutamine on the blood pressure of isoflurane-anesthetized Hispaniolan Amazon parrots (Amazona ventralis). 8 Hispaniolan Amazon parrots. A randomized crossover study was conducted. Each bird was anesthetized (anesthesia maintained by administration of 2.5% isoflurane in oxygen) and received 3 doses of each drug during a treatment period of 20 min/dose. Treatments were constant rate infusions (CRIs) of dobutamine (5, 10, and 15 μg/kg/min) and dopamine (5, 7, and 10 μg/kg/min). Direct systolic, diastolic, and mean arterial pressure measurements, heart rate, esophageal temperature, and end-tidal partial pressure of CO(2) were recorded throughout the treatment periods. Mean ± SD of the systolic, mean, and diastolic arterial blood pressures at time 0 (initiation of a CRI) were 132.9 ± 22.1 mm Hg, 116.9 ± 20.5 mm Hg, and 101.9 ± 22.0 mm Hg, respectively. Dopamine resulted in significantly higher values than did dobutamine for the measured variables, except for end-tidal partial pressure of CO(2). Post hoc multiple comparisons revealed that the changes in arterial blood pressure were significantly different 4 to 7 minutes after initiation of a CRI. Overall, dopamine at rates of 7 and 10 μg/kg/min and dobutamine at a rate of 15 μg/kg/min caused the greatest increases in arterial blood pressure. Dobutamine CRI at 5, 10, and 15 μg/kg/min and dopamine CRI at 5, 7, and 10 μg/kg/min may be useful in correcting severe hypotension in Hispaniolan Amazon parrots caused by anesthesia maintained with 2.5% isoflurane.

  19. The effect of isoflurane anesthesia on the electroencephalogram assessed by harmonic wavelet bicoherence-based indices

    NASA Astrophysics Data System (ADS)

    Li, Duan; Li, Xiaoli; Hagihira, Satoshi; Sleigh, Jamie W.

    2011-10-01

    Bicoherence quantifies the degree of quadratic phase coupling among different frequency components within a signal. Previous studies, using Fourier-based methods of bicoherence calculation (FBIC), have demonstrated that electroencephalographic bicoherence can be related to the end-tidal concentration of inhaled anesthetic drugs. However, FBIC methods require excessively long sections of the encephalogram. This problem might be overcome by the use of wavelet-based methods. In this study, we compare FBIC and a recently developed wavelet bicoherence (WBIC) method as a tool to quantify the effect of isoflurane on the electroencephalogram. We analyzed a set of previously published electroencephalographic data, obtained from 29 patients who underwent elective abdominal surgery under isoflurane general anesthesia combined with epidural anesthesia. Nine potential indices of the electroencephalographic anesthetic effect were obtained from the WBIC and FBIC techniques. The relationship between each index and end-tidal concentrations of isoflurane was evaluated using correlation coefficients (r), the inter-individual variations (CV) of index values, the coefficient of determination (R2) of the PKPD models and the prediction probability (PK). The WBIC-based indices tracked anesthetic effects better than the traditional FBIC-based ones. The DiagBic_En index (derived from the Shannon entropy of the diagonal bicoherence values) performed best [r = 0.79 (0.66-0.92), CV = 0.08 (0.05-0.12), R2 = 0.80 (0.75-0.85), PK = 0.79 (0.75-0.83)]. Short data segments of ~10-30 s were sufficient to reliably calculate the indices of WBIC. The wavelet-based bicoherence has advantages over the traditional Fourier-based bicoherence in analyzing volatile anesthetic effects on the electroencephalogram.

  20. Postoperative neurological aggravation after anesthesia with sevoflurane in a patient with xeroderma pigmentosum: a case report.

    PubMed

    Fjouji, Salaheddine; Bensghir, Mustapha; Yafat, Bahija; Bouhabba, Najib; Boutayeb, Elhoucine; Azendour, Hicham; Kamili, Nordine Drissi

    2013-03-14

    Xeroderma pigmentosum is a rare autosomal recessive disease that causes changes in skin pigmentation, precancerous lesions and neurological abnormalities. It is a defect in the nucleotide excision repair mechanism. It has been reported that volatile anesthetics has a possible genotoxic side effect and deranged nucleotide excision repair in cells obtained from a patient with xeroderma pigmentosum.We report an unusual case of postoperative neurological aggravation in a patient with xeroderma pigmentosum anesthetized with sevoflurane. A 24-year-old African woman, who has had xeroderma pigmentosum since childhood, was admitted to our hospital for a femoral neck fracture. A preoperative physical examination revealed that she had a resting tremor with ataxia. She had cutaneous lesions such as keratosis and hyperpigmentation on her face and both hands. There was no major alteration of cognitive function, muscular strength was maintained and her osteotendinous reflexes were preserved. Surgical fixation was performed under general anesthesia after the failure of spinal anesthesia. All parameters were stable during surgery. When she woke up four hours later, the patient presented with confusion and psychomotor agitation, sharpened reflexes and the Babinski reflex was present. Her postoperative test results and a magnetic resonance imaging scan were unremarkable. It was suggested that sevoflurane had had a probable deleterious effect on the neurological status of this patient. The anesthetizing of a patient with xeroderma pigmentosum is associated with a risk of worsening neurological disorders. At present, there are no clear recommendations to avoid the use of volatile agents in the anesthetic management of patients with xeroderma pigmentosum. More clinical and experimental research is needed to confirm the sensitivity of patients with xeroderma pigmentosum to sevoflurane and other halogenated anesthetics.

  1. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  2. Cardiopulmonary effects of anaesthesia maintained by propofol infusion versus isoflurane inhalation in cheetahs (Acinonyx jubatus).

    PubMed

    Buck, Roxanne K; Tordiffe, Adrian Sw; Zeiler, Gareth E

    2017-11-01

    To compare the cardiopulmonary effects of propofol total intravenous anaesthesia (TIVA) with isoflurane in cheetahs (Acinonyx jubatus) to evaluate feasibility for field use. Prospective clinical study. A group of 24 adult cheetahs, 12 per group. Cheetahs were immobilized with zolazepam/tiletamine (1.2 mg kg -1 ) and medetomidine [40 μg kg -1 , both intramuscular (IM)] by darting. A maintenance protocol of propofol TIVA (group P) or isoflurane inhalation (group I) was assigned randomly to each cheetah. Anaesthesia was maintained for at least 60 minutes. Cheetahs breathed spontaneously throughout; oxygen was supplemented at 3 L minute -1 . Cardiopulmonary parameters were recorded at 5 minute intervals and three arterial blood gas samples were analysed. Following maintenance, atipamezole was administered IM (200 μg kg -1 ) and recovery was observed. Data are reported as mean±standard deviation; variables over time were compared using a linear mixed model (fixed: time, treatment; random: cheetah). Lack of response to manipulations was maintained in all cases (end-tidal isoflurane percentage 1.1±0.1%, propofol rate maintained at 0.1 mg kg -1  minute -1 ). The heart and respiratory rates were acceptable throughout maintenance. The end-tidal carbon dioxide tension increased slowly [44.0±5.0 mmHg (5.87±0.67 kPa)] with no differences between groups. All cheetahs were initially markedly hypertensive [mean arterial blood pressure (MAP): (163±17 mmHg)]. The MAP normalized for group I (125±30 mmHg) but remained high for group P (161±17 mmHg) (p < 0.001). Arterial carbon dioxide tension [48.9±14.6 mmHg (6.52±1.95 kPa)] never differed between groups. Initial arterial oxygen tension indicated borderline hypoxaemia, but improved with oxygen supplementation. Recovery time was 10.8±5.0 and 51.9±23.5 minutes for group I and group P, respectively. Both protocols provided acceptable cardiopulmonary values. Propofol may be an alternative to isoflurane

  3. Recovery of dynamic balance after general anesthesia with sevoflurane in short-duration oral surgery.

    PubMed

    Fujisawa, Toshiaki; Miyamoto, Eriko; Takuma, Shigeru; Shibuya, Makiko; Kurozumi, Akihiro; Kimura, Yukifumi; Kamekura, Nobuhito; Fukushima, Kazuaki

    2009-01-01

    Recovery of dynamic balance, involving adjustment of the center of gravity, is essential for safe discharge on foot after ambulatory anesthesia. The purpose of this study was to assess the recovery of dynamic balance after general anesthesia with sevoflurane, using two computerized dynamic posturographies. Nine hospitalized patients undergoing oral surgery of less than 2 h duration under general anesthesia (air-oxygensevoflurane) were studied. A dynamic balance test, assessing the ability of postural control against unpredictable perturbation stimuli (Stability System; Biodex Medical), a walking analysis test using sheets with foot pressure sensors (Walk Way-MG1000; Anima), and two simple psychomotor function tests were performed before anesthesia (baseline), and 150 and 210 min after the emergence from anesthesia. Only the double-stance phase in the walking analysis test showed a significant difference between baseline and results at 150 min. None of the other variables showed any differences among results at baseline and at 150 and 210 min. The recovery times for dynamic balance and psychomotor function seem to be within 150 min after emergence from general anesthesia with sevoflurane in patients undergoing oral surgery of less than 2-h duration.

  4. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.

    PubMed

    Streiff, John H; Jones, Keith A

    2008-10-01

    The main objective of this work was to characterize VA binding sites in multiple anesthetic target proteins. A computational algorithm was used to quantify the solvent exclusion and aliphatic character of amphiphilic pockets in the structures of VA binding proteins. VA binding sites in the protein structures were defined as the pockets with solvent exclusion and aliphatic character that exceeded minimum values observed in the VA binding sites of serum albumin, firefly luciferase, and apoferritin. We found that the structures of VA binding proteins are enriched in these pockets and that the predicted binding sites were consistent with experimental determined binding locations in several proteins. Autodock3 was used to dock the simulated molecules of 1,1,1,2,2-pentafluoroethane, difluoromethyl 1,1,1,2-tetrafluoroethyl ether, and sevoflurane and the isomers of halothane and isoflurane into these potential binding sites. We found that the binding of the various VA molecules to the amphiphilic pockets is driven primarily by VDW interactions and to a lesser extent by weak hydrogen bonding and electrostatic interactions. In addition, the trend in Delta G binding values follows the Meyer-Overton rule. These results suggest that VA potencies are related to the VDW interactions between the VA ligand and protein target. It is likely that VA bind to sites with a high degree of solvent exclusion and aliphatic character because aliphatic residues provide favorable VDW contacts and weak hydrogen bond donors. Water molecules occupying these sites maintain pocket integrity, associate with the VA ligand, and diminish the unfavorable solvation enthalpy of the VA. Water molecules displaced into the bulk by the VA ligand may provide an additional favorable enthalpic contribution to VA binding. Anesthesia is a component of many health related procedures, the outcomes of which could be improved with a better understanding of the molecular targets and mechanisms of anesthetic action.

  5. Post-operative elimination of sevoflurane anesthetic and hexafluoroisopropanol metabolite in exhaled breath: Pharmacokinetic models for assessing liver function

    EPA Science Inventory

    Sevoflurane (SEV), a commonly used anesthetic agent for invasive surgery, is directly eliminated via exhaled breath and indirectly by metabolic conversion to inorganic fluoride and hexafluoroisopropanol (HFIP), which is also eliminated in the breath. We studied the post-operativ...

  6. Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Trang, Janice; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Alkana, Ronald L.; Davies, Daryl L.

