Sample records for halve diesel imports

  1. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false May an importer treat diesel fuel as... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.512 May an importer treat diesel...

  2. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false May an importer treat diesel fuel as... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.512 May an importer treat diesel...

  3. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... importers of NRLM diesel fuel? Beginning with the annual compliance period that begins June 1, 2007, or the...

  4. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... importers of NRLM diesel fuel? Beginning with the annual compliance period that begins June 1, 2007, or the...

  5. 7 CFR 51.1433 - U.S. Commercial Halves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Commercial Halves. 51.1433 Section 51.1433 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1433 U.S. Commercial Halves. The...

  6. 7 CFR 51.1431 - U.S. No. 1 Halves and Pieces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. No. 1 Halves and Pieces. 51.1431 Section 51.1431... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1431 U.S. No. 1 Halves and...

  7. 7 CFR 51.1431 - U.S. No. 1 Halves and Pieces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false U.S. No. 1 Halves and Pieces. 51.1431 Section 51.1431... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Pecans Grades § 51.1431 U.S. No. 1 Halves and...

  8. Multichromosomal median and halving problems under different genomic distances

    PubMed Central

    Tannier, Eric; Zheng, Chunfang; Sankoff, David

    2009-01-01

    Background Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances. Results We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems. Conclusion This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes. PMID:19386099

  9. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  10. Halving Student Loan Interest Rates Is Unaffordable and Ineffective. WebMemo No. 1308

    ERIC Educational Resources Information Center

    Riedl, Brian M.

    2007-01-01

    The House of Representatives will likely vote this week on a proposal to halve the 6.8 percent interest rate on subsidized student loans as part of the new congressional majority's 100-Hour agenda. This document presents six problems with halving student loan interest rates and argues that, rather than providing billions in new federal subsidies,…

  11. 7 CFR 51.1430 - U.S. No. 1 Halves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Shelled Pecans Grades § 51.1430 U.S. No. 1 Halves. “U.S. No. 1 Halves” consists of pecan half-kernels which meet the following requirements: (a) For quality: (1) Well dried; (2) Fairly...

  12. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrive at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are towed from the Building 836 hangar to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are delivered to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  16. 7 CFR 51.1437 - Size classifications for halves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... halves per pound shall be based upon the weight of half-kernels after all pieces, particles and dust... specified range. (d) Tolerances for pieces, particles, and dust. In order to allow for variations incident..., particles, and dust: Provided, That not more than one-third of this amount, or 5 percent, shall be allowed...

  17. Comparative genomics meets topology: a novel view on genome median and halving problems.

    PubMed

    Alexeev, Nikita; Avdeyev, Pavel; Alekseyev, Max A

    2016-11-11

    Genome median and genome halving are combinatorial optimization problems that aim at reconstruction of ancestral genomes by minimizing the number of evolutionary events between them and genomes of the extant species. While these problems have been widely studied in past decades, their solutions are often either not efficient or not biologically adequate. These shortcomings have been recently addressed by restricting the problems solution space. We show that the restricted variants of genome median and halving problems are, in fact, closely related. We demonstrate that these problems have a neat topological interpretation in terms of embedded graphs and polygon gluings. We illustrate how such interpretation can lead to solutions to these problems in particular cases. This study provides an unexpected link between comparative genomics and topology, and demonstrates advantages of solving genome median and halving problems within the topological framework.

  18. Non-symbolic halving in an Amazonian indigene group

    PubMed Central

    McCrink, Koleen; Spelke, Elizabeth S.; Dehaene, Stanislas; Pica, Pierre

    2014-01-01

    Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a video event depicting a division transformation of halving, in which pairs of objects turned into single objects, reducing the array's numerical magnitude. Then they were tested on their ability to calculate the outcome of this division transformation with other large-number arrays. The Mundurucu children effected this transformation even when non-numerical variables were controlled, performed above chance levels on the very first set of test trials, and exhibited performance similar to urban children who had access to precise number words and a surrounding symbolic culture. We conclude that a halving calculation is part of the suite of intuitive operations supported by the ANS. PMID:23587042

  19. Delving Deeper: One Cut, Two Halves, Three Questions

    ERIC Educational Resources Information Center

    Ren, Guanshen

    2009-01-01

    A square can be divided into two equal parts with any cut through the center. The first question that arises is, Would any cut through the center of a regular polygon divide it into two equal parts? If not, the second question is, What kind of lines through the center of the polygon would cut it into two halves? However, many objects are not…

  20. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  1. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  2. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  3. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  4. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... fuel additive production, importation, and distribution systems? (a) Records that must be kept by...

  5. Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes.

    PubMed

    Zheng, Chunfang; Zhu, Qian; Adam, Zaky; Sankoff, David

    2008-07-01

    Some present day species have incurred a whole genome doubling event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to 'halve' the genome, i.e. to reconstruct the ancestral genome at the moment of doubling, but the solution is often highly nonunique. To resolve this problem, we take account of outgroups, external reference genomes, to guide and narrow down the search. We improve on a previous, computationally costly, 'brute force' method by adapting the genome halving algorithm of El-Mabrouk and Sankoff so that it rapidly and accurately constructs an ancestor close the outgroups, prior to a local optimization heuristic. We apply this to reconstruct the predoubling ancestor of Saccharomyces cerevisiae and Candida glabrata, guided by the genomes of three other yeasts that diverged before the genome doubling event. We analyze the results in terms (1) of the minimum evolution criterion, (2) how close the genome halving result is to the final (local) minimum and (3) how close the final result is to an ancestor manually constructed by an expert with access to additional information. We also visualize the set of reconstructed ancestors using classic multidimensional scaling to see what aspects of the two doubled and three unduplicated genomes influence the differences among the reconstructions. The experimental software is available on request.

  6. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are moved into position in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, have arrived in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  9. Design, fabrication, and high-gradient testing of an X -band, traveling-wave accelerating structure milled from copper halves

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin

    2018-06-01

    A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.

  10. Potential of Sagittaria trifolia for Phytoremediation of Diesel.

    PubMed

    Zhang, Xinying; Wang, Jun; Liu, Xiaoyan; Gu, Lingfeng; Hou, Yunyun; He, Chiquan; Chen, Xueping; Liang, Xia

    2015-01-01

    The phytoremediation potential and responses of Sagittaria trifolia to diesel were investigated. In order to elucidate the biochemical and physiological responses of S. trifolia to diesel, the chlorophyll content, root vitality, soluble protein content and antioxidant enzymes activity (peroxidase (POD), catalase (CAT) and antioxidant enzymes superoxide dismutase (SOD)) were determined in the plant tissues after 50 d of diesel treatment. The results showed the presence of S. trifolia significantly improved the removal ratios of diesel, from 21∼36% in the control soils to 54∼85% in the planted soils. The chlorophyll content, root vitality and soluble protein content all increased at low diesel concentration, then decreased at high diesel concentration. The activities of CAT and POD exhibited peak values at 5 g·kg(-1) diesel treatment and declined at higher diesel concentrations. However, the activity of SOD kept stable at lower diesel concentration (1 and 5 g·kg(-1)), and also declined at higher diesel concentration. Collectively, S. trifolia had the ability to tolerate certain amount of diesel, but when the concentration was up to 10 g·kg(-1), the growth of S. trifolia would be restrained. The results also showed that variation of antioxidant enzyme activity was an important response in plants to diesel pollution.

  11. Jobs, Skills and Incomes in Ghana: How Was Poverty Halved?

    ERIC Educational Resources Information Center

    Nsowah-Nuamah, Nicholas; Teal, Francis; Awoonor-Williams, Moses

    2012-01-01

    On the basis of official statistics, poverty has halved in Ghana over the period from 1991 to 2005. Our objective in this paper is to assess how far this fall was linked to the creation of better paying jobs and the increase in education. We find that earnings rose rapidly in the period from 1998 to 2005, by 64% for men and by 55% for women. While…

  12. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.

    PubMed

    Barrutia, O; Garbisu, C; Epelde, L; Sampedro, M C; Goicolea, M A; Becerril, J M

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg(-1) DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m(-2) s(-1)) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F(v)/F(m)), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the

  13. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  14. Cetane improvement via the DIESEL-B process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, F.N. Jr.