    2015-01-01

    We recently developed Ultra-Sensitive Ethanol Receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild type (WT) receptors. The current study investigated: 1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and 2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on

  7. Effect of Home Cage Bedding in the Induction Chamber on Serum Cortisol and Corticosterone Levels in Response to Isoflurane-induced Anesthesia in C57BL/6J Mice

    PubMed Central

    Reiter, Cara P; Christy, Amanda C; Olsen, Cara H; Bentzel, David E

    2017-01-01

    Mice are routinely anesthetized with isoflurane in an induction chamber. The AVMA Guidelines for the Euthanasia of Animals states that distress should be minimized during euthanasia but does not address this point in regard to induction of anesthesia. Here we evaluated the potential for familiar surroundings to reduce the adrenocortical response of mice during anesthesia induction with isoflurane. However, adding bedding from the animals’ home cage to the induction chamber failed to significantly reduce serum cortisol or corticosterone levels in male and female C57BL/6J mice. These results indicate that familiar surroundings do not appear sufficient to reduce the adrenocortical response of mice during anesthesia induction with isoflurane. PMID:28315639

  8. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    PubMed

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  9. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    PubMed

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  10. The effect of magnesium sulphate infusion on the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia.

    PubMed

    Abdulatif, M; Ahmed, A; Mukhtar, A; Badawy, S

    2013-10-01

    This randomised, controlled, double-blind study investigated the effects of intra-operative magnesium sulphate administration on the incidence of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia. Seventy children were randomly allocated to receive a 30 mg.kg(-1) bolus of intravenous magnesium sulphate after induction of anaesthesia followed by a continuous infusion of 10 mg.kg(-1).h(-1) or an equal volume of saline 0.9%. All children received titrated sevoflurane anaesthesia adjusted to maintain haemodynamic stability. The Pediatric Anesthesia Emergence Delirium scale and the Children's Hospital of Eastern Ontario Score were used for the assessment of postoperative emergence agitation and pain, respectively. Emergence agitation was more common in the control group than in the magnesium group (23 (72%) and 12 (36%), respectively (p = 0.004)), with a relative risk of 0.51 (95% CI 0.31-0.84), an absolute risk reduction of 0.35 (95% CI 0.10-0.54), and number needed to treat of 3 (95% CI 2-9). Postoperative pain scores were comparable in the two groups. Magnesium sulphate reduces the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia and is not associated with increased postoperative side-effects or delayed recovery. © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  11. Validation of the bispectral index as an indicator of anesthetic depth in Thoroughbred horses anesthetized with sevoflurane

    PubMed Central

    TOKUSHIGE, Hirotaka; KAKIZAKI, Masashi; ODE, Hirotaka; OKANO, Atsushi; OKADA, Jun; KURODA, Taisuke; WAKUNO, Ai; OHTA, Minoru

    2016-01-01

    ABSTRACT To evaluate the bispectral index (BIS) as an indicator of anesthetic depth in Thoroughbred horses, BIS values were measured at multiple stages of sevoflurane anesthesia in five horses anesthetized with guaifenesin and thiopental following premedication with xylazine. There was no significant difference between the BIS values recorded at end-tidal sevoflurane concentrations of 2.8% (median 60 ranging from 47 to 68) and 3.5% (median 71 ranging from 49 to 82) in anesthetized horses. These BIS values during anesthesia were significantly lower (P<0.01) than those in awake horses (median 98 ranging from 98 to 98) or sedated horses (median 92 ranging from 80 to 93). During the recovery phase, the BIS values gradually increased over time but did not significantly increase until the horses showed movement. In conclusion, the BIS value could be useful as an indicator of awakening during the recovery period in horses, as previous reported. PMID:27974877

  12. Effects of fresh gas flow, tidal volume, and charcoal filters on the washout of sevoflurane from the Datex Ohmeda (GE) Aisys, Aestiva/5, and Excel 210 SE Anesthesia Workstations.

    PubMed

    Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher

    2014-10-01

    We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P < 0.01) and the Aestiva/5 (17 min, P < 0.001) with VT 350 mL·breath(-1) were significantly less than that with the Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.

  13. Anesthetic induction with guaifenesin and propofol in adult horses.

    PubMed

    Brosnan, Robert J; Steffey, Eugene P; Escobar, André; Palazoglu, Mine; Fiehn, Oliver

    2011-12-01

    To evaluate whether guaifenesin can prevent adverse anesthetic induction events caused by propofol and whether a guaifenesin-propofol induction combination has brief cardiovascular effects commensurate with rapid drug washout. 8 healthy adult horses. Guaifenesin was administered IV for 3 minutes followed by IV injection of a bolus of propofol (2 mg/kg). Additional propofol was administered if purposeful movement was detected. Anesthesia was maintained for 2 hours with isoflurane or sevoflurane at 1.2 times the minimum alveolar concentration with controlled normocapnic ventilation. Normotension was maintained via a dobutamine infusion. Plasma concentrations of propofol and guaifenesin were measured every 30 minutes. Mean ± SD guaifenesin and propofol doses inducing anesthesia in half of the horses were 73 ± 18 mg/kg and 2.2 ± 0.3 mg/kg, respectively. No adverse anesthetic induction events were observed. By 70 minutes, there was no significant temporal change in the dobutamine infusion rate required to maintain normotension for horses anesthetized with isoflurane or sevoflurane. Mean plasma guaifenesin concentrations were 122 ± 30 μM, 101 ± 33 μM, 93 ± 28 μM, and 80 ± 24 μM at 30, 60, 90, and 120 minutes after anesthetic induction, respectively. All plasma propofol concentrations were below the limit of quantitation. Guaifenesin prevented adverse anesthetic induction events caused by propofol. Guaifenesin (90 mg/kg) followed by propofol (3 mg/kg) should be sufficient to immobilize > 99% of calm healthy adult horses. Anesthetic drug washout was rapid, and there was no change in inotrope requirements after anesthesia for 70 minutes.

  14. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    PubMed

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P < 0.001). Higher PaCO2 induced an increase in mean srvO2 from 50% to 68% (P < 0.001). RvVelo (P < 0.001) and srvO2 (P = 0.007) were higher in 8 compared with 2 mm cerebral depth. RvHb was not influenced by alterations in PaCO2 but positively correlated to sevoflurane concentration (P = 0.005). Increases in rvCBF and rvVelo by PaCO2 suggest preserved hypercapnic vasodilation under anesthesia with sevoflurane 1.4% and 2.0% end-tidal concentration. A consecutive increase in srvO2 implies that cerebral arteriovenous difference in oxygen was

  15. Labour time required for piglet castration with isoflurane-anaesthesia using shared and stationary inhaler devices.

    PubMed

    Weber, Sabrina; Das, Gürbüz; Waldmann, Karl-Heinz; Gauly, Matthias

    2014-01-01

    Isoflurane-anaesthesia combined with an analgesic represents a welfare-friendly method of pain mitigation for castration of piglets. However, it requires an inhaler device, which is uneconomic for small farms. Sharing a device among farms may be an economical option if the shared use does not increase labour time and the resulting costs. This study aimed to investigate the amount and components of labour time required for piglet castration with isoflurane anaesthesia performed with stationary and shared devices. Piglets (N = 1579) were anaesthetised with isoflurane (using either stationary or shared devices) and castrated.The stationary devices were used in a group (n = 5) of larger farms (84 sows/farm on an average), whereas smaller farms (n = 7; 32 sows/farm on an average) shared one device. Each farm was visited four times and labour time for each process-step was recorded. The complete process included machine set-up, anaesthesia and castration by a practitioner, and preparation, collection and transport of piglets by a farmer. Labour time of the complete process was increased (P = 0.012) on farms sharing a device (266 s/piglet) compared to farms using stationary devices (177 s/ piglet), due to increased time for preparation (P = 0.055), castration (P = 0.026) and packing (P = 0.010) when sharing a device. However, components of the time budget of farms using stationary or shared devices did not differ significantly (P > 0.05). Cost arising from time spent by farmers did not differ considerably between the use of stationary (0.28 Euro per piglet) and shared (0.26 Euro) devices. It is concluded that costs arising from the increased labour time due to sharing a device can be considered marginal, since the high expenses originating from purchasing an inhaler device are shared among several farms.

  16. Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; Petkoski, Spase; Raeder, Johan; Smith, Andrew F.; McClintock, Peter V. E.; Stefanovska, Aneta

    2016-05-01

    The precise mechanisms underlying general anaesthesia pose important and still open questions. To address them, we have studied anaesthesia induced by the widely used (intravenous) propofol and (inhalational) sevoflurane anaesthetics, computing cross-frequency coupling functions between neuronal, cardiac and respiratory oscillations in order to determine their mutual interactions. The phase domain coupling function reveals the form of the function defining the mechanism of an interaction, as well as its coupling strength. Using a method based on dynamical Bayesian inference, we have thus identified and analysed the coupling functions for six relationships. By quantitative assessment of the forms and strengths of the couplings, we have revealed how these relationships are altered by anaesthesia, also showing that some of them are differently affected by propofol and sevoflurane. These findings, together with the novel coupling function analysis, offer a new direction in the assessment of general anaesthesia and neurophysiological interactions, in general.

  17. End-tidal concentration of sevoflurane for preventing rocuronium-induced withdrawal of the arm in pediatric patients.

    PubMed

    Yeom, Jong Hoon; Kim, Yong Oh; Lee, Jae Min; Jeon, Woo Jae

    2014-04-01

    During induction of general anesthesia, the intravenous injection of rocuronium is often associated with withdrawal movement of the arm due to pain, and this abrupt withdrawal may result in dislodgement of the venous catheter, injury, or inadequate injection of rocuronium. We performed this study to evaluate the 50 and 95% effective end-tidal concentrations of sevoflurane (ETsev) for preventing rocuronium-induced withdrawal of the arm. We conducted a prospective double-blind study in 31 pediatric patients. After free flow of lactated Ringer's IV fluid was confirmed, anesthesia was induced in the patients by using 2.5% thiopental sodium (4 mg/kg) and sevoflurane (4 vol%) with 6 L/min of oxygen. When the target ETsev was reached, preservative-free 1% lidocaine (1.5 mg/kg) was intravenously injected during manual venous occlusion and rocuronium (0.6 mg/kg) was injected after lidocaine injection under free-flow intravenous fluid. A nurse who was an investigator and was blinded to the ETsev injected the rocuronium. The nurse evaluated the response. Non-withdrawal movement was observed in 5 out of 11 patients with ETsev 3.0 vol% and in 5 out of 6 patients with ETsev 3.5 vol%. By Dixon's up-and-down method, the 50% effective concentration (EC50) of sevoflurane for non-withdrawal movement at rocuronium injection was 3.1 ± 0.4 vol%. A logistic regression curve of the probability of non-withdrawal movements showed that the 50% effective ETsev for abolishing withdrawal movement at rocuronium injection was 2.9 vol% (95% confidence interval [CI] 2.4-3.8 vol%) and the 95% effective ETsev was 4.3 vol% (95% CI 3.6-9.8 vol%). This study showed that the 50 and 95% effective ETsev that prevent withdrawal movement at rocuronium injection are 2.9 and 4.3 vol%, respectively.