    1987-01-01

    The DIESEL-B Process is a new process offered by Calsyn which is targeted toward significant cost savings - up to half the cost of conventional cetane improvers. Pay out of the low capital investments - perhaps $0.5 million - may be obtained in some cases in less than one year. The process involves on-site treating of a small slip stream - about 3% of the diesel pool. Refiners have developed quality fuels for diesel engines which would be suitable for the many diverse applications of these engines. Over the years a fair consensus of required quality specifications has evolved, mostmore » importantly those of the major pipeline operators. Ignition characteristics, as defined by cetane number or cetane index have been the most important, but other controls designed to insure stability, color, carbon content and the like are also essential constraints for the refiner. Refiners have historically been able to meet demand for motor diesel fuels by blending the higher quality virgin and hydrotreated materials with a variety of lesser quality stocks, such as cat cracker light cycle oils, coker cycle oils, thermal cycle oils and the like. But because of the typically poor engine performance properties of these latter materials, refiners have had to employ a variety of additives, most importantly cetane improvement additives, cost for which can be substantial. Calsyn is pleased to announce the development of the DIESEL-B Process for improvement of diesel fuel ignition characteristics in response to the growing need for cost cutting methods for the bread and butter portions of our business.« less

  15. Water-in-diesel emulsions and related systems.

    PubMed

    Lif, Anna; Holmberg, Krister

    2006-11-16

    Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.

  16. Diesel oil

    MedlinePlus

    ... oil is a heavy oil used in diesel engines. Diesel oil poisoning occurs when someone swallows diesel ... people trying to suck (siphon) gas from an automobile tank using their mouth and a garden hose ( ...

  17. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  18. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  19. Effect of diesel oxidation catalysts on the diesel particulate filter regeneration process.

    PubMed

    Lizarraga, Leonardo; Souentie, Stamatios; Boreave, Antoinette; George, Christian; D'Anna, Barbara; Vernoux, Philippe

    2011-12-15

    A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). Aerosol mass spectrometry analysis showed that the presence of the DOC decreases the Organic Carbon (OC) fraction adsorbed to soot particles. The activation energy values determined for soot nanoparticles oxidation were 97 ± 5 and 101 ± 8 kJ mol(-1) with and without the DOC, respectively; suggesting that the DOC does not facilitate elementary carbon oxidation. The minimum temperature necessary for DPF regeneration was strongly affected by the presence of the DOC in the aftertreatment. The conversion of NO to NO(2) inside the DOC induced the DPF regeneration process at a lower temperature than O(2) (ΔT = 30 K). Also, it was verified that the OC fraction, which decreases in the presence of the DOC, plays an important role to ignite soot combustion.

  20. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    PubMed

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  1. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  2. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  3. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle diesel...

  4. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  5. Drying kinetics of apricot halves in a microwave-hot air hybrid oven

    NASA Astrophysics Data System (ADS)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2017-06-01

    Drying behavior and kinetics of apricot halves were investigated in a microwave-hot air domestic hybrid oven at 120, 150 and 180 W microwave power and 50, 60 and 70 °C air temperature. Drying operation was finished when the moisture content reached to 25% (wet basis) from 77% (w.b). Increase in microwave power and air temperature increased drying rates and reduced drying time. Only falling rate period was observed in drying of apricot halves in hybrid oven. Eleven mathematical models were used for describing the drying kinetics of apricots. Modified logistic model gave the best fitting to the experimental data. The model has never been used to explain drying behavior of any kind of food materials up to now. Fick's second law was used for determination of both effective moisture diffusivity and thermal diffusivity values. Activation energy values of dried apricots were calculated from Arrhenius equation. Those that obtained from effective moisture diffusivity, thermal diffusivity and drying rate constant values ranged from 31.10 to 39.4 kJ/mol, 29.56 to 35.19 kJ/mol, and 26.02 to 32.36 kJ/mol, respectively.

  6. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  7. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  8. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust.

    PubMed

    Reis, Haley; Reis, Cesar; Sharip, Akbar; Reis, Wenes; Zhao, Yong; Sinclair, Ryan; Beeson, Lawrence

    2018-05-01

    Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Emissions Removal Efficiency from Diesel Gensets Using Aftermarket PM Controls

    EPA Science Inventory

    Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. The adverse impacts ...

  10. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  11. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Clean Diesel

    EPA Pesticide Factsheets

    The Clean Diesel Program offers DERA funding in the form of grants and rebates as well as other support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines.

  13. A regional composite-face effect for species-specific recognition: Upper and lower halves play different roles in holistic processing of monkey faces.

    PubMed

    Wang, Zhe; Quinn, Paul C; Jin, Haiyang; Sun, Yu-Hao P; Tanaka, James W; Pascalis, Olivier; Lee, Kang

    2018-04-25

    Using a composite-face paradigm, we examined the holistic processing induced by Asian faces, Caucasian faces, and monkey faces with human Asian participants in two experiments. In Experiment 1, participants were asked to judge whether the upper halves of two faces successively presented were the same or different. A composite-face effect was found for Asian faces and Caucasian faces, but not for monkey faces. In Experiment 2, participants were asked to judge whether the lower halves of the two faces successively presented were the same or different. A composite-face effect was found for monkey faces as well as for Asian faces and Caucasian faces. Collectively, these results reveal that own-species (i.e., own-race and other-race) faces engage holistic processing in both upper and lower halves of the face, but other-species (i.e., monkey) faces engage holistic processing only when participants are asked to match the lower halves of the face. The findings are discussed in the context of a region-based holistic processing account for the species-specific effect in face recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen

    2013-02-25

    Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    PubMed Central

    Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T

    2017-01-01

    Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715

  16. Low emissions diesel fuel

    DOEpatents

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  17. Low emissions diesel fuel

    DOEpatents

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  18. Fact Sheet: Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska

    EPA Pesticide Factsheets

    This fact sheet summarizes EPA's final rule modifying the diesel fuel regulations to apply an effective date of 6-1-2010 for 15 ppm sulfur requirements for highway, nonroad, locomotive and marine diesel fuel produced/imported for, distributed

  19. PM Removal Efficiency from Diesel Gensets Equipped with Aftermarket Control Devices

    EPA Science Inventory

    Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. These adverse impact...

  20. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Liability for violations of diesel... Prohibitions § 80.30 Liability for violations of diesel fuel control and prohibitions. (a) Violations at refiners or importers facilities. Where a violation of a diesel fuel standard set forth in § 80.29 is...

  1. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Liability for violations of diesel... Prohibitions § 80.30 Liability for violations of diesel fuel control and prohibitions. (a) Violations at refiners or importers facilities. Where a violation of a diesel fuel standard set forth in § 80.29 is...

  2. Geoelectrical Evidence of Microbial Degradation of Diesel Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Werkema, D. D.; Atekwana, E. A.; Rossbach, S.; Sauck, W. A.

    2003-12-01

    The alteration of physical properties by microbial activity in petroleum contaminated sediments was investigated using geophysical techniques in laboratory column experiments. Microbial population growth was determined by the Most Probable Number technique (MPN), community dynamics were determined by the rDNA intergenic spacer analysis (RISA), microbial mineralization of diesel fuel was assessed using dissolved inorganic carbon (DIC), enhanced mineral dissolution was determined by dissolved calcium, and the vertical geoelectrical profile was measured using DC resistivity (converted to conductivity). The columns simulated a saturation profile and contained sanitized, uniform sand with the following experimental treatments: diesel + microbes, diesel, microbes, and no treatment. After 16 months, two important conclusions were drawn. First, the relative increase in magnitude of the parameters measured was highest in the diesel + microbe column (showing at least 110% increase), lower in the diesel column and lowest (actually showing a decrease) in the column with no treatment. Further, the diesel + microbe column showed the greatest increase in oil degrading microbial populations (135%) compared to the column with no treatment, which showed no changes. Secondly, the depth at which the conductivity reached the maximum occurred within and slightly above the diesel layer (which represents a depth that was originally water wet). It was further observed that the relative change in bulk conductivity below the saturated zone is of a lower magnitude than above (<10%). These results suggest the diesel layer, and the zone slightly above, were the most biologically active. Additionally, the diesel + microbe column showed RISA fragments attributed to microbial succession typically observed in organic contaminant plumes. A simple Archie's Law analysis was used to estimate the pore water conductivities necessary to reproduce the bulk conductivity measured. This analysis shows that

  3. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    NASA Astrophysics Data System (ADS)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  4. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...

  5. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...

  6. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...

  7. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...

  8. 40 CFR 761.306 - Sampling 1 meter square surfaces by random selection of halves.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling 1 meter square surfaces by...(b)(3) § 761.306 Sampling 1 meter square surfaces by random selection of halves. (a) Divide each 1 meter square portion where it is necessary to collect a surface wipe test sample into two equal (or as...

  9. Diesel exhaust exposures in port workers.

    PubMed

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number

  10. Diesels in combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, S.E.

    1995-03-01

    This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less

  11. Effects of halving pesticide use on wheat production

    PubMed Central

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-01-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export. PMID:24651597

  12. Effects of halving pesticide use on wheat production

    NASA Astrophysics Data System (ADS)

    Hossard, L.; Philibert, A.; Bertrand, M.; Colnenne-David, C.; Debaeke, P.; Munier-Jolain, N.; Jeuffroy, M. H.; Richard, G.; Makowski, D.