  18. Effect of fentanyl and lidocaine on the end-tidal sevoflurane concentration preventing motor movement in dogs.

    PubMed

    Suarez, Martin A; Seddighi, Reza; Egger, Christine M; Rohrbach, Barton W; Cox, Sherry K; KuKanich, Butch K; Doherty, Thomas J

    2017-01-01

    OBJECTIVE To determine effects of fentanyl, lidocaine, and a fentanyl-lidocaine combination on the minimum alveolar concentration of sevoflurane preventing motor movement (MAC NM ) in dogs. ANIMALS 6 adult Beagles. PROCEDURES Dogs were anesthetized with sevoflurane in oxygen 3 times (1-week intervals). Baseline MAC NM (MAC NM-B ) was determined starting 45 minutes after induction of anesthesia. Dogs then received 1 of 3 treatments IV: fentanyl (loading dose, 15 μg/kg; constant rate infusion [CRI], 6 μg/kg/h), lidocaine (loading dose, 2 mg/kg; CRI, 6 mg/kg/h), and the fentanyl-lidocaine combination at the same doses. Determination of treatment MAC NM (MAC NM-T ) was initiated 90 minutes after start of the CRI. Venous blood samples were collected at the time of each treatment MAC NM measurement for determination of plasma concentrations of fentanyl and lidocaine. RESULTS Mean ± SEM overall MAC NM-B for the 3 treatments was 2.70 ± 0.27 vol%. The MAC NM decreased from MAC NM-B to MAC NM-T by 39%, 21%, and 55% for fentanyl, lidocaine, and the fentanyl-lidocaine combination, respectively. This decrease differed significantly among treatments. Plasma fentanyl concentration was 3.25 and 2.94 ng/mL for fentanyl and the fentanyl-lidocaine combination, respectively. Plasma lidocaine concentration was 2,570 and 2,417 ng/mL for lidocaine and the fentanyl-lidocaine combination, respectively. Plasma fentanyl and lidocaine concentrations did not differ significantly between fentanyl and the fentanyl-lidocaine combination or between lidocaine and the fentanyl-lidocaine combination. CONCLUSIONS AND CLINICAL RELEVANCE CRIs of fentanyl, lidocaine, and the fentanyl-lidocaine combination at the doses used were associated with clinically important and significant decreases in the MAC NM of sevoflurane in dogs.

  19. Mass spectrometry method to monitor the sevoflurane concentration in an apparatus for inhalational anesthesia

    NASA Astrophysics Data System (ADS)

    Elokhin, V. A.; Ershov, T. D.; Levshankov, A. I.; Nikolaev, V. I.; Saifullin, M. F.; Elizarov, A. Yu.

    2010-08-01

    The feasibility of real-time monitoring of the inhalational anesthetic (sevoflurane) concentration in the respiratory circuit of an apparatus for inhalational anesthesia using mass spectrometry is considered. It is shown that the absolute anesthetic concentration can be monitored in real time if low-flow ventilation is provided during general anesthesia. The time dependences of the anesthetic concentration are taken at different stages of anesthesia in the inspiration-expiration regime.

  20. Differential Effects of Anaesthesia on the phMRI Response to Acute Ketamine Challenge

    PubMed Central

    Hodkinson, Duncan J.; de Groote, Carmen; McKie, Shane; Deakin, J. F. William; Williams, Steve R.

    2012-01-01

    Aims Pharmacological-challenge magnetic resonance imaging (phMRI) is powerful new tool enabling researchers to map the central effects of neuroactive drugs in vivo. To employ this technique pre-clinically, head movements and the stress of restraint are usually reduced by maintaining animals under general anaesthesia. However, interactions between the drug of interest and the anaesthetic employed may potentially confound data interpretation. NMDA receptor (NMDAR) antagonists used widely to mimic schizophrenia have recently been shown to interact with the anaesthetic halothane. It may be the case that neural and cerebrovascular responses to NMDAR antagonists are dependent on the types of anaesthetic used. Methodology We compared the phMRI response to NMDAR antagonist ketamine in rats maintained under α-chloralose to those under isoflurane anaesthesia. A randomized placebo/vehicle controlled design was used in each of the anaesthetic groups. Results Changes in the anaesthetic agent resulted in two very different profiles of activity. In the case of α-chloralose, positive activations in cortical and sub-cortical structures reflected a response which was similar to patterns seen in healthy human volunteers and metabolic maps of conscious rats. However, the use of isoflurane completely reversed such effects, causing widespread deactivations in the cortex and hippocampus. Conclusion This study provides initial evidence for a drug-anesthetic interaction between ketamine and isoflurane that is very different from responses to α-chloralose-ketamine. PMID:22737655

  1. Anaesthesia of three young grey seals (Halichoerus grypus) for fracture repair

    PubMed Central

    2011-01-01

    Three young grey seals (Halichoerus grypus) were presented separately for fracture repair to the veterinary teaching hospital of University College Dublin. The seals were premedicated with a combination of pethidine, midazolam and atropine; anaesthesia was induced with propofol via the front flipper vein and maintained with sevoflurane or isoflurane in oxygen. One of the seals did not breathe spontaneously after anaesthesia; a cardiac arrest, resulting in death, occurred after several hours of mechanical ventilation. Post-mortem examination revealed a severe lungworm infestation and parasitic pneumonia in this animal. The two other seals recovered uneventfully from anaesthesia. PMID:21777490

  2. Anesthetic management of comprehensive dental restoration in a child with glutaric aciduria type 1 using volatile sevoflurane.

    PubMed

    Teng, Wei-Nung; Lin, Su-Man; Niu, Dau-Ming; Kuo, Yi-Min; Chan, Kwok-Hon; Sung, Chun-Sung

    2014-10-01

    Glutaric aciduria type 1 (GA1) is a rare, inherited mitochondrial disorder that results from deficiency of mitochondrial glutaryl-CoA dehydrogenase. Most patients develop neurological dysfunction early in life, which leads to severe disabilities. We present a 37-month-old girl with GA1 manifested as macrocephaly and hypotonia who received comprehensive dental restoration surgery under general anesthesia with sevoflurane. She was placed on specialized fluid management during a preoperative fasting period and anesthesia was administered without complications. All the physiological parameters, including glucose and lactate blood levels and arterial blood gas were carefully monitored and maintained within normal range perioperatively. Strategies for anesthetic management should include prevention of pulmonary aspiration, dehydration, hyperthermia and catabolic state, adequate analgesia to minimize surgical stress, and avoidance of prolonged neuromuscular blockade. We administered general anesthesia with sevoflurane uneventfully, which was well tolerated by our patient with GA1. Additionally, communication with a pediatric geneticist and surgeons should be undertaken to formulate a comprehensive anesthetic strategy in these patients. Copyright © 2014. Published by Elsevier B.V.

  3. Nitric oxide in B6 mouse and nitric oxide-sensitive soluble guanylate cyclase in cat modulate acetylcholine release in pontine reticular formation.

    PubMed

    Lydic, Ralph; Garza-Grande, Ricardo; Struthers, Richard; Baghdoyan, Helen A

    2006-05-01

    ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC-12) to the mouse pontine reticular formation also caused a concentration-dependent increase in ACh release (P < 0.001). These are the first neurochemical data showing that ACh release in the pontine reticular formation of the B6 mouse is modulated by NO. The signal transduction cascade through which NO modulates ACh release in the pontine reticular formation has not previously been characterized. Therefore, an additional series of studies quantified the effects of a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), on ACh release in the cat medial pontine reticular formation. During naturally occurring states of sleep and wakefulness, but not anesthesia, ODQ caused a significant (P < 0.001) decrease in ACh release. These results show for the first time that NO modulates ACh in the medial pontine reticular formation of the cat via an NO-sensitive sGC signal transduction cascade. Isoflurane and halothane anesthesia have been shown to decrease ACh release in the medial pontine reticular formation. The finding that ODQ did not alter ACh release during isoflurane or halothane anesthesia demonstrates that these anesthetics disrupt the NO-sensitive sGC-cGMP pathway. Considered together, results from the mouse and cat indicate that NO modulates ACh release in arousal-promoting regions of the pontine reticular formation via an NO-sensitive sGC-cGMP pathway.

  4. Effect of detomidine or romifidine constant rate infusion on plasma lactate concentration and inhalant requirements during isoflurane anaesthesia in horses.

    PubMed

    Niimura Del Barrio, M C; Bennett, Rachel C; Hughes, J M Lynne

    2017-05-01

    Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery. Prospective, randomised, blinded, clinical trial. A total of 24 adult healthy horses. All horses were administered intramuscular acepromazine (0.02 mg kg -1 ) and either intravenous detomidine (0.02 mg kg -1 ) (group D), romifidine (0.08 mg kg -1 ) (group R) or xylazine (1.0 mg kg -1 ) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg -1 hour -1 ) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg -1 hour -1 ) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe'Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia-start surgery); Surgery 1 (start surgery-30 minutes later); and Surgery 2 (end Surgery 1-end anaesthesia). A linear mixed model was used to analyse the data. A value of p<0.05 was considered significant. There was a difference in plasma lactate between 'baseline' and 'once standing' in all three groups (p<0.01); values did not differ significantly between groups. In groups D and R, Fe'Iso decreased significantly by 18% (to 1.03%) and by 15% (to 1.07%), respectively, during Surgery 2 compared with group C (1.26%); p<0.006, p<0.02, respectively. Intraoperative detomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery. Copyright © 2017 Association of Veterinary Anaesthetists and

  5. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    PubMed

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p < 0.05 significant. During steady state isoflurane anaesthesia surgical stimulation (SURG2) resulted in significant increases of N20 P25 amplitudes compared with BL (BL: 1.4 +/- 0.7 microV; SURG2: 2.0 +/- 0.8 microV; p < 0.05). Latencies of SEPs and midlatency components of AEPs did not change over time. There were no differences in autonomic parameters between SEP and AEP groups. MAP increased from 76 +/- 6 mmHg at BL to 93 +/- 16 mmHg at SURG1 and 96 +/- 17 mmHg at SURG2 (n = 36; p < 0.05). HR increased from BL (60 +/- 8 beats/min) to SURG2 (76 +/- 12 beats

  6. Effect of ketamine versus thiopental sodium anesthetic induction and a small dose of fentanyl on emergence agitation after sevoflurane anesthesia in children undergoing brief ophthalmic surgery.

    PubMed

    Jung, Hyun Ju; Kim, Jong Bun; Im, Kyong Shil; Oh, Seung Hwa; Lee, Jae Myeong

    2010-02-01

    Emergence agitation (EA) in children after sevoflurane anesthesia is common. The purpose of this study was to compare the incidences of EA between ketamine and thiopental sodium induction in children underwent sevoflurane anesthesia. We also evaluated if a small dose of fentanyl could reduce the incidence of EA. The patients who were scheduled for strabismus or entropion surgery were divided into 4 groups. The patients in Groups 1 and 2 were induced anesthesia with ketamine 1.5 mg/kg; those in Groups 3 and 4 were induced with thiopental sodium 5 mg/kg. The patients in Groups 1 and 3 received an injection of fentanyl 1.5 microg/kg, whereas the patients in Groups 2 and 4 received IV saline of the same volume. Anesthesia was maintained with sevoflurane. The recovery characteristics and EA in recovery room were assessed. The incidence of EA was significantly higher in Groups 2 and 4 and there was no difference between Groups 2 and 4. Group 2 had almost an eleven-fold higher risk of developing EA than did Group 1, and the incidence of EA in Group 4 was sixty-nine-fold higher than that of Group 1. The risk factor for EA was only the kind of medication. Preoperative anxiety had no significant correlation with EA. The incidence of EA after sevoflurane anesthesia is similar between ketamine and thiopental sodium anesthetic induction in children undergoing pediatric ophthalmic surgery. Also, the addition of a small dose of fentanyl after anesthetic induction decreases the incidence of EA.

  7. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    PubMed

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  8. Sudden Appearance of Water in Flowmeter During Air/Oxygen and Sevoflurane Anaesthesia.

    PubMed

    Kandemir, Tünay; Muslu, Selda; Kandemir, Erbin

    2015-02-01

    Endotracheal intubation was performed, and a water bubbling sound was heard from the anaesthesia device immediately after the release of gases to administer the O2-air-sevoflurane mixture. The flowmeter on the anaesthesia device was then found to be filled with water. The breakdown of the dryer in the medical air compressor system was determined as the source of the problem, since a greasy fluid mixture was released from the air-wall outlets in all rooms. Consequently, the anaesthesia team should keep in mind that problems as seen in the current case might emerge and should be alert.