    2014-03-01

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  13. Effects of halving pesticide use on wheat production.

    PubMed

    Hossard, L; Philibert, A; Bertrand, M; Colnenne-David, C; Debaeke, P; Munier-Jolain, N; Jeuffroy, M H; Richard, G; Makowski, D

    2014-03-20

    Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear. Here we use a set of cropping system experiments to quantify the yield losses resulting from a reduction of pesticide use for winter wheat in France. Our estimated yield losses resulting from a 50% reduction in pesticide use ranged from 5 to 13% of the yield obtained with the current pesticide use. At the scale of the whole country, these losses would decrease the French wheat production by about 2 to 3 millions of tons, which represent about 15% of the French wheat export.

  14. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel produced or imported from...

  15. The hard choice for alternative biofuels to diesel in Brazil.

    PubMed

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  16. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  17. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  18. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  19. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  20. CO2 emission benefit of diesel (versus gasoline) powered vehicles.

    PubMed

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J

    2004-06-15

    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.

  1. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust

    PubMed Central

    Maresh, J. Gregory; Campen, Matthew J.; Reed, Matthew D.; Darrow, April L.; Shohet, Ralph V.

    2012-01-01

    Background Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. Objective To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. Methods ApoE (−/−) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m3 vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. Results Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (−/−) mice receiving diesel exhaust at 300 or 1000 μg/m3. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. Conclusions The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution. PMID:21222557

  2. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  3. Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends.

    PubMed

    Chang, Yu-Cheng; Lee, Wen-Jhy; Yang, Hsi-Hsien; Wang, Lin-Chi; Lu, Jau-Huai; Tsai, Ying I; Cheng, Man-Ting; Young, Li-Hao; Chiang, Chia-Jui

    2014-05-20

    The manufacture of water-containing butanol diesel blends requires no excess dehydration and surfactant addition. Therefore, compared with the manufacture of conventional bio-alcohols, the energy consumption for the manufacture of water-containing butanol diesel blends is reduced, and the costs are lowered. In this study, we verified that using water-containing butanol diesel blends not only solves the tradeoff problem between nitrogen oxides (NOx) and particulate matter emissions from diesel engines, but it also reduces the emissions of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polychlorinated diphenyl ethers, polybrominated dibenzo-p-dioxins and dibenzofurans, polybrominated biphenyls and polybrominated diphenyl ethers. After using blends of B2 with 10% and 20% water-containing butanol, the POP emission factors were decreased by amounts in the range of 22.6%-42.3% and 38.0%-65.5% on a mass basis, as well as 18.7%-78.1% and 51.0%-84.9% on a toxicity basis. The addition of water-containing butanol introduced a lower content of aromatic compounds and most importantly, lead to more complete combustion, thus resulting in a great reduction in the POP emissions. Not only did the self-provided oxygen of butanol promote complete oxidation but also the water content in butanol diesel blends could cause a microexplosion mechanism, which provided a better turbulence and well-mixed environment for complete combustion.

  4. Reducing diesel NOx and PM emissions of diesel buses and trucks.

    DOT National Transportation Integrated Search

    2008-07-01

    The objective of the present investigation was development of a high efficiency : selective catalytic reduction (SCR) system for reducing diesel nitrogen oxides (NOx) and : particulate matters of diesel trucks. The investigation was divided into two ...

  5. Steam reforming of commercial ultra-low sulphur diesel

    NASA Astrophysics Data System (ADS)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  6. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.

    PubMed

    Holmén, Britt A; Ayala, Alberto

    2002-12-01

    baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.

  7. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  8. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  9. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  10. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  11. Heavy-Duty Diesel Fuel Analysis

    EPA Pesticide Factsheets

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  12. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  13. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  14. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  15. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  16. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  17. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  18. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  19. 30 CFR 57.5075 - Diesel particulate records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel particulate records. 57.5075 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5075 Diesel particulate records. (a) The table entitled “Diesel Particulate Matter Recordkeeping...

  20. 30 CFR 57.5075 - Diesel particulate records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel particulate records. 57.5075 Section 57..., Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5075 Diesel particulate records. (a) The table entitled “Diesel Particulate Matter Recordkeeping...

  1. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a sulfur...

  3. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a sulfur...

  4. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  5. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  6. More diesel generation could further fossil fuel economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffs, E.

    1976-05-01

    Following the introduction last year of their Seahorse medium-speed diesel engine, the manufacturers, Hawthorn Leslie (Engineers) Ltd., of Newcastle upon Tyne, have made an extensive analysis of the resource effectiveness of diesel-driven generating sets. Though directed towards the raising of funds to construct a demonstration power plant in the UK, the analysis is relevant elsewhere. In addition, the firm has now developed an energy recovery package for use with the basic engine to further improve the overall thermal efficiency of the system. Looked at in a British context, the basis of Hawthorn Leslie's case is this. The importance of coalmore » in electicity generation is evidence of its value as a national resource. Now that North Sea oil has emerged as a national energy resource, it must be used to the greatest effect; this means building diesel power stations to take over the mid-load cycle of utility operations. The analysis compares five prime movers: gas turbines, diesel engines, and steam turbines powered by oil- or coal-fired boilers, or thermal reactors. Capital and fixed running costs are shown. The diesel engine is the most efficient prime mover for electricity generation. With this novel energy recovery principle, greater utilization of fuel energy can be realized if direct heating is not required. (MCW)« less

  7. "Diesel siphoner's lung": Exogenous lipoid pneumonia following hydrocarbon aspiration.

    PubMed

    Venkatnarayan, Kavitha; Madan, Karan; Walia, Ritika; Kumar, Jaya; Jain, Deepali; Guleria, Randeep

    2014-01-01

    Lipoid pneumonia is an unusual and uncommon form of pneumonia caused by aspiration of fatty substances. Hydrocarbon pneumonitis following aspiration of diesel is a form of exogenous lipoid pneumonia wherein, aspirated diesel reaches the alveoli rapidly without evoking any significant cough, but initiates an intense inflammatory reaction in the pulmonary parenchyma. This is a rarely described clinical scenario, although the practice of diesel siphonage from automobiles is a common practice in developing countries. We herein describe a 40-year-old male patient, in whom the diagnosis of lipoid pneumonia was delayed for a long duration and highlight the importance of taking a detailed occupational exposure history in patients with non-resolving pneumonia to rule out the underlying possibility of this rare clinical entity.

  8. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  9. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content standard...

  10. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content standard...

  11. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  12. Zero-sulfur diesel fuel from non-petroleum resources : the key to reducing U.S. oil imports.

    DOT National Transportation Integrated Search

    2012-09-01

    Zero-sulfur diesel fuel of the highest quality, the fuel used in this project, can be made by Fischer-Tropsch (FT) synthesis from many non-petroleum resources, including natural gas, which is increasingly abundant in the United States. Zero-sulfur FT...

  13. Dual-tail approach to discovery of novel carbonic anhydrase IX inhibitors by simultaneously matching the hydrophobic and hydrophilic halves of the active site.

    PubMed

    Hou, Zhuang; Lin, Bin; Bao, Yu; Yan, Hai-Ning; Zhang, Miao; Chang, Xiao-Wei; Zhang, Xin-Xin; Wang, Zi-Jie; Wei, Gao-Fei; Cheng, Mao-Sheng; Liu, Yang; Guo, Chun

    2017-05-26

    Dual-tail approach was employed to design novel Carbonic Anhydrase (CA) IX inhibitors by simultaneously matching the hydrophobic and hydrophilic halves of the active site, which also contains a zinc ion as part of the catalytic center. The classic sulfanilamide moiety was used as the zinc binding group. An amino glucosamine fragment was chosen as the hydrophilic part and a cinnamamide fragment as the hydrophobic part in order to draw favorable interactions with the corresponding halves of the active site. In comparison with sulfanilamide which is largely devoid of the hydrophilic and hydrophobic interactions with the two halves of the active site, the compounds so designed and synthesized in this study showed 1000-fold improvement in binding affinity. Most of the compounds inhibited the CA effectively with IC 50 values in the range of 7-152 nM. Compound 14e (IC 50 : 7 nM) was more effective than the reference drug acetazolamide (IC 50 : 30 nM). The results proved that the dual-tail approach to simultaneously matching the hydrophobic and hydrophilic halves of the active site by linking hydrophobic and hydrophilic fragments was useful for designing novel CA inhibitors. The effectiveness of those compounds was elucidated by both the experimental data and molecular docking simulations. This work laid a solid foundation for further development of novel CA IX inhibitors for cancer treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  15. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  16. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  17. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  18. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  19. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the motor vehicle diesel fuel and diesel fuel additive distribution systems? 80.592 Section 80.592... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... the motor vehicle diesel fuel and diesel fuel additive distribution systems? (a) Records that must be...