  9. Effects of activin A and its downstream ERK1/2 in oxygen and glucose deprivation after isoflurane-induced postconditioning.

    PubMed

    Wang, Qin; Yin, Jiangwen; Wang, Sheng; Cui, Di; Lin, Hong; Ge, Mingyue; Dai, Zhigang; Xie, Liping; Si, Junqiang; Ma, Ketao; Li, Li; Zhao, Lei

    2016-12-01

    Isoflurane postconditioning (ISPOC) plays a neuroprotection role in the brain. Previous studies confirmed that isoflurane postconditioning can provide better protection than preconditioning in acute hypoxic-ischemic brain damage, such as acute craniocerebral trauma and ischemic stroke. Numerous studies have reported that activin A can protect rat's brain from cell injury. However, whether activin A and its downstream ERK1/2 were involved in isoflurane postconditioning-induced neuroprotection is unknown. A total of 80 healthy Sprague-Dawley rats weighing 50-70g were randomly divided into 10 groups of 8: normal control, oxygen and glucose deprivation (OGD), 1.5% ISPOC, 3.0% ISPOC, 4.5% ISPOC, blocker of activin A (SB431542), blocker of ERK1/2 (U0126), 3.0% ISPOC+SB431542, 3.0% ISPOC+U0126, and vehicle (dimethyl sulfoxide(DMSO)) group. Blockers (SB431542 and U0126) were used in each concentration of isoflurane before OGD. Hematoxylin-eosin staining, 2,3,5-triphenyl tetrazolium chloride staining, and propidium iodide (PI) staining were conducted to assess the reliability in the brain slices. Immunofluorescence, Western blot, and quantitative real-time PCR(Q-PCR) were performed to validate the protein expression levels of activin A, Smad2/3, P-Smad2/3, ERK1/2, and phosphorylation ERK1/2 (P-ERK1/2). The number of damaged neurons and mean fluorescence intensity(MFI) of PI staining increased, but formazan generation, expression levels of activin A and P-ERK1/2 protein, and mRNA synthesis level of activin A decreased in the OGD group compared with the normal control group (p<0.05). The number of damaged neurons and MFI of PI staining decreased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A increased significantly in the 1.5% ISPOC and 3.0% ISPOC groups (p<0.05) compared with the OGD group. The result in the 4.5% ISPOC group, was completely opposite to the 1.5% ISPOC and 3.0% ISPOC groups. The number

  10. Neuroprotective effects of artemisinin against isoflurane-induced cognitive impairments and neuronal cell death involve JNK/ERK1/2 signalling and improved hippocampal histone acetylation in neonatal rats.

    PubMed

    Xu, Guang; Huang, Yun-Li; Li, Ping-le; Guo, Hai-Ming; Han, Xue-Ping

    2017-06-01

    This study was performed to assess the effect of artemisinin against isoflurane-induced neuronal apoptosis and cognitive impairment in neonatal rats. Artemisinin (50, 100 or 200 mg/kg b.wt/day; oral gavage) was administered to separate groups of neonatal rats starting from postnatal day 3 (P3) to postnatal day 21 (P21). On postnatal day 7 (P7), animals were exposed to inhalation anaesthetic isoflurane (0.75%) for 6 h. Neuronal apoptosis following anaesthetic exposure was significantly reduced by artemisinin. Isoflurane-induced upregulated cleaved caspase-3, Bax and Bad expression were downregulated. Western blotting analysis revealed that treatment with artemisinin significantly enhanced the expression of anti-apoptotic proteins (Bcl-2, Bcl-xL, c-IAP-1, c-IAP-2, xIAP and survivin). Artemisinin increased the acetylation of H3K9 and H4K12 while reducing the expression of histone deacetlyases (HDACs) - HDAC-2 and HDAC-3. Isoflurane-induced activation of JNK signalling and downregulated ERK1/2 expression was effectively modulated by artemisinin. General behaviour of the animals in open-field and T-maze test were improved. Morris water maze test and object recognition test revealed better learning, working memory and also better memory retention on artemisinin treatment. Artemisinin effectively inhibited neuronal apoptosis and improved cognition and memory via regulating histone acetylation and JNK/ERK1/2 signalling. © 2017 Royal Pharmaceutical Society.

  11. Appropriate anesthesia regimen to control sevoflurane-induced emergence agitation in children; propofol-lidocaine and thiopental sodium-lidocaine: a randomized controlled trial.

    PubMed

    Rahimzadeh, Poupak; Faiz, Seyed Hamid Reza; Alebouyeh, Mahmood Reza; Dasian, Azadeh; Sayarifard, Azadeh

    2014-07-01

    Emergence Agitation (EA) is a common problem in pediatric anesthesia. The current study evaluated the effect of intravenous lidocaine combined with propofol or thiopental sodium to control EA by sevoflurane in children. The current study aimed to compare the effectiveness of two anesthesia regimen propofol-lidocaine and thiopental sodium lidocaine to control sevoflurane-induced emergence agitation in children. The study enrolled 120 children aged 12 to 36 months with retinoblastoma who underwent induction of anesthesia with sevoflurane for Eye Examination Under Anesthesia (EUA). Sampling was done at Rasoul-Akram Hospital in Tehran, Iran. The subjects were randomly assigned into four groups including: group one (thiopental sodium-lidocaine [TL]), group two (thiopental sodium-saline [TS]), group three (propofol-lidocaine [PL]), and group four (propofol-saline [PS]). Emergence agitation was assessed by using a five-point scoring scale, every 10 minutes during the first 30 minutes after admission to the recovery room. EA occurred in 24 cases (20%) of children. Incidence of EA in the TS, TL, PS, and PL groups were 21 (70%), 2 (6.7%), 1 (3.3%), and 0 (0%), respectively (P < 0.001). Nausea and vomiting after anesthesia did not occur in any of the patients. After removal of the endotracheal tube, laryngospasm complication occurrence in the TS group (10 cases) was higher than the other groups and no statistically significant difference was observed (P = 0.1). Propofol-lidocaine anesthesia regimen was more effective to control the pediatric emergence agitation than the other combinations.

  12. General anesthesia and postoperative pain management in analgesic intolerant patients with/without asthma: is it safe?

    PubMed

    Celiker, V; Basgül, E; Karakaya, G; Oguzalp, H; Bozkurt, B; Kalyoncu, A F

    2004-01-01

    Analgesic intolerance (AI) appears in approximately 1 % of the general population. The triad of bronchial asthma, nasal polyposis, and analgesic intolerance is called analgesic-induced asthma (AIA). These patients are frequently referred to adult allergy clinics for preoperative evaluation for possible analgesic cross reactivity and intolerance to anesthetic agents. To determine allergic problems related to anesthesia and postoperative pain management in AI patients with and without asthma. The medical records of 45 patients who had been diagnosed with AI between January 1991 and December 2002 in the adult allergy unit and who underwent surgery in the same hospital in the last 4 years were retrospectively analyzed. The mean age of the patients was 44.4 13.4 years and 30 (66.6 %) were female. Thirty-six (80 %) had AIA, 34 (75.6 %) had persistent allergic rhinitis and 21 (46.7 %) had nasal polyps. Fifty-one surgical procedures were performed in 45 patients, in whom ear, nose and throat surgery was the main procedure (64.7 %). Anesthesia was induced with propofol, fentanyl, and vecuronium and was maintained by sevoflurane or isoflurane. Fentanyl was used for early postoperative pain relief. No complications appeared in relation to anesthesia or early pain management except in a 44-year-old AIA woman who had a reaction in the postoperative period after receiving an inappropriate analgesic. None of the patients had anesthesia-related allergic problems. Atropine and diazepam in the premedication, propofol and fentanyl during induction, muscle relaxation facilitation by vecuronium, and sevoflurane or isoflurane for maintenance seem to be a safe general anesthetic choice for analgesic intolerant patients with and without asthma.

  13. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study.

    PubMed

    Stoppe, C; Fahlenkamp, A V; Rex, S; Veeck, N C; Gozdowsky, S C; Schälte, G; Autschbach, R; Rossaint, R; Coburn, M

    2013-09-01

    To date, only limited data exist about the use of xenon as an anaesthetic agent in patients undergoing cardiac surgery. The favourable cardio- and neuroprotective properties of xenon might attenuate postoperative complications, improve outcome, and reduce the incidence of delirium. Thus, the aims of this study were to investigate the feasibility and safety of balanced xenon anaesthesia in patients undergoing cardiac surgery and to gather pilot data for a future randomized multicentre study. Thirty patients undergoing elective coronary artery bypass grafting were enrolled in this randomized, single-blind controlled trial. They were randomized to receive balanced general anaesthesia with either xenon (45-50 vol%) or sevoflurane (1-1.4 vol%). The primary outcome was the occurrence of adverse events (AEs). Secondary outcome parameters were feasibility criteria (bispectral index, perioperative haemodynamic, and respiratory profile) and safety parameters (dosage of study treatments, renal function, intraoperative blood loss, need for inotropic support, regional cerebral tissue oxygenation). Furthermore, at predefined time points, systemic and pulmonary haemodynamics were assessed by the use of a pulmonary artery catheter. There were no patient characteristic differences between the groups. Patients undergoing xenon anaesthesia did not differ with respect to the incidence of AE (6 vs 8, P=0.464) compared with the sevoflurane group. No differences were detected regarding secondary feasibility and safety criteria. The haemodynamic and respiratory profile was comparable between the treatment groups. Balanced xenon anaesthesia is feasible and safe compared with sevoflurane anaesthesia in patients undergoing coronary artery bypass surgery. Acronym CARDIAX: A pre- and post-coronary artery bypass graft implantation disposed application of xenon. Clinical trial registration ClinicalTrials.gov: NCT01285271; EudraCT-number: 2010-023942-63. Approved by the ethics committee 'Ethik

  14. Protective effects of a green tea polyphenol, epigallocatechin-3-gallate, against sevoflurane-induced neuronal apoptosis involve regulation of CREB/BDNF/TrkB and PI3K/Akt/mTOR signalling pathways in neonatal mice.

    PubMed

    Ding, Mei-Li; Ma, Hui; Man, Yi-Gang; Lv, Hong-Yan

    2017-12-01

    Epigallocatechin-3-gallate (EGCG), a polyphenol in green tea, is an effective antioxidant and possesses neuroprotective effects. Brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are crucial for neurogenesis and synaptic plasticity. In this study, we aimed to assess the protective effects of EGCG against sevoflurane-induced neurotoxicity in neonatal mice. Distinct groups of C57BL/6 mice were given EGCG (25, 50, or 75 mg/kg body weight) from postnatal day 3 (P3) to P21 and were subjected to sevoflurane (3%; 6 h) exposure on P7. EGCG significantly inhibited sevoflurane-induced neuroapoptosis as determined by Fluoro-Jade B staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Increased levels of cleaved caspase-3, downregulated Bad and Bax, and significantly enhanced Bcl-2, Bcl-xL, xIAP, c-IAP-1, and survivin expression were observed. EGCG induced activation of the PI3K/Akt pathway as evidenced by increased Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and mTORc1 levels. Sevoflurane-mediated downregulation of cAMP/CREB and BDNF/TrkB signalling was inhibited by EGCG. Reverse transcription PCR analysis revealed enhanced BDNF and TrkB mRNA levels upon EGCG administration. Improved performance of mice in Morris water maze tests suggested enhanced learning and memory. The study indicates that EGCG was able to effectively inhibit sevoflurane-induced neurodegeneration and improve learning and memory retention of mice via activation of CREB/BDNF/TrkB-PI3K/Akt signalling.