  20. Midwest Clean Diesel Initiative

    EPA Pesticide Factsheets

    The Midwest Clean Diesel Initiative (MCDI) is a collaboration of federal, state and local agencies, along with communities, non-profit organizations and private companies working together by reducing exposure to emissions from diesel engines

  1. Diesel Mechanics: Fundamentals.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the first in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the basic concepts related to employment in a diesel trade. Six sections contain 29 units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities for…

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  3. Clean Diesel National Grants

    EPA Pesticide Factsheets

    National Funding Assistance Program administers competitive grants for clean diesel projects. The Diesel Emissions Reduction Act (DERA) appropriates funds for these projects. Publication numbers: EPA-420-B-13-025 and EPA-420-P-11-001.

  4. Learn About Clean Diesel

    EPA Pesticide Factsheets

    The clean diesel program is designed to aggressively reduce the pollution emitted from diesel engines across the country through the implementation of varied control strategies and the aggressive involvement of national, state, and local partners.

  5. Clean Diesel Tribal Grants

    EPA Pesticide Factsheets

    The DERA Tribal Program awards clean diesel grants specifically for tribal nations. The Diesel Emissions Reduction Act (DERA) appropriates funds for these projects. Publication Numbers: EPA-420-B-13-025 and EPA-420-P-11-001.

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  7. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  8. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    PubMed

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  9. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  10. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  11. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  12. 30 CFR 72.520 - Diesel equipment inventory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...

  13. 30 CFR 72.520 - Diesel equipment inventory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...

  14. 30 CFR 72.520 - Diesel equipment inventory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...

  15. 30 CFR 72.520 - Diesel equipment inventory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...

  16. 30 CFR 72.520 - Diesel equipment inventory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel equipment inventory. 72.520 Section 72... HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment...

  17. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  18. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety...

  19. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety...

  20. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? 80.550 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? (a) A motor...

  1. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? 80.550 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? (a) A motor...

  2. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transport of diesel fuel. 75.1906 Section 75... diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety... fuel storage facilities. (c) Safety cans that leak must be promptly removed from the mine. (d) Diesel...

  3. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    PubMed

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  4. Diesel Powered School Buses: An Update.

    ERIC Educational Resources Information Center

    Gresham, Robert

    1984-01-01

    Because diesel engines are more economical and longer-lasting than gasoline engines, school districts are rapidly increasing their use of diesel buses. Dependence on diesel power, however, entails vulnerability to cost increases due to the unreliability of crude oil supplies and contributes to air pollution. (MCG)

  5. Diesel engine exhaust oxidizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  6. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  7. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  8. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less

  9. Fine urban and precursor emissions control for diesel urban transit buses.

    PubMed

    Lanni, Thomas

    2003-01-01

    Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.

  10. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  12. Diesel-powered Passenger Cars and Light Trucks

    DOT National Transportation Integrated Search

    2015-10-01

    Diesel-powered automobiles are in the news following emission concerns raised by the U.S. Environmental Protection Agency. This fact sheet contains background information on diesel-powered motor vehicles and diesel fuel.

  13. Carbonyl compounds emitted by a diesel engine fuelled with diesel and biodiesel-diesel blends: Sampling optimization and emissions profile

    NASA Astrophysics Data System (ADS)

    Guarieiro, Lílian Lefol Nani; Pereira, Pedro Afonso de Paula; Torres, Ednildo Andrade; da Rocha, Gisele Olimpio; de Andrade, Jailson B.

    Biodiesel is emerging as a renewable fuel, hence becoming a promising alternative to fossil fuels. Biodiesel can form blends with diesel in any ratio, and thus could replace partially, or even totally, diesel fuel in diesel engines what would bring a number of environmental, economical and social advantages. Although a number of studies are available on regulated substances, there is a gap of studies on unregulated substances, such as carbonyl compounds, emitted during the combustion of biodiesel, biodiesel-diesel and/or ethanol-biodiesel-diesel blends. CC is a class of hazardous pollutants known to be participating in photochemical smog formation. In this work a comparison was carried out between the two most widely used CC collection methods: C18 cartridges coated with an acid solution of 2,4-dinitrophenylhydrazine (2,4-DNPH) and impinger bottles filled in 2,4-DNPH solution. Sampling optimization was performed using a 2 2 factorial design tool. Samples were collected from the exhaust emissions of a diesel engine with biodiesel and operated by a steady-state dynamometer. In the central body of factorial design, the average of the sum of CC concentrations collected using impingers was 33.2 ppmV but it was only 6.5 ppmV for C18 cartridges. In addition, the relative standard deviation (RSD) was 4% for impingers and 37% for C18 cartridges. Clearly, the impinger system is able to collect CC more efficiently, with lower error than the C18 cartridge system. Furthermore, propionaldehyde was nearly not sampled by C18 system at all. For these reasons, the impinger system was chosen in our study. The optimized sampling conditions applied throughout this study were: two serially connected impingers each containing 10 mL of 2,4-DNPH solution at a flow rate of 0.2 L min -1 during 5 min. A profile study of the C1-C4 vapor-phase carbonyl compound emissions was obtained from exhaust of pure diesel (B0), pure biodiesel (B100) and biodiesel-diesel mixtures (B2, B5, B10, B20, B50, B

  14. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  16. Assessing exposure to diesel exhaust particles: a case study.

    PubMed

    See, Siao Wei; Balasubramanian, Rajasekhar; Yang, Tzuo Sern; Karthikeyan, Sathrugnan

    2006-11-01

    The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this study, the physical (mass and number concentration, and size distribution) and chemical (PAHs) properties were investigated at a major bus interchange in Singapore, influenced only by diesel exhausts. Number concentration and size distribution of particles were determined in real time, while the mass concentrations of PM2.5, and PAHs were measured during operating and nonoperating hours. The average mass concentrations of PM2.5 and PAHs increased by a factor of 2.34 and 5.18, respectively, during operating hours. The average number concentration was also elevated by a factor of 5.07 during operating hours. This increase in the concentration of PM2.5 particles and their chemical constituents during operating hours was attributable to diesel emissions from in-use buses based on the particle size analysis, correlation among PAHs, and the commonly used PAHs diagnostic ratios. To evaluate the potential health threat due inhalation of air pollutants released from diesel engines, the incremental lifetime cancer risk was also calculated for a maximally exposed individual. The findings indicate that the air quality at the bus interchange poses adverse health effects.

  17. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions

    PubMed Central

    Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.

    2012-01-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031

  18. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions.

    PubMed

    Gentner, Drew R; Isaacman, Gabriel; Worton, David R; Chan, Arthur W H; Dallmann, Timothy R; Davis, Laura; Liu, Shang; Day, Douglas A; Russell, Lynn M; Wilson, Kevin R; Weber, Robin; Guha, Abhinav; Harley, Robert A; Goldstein, Allen H

    2012-11-06

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.

  19. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  20. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    PubMed

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  1. Clean Diesel National Grants Awarded

    EPA Pesticide Factsheets

    National Funding Assistance Program administers competitive grants for clean diesel projects. The Diesel Emissions Reduction Act (DERA) appropriates funds for these projects. Publication numbers: EPA-420-B-13-025 and EPA-420-P-11-001.

  2. Russia's black carbon emissions: focus on diesel sources

    NASA Astrophysics Data System (ADS)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  3. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  4. Diesel Mechanics: Electrical Systems.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the second in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to electricity and circuitry in a diesel trade. The text contains nine units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested…

  5. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  6. Recent Developments in BMW's Diesel Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in themore » diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to

  7. AUTOMOTIVE DIESEL MAINTENACE 1. UNIT XV, I--MAINTAINING THE COOLING SYSTEM, CUMMINS DIESEL ENGINE, I--UNIT INSTALLATION--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…

  8. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  9. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust

  10. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety cans...

  11. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dispensing of diesel fuel. 75.1905 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety cans...

  12. Comparison of NOx emissions from China III and China IV in-use diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi

    2015-12-01

    To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.

  13. Russia's black carbon emissions: focus on diesel sources

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-12

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  14. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  15. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  16. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel vehicles and engines Its use may damage these vehicles and engines. For use in all other diesel vehicles and engines. (ii) 15 ppm sulfur diesel fuel. From June 1, 2006 through May 31, 2010. ULTRA-LOW... and engines. Recommended for use in all diesel vehicles and engines. (iii) 15 ppm sulfur diesel fuel...

  17. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel... fuel purchased for use in diesel-powered equipment underground meets these requirements. (b) Flammable...

  18. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel... fuel purchased for use in diesel-powered equipment underground meets these requirements. (b) Flammable...

  19. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  20. Production of Renewable Diesel Fuel

    DOT National Transportation Integrated Search

    2012-06-01

    Vegetable oils have been investigated as a way to provide a renewable source for diesel fuel. A successful approach to using : vegetable oils in diesel engines has been transesterification of the oils with simple alcohols to produce mono-alkyl esters...

  1. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  2. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  3. A probabilistic maintenance model for diesel engines

    NASA Astrophysics Data System (ADS)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  4. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  5. On the Ignition and Combustion Variances of Jet Propellant-8 and Diesel Fuel in Military Diesel Engines

    DTIC Science & Technology

    2008-09-22

    NA Displacement (cc) 1357 6468 Operating speeds (rpm) 800 – 3000 1500 – 3400 IMEP range (bar) 5 – 27 2 – 10 Boost system Shop air Turbocharger ...Council Diesel Fuel Workshop. Pickett, L.M. and Hoogterp, L., “ Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions”, SAE...N., 1981, "Transient Performance Simulation and Analysis of Turbocharged Diesel Engines", SAE Paper 810338.

  6. Ralphs Grocery EC-Diesel Truck Fleet: Final Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-02-01

    DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

  7. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway...

  8. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  9. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  10. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIV, I--MAINTAINING THE AIR SYSTEM, CUMMINS DIESEL ENGINE, II--UNIT REMOVAL--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…

  12. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  13. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2009-07-15

    This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.

  14. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    PubMed

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  15. 30 CFR 75.1908 - Nonpermissible diesel-powered equipment; categories.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Nonpermissible diesel-powered equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1908 Nonpermissible diesel-powered equipment; categories. (a) Heavy-duty diesel-powered...

  16. 30 CFR 75.1908 - Nonpermissible diesel-powered equipment; categories.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Nonpermissible diesel-powered equipment... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1908 Nonpermissible diesel-powered equipment; categories. (a) Heavy-duty diesel-powered...

  17. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    PubMed

    Mutlu, Esra; Nash, David G; King, Charly; Krantz, Todd Q; Preston, William T; Kooter, Ingeborg M; Higuchi, Mark; DeMarini, David; Linak, William P; Gilmour, M Ian

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4 h/day, 5 days/week for up to 6 weeks. Exposures were controlled by dilution air to obtain low (50 µg/m(3)), medium (150 µg/m(3)) and high (500 µg/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 ± 0.7 mg/m(3)) were 30% lower than those of the B0 fuel (28.0 ± 1.5 mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies.

  18. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    PubMed

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Preparation and emission characteristics of ethanol-diesel fuel blends.

    PubMed

    Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  20. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  2. Mobility of diesel versus non-diesel coal miners: some evidence on the healthy worker effect.

    PubMed Central

    Ames, R G; Trent, B

    1984-01-01

    Workers who are particularly susceptible to the effects of their occupational exposure, from the perspective of the healthy worker effect, soon leave the workplace. The result of this mobility, called survival bias, is that cross sectional studies based on the survivors underestimate the true risk of occupational exposures. Two questions are addressed in this empirical study of the "survival bias" component of the "healthy worker" effect. Do miners with respiratory impairment or symptoms disproportionately leave jobs that have a potentially harmful respiratory exposure? And does the presence of an additional potentially harmful respiratory exposure, in this case diesel emissions, accelerate the rate of mobility for miners with respiratory impairment or symptoms? No confirmation was found for the survival effect in a study of 738 diesel and 420 non-diesel US underground coal miners. No additional increment in mobility was associated with exposure to both coal mine dust and diesel emissions. PMID:6722047

  3. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of 65...

  4. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  5. Potential of Diesel Engines, Fuels and Lubrication Technology

    DOT National Transportation Integrated Search

    1980-03-01

    The chemical and physical properties of diesel fuel are reviewed along with their relationships to the fuel economy and emissions of diesel powered automobiles and light trucks. The fuels considered include both conventional and alternative diesel fu...

  6. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  7. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    PubMed

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  8. Careers for the 70's in Diesel Mechanics

    ERIC Educational Resources Information Center

    Osborne, Barbara

    1974-01-01

    Increased employment outlook for diesel mechanics is probably due to the fact that most industries using diesel engines in large numbers are expected to expand their activities. The training and workday of one diesel mechanic is described. (MS)

  9. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    PubMed Central

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597

  10. Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.

    PubMed

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  11. 30 CFR 75.1916 - Operation of diesel-powered equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operation of diesel-powered equipment. 75.1916... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1916 Operation of diesel-powered equipment. (a) Diesel-powered equipment shall be operated at a speed that is...

  12. 30 CFR 75.1916 - Operation of diesel-powered equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Operation of diesel-powered equipment. 75.1916... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1916 Operation of diesel-powered equipment. (a) Diesel-powered equipment shall be operated at a speed that is...

  13. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  14. Diesel Fundamentals. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Clark, Elton; And Others

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains 4 sections and 19 units. Section A--Orientation includes the following units: introduction to diesel mechanics and shop safety; basic shop tools; test equipment and service tools; fasteners; bearings; and seals. Section B--Engine Principles and…

  15. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    PubMed

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  16. Development of a Laminar Flame Test Facility for Bio-Diesel Characterization

    NASA Astrophysics Data System (ADS)

    Tan, Giam

    2009-11-01

    The relevance of applying testing standards established for diesel fuels to evaluate bio-diesel fuels motivates the design and fabrication of a vertical combustion chamber to be able to measure flame speeds of the varying strains of bio-diesel fuels and to attain more detailed kinetics information for biodiesel fuel. Extensive research is ongoing to understand the impact of fundamental combustion properties such as ignition characteristics, laminar flame speed, strain sensitivity and extinction strain rates on emission and stability characteristics of the combustor. It is envisioned that further flame studies will provide key kinetics validation data for biodiesel-like molecules -- the current test rig was developed with provisions for optical access and for future spectroscopic measurements. The current work focuses on laminar flame speeds since this important parameter contains fundamental information regarding reactivity, diffusivity, and exothermicity of the fuel mixture. It has a significant impact upon the propensity of a flame to flashback and blowoff and also serves as a key scaling parameter for other important combustion characteristics, such as the turbulent flame structure, turbulent flame speed and flame's spatial distribution etc. The flame experiments are challenging as the tested bio-fuel must be uniformly atomized and uniformly dispersed.

  17. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905-1 Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...

  18. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for

  19. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor vehicle...

  20. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.

    PubMed Central

    Wei, E T; Shu, H P

    1983-01-01

    The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732

  1. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary diesel equipment underground. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4561 Stationary diesel equipment underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and (b...

  2. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

  3. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  4. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health

  5. Diesel Engine Technology Update

    DTIC Science & Technology

    1987-07-01

    AFWAL-TR-87-20 54 83-021-DET DIESEL ENGINE TECHNOLOGY UPDATE Kaupert, Andrew W., Lt. Col. USAFR Air Force Reserves Detroit Detachment 2 Ann Arbor, MI...sponsored adiabatic turbocompound diesel engine . One goal was the use of no water or air cooling for the engine to enable the minimized heat transfer from...sector with severe • impact on the stationary engine segment of the marketplace. The effect of this proposed legislation on Air Force fuel quality is

  6. Summary and analysis of the highway diesel fuel 2003 pre-compliance reports.

    DOT National Transportation Integrated Search

    2003-10-01

    Any refiner or importer planning to produce : or import highway diesel fuel in 2006-10, is : required to submit to the U.S. Environmental Protection Agency (EPA or the Agency) : pre-compliance reports. These reports are due annually from June 2003 th...

  7. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  8. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be...

  9. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  10. Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska Final Rule

    EPA Pesticide Factsheets

    This final rule will implement the requirements for sulfur, cetane and aromatics for highway, nonroad, locomotive and marine diesel fuel produced in, imported into, and distributed or used in the rural areas of Alaska.

  11. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  12. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements...

  13. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements...

  14. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall...

  15. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  16. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  17. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  18. Evaluation of Diesel Engine Performance with Intake and Exhaust System Throttling : Volume 1. Text and Appendixes A through H.

    DOT National Transportation Integrated Search

    1975-11-01

    The diesel engine itself is an important source of diesel powered vehicle noise, and becomes dominant after proper treatment of intake/exhaust and cooling system noise at vehicle speeds below fifty miles per hour. An investigation is reported, in two...

  19. Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil.