  15. Renal effects of carprofen administered to healthy dogs anesthetized with propofol and isoflurane.

    PubMed

    Ko, J C; Miyabiyashi, T; Mandsager, R E; Heaton-Jones, T G; Mauragis, D F

    2000-08-01

    To evaluate renal effects of carprofen in healthy dogs following general anesthesia. Randomized clinical trial. 10 English hound dogs (6 females and 4 males). Dogs were randomly assigned to control (n = 5) or carprofen (5) groups. Anesthesia was induced with propofol (6 to 8 mg/kg [2.7 to 3.6 mg/lb] of body weight, i.v.) and maintained with isoflurane (end-tidal concentration, 2.0%). Each dog underwent two 60-minute anesthetic episodes with 1 week between episodes, and mean arterial blood pressure was maintained between 60 and 90 mm Hg during each episode. Dogs in the carprofen group received carprofen (2.2 mg/kg [1 mg/lb], p.o.) at 9:00 AM and 6:00 PM the day before and at 7:00 AM the day of the second anesthetic episode. Glomerular filtration rates (GFR) were determined during each anesthetic episode by use of renal scintigraphy. Serum creatinine and BUN concentrations and the urine gamma-glutamyltransferase-to-creatinine concentration (urine GGT:creatinine) ratio were determined daily for 2 days before and 5 days after general anesthesia. Significant differences were not detected in BUN and serum creatinine concentrations, urine GGT:creatinine ratio, and GFR either between or within treatment groups over time. Carprofen did not significantly alter renal function in healthy dogs anesthetized with propofol and isoflurane. These results suggest that carprofen may be safe to use for preemptive perioperative analgesia, provided that normal cardiorespiratory function is maintained.

  16. Protective effect of sevoflurane on myocardial ischemia-reperfusion injury in rat hearts and its impact on HIF-1α and caspase-3 expression.

    PubMed

    Zhou, Tao; Guo, Shanliang; Wang, Shaolin; Li, Qiong; Zhang, Mingsheng

    2017-11-01

    This study was designed to investigate possible protective effects of sevoflurane on myocardial ischemia-reperfusion injury (MIRI) and its impact on expression of HIF-1α and caspase-3 in rats, so as to provide new insights for the treatment of MIRI. Forty SD rats were randomly divided into four groups (n=10) including Sham operation (Sham), ischemia-reperfusion (IR), sevoflurane preconditioning group (Sevo-Pre) and sevoflurane post-conditioning (Sevo-Post) groups. Perfusion was performed using ex vivo heart perfusion. The baseline values of cardiac function were recorded in each group at the end of balanced perfusion and after 60 min of reperfusion. Myocardial infarct size (MIS) was calculated at the end of perfusion using TTC staining. Levels of HIF-1α and caspase-3 protein and HIF-1α (western blotting) and Bcl-2 mRNA (RT-qPCR) were detected at the end of reperfusion. Our results showed no significant differences in cardiac function between the groups at the end of the balanced perfusion. After reperfusion for 60 min, however, the cardiac functions of the Sevo-Pre and Sevo-Post groups were significantly better than those in the IR group, and the MIS at the end of reperfusion was significantly decreased. Western blotting and RT-qPCR showed that expression of HIF-1α protein was significantly increased, expression of caspase-3 protein was significantly decreased and expression of HIF-1α and Bcl-2 mRNA were significantly increased in Sevo-Pre and Sevo-Post groups compared with the levels in the IR group at the end of reperfusion. There were no significant differences in experimental results between Sevo-Pre and Sevo-Post groups. Our data support the idea that sevoflurane can improve MIRI in rats by improving cardiac function and reducing MIS. This protective effect seems to be achieved by activation of HIF-1α and inhibition of caspase-3.

  17. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    PubMed

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Effects of Fentanyl on Emergence Agitation in Children under Sevoflurane Anesthesia: Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Xiong, Wei; Zhou, Qin; Yang, Peng; Huang, Xiongqing

    2015-01-01

    Background and Objectives The goal of this meta-analysis study was to assess the effects of fentanyl on emergence agitation (EA) under sevoflurane anesthesia in children. Subjects and Methods We searched electronic databases (PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials) for articles published until December 2014. Randomized controlled trials (RCTs) that assessed the effects of fentanyl and placebo on EA under sevoflurane anesthesia in children that the outcome were the incidence of EA, postoperative pain, emergence time or adverse effects were included in this meta-analysis. Results A total of 16 studies, including 1362 patients (737 patients for the fentanyl group and 625 for the placebo group), were evaluated in final analysis. We found that administration of fentanyl decreased the incidences of EA (RR = 0.37, 95% CI 0.27~0.49, P<0.00001) and postoperative pain (RR = 0.59, 95% CI 0.41~0.85, P = 0.004) but increased the incidence of postoperative nausea and vomiting (PONV) (RR = 2.23, 95% CI 1.33~3.77, P = 0.003). The extubation time (WMD = 0.71 min, 95% CI 0.12~1.3, P = 0.02), emergence time (WMD = 4.90 min, 95% CI 2.49~7.30, P<0.0001), and time in the postanesthesia care unit (PACU) (WMD = 2.65 min, 95% CI 0.76~4.53, P = 0.006) were slightly increased. There were no significant differences in the time to discharge of day patients (WMD = 3.72 min, 95% CI -2.80~10.24, P = 0.26). Conclusion Our meta-analysis suggests that fentanyl decreases the incidence of EA under sevoflurane anesthesia in children and postoperative pain, but has a higher incidence of PONV. Considering the inherent limitations of the included studies, more RCTs with extensive follow-up should be performed to validate our findings in the future. PMID:26275039

  19. Economic Evaluation of Pharmacologic Pre- and Postconditioning With Sevoflurane Compared With Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis.

    PubMed

    Eichler, Klaus; Urner, Martin; Twerenbold, Claudia; Kern, Sabine; Brügger, Urs; Spahn, Donat R; Beck-Schimmer, Beatrice; Ganter, Michael T

    2017-03-01

    Pharmacologic pre- and postconditioning with sevoflurane compared with total IV anesthesia in patients undergoing liver surgery reduced complication rates as shown in 2 recent randomized controlled trials. However, the potential health economic consequences of these different anesthesia regimens have not yet been assessed. An expostcost analysis of these 2 trials in 129 patients treated between 2006 and 2010 was performed. We analyzed direct medical costs for in-hospital stay and compared pharmacologic pre- and postconditioning with sevoflurane (intervention) with total IV anesthesia (control) from the perspective of a Swiss university hospital. Year 2015 costs, converted to US dollars, were derived from hospital cost accounting data and compared with a multivariable regression analysis adjusting for relevant covariables. Costs with negative prefix indicate savings and costs with positive prefix represent higher spending in our analysis. Treatment-related costs per patient showed a nonsignificant change by -12,697 US dollars (95% confidence interval [CI], 10,956 to -36,352; P = .29) with preconditioning and by -6139 US dollars (95% CI, 6723 to -19,000; P = .35) with postconditioning compared with the control group. Results were robust in our sensitivity analysis. For both procedures (control and intervention) together, major complications led to a significant increase in costs by 86,018 US dollars (95% CI, 13,839-158,198; P = .02) per patient compared with patients with no major complications. In this cost analysis, reduced in-hospital costs by pharmacologic conditioning with sevoflurane in patients undergoing liver surgery are suggested. This possible difference in costs compared with total IV anesthesia is the result of reduced complication rates with pharmacologic conditioning, because major complications have significant cost implications.

  20. Xenon and Sevoflurane Provide Analgesia during Labor and Fetal Brain Protection in a Perinatal Rat Model of Hypoxia-Ischemia

    PubMed Central

    Yang, Ting; Zhuang, Lei; Rei Fidalgo, António M.; Petrides, Evgenia; Terrando, Niccolo; Wu, Xinmin; Sanders, Robert D.; Robertson, Nicola J.; Johnson, Mark R.; Maze, Mervyn; Ma, Daqing

    2012-01-01

    It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical

  1. Popliteal block for lower limb surgery in children with cerebral palsy: effect on sevoflurane consumption and postoperative pain (a randomized, double-blinded, controlled trial).

    PubMed

    Ozkan, Derya; Gonen, Emel; Akkaya, Taylan; Bakir, Mesut

    2017-06-01

    The aim of this study was to evaluate the effects of a preoperative popliteal block on sevoflurane consumption, postoperative pain, and analgesic consumption in children with cerebral palsy (CP) following lower limb surgery. Fifty-four patients undergoing lower limb surgery were randomized to receive either a popliteal block + general anaesthesia (group P, n = 27) or general anaesthesia without a popliteal block (group C, n = 27). After anesthesia induction with 50% N 2 O, O 2 , and 8% sevoflurane, a popliteal block was given to group P patients with ultrasound guidance as a single dose of 0.3 ml/kg body weight of 0.25% bupivacaine. Group C patients received the same regimen of anesthesia induction but no preoperative popliteal block. Both the conductance fluctuation (SCF) peak numbers per second and the Wong-Baker FACES® Pain Rating Scale (WBFS) values of the patients were recorded upon arrival at the PACU, at 10 and 20 min after arrival at the PACU, and at postoperative hours 1, 4, 8, 12, and 24 when they were in the ward. The total paracetamol consumption of the patients was also recorded. The end-tidal sevoflurane concentration values were significantly higher in group C patients than in group P patients, except for at 5 min after induction of anaesthesia (p < 0.001). The SCF peak numbers per second and WBFS scores were significantly higher in group C patients than in group P patients, except at Tp24h (p < 0.001). The total paracetamol consumption was 489.7 ± 122.7 mg in group P patients and 816.6 ± 166.5 in group C patients (p < 0.001). Popliteal block is effective for postoperative analgesia, decreasing the paracetamol consumption and sevoflurane requirement in children with CP undergoing lower limb surgery. Trial registration ClinicalTrial.gov identifier: NCT02507700.

  2. Acute pulmonary hemorrhage during isoflurane anesthesia in two cats exposed to toxic black mold (Stachybotrys chartarum).

    PubMed

    Mader, Douglas R; Yike, Iwona; Distler, Anne M; Dearborn, Dorr G

    2007-09-01

    Acute pulmonary hemorrhage developed during isoflurane anesthesia in 2 Himalayan cats undergoing routine dental cleaning and prophylaxis. The cats were siblings and lived together. In both cats, results of pre-operative physical examinations and laboratory testing were unremarkable. Blood pressure and oxygen saturation were within reference ranges throughout the dental procedure. Approximately 15 to 20 minutes after administration of isoflurane was begun, frothy blood was noticed within the endotracheal tube. Blood was suctioned from the endotracheal tube, and the cats were allowed to recover from anesthesia. 1 cat initially responded to supportive care but developed a second episode of spontaneous pulmonary hemorrhage approximately 30 hours later and died. The other cat responded to supportive care and was discharged after 4 days, but its condition deteriorated, and the cat died 10 days later. Subsequently, it was discovered that the home was severely contaminated with mold as a result of storm damage that had occurred approximately 7 months previously. Retrospective analysis of banked serum from the cats revealed satratoxin G, a biomarker for Stachybotrys chartarum, commonly referred to as "toxic black mold." Findings highlight the potential risk of acute pulmonary hemorrhage in animals living in an environment contaminated with mold following flood damage.

  3. Comparison of sevoflurane administered through a face mask versus rectal thiopental sodium in children undergoing magnetic resonance imaging.

    PubMed

    Gómez-Ríos, Manuel Ángel; Freire-Vila, Enrique; Kuczkowski, Krzysztof M; Pensado-Castiñeiras, Alberto

    2017-02-01

    Sevoflurane (S) and thiopental sodium (T) are commonly used to produce sedation for routine MRI procedures. However, to date there have been no comparative studies evaluating both techniques. We herein present the firt study comparing S and T techniques for pediatric sedation in MRI procedures. 21 children, aged from 3 months to 6 years, scheduled for MRI were randomly assigned to either S or T group. Sedation performed under spontaneous respiration was induced with inspired 1-8% S in oxigen by face mask connected to a Mapleson C circuit or T (25 mg/kg) administered in distal rectum by cannula. The observed parameters included: time for induction, MRI time, first movement activity postprocedure and recovery time; MRI pauses from patient movement; technique failure, quality of the study, emergence agitation, critical events; and parental and radiologist satisfaction. S compared with T showed significantly shorter anesthesia induction time (1.93 ± 0.7 versus 13.5 ± 2.6 min), first movement time (3.38 ± 1.2 versus 5.9 ± 2.1 min), recovery time (6.8 ± 1.6 versus 10.14 ± 3.3 min), and discharge MRI time (27.83 ± 5.1 versus 47.5 ± 8.7 min). There were fewer pauses during MRI from patient movement in S versus T (0 versus 3). The radiologists reported good quality and satisfaction scores in both groups. There were less behavioral disturbances in T group compared with S group (1 versus 3). There were no critical events in either group. There were no differences in parental satisfaction in both groups. Sevoflurane shortens the induction and recovery time, enabling earlier discharge. Sevoflurane and rectal thiopental sodium protocols are safe and effective, providing adequate conditions for MRI in pediatric outpatients, although rectal thiopental is more unpredictable.

  4. Postoperative recovery after anesthesia in morbidly obese patients: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Liu, Feng-Lin; Cherng, Yih-Giun; Chen, Shin-Yan; Su, Yen-Hao; Huang, Shih-Yu; Lo, Po-Han; Lee, Yen-Ying; Tam, Ka-Wai

    2015-08-01

    Obese patients present a challenge to safe general anesthesia because of impaired cardiopulmonary physiology and increased risks of aspiration and acute upper airway obstruction. Since studies are lacking regarding the postoperative effects on recovery from general anesthesia in morbidly obese patients, we conducted a systematic review and meta-analysis of recovery outcomes in morbidly obese patients who had undergone general anesthesia. We systematically searched the PubMed, EMBASE™, Cochrane, and Scopus™ databases for randomized controlled trials that evaluated the outcome of anesthesia with desflurane, sevoflurane, isoflurane, or propofol in morbidly obese patients. Using a random effects model, we conducted meta-analyses to assess recovery times (eye opening, hand squeezing, tracheal extubation, and stating name or birth date), time to discharge from the postanesthesia care unit (PACU), and the incidence and severity of postoperative nausea and vomiting (PONV). We reviewed results for 11 trials and found that patients given desflurane took less time: to respond to commands to open their eyes (weighted mean difference [WMD] -3.10 min; 95% confidence interval (CI): -5.13 to -1.08), to squeeze the investigator's hand (WMD -7.83 min; 95% CI: -8.81 to -6.84), to be prepared for tracheal extubation (WMD -3.88 min; 95% CI: -7.42 to -0.34), and to state their name (WMD -7.15 min; 95% CI: -11.00 to -3.30). We did not find significant differences in PACU discharge times, PONV, or the PACU analgesic requirement. Postoperative recovery was significantly faster after desflurane than after sevoflurane, isoflurane, or propofol anesthesia in obese patients. No clinically relevant differences were observed regarding PACU discharge time, incidence of PONV, or postoperative pain scores. The systematic review was registered with PROSPERO (CRD42014009480).

  5. Economic Evaluation of Pharmacologic Pre- and Postconditioning With Sevoflurane Compared With Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis

    PubMed Central

    Urner, Martin; Twerenbold, Claudia; Kern, Sabine; Brügger, Urs; Spahn, Donat R.; Beck-Schimmer, Beatrice; Ganter, Michael T.

    2017-01-01

    BACKGROUND: Pharmacologic pre- and postconditioning with sevoflurane compared with total IV anesthesia in patients undergoing liver surgery reduced complication rates as shown in 2 recent randomized controlled trials. However, the potential health economic consequences of these different anesthesia regimens have not yet been assessed. METHODS: An expostcost analysis of these 2 trials in 129 patients treated between 2006 and 2010 was performed. We analyzed direct medical costs for in-hospital stay and compared pharmacologic pre- and postconditioning with sevoflurane (intervention) with total IV anesthesia (control) from the perspective of a Swiss university hospital. Year 2015 costs, converted to US dollars, were derived from hospital cost accounting data and compared with a multivariable regression analysis adjusting for relevant covariables. Costs with negative prefix indicate savings and costs with positive prefix represent higher spending in our analysis. RESULTS: Treatment-related costs per patient showed a nonsignificant change by −12,697 US dollars (95% confidence interval [CI], 10,956 to −36,352; P = .29) with preconditioning and by −6139 US dollars (95% CI, 6723 to −19,000; P = .35) with postconditioning compared with the control group. Results were robust in our sensitivity analysis. For both procedures (control and intervention) together, major complications led to a significant increase in costs by 86,018 US dollars (95% CI, 13,839-158,198; P = .02) per patient compared with patients with no major complications. CONCLUSIONS: In this cost analysis, reduced in-hospital costs by pharmacologic conditioning with sevoflurane in patients undergoing liver surgery are suggested. This possible difference in costs compared with total IV anesthesia is the result of reduced complication rates with pharmacologic conditioning, because major complications have significant cost implications. PMID:28067701

  6. Preventing Emergence Agitation Using Ancillary Drugs with Sevoflurane for Pediatric Anesthesia: A Network Meta-Analysis.

    PubMed

    Wang, Xin; Deng, Qi; Liu, Bin; Yu, Xiangdi

    2017-11-01

    Using sevoflurane for pediatric anesthesia plays a pivotal role in surgeries. Emergence agitation (EA) is a major adverse event accompanied with pediatric anesthesia. Other anesthetic adjuvants can be combined with sevoflurane in clinical practices for different purposes. However, it is uncertain that such a practice may have substantial influence on the risk of EA. We conducted a literature search in online databases, including PubMed, Embase, Cochrane Library, and Clinical Trials. Key data were extracted from eligible randomized control trials (RCTs). Both pairwise and network meta-analysis (NMA) were conducted for synthesizing data from eligible studies. The relative risk of EA was assessed using the odds ratios (ORs) and their corresponding 95 % confidence intervals (CI) or credible intervals (CrI). Ranking scheme based on the surface under the cumulative ranking curve (SUCRA) values was produced. Several key assumptions of NMA such as heterogeneity, degree of consistence, and publication bias were validated by different statistical or graphical approaches. Evidence from 67 randomized control trials was synthesized. The relative risk of EA associated with eight anesthetic adjuvants was analyzed, including ketamine, propofol, dexmedetomidine, clonidine, midazolam, fentanyl, remifentanil, and sufentanil. Patients with the following anesthetic adjuvants appeared to have significantly reduced risk of EA in relation to those with placebo: dexmedetomidine (OR = 0.18, 95 % CrI 0.12-0.25), fentanyl (OR = 0.19, 95 % CrI 0.12-0.30), sufentanil (OR = 0.20, 95 % CrI 0.08-0.50), ketamine (OR = 0.21, 95 % CrI 0.13-0.34), clonidine (OR = 0.25, 95 % CrI 0.14-0.46), propofol (OR = 0.32, 95 % CrI 0.18-0.56), midazolam (OR = 0.46, 95 % CrI 0.27-0.77), and remifentanil (OR = 0.29, 95 % CrI 0.13-0.68). The SUCRA values for each anesthetic adjuvant were: dexmedetomidine (73.65 %), fentanyl (68.04 %), sufentanil (60.81 %), ketamine (59.99 %), clonidine

  7. Effect of Xenon Anesthesia Compared to Sevoflurane and Total Intravenous Anesthesia for Coronary Artery Bypass Graft Surgery on Postoperative Cardiac Troponin Release: An International, Multicenter, Phase 3, Single-blinded, Randomized Noninferiority Trial.

    PubMed

    Hofland, Jan; Ouattara, Alexandre; Fellahi, Jean-Luc; Gruenewald, Matthias; Hazebroucq, Jean; Ecoffey, Claude; Joseph, Pierre; Heringlake, Matthias; Steib, Annick; Coburn, Mark; Amour, Julien; Rozec, Bertrand; Liefde, Inge de; Meybohm, Patrick; Preckel, Benedikt; Hanouz, Jean-Luc; Tritapepe, Luigi; Tonner, Peter; Benhaoua, Hamina; Roesner, Jan Patrick; Bein, Berthold; Hanouz, Luc; Tenbrinck, Rob; Bogers, Ad J J C; Mik, Bert G; Coiffic, Alain; Renner, Jochen; Steinfath, Markus; Francksen, Helga; Broch, Ole; Haneya, Assad; Schaller, Manuella; Guinet, Patrick; Daviet, Lauren; Brianchon, Corinne; Rosier, Sebastien; Lehot, Jean-Jacques; Paarmann, Hauke; Schön, Julika; Hanke, Thorsten; Ettel, Joachym; Olsson, Silke; Klotz, Stefan; Samet, Amir; Laurinenas, Giedrius; Thibaud, Adrien; Cristinar, Mircea; Collanges, Olivier; Levy, François; Rossaint, Rolf; Stevanovic, Ana; Schaelte, Gereon; Stoppe, Christian; Hamou, Nora Ait; Hariri, Sarah; Quessard, Astrid; Carillion, Aude; Morin, Hélène; Silleran, Jacqueline; Robert, David; Crouzet, Anne-Sophie; Zacharowski, Kai; Reyher, Christian; Iken, Sonja; Weber, Nina C; Hollmann, Marcus; Eberl, Susanne; Carriero, Giovanni; Collacchi, Daria; Di Persio, Alessandra; Fourcade, Olivier; Bergt, Stefan; Alms, Angela

    2017-12-01

    Ischemic myocardial damage accompanying coronary artery bypass graft surgery remains a clinical challenge. We investigated whether xenon anesthesia could limit myocardial damage in coronary artery bypass graft surgery patients, as has been reported for animal ischemia models. In 17 university hospitals in France, Germany, Italy, and The Netherlands, low-risk elective, on-pump coronary artery bypass graft surgery patients were randomized to receive xenon, sevoflurane, or propofol-based total intravenous anesthesia for anesthesia maintenance. The primary outcome was the cardiac troponin I concentration in the blood 24 h postsurgery. The noninferiority margin for the mean difference in cardiac troponin I release between the xenon and sevoflurane groups was less than 0.15 ng/ml. Secondary outcomes were the safety and feasibility of xenon anesthesia. The first patient included at each center received xenon anesthesia for practical reasons. For all other patients, anesthesia maintenance was randomized (intention-to-treat: n = 492; per-protocol/without major protocol deviation: n = 446). Median 24-h postoperative cardiac troponin I concentrations (ng/ml [interquartile range]) were 1.14 [0.76 to 2.10] with xenon, 1.30 [0.78 to 2.67] with sevoflurane, and 1.48 [0.94 to 2.78] with total intravenous anesthesia [per-protocol]). The mean difference in cardiac troponin I release between xenon and sevoflurane was -0.09 ng/ml (95% CI, -0.30 to 0.11; per-protocol: P = 0.02). Postoperative cardiac troponin I release was significantly less with xenon than with total intravenous anesthesia (intention-to-treat: P = 0.05; per-protocol: P = 0.02). Perioperative variables and postoperative outcomes were comparable across all groups, with no safety concerns. In postoperative cardiac troponin I release, xenon was noninferior to sevoflurane in low-risk, on-pump coronary artery bypass graft surgery patients. Only with xenon was cardiac troponin I release less than with total intravenous

  8. Pharmacokinetics of ketamine and norketamine enantiomers after racemic or S-ketamine IV bolus administration in dogs during sevoflurane anaesthesia.