    PubMed

    Horel, Agota; Schiewer, Silke

    2014-08-01

    To achieve effective bioremediation within short warm seasons of cold climates, microbial adaptation periods to the contaminant should be brief. The current study investigated growth phases for soil spiked with diesel, Syntroleum, or fish biodiesel, using microbial inocula adapted to the specific substrates. For modeling hydrocarbon degradation, multi-phase first order kinetics was assumed, comparing linear regression with nonlinear parameter optimization of rate constants and phase durations. Lag phase periods of 5 to >28d were followed by short and intense exponential growth phases with high rate constants (e.g. from kFish=0.0013±0.0002 to kSyntr=0.015±0.001d(-1)). Hydrocarbon mineralization was highest for Syntroleum contamination, where up to three times higher cumulative CO2 production was achieved than for diesel fuel, with fish biodiesel showing initially the slowest degradation. The amount of hydrocarbons recovered from the soil by GC-MS decreased in the order fish biodiesel>diesel>Syntroleum. During initial weeks, biodegradation was higher for microbial inocula adapted to a specific fuel type, whereby the main effect of the inoculum was to shorten the lag phase duration; however, the inoculum's importance diminished after daily respiration peaked. In conclusion, addition of an inoculum to increase biodegradation rates was not necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  1. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  2. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel...

  3. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  4. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  5. Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin

    2014-08-01

    It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.

  6. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  7. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  8. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  9. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1902 Underground diesel fuel storage—general requirements. (a) All diesel fuel must be stored...

  10. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel.... (b) Diesel fuel that is designated for use only in Alaska and is used only in Alaska, is exempt from...

  11. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel.... (b) Diesel fuel that is designated for use only in Alaska and is used only in Alaska, is exempt from...

  12. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  13. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.583 What...

  14. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  15. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  16. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  17. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  18. [Organic brain damage in garage workers after long-term exposure to diesel exhaust fumes].

    PubMed

    Jensen, L K; Klausen, H; Elsnab, C

    1989-09-04

    Diesel motors are employed to an increasing extent for occupational transport and fumes from diesel driven vehicles constitute an increasing problem as regards atmospheric pollution but, in particular, they constitute a considerable risk to health for the workers exposed to diesel exhaust fumes in their daily work. In the clinic for occupational medicine, The University Hospital, Copenhagen, 14 garage workers were examined. Eleven of these had been exposed to great quantities of diesel exhaust fumes for 2 to 29 years. All 11 presented acute symptoms due to diesel exhaust fumes in the form of headache, vertigo, fatigue, irritation of mucous membranes, nausea, abdominal discomfort or diarrhoea. Seven persons had been employed for more than five years as garage workers. Six complained of failure of memory, difficulty in concentration, irritability, increased sleep requirement, psychological changes or reduced libido. Neuropsychological examination was undertaken in these six persons and in five of them organic brain damage, mainly of slight extent, was demonstrated. Diesel exhaust fumes contain many toxic substances: carbon monoxide, nitrous gases, sulphur oxides, aldehydes and hydrocarbons. It is not possible to indicate a single compound which is responsible for possible brain damage and a combination effect may well be concerned. This is a casuistic material. Only few investigations have previously been available which illustrated a possible connection between the neurotoxic effects and, in particular, brain damage. It is now considered important to emphasize that this may constitute a problem on exposure to diesel exhaust fumes.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  20. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  1. Diesel exhaust causing low-dose irritant asthma with latency?

    PubMed

    Adewole, Femi; Moore, Vicky C; Robertson, Alastair S; Burge, P S

    2009-09-01

    Diesel exhaust exposure may cause acute irritant-induced asthma and potentiate allergen-induced asthma. There are no previous reports of occupational asthma due to diesel exhaust. To describe occupational asthma with latency in workers exposed to diesel exhaust in bus garages. The Shield database of occupational asthma notifications in the West Midlands, UK, was searched between 1990 and 2006 for workers where diesel exhaust exposure was thought to be the cause of the occupational asthma. Those without other confounding exposures whose occupational asthma was validated by serial peak expiratory flow (PEF) analysis using Oasys software were included. Fifteen workers were identified with occupational asthma attributed to diesel exhaust. Three had validated new-onset asthma with latency. All worked in bus garages where diesel exhaust exposure was the only likely cause of their occupational asthma. Occupational asthma was confirmed by measures of non-specific reactivity and serial measurements of PEF with Oasys scores of 2.9, 3.73 and 4 (positive score > 2.5). The known non-specific irritant effects of diesel exhaust suggest that this is an example of low-dose irritant-induced asthma and that exposures to diesel exhaust in at least some bus garages are at a sufficient level to cause this.

  2. Philippine refiner completes diesel desulfurization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealedmore » a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.« less

  3. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  4. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  5. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    PubMed

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  6. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  7. Variability of particle number emissions from diesel and hybrid diesel-electric buses in real driving conditions.

    PubMed

    Sonntag, Darrell B; Gao, H Oliver; Holmén, Britt A

    2008-08-01

    A linear mixed model was developed to quantify the variability of particle number emissions from transit buses tested in real-world driving conditions. Two conventional diesel buses and two hybrid diesel-electric buses were tested throughout 2004 under different aftertreatments, fuels, drivers, and bus routes. The mixed model controlled the confounding influence of factors inherent to on-board testing. Statistical tests showed that particle number emissions varied significantly according to the after treatment, bus route, driver, bus type, and daily temperature, with only minor variability attributable to differences between fuel types. The daily setup and operation of the sampling equipment (electrical low pressure impactor) and mini-dilution system contributed to 30-84% of the total random variability of particle measurements among tests with diesel oxidation catalysts. By controlling for the sampling day variability, the model better defined the differences in particle emissions among bus routes. In contrast, the low particle number emissions measured with diesel particle filters (decreased by over 99%) did not vary according to operating conditions or bus type but did vary substantially with ambient temperature.

  8. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  9. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  10. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    NASA Astrophysics Data System (ADS)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  11. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  12. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... not less than 0.031 inch (USSG 22) may be used for tanks up to 30-gallon capacity. 4 For diesel tanks...

  13. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  14. Diesel Mechanics: Meeting Tomorrow's Training Needs.

    ERIC Educational Resources Information Center

    Schulz, Erich J.

    1978-01-01

    As the use of diesel engines in motor vehicles and heavy equipment increases, the need for skilled diesel mechanics will increase. The author describes education and training needs in schools and industry, gives guidelines for trade and technical curricula, and outlines the kinds of training materials to be developed. (MF)

  15. Diesel Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an intermediate diesel mechanics course (two semesters, 3 hours daily) designed for high school students who upon completion would be ready for an on-the-job training experience in diesel service and repair. Through…

  16. Clean Diesel National Grants Awarded 2008-2011

    EPA Pesticide Factsheets

    National Funding Assistance Program administers competitive grants for clean diesel projects. The Diesel Emissions Reduction Act (DERA) appropriates funds for these projects. Publication numbers: EPA-420-B-13-025 and EPA-420-P-11-001.

  17. [Carcinogenic effects of diesel emission: an epidemiological review].

    PubMed

    Szadkowska-Stańczyk, I; Ruszkowska, J

    2000-01-01

    The results of recent epidemiological studies and meta-analysis relating to carcinogenic effects of diesel emissions in exposed populations were reviewed. Statistical, but still not causal association between risk of lung cancer and occupational exposure to diesel emissions was found in a great number of studies under review. Long-term exposure to diesel exhausts (> 20 years) increases by 30-40% lung cancer risk in workers of the transport industry: truck drivers, diesel engine mechanics, locomotive engineers and brakesmen. The results are inconsistent among heavy equipment operators, bus drivers and miners. Relative risk of lung cancer among workers occupationally exposed to diesel emission may be comparable with that of environmental tobacco smoke. Further research is also needed in the area of carcinogenic mechanisms, and biomarkers of exposure should be developed and validated before reliable quantitative estimates of risk of harmful effects to the human health in occupational setting are made.

  18. Disrupting the immune system by diesel pollution

    EPA Science Inventory

    For 25 years, clinical, animal and epidemiological studies have shown associations between diesel exhaust and allergic disease. Diesel particles have the potential to increase allergic symptoms, increase cellular inflammation enhance allergic antibodies and prime allergic sensit...

  19. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  20. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    EPA Science Inventory

    Rationale:

    Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  1. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  2. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility the diesel fuel was produced or imported, except as provided in paragraph (g)(2) of this section... detected at a refinery or importer's facility, the refiner or importer shall be deemed in violation. (b... detected at a carrier's facility, whether in a transport vehicle, in a storage facility, or elsewhere at...

  3. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility the diesel fuel was produced or imported, except as provided in paragraph (g)(2) of this section... detected at a refinery or importer's facility, the refiner or importer shall be deemed in violation. (b... detected at a carrier's facility, whether in a transport vehicle, in a storage facility, or elsewhere at...

  4. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility the diesel fuel was produced or imported, except as provided in paragraph (g)(2) of this section... detected at a refinery or importer's facility, the refiner or importer shall be deemed in violation. (b... detected at a carrier's facility, whether in a transport vehicle, in a storage facility, or elsewhere at...

  5. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-chuan; Cai, Zhen-bing; Peng, Jin-fang; Zhu, Min-hao

    2016-02-01

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives.

  6. Particle-bound benzene from diesel engine exhaust.

    PubMed

    Muzyka, V; Veimer, S; Shmidt, N

    1998-12-01

    The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.

  7. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  8. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less

  9. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.

    PubMed

    Kim, S H; Fletcher, R A; Zachariah, M R

    2005-06-01

    The purpose of this paper is to address the differences observed in the oxidative kinetics between flame and diesel derived soots. In particular, it has been observed that flame soot has a significantly higher activation energy for oxidation than does diesel soot. The hypothesis tested in this paper is that metals, possibly coming from lubricating oils, within diesel generated soot particles may be responsible for this effect. This is supported by the fact that addition of metal additives to diesel fuel is shown to have no effect on the activation energy of soot oxidation. The subject of this paper lies in testing the hypothesis by adding metal directly to a flame and extracting oxidation kinetics. Using a high temperature oxidation tandem differential mobility analyzer (HTO-TDMA) we extract particle size dependent kinetics for the oxidation of flame-derived soot doped with and without iron. We found that indeed addition of iron to a flame reduced the activation energy significantly from approximately 162 +/- 3 kJ/mol to approximately 116 +/- 3 kJ/mol, comparable with diesel engine generated soot with an activation energy approximately 110 kJ/mol. These results are consistent with the idea that small quantities of metals during diesel combustion may play an important role in soot abatement.

  10. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  11. Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel

    DTIC Science & Technology

    2012-05-12

    FAME diesel is a renewable fuel produced from vegetable oils made by converting triglyceride oils to methyl (or ethyl) esters by... oil from which the biodiesel was made (Knothe 2004; Barabas and Todorut 2011). FAME diesel mixes easily with petro- leum diesel (Chotwichien et al...Materials and methods FAME diesel A previously characterized soy -based diesel was obtained from US Navy Fuel and Lubes, Patuxent River, MD (Lee

  12. Trimode Power Converter optimizes PV, diesel and battery energy sources

    NASA Astrophysics Data System (ADS)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  13. Green fuel utilization for diesel engine, combustion and emission analysis fuelled with CNSO diesel blends with Diethyl ether as additive

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq

    2017-05-01

    The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.

  14. Stability of Dihydroartemisinin-Piperaquine Tablet Halves During Prolonged Storage Under Tropical Conditions.

    PubMed

    Hodel, Eva Maria; Kaur, Harparkash; Terlouw, Dianne J

    2017-02-08

    Dihydroartemisinin-piperaquine (DP) is recommended for the treatment of uncomplicated malaria, used in efforts to contain artemisinin resistance, and increasingly considered for mass drug administration. Because of the narrow therapeutic dose range and available tablet strengths, the manufacturers and World Health Organization recommended regimens involve breaking tablets into halves to accurately dose children according to body weight. Use of tablet fractions in programmatic settings under tropical conditions requires a highly stable product; however, the stability of DP tablet fractions is unknown. We aged full and half DP (Eurartesim ® ) tablets in a stability chamber at 30°C and 70% humidity level. The active pharmaceutical ingredients dihydroartemisinin and piperaquine remained at ≥ 95% over the 3 months' period of ageing in light and darkness. These findings are reassuring for DP, but highlight the need to assess drug stability under real-life settings during the drug development process, particularly for key drugs of global disease control programs. © The American Society of Tropical Medicine and Hygiene.

  15. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static...

  16. 30 CFR 77.1902-1 - Permissible diesel-powered equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible diesel-powered equipment. 77.1902-1 Section 77.1902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Slope and Shaft Sinking § 77.1902-1 Permissible diesel-powered equipment. Diesel-powered...

  17. 30 CFR 77.1902-1 - Permissible diesel-powered equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible diesel-powered equipment. 77.1902-1 Section 77.1902-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Slope and Shaft Sinking § 77.1902-1 Permissible diesel-powered equipment. Diesel-powered...

  18. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  19. Diesel Exhaust in Miners Study: Q&A

    Cancer.gov

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  20. Diesel Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 12 terminal objectives for a basic diesel mechanics course. The course is designed as a two-semester (2 hour daily) course for 10th graders interested in being diesel service and repair mechanics; it would serve as the first year of a 3-year…

  1. The Diesel as a Vehicle Engine

    NASA Technical Reports Server (NTRS)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  2. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  3. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  4. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  5. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  6. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  7. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  8. CROSS-SPECIES DOSE EXTRAPOLATION FOR DIESEL EMISSIONS

    EPA Science Inventory

    Models for cross-species (rat to human) dose extrapolation of diesel emission were evaluated for purposes of establishing guidelines for human exposure to diesel emissions (DE) based on DE toxicological data obtained in rats. Ideally, a model for this extrapolation would provide...

  9. Desulfurization of oxidized diesel using ionic liquids

    NASA Astrophysics Data System (ADS)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  10. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be— (1...

  11. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM diesel...

  12. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM diesel...

  13. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    NASA Astrophysics Data System (ADS)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  14. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    PubMed

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  15. Biodegradability of commercial and weathered diesel oils

    PubMed Central

    Mariano, Adriano Pinto; Bonotto, Daniel Marcos; de Franceschi de Angelis, Dejanira; Pirôllo, Maria Paula Santos; Contiero, Jonas

    2008-01-01

    This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 -dichlorophenol indophenol (DCPIP) and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH) in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated. PMID:24031193

  16. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel inmore » on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.« less

  17. Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi.

    PubMed

    Li, You-Qing; Liu, Hong-Fang; Tian, Zhen-Le; Zhu, Li-Hua; Wu, Ying-Hui; Tang, He-Qing

    2008-06-01

    To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi. Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost complete degradation of diesel oil, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  18. Se enhanced phytoremediation of diesel in soil by Trifolium repens.

    PubMed

    Xi, Ying; Song, Yizhi; Johnson, David M; Li, Meng; Liu, Huigang; Huang, Yingping

    2018-06-15

    A pot-culture experiment was conducted to assess the effects of selenium (Se) (0.5 mg kg -1 ) on Trifolium repens exposed to various levels of diesel (0, 15, 20, 25 g kg -1 ) for 30 days and 60 days. Exposure to diesel for 60 day led to concentration-dependent decreases in root morphogenesis, chlorophyll content and CAT activity, and to dose-dependent increases in MDA content and SOD activity. The residual diesel concentration in soil increased and the removal efficiency decreased with soil diesel concentration. The chlorophyll content and residual diesel concentration after were slightly higher at 30 days than at 60days. Application of Se to soil increased Trifolium repens tolerance to diesel and significantly increased the phytoremediation effect at 60 days, with a removal rate of 36 ± 8%, compared to 28 ± 7% in the control. These results contribute to the ongoing effort to develop an effective phytoremediation system for soils highly contaminated by diesel. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Non-enzymatic browning due to storage is reduced by using clarified lemon juice as acidifier in industrial-scale production of canned peach halves.

    PubMed

    Saura, Domingo; Vegara, Salud; Martí, Nuria; Valero, Manuel; Laencina, José

    2017-06-01

    Non-enzymatic browning (NEB) in canned peach halves in syrup during storage was investigated. Absorbance at 420 nm ( A 420 ), colorimetric parameters (CIE Lab , TCD and La / b ), fructose, glucose and sucrose, total sugar, organic acids, ascorbic acid (AA), dehydroascorbic acid, and 2,3-diketogulonic acid were used to estimate the extent of NEB during 1 year of storage at 30 °C and the relationships between each of these parameters and A 420 were established. The investigation was carried out to explore the possibility of replacing the E330 commonly used as acidifier by turbid or clarified lemon juice (TLJ or CLJ) to obtain a product having good nutrition with better retention of quality. The a , La / b , glucose and fructose were positively correlated with A 420 and all proved to be good indicators of browning development. Overall results showed that replacement of acidifier E330 with CLJ for controlling pH in canned peach halves in syrup had some advantages.

  20. Total reflection X-ray fluorescence as a convenient tool for determination of trace elements in microscale gasoline and diesel

    NASA Astrophysics Data System (ADS)

    Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian

    2018-03-01

    Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.

  1. Will future helicopters be diesel powered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.

  2. Assessing the Equivalence of Paper, Mobile Phone, and Tablet Survey Responses at a Community Mental Health Center Using Equivalent Halves of a 'Gold-Standard' Depression Item Bank.