    PubMed

    Romagnoli, Noemi; Bektas, Rima N; Kutter, Annette P; Barbarossa, Andrea; Roncada, Paola; Hartnack, Sonja; Bettschart-Wolfensberger, Regula

    2017-06-01

    The aims of this study were to measure plasma levels of R- and S-ketamine and their major metabolites R- and S-norketamine following single intravenous bolus administration of racemic or S-ketamine in sevoflurane anaesthetised dogs and to calculate the relevant pharmacokinetic profiles. Six adult healthy beagle dogs were used in the study. An intravenous bolus of 4mg/kg racemic ketamine (RS-KET) or 2mg/kg S-ketamine (S-KET) was administered, with a three-weeks washout period between treatments. Venous blood samples were collected at fixed times until 900min and R- and S-ketamine as well as R- and S-norketamine plasma levels determined by liquid chromatography coupled with tandem mass spectrometry. Cardiovascular parameters were recorded during the anaesthesia until 240min. All dogs recovered well from anaesthesia. No statistical differences between groups were detected in any cardiovascular parameter. The pharmacokinetics of S-ketamine did not differ when injected intravenously alone or as part of the racemic mixture in dogs anaesthetised with sevoflurane. Following racemic ketamine, the area under the curve of R-norketamine was statistically higher than the one of S-norketamine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    PubMed

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.

  10. [Calibration of a room air gas monitor with certified reference gases].

    PubMed

    Krueger, W A; Trick, M; Schroeder, T H; Unertl, K E

    2003-12-01

    Photo-acoustic infrared spectrometry is considered to be the gold standard for on-line measurement of anesthetic waste gas in room air. For maintenance of the precision of the measurements, the manufacturer recommends calibration of the gas monitor monitor every 3-12 months. We investigated whether the use of reference gases with analysis certificate could serve as a feasible alternative to commercial recalibration. We connected a multi-gas monitor type1302 (Bruel & Kjaer, Naerum, Denmark) to compressed air bottles containing reference gases with analysis certificate. Using a T-piece with a flow-meter, we avoided the entry of room air during the calibration phase. Highly purified nitrogen was used for zero calibration. The reference concentrations for desflurane, enflurane, halothane, isoflurane, and sevoflurane ranged from 41.6-51.1 ml/m(3) (ppm) in synthetic air. Since there is an overlap of the infrared absorption spectra of volatile anesthetics with alcohol used in operating rooms, we performed a cross-compensation with iso-propanol (107.0 ppm). A two-point calibration was performed for N(2)O (96.2 and 979.0 ppm), followed by cross-compensation with CO(2). Nafion tubes were used in order to avoid erroneous measurements due to molecular relaxation phenomena. The deviation of the measurement values ranged initially from 0-2.0% and increased to up to 4.9% after 18 months. For N(2)O, the corresponding values were 4.2% and 2.7%, respectively. Thus, our calibration procedure using certified reference gases yielded precise measurements with low deterioration over 18 months. It seems to be advantageous that the precision can be determined whenever deemed necessary. This allows for an individual decision, when the gas monitor needs to be calibrated again. The costs for reference gases and working time as well as logistic aspects such as storage and expiration dates must be individually balanced against the costs for commercial recalibration.

  11. Use of brachial plexus blockade and medetomidine-ketamine-isoflurane anaesthesia for repair of radio-ulna fracture in an adult cheetah (Acinonyx jubatus).

    PubMed

    Kimeli, Peter; Mogoa, Eddy M; Mwangi, Willy E; Kipyegon, Ambrose N; Kirui, Gilbert; Muasya, Daniel W; Mande, John D; Kariuki, Edward; Mijele, Dominic

    2014-10-10

    Regional anaesthetic techniques have been used in combination with systemic analgesics during small animal surgery to provide multimodal analgesia. Brachial plexus nerves block using local anaesthetics provides analgesia of the thoracic limb through desensitization of the nerves that provide sensory and motor innervation. This has been shown to reduce intra-operative anesthetic requirements and provide postoperative pain relief. Decreasing the doses of general anaesthetics allows more stable cardiopulmonary function during anaesthesia and the development of less side effects. The present case reports a successful use of brachial plexus blockade to supplement medetomidine-ketamine-isoflurane anaesthesia for repair of radio-ulna fracture in an adult cheetah (acinonyx jubatus). An adult male Cheetah weighing about 65 kg was presented with a history of leg carrying lameness of the left forelimb sustained following a car accident a week earlier. Clinical examination under general anaesthesia revealed slight dehydration and a swelling with a wound on the caudo-medial aspect of the left radio-ulna region. Crepitation was present on manipulation and radiography confirmed a complete transverse radio-ulna fracture of the left forelimb, which required open reduction and internal fixation. Brachial plexus blockade using lignocaine hydrochloride was used to supplement medetomidine-ketamine-isoflurane anaesthesia for the surgical procedure. Isoflurane anaesthesia was maintained at 0.5 - 2.0% throughout the surgical procedure, which was uneventful. Temperature and cardio-pulmonary parameters remained stable intra-operatively. Limb paralysis extended for 5 hours post-operatively, suggesting prolonged anaesthesia. To the researchers' knowledge, this is the first reported case of the use of brachial plexus blockade to supplement general anaesthesia to facilitate forelimb surgery in an adult cheetah. The use of brachial plexus block with a light plane of general anaesthesia proved to

  12. Detomidine and the combination of detomidine and MK-467, a peripheral alpha-2 adrenoceptor antagonist, as premedication in horses anaesthetized with isoflurane.

    PubMed

    Pakkanen, Soile Ae; Raekallio, Marja R; Mykkänen, Anna K; Salla, Kati M; de Vries, Annemarie; Vuorilehto, Lauri; Scheinin, Mika; Vainio, Outi M

    2015-09-01

    To investigate MK-467 as part of premedication in horses anaesthetized with isoflurane. Experimental, crossover study with a 14 day wash-out period. Seven healthy horses. The horses received either detomidine (20 μg kg(-1) IV) and butorphanol (20 μg kg(-1) IV) alone (DET) or with MK-467 (200 μg kg(-1) IV; DET + MK) as premedication. Anaesthesia was induced with ketamine (2.2 mg kg(-1) ) and midazolam (0.06 mg kg(-1) ) IV and maintained with isoflurane. Heart rate (HR), mean arterial pressure (MAP), end-tidal isoflurane concentration, end-tidal carbon dioxide tension, central venous pressure, fraction of inspired oxygen (FiO2 ) and cardiac output were recorded. Blood samples were taken for blood gas analysis and to determine plasma drug concentrations. The cardiac index (CI), systemic vascular resistance (SVR), ratio of arterial oxygen tension to inspired oxygen (Pa O2 /FiO2 ) and tissue oxygen delivery (DO2 ) were calculated. Repeated measures anova was applied for HR, CI, MAP, SVR, lactate and blood gas variables. The Student's t-test was used for pairwise comparisons of drug concentrations, induction times and the amount of dobutamine administered. Significance was set at p < 0.05. The induction time was shorter, reduction in MAP was detected, more dobutamine was given and HR and CI were higher after DET+MK, while SVR was higher with DET. Arterial oxygen tension and Pa O2 /FiO2 (40 minutes after induction), DO2 and venous partial pressure of oxygen (40 and 60 minutes after induction) were higher with DET+MK. Plasma detomidine concentrations were reduced in the group receiving MK-467. After DET+MK, the area under the plasma concentration time curve of butorphanol was smaller. MK-467 enhances cardiac function and tissue oxygen delivery in horses sedated with detomidine before isoflurane anaesthesia. This finding could improve patient safety in the perioperative period. The dosage of MK-467 needs to be investigated to minimise the effect of MK

  13. The effect of fresh gas flow rate and type of anesthesia machine on time to reach target sevoflurane concentration.

    PubMed

    Shin, Hye Won; Yu, Hae Na; Bae, Go Eun; Huh, Hyub; Park, Ji Yong; Kim, Ji Young

    2017-01-19

    Anesthesia machines have been developed by the application of new technology for rapid and easier control of anesthetic concentration. In this study, we used a test lung to investigate whether the time taken to reach the target sevoflurane concentration varies with the rate of fresh gas flow (FGF) and type of anesthesia machine (AM). We measured the times taken to reach the target sevoflurane concentration (2 minimum alveolar concentration = 4%) at variable rates of FGF (0.5, 1, or 3 L/min) and different types of AM (Primus ® , Perseus ® , and Zeus ® [Zeus ® -F; Zeus ® fresh gas mode, Zeus ® -A; Zeus ® auto-mode]). Concomitant ventilation was supplied using 100% O 2. The AMs were connected to a test lung. A sevoflurane vaporizer setting of 6% was used in Primus ® , Perseus ® , and Zeus ® -F; a target end-tidal setting of 4% was used in Zeus ® -A (from a vaporizer setting of 0%). The time taken to reach the target concentration was measured in every group. When the same AM was used (Primus ® , Perseus ® , or Zeus ® -F), the times to target concentration shortened as the FGF rate increased (P < 0.05). Conversely, when the same FGF rate was used, but with different AMs, the time to target concentration was shortest in Perseus ® , followed by Primus ® , and finally by Zeus ® -F (P < 0.05). With regards to both modes of Zeus ® , at FGF rates of 0.5 and 1 L/min, the time to target concentration was shorter in Zeus ® -A than in Zeus ® -F; however, the time was longer in Zeus ® -A than in Zeus ® -F at FGF rate of 3 L/min (P < 0.05). Shorter times taken to reach the target concentration were associated with high FGF rates, smaller internal volume of the AM, proximity of the fresh gas inlets to patients, absence of a decoupling system, and use of blower-driven ventilators in AM.

  14. [Inorganic fluoride concentrations and their sequential changes in the five layers of the kidney in rabbits after sevoflurane or methoxyflurane anesthesia].

    PubMed

    Kusume, Y

    1999-11-01

    In this study, intrarenal inorganic fluoride concentrations (IR-F) in rabbits were measured after sevoflurane or methoxyflurane anesthesia (SA or MA) to investigate the mechanism of methoxy-flurane nephrotoxicity and to confirm the safety of SA in fluoride nephrotoxicity. At the end of SA of MA, IR-F was 1.5 to 5 times greater in the cortex to papilla region than serum fluoride concentrations (S-F). When S-F were nearly equal, IR-F after MA was not greater than IR-F after SA. IR-F after SA declined rapidly. In contrast, IR-F after MA was maintained at high levels for a protracted period due to the greater solubility of methoxyflurane in fatty tissue. The present study suggests that the most important factor in methoxyflurane nephrotoxicity is the high IR-F of long duration established by urine formation, and that sevoflurane, although it is not associated with fluoride nephrotoxicity under normal conditions, may not be safe when it is used for an extremely long period and at high concentrations.

  15. Comparison of Bispectral Index and Entropy values with electroencephalogram during surgical anaesthesia with sevoflurane.

    PubMed

    Aho, A J; Kamata, K; Jäntti, V; Kulkas, A; Hagihira, S; Huhtala, H; Yli-Hankala, A

    2015-08-01

    Concomitantly recorded Bispectral Index® (BIS) and Entropy™ values sometimes show discordant trends during general anaesthesia. Previously, no attempt had been made to discover which EEG characteristics cause discrepancies between BIS and Entropy. We compared BIS and Entropy values, and analysed the changes in the raw EEG signal during surgical anaesthesia with sevoflurane. In this prospective, open-label study, 65 patients receiving general anaesthesia with sevoflurane were enrolled. BIS, Entropy and multichannel digital EEG were recorded. Concurrent BIS and State Entropy (SE) values were selected. Whenever BIS and SE values showed ≥10-unit disagreement for ≥60 s, the raw EEG signal was analysed both in time and frequency domain. A ≥10-unit disagreement ≥60 s was detected 428 times in 51 patients. These 428 episodes accounted for 5158 (11%) out of 45 918 analysed index pairs. During EEG burst suppression, SE was higher than BIS in 35 out of 49 episodes. During delta-theta dominance, BIS was higher than SE in 141 out of 157 episodes. During alpha or beta activity, SE was higher than BIS in all 49 episodes. During electrocautery, both BIS and SE changed, sometimes in the opposite direction, but returned to baseline values after electrocautery. Electromyography caused index disagreement four times (BIS > SE). Certain specific EEG patterns, and artifacts, are associated with discrepancies between BIS and SE. Time and frequency domain analyses of the original EEG improve the interpretation of studies involving BIS, Entropy and other EEG-based indices. NCT01077674. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Effects of rocuronium bromide on globe position and respiratory function in isoflurane-anesthetized dogs: a comparison between three different dosages.

    PubMed

    Briganti, Angela; Barsotti, Giovanni; Portela, Diego A; Di Nieri, Camilla; Breghi, Gloria

    2015-03-01

    To evaluate the effect on globe position and respiration of three dosages of intravenous rocuronium in isoflurane-anesthetized dogs. Thirty-two dogs anesthetized for ophthalmic procedures. The dogs were divided into four groups, each of eight animals (G1-G4). G1, G2, G3 received 0.075, 0.05, 0.03 mg/kg of IV rocuronium, respectively; G4 received 0.9% NaCl IV; all the treatments were administered when an end-tidal isoflurane of 1.1-1.2% was reached. Anesthesia was obtained with dexmedetomidine (2.5 mcg/kg IV), methadone (0.1 mg/kg IV), propofol (2 mg/kg IV), and isoflurane in oxygen. Neuromuscular function was assessed with acceleromyography by stimulation of the peroneal nerve using the train-of-four (ToF) and the ToF ratio (ToFR). Monitoring of cardiovascular and respiratory functions was performed. Changes in globe position were recorded. All three dosages of rocuronium produced centralization of the globe. Duration was 24.3 ± 4.2, 23.4 ± 3.6, and 8.7 ± 2.8 min, for G1, G2, and G3, respectively. The control group did not show globe centralization. No significant differences were found among the four groups in cardiovascular and respiratory parameters. Minute volume and ToFR were significantly lower in G1 compared with baseline values. All doses of rocuronium resulted in globe centralization. The higher dose provoked a transient respiratory depression and some degree of skeletal muscular blockade detectable with ToFR. No alterations in respiratory activity were present when 0.05 mg/kg was used. The 0.03 mg/kg dosage could be useful for very short ophthalmic procedures. © 2013 American College of Veterinary Ophthalmologists.

  17. Cardiovascular effects of epidural administration of methadone, ropivacaine 0.75% and their combination in isoflurane anaesthetized dogs.

    PubMed

    Bosmans, Tim; Schauvliege, Stijn; Gasthuys, Frank; Duchateau, Luc; Marcilla, Miguel Gozalo; Gadeyne, Caroline; Polis, Ingeborgh

    2011-03-01

    To compare the cardiovascular effects of four epidural treatments in isoflurane anaesthetised dogs. Prospective, randomized. experimental study. Six female, neutered Beagle dogs (13.3±1.0 kg), aged 3.6±0.1 years. Anaesthesia was induced with propofol (8.3±1.1 mg kg(-1)) and maintained with isoflurane in a mixture of oxygen and air [inspiratory fraction of oxygen (FiO(2))=40%], using intermittent positive pressure ventilation. Using a cross-over model, NaCl 0.9% (P); methadone 1% 0.1 mg kg(-1) (M); ropivacaine 0.75% 1.65 mg kg(-1) (R) or methadone 1% 0.1 mg kg(-1) + ropivacaine 0.75% 1.65 mg kg(-1) (RM) in equal volumes (0.23 mL kg(-1)) using NaCl 0.9%, was administered epidurally at the level of the lumbosacral space. Treatment P was administered to five dogs only. Cardiovascular and respiratory variables, blood gases, and oesophageal temperature were recorded at T-15 and for 60 minutes after epidural injection (T0). Mean overall heart rate (HR in beats minute(-1)) was significantly lower after treatment M (119±16) (p=0.0019), R (110±18) (p< 0.0001) and RM (109±13) (p<0.0001), compared to treatment P (135±21). Additionally, a significant difference in HR between treatments RM and M was found (p=0.04). After both ropivacaine treatments, systemic arterial pressures (sAP) were significantly lower compared to other treatments. No significant overall differences between treatments were present for central venous pressure, cardiac output, stroke volume, systemic vascular resistance, oxygen delivery and arterial oxygen content (CaO(2)). Heart rate and sAP significantly increased after treatment P and M compared to baseline (T-15). With all treatments significant reductions from baseline were observed in oesophageal temperature, packed cell volume and CaO(2) . A transient unilateral Horner's syndrome occurred in one dog after treatment R. Clinically important low sAPs were observed after the ropivacaine epidural treatments in isoflurane anaesthetised dogs. Systemic

  18. A randomized prospective study of desflurane versus isoflurane in minimal flow anesthesia using “equilibration time” as the change-over point to minimal flow

    PubMed Central

    Mallik, Tanuja; Aneja, S; Tope, R; Muralidhar, V

    2012-01-01

    Background: In the administration of minimal flow anesthesia, traditionally a fixed time period of high flow has been used before changing over to minimal flow. However, newer studies have used “equilibration time” of a volatile anesthetic agent as the change-over point. Materials and Methods: A randomized prospective study was conducted on 60 patients, who were divided into two groups of 30 patients each. Two volatile inhalational anesthetic agents were compared. Group I received desflurane (n = 30) and group II isoflurane (n = 30). Both the groups received an initial high flow till equilibration between inspired (Fi) and expired (Fe) agent concentration were achieved, which was defined as Fe/Fi = 0.8. The mean (SD) equilibration time was obtained for both the agent. Then, a drift in end-tidal agent concentration during the minimal flow anesthesia and recovery profile was noted. Results: The mean equilibration time obtained for desflurane and isoflurane were 4.96 ± 1.60 and 16.96 ± 9.64 min (P < 0.001). The drift in end-tidal agent concentration over time was minimal in the desflurane group (P = 0.065). Recovery time was 5.70 ± 2.78 min in the desflurane group and 8.06 ± 31 min in the isoflurane group (P = 0.004). Conclusion: Use of equilibration time of the volatile anesthetic agent as a change-over point, from high flow to minimal flow, can help us use minimal flow anesthesia, in a more efficient way. PMID:23225926

  19. The effect of premedication with ketamine, alone or with diazepam, on anaesthesia with sevoflurane in parrots (Amazona aestiva)

    PubMed Central

    2013-01-01

    Background Premedication is rarely used in avian species. The aim of this study was to evaluate the effect of premedication on the quality of sevoflurane induction and anaesthesia in parrots. We hypothesised that premedication would facilitate handling and decrease the minimum anaesthetic dose (MAD). Thirty-six adult parrots were randomly distributed in three groups: group S (n = 12) was premedicated with NaCl 0.9%; group KS (n = 12) was premedicated with 10 mg.kg-1 ketamine; and group KDS (n = 12) was premedicated with 10 mg.kg-1 ketamine and 0.5 mg.kg-1 diazepam, delivered intramuscularly. After induction using 4.5% sevoflurane introduced through a facemask, the MAD was determined for each animal. The heart rate (HR), respiratory rate (RR), systolic arterial blood pressure (SAP), and cloacal temperature (CT) were recorded before premedication (T0), 15 minutes after premedication (T1), and after MAD determination (T2). Arterial blood gas analyses were performed at T0 and T2. The quality of anaesthesia was evaluated using subjective scales based on animal behaviour and handling during induction, maintenance, and recovery. Statistical analyses were performed using analysis of variance or Kruskal-Wallis tests followed by Tukey’s or Dunn’s tests. Results The minimal anaesthetic doses obtained were 2.4 ± 0.37%, 1.7 ± 0.39%, and 1.3 ± 0.32% for groups S, KS, and KDS, respectively. There were no differences in HR, RR, or CT among groups, but SAP was significantly lower in group S. Sedation was observed in both the premedicated S-KS and S-KDS groups. There were no differences in the quality of intubation and recovery from anaesthesia among the three groups, although the induction time was significantly shorter in the pre-medicated groups, and the KS group showed less muscle relaxation. Conclusions Ketamine alone or the ketamine/diazepam combination decreased the MAD of sevoflurane in parrots (Amazona aestiva). Ketamine alone or in

  20. Effect of isoflurane alone or in combination with meloxicam on the behavior and physiology of goat kids following cautery disbudding.

    PubMed

    Hempstead, Melissa N; Waas, Joseph R; Stewart, Mairi; Dowling, Suzanne K; Cave, Vanessa M; Lowe, Gemma L; Sutherland, Mhairi A

    2018-04-01

    Cautery disbudding of goat kids is painful, but may be alleviated with pain mitigation. We therefore evaluated the effect of administering general anesthesia (isoflurane) or a nonsteroidal anti-inflammatory drug (meloxicam) on goat kid behavior and physiology following cautery disbudding. Trial 1 (n = 12/treatment) evaluated behavioral responses in 72 female Saanen dairy goat kids (mean ± standard error of the mean; 3.9 ± 0.15 d old) and trial 2 (n = 10/treatment) evaluated physiological responses in 60 female Saanen dairy goat kids (4.3 ± 0.14 d old). Goat kids were randomly assigned to 1 of 6 treatment groups that were either (1) sham-handled only (simulated disbudding; SHAM) or disbudded with (2) no pain relief (CAUT), (3) isoflurane gas (ISO), (4) isoflurane and s.c. meloxicam combined (ISO+MEL), (5) meloxicam s.c. (0.5 mg/kg of body weight; I-MEL), or (6) oral meloxicam (0.2 mg/kg of body weight; O-MEL). Head shaking, head scratching, self-grooming, feeding, and body shaking were continuously video recorded for 24 h pre- and post-treatment. Lying behavior was recorded continuously for 24 h pre- and post-treatment using accelerometers. Plasma cortisol, glucose, and lactate concentrations were measured from blood samples collected immediately before treatment (baseline) and at 15, 60, and 120 min post-treatment. Body temperature was measured immediately after blood sampling at all blood sampling time points. Head shaking and body shaking frequencies were 50% higher in CAUT than SHAM kids 5 min post-treatment; ISO+MEL and ISO kids performed 25% less body shakes than CAUT kids. Head scratching durations 1 h post-treatment were higher in CAUT than SHAM kids, whereas O-MEL were similar to SHAM kids from 2 h post-treatment. Self-grooming, feeding, and lying did not differ between groups. Cortisol concentrations were higher in CAUT than SHAM kids (156.4 ± 26.41 and 104.1 ± 26.41 nmol/L, respectively), whereas ISO+MEL and ISO kids (88.3 ± 26.41 and 113.2 ± 26