    PubMed

    Brodey, Benjamin B; Gonzalez, Nicole L; Elkin, Kathryn Ann; Sasiela, W Jordan; Brodey, Inger S

    2017-09-06

    The computerized administration of self-report psychiatric diagnostic and outcomes assessments has risen in popularity. If results are similar enough across different administration modalities, then new administration technologies can be used interchangeably and the choice of technology can be based on other factors, such as convenience in the study design. An assessment based on item response theory (IRT), such as the Patient-Reported Outcomes Measurement Information System (PROMIS) depression item bank, offers new possibilities for assessing the effect of technology choice upon results. To create equivalent halves of the PROMIS depression item bank and to use these halves to compare survey responses and user satisfaction among administration modalities-paper, mobile phone, or tablet-with a community mental health care population. The 28 PROMIS depression items were divided into 2 halves based on content and simulations with an established PROMIS response data set. A total of 129 participants were recruited from an outpatient public sector mental health clinic based in Memphis. All participants took both nonoverlapping halves of the PROMIS IRT-based depression items (Part A and Part B): once using paper and pencil, and once using either a mobile phone or tablet. An 8-cell randomization was done on technology used, order of technologies used, and order of PROMIS Parts A and B. Both Parts A and B were administered as fixed-length assessments and both were scored using published PROMIS IRT parameters and algorithms. All 129 participants received either Part A or B via paper assessment. Participants were also administered the opposite assessment, 63 using a mobile phone and 66 using a tablet. There was no significant difference in item response scores for Part A versus B. All 3 of the technologies yielded essentially identical assessment results and equivalent satisfaction levels. Our findings show that the PROMIS depression assessment can be divided into 2 equivalent

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  4. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    NASA Astrophysics Data System (ADS)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  5. Diesel particulate emissions from used cooking oil biodiesel.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R

    2008-03-01

    Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.

  6. Temperature characteristics for PTC material heating diesel fuel

    NASA Astrophysics Data System (ADS)

    Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming

    2010-08-01

    This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.

  7. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  8. Health Assessment Document for Diesel Exhaust (Revised ...

    EPA Pesticide Factsheets

    This External Review Draft version of this assessment updates three earlier drafts (1999, 1998 and 1994) that were reviewed by the Clean Air Scientific Advisory Committee (CASAC) of the Agency's Science Advisory Board (SAB). The assessment characterizes the possible human health hazards and related exposure-response aspects of those hazards related to environmental exposure to diesel exhaust. The final assessment will incorporate peer review comments provided by the CASAC in 2000 and will take acount of public comments received during the public review period. This is a health hazard assessment. The purpose of the assessment is to identify the key health hazards associated with environmental exposure to diesel exhaust. Information from earlier draft versions of this assessment were used to support EPA regulatory decision making about emission controls for On Road Heavy Duty Diesel Engines and Off Road Diesel Engine Emissions. Also information from the assessment contributes to a nationwide analysis of air toxics to determine the highest public health priorities for future air pollution control programs.

  9. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  10. Visualisation of diesel injector with neutron imaging

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  11. Lubricity of biobased diesel fuels and additives

    USDA-ARS?s Scientific Manuscript database

    Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...

  12. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b...

  13. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b...

  14. 40 CFR 73.90 - Allowance allocations for small diesel refineries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Allowance allocations for small diesel... PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Small Diesel Refineries § 73.90 Allowance allocations for small diesel refineries. (a) Initial certification of eligibility. The certifying official of a...

  15. 40 CFR 73.90 - Allowance allocations for small diesel refineries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Allowance allocations for small diesel... PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Small Diesel Refineries § 73.90 Allowance allocations for small diesel refineries. (a) Initial certification of eligibility. The certifying official of a...

  16. Modeling of diesel/CNG mixing in a pre-injection chamber

    NASA Astrophysics Data System (ADS)

    Abdul-Wahhab, H. A.; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.

    2015-12-01

    Diesel engines performance can be improved by adding combustible gases to the liquid diesel. In this paper, the propagation of a two phase flow liquid-gas fuel mixture into a pre-mixer is investigated numerically by computational fluid dynamics simulation. CNG was injected into the diesel within a cylindrical conduit operates as pre-mixer. Four injection models of Diesel-CNG were simulated using ANSYS-FLUENT commercial software. Two CNG jet diameters were used of 1 and 2 mm and the diesel pipe diameter was 9 mm. Two configurations were considered for the gas injection. In the first the gas was injected from one side while for the second two side entries were used. The CNG to Diesel pressure ratio was varied between 1.5 and 3. The CNG to Diesel mass flow ratios were varied between 0.7 and 0.9. The results demonstrate that using double-sided injection increased the homogeneity of the mixture due to the swirl and acceleration of the mixture. Mass fraction, in both cases, was found to increase as the mixture flows towards the exit. As a result, this enhanced mixing is likely to lead to improvement in the combustion performance.

  17. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  18. High-alcohol microemulsion fuel performance in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear,more » stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.« less

  19. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    PubMed

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  20. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  1. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  2. 46 CFR 119.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.465 Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with adequate means, such as dripproof...

  3. Improvement of ecological characteristics of the hydrogen diesel engine

    NASA Astrophysics Data System (ADS)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  4. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  5. Black Carbon Diesel Initiative in the Russian Arctic

    EPA Pesticide Factsheets

    Mobile and stationary diesel engines are among the largest sources of black carbon emissions in the Arctic. To address this challenge, EPA is leading the Black Carbon Diesel Initiative under the Arctic Black Carbon Initiative (ABCI).

  6. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    PubMed

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  7. Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Simionatto, E.; Andrade, L. H. C.; Lima, S. M.

    2012-04-01

    Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.

  8. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    NASA Astrophysics Data System (ADS)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  9. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from other than safety cans must be dispensed by means of— (1) Gravity feed with a hose equipped with a...) An anti-siphoning device. (c) Diesel fuel must not be dispensed using compressed gas. (d) Diesel fuel...

  10. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from other than safety cans must be dispensed by means of— (1) Gravity feed with a hose equipped with a...) An anti-siphoning device. (c) Diesel fuel must not be dispensed using compressed gas. (d) Diesel fuel...

  11. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from other than safety cans must be dispensed by means of— (1) Gravity feed with a hose equipped with a...) An anti-siphoning device. (c) Diesel fuel must not be dispensed using compressed gas. (d) Diesel fuel...

  12. Analysis of real-time variables affecting children's exposure to diesel-related pollutants during school bus commutes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Sabin, Lisa D.; Kozawa, Kathleen; Behrentz, Eduardo; Winer, Arthur M.; Fitz, Dennis R.; Pankratz, David V.; Colome, Steven D.; Fruin, Scott A.

    Variables affecting children's exposure during school bus commutes were investigated using real-time measurements of black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PB-PAH) and nitrogen dioxide (NO 2) inside 3 conventional diesel school buses, a particle trap-outfitted (TO) diesel school bus and a compressed natural gas (CNG) school bus, while traveling along an urban Los Angeles Unified School District bus route. A video camera was mounted at the front of each bus to record roadway conditions ahead of the bus during each commute. The videotapes from 12 commutes, in conjunction with pollutant concentration time series, were used to determine the influence of variables such as vehicles being followed, bus type and roadway type on pollutant concentrations inside the bus. For all buses tested, the highest concentrations of BC, PB-PAH and NO 2 were observed when following a diesel school bus, especially if that bus was emitting visible exhaust. This result was important because other diesel school buses were responsible for the majority of the diesel vehicle encounters, primarily due to caravanning with each other when leaving a school at the same time. Compared with following a gasoline vehicle or no target, following a smoky diesel school bus yielded BC and PB-PAH concentrations inside the cabin 8 and 11 times higher, respectively, with windows open, and ˜1.8 times higher for both pollutants with windows closed. When other diesel vehicles were not present, pollutant concentrations were highest inside the conventional diesel buses and lowest inside the CNG bus, while the TO diesel bus exhibited intermediate concentrations. Differences in pollutant concentrations between buses were most pronounced with the bus windows closed, and were attributed to a combination of higher concentrations in the exhaust and higher exhaust gas intrusion rates for the conventional diesel buses. Conventional diesel school buses can have a double exposure impact on

  13. RESPIRATORY CARCINOGENICITY OF DIESEL FUEL EMISSIONS. FINAL REPORT

    EPA Science Inventory

    An experiment was carried out to compare the carcinogenicity of diesel exhaust particles (administered by fifteen weekly intratracheal instillations) to that of organic extracts of diesel particles, coke oven emissions, roofing tar condensate and cigarette smoke condensate. Appro...

  14. Chronic Obstructive Pulmonary Disease Mortality in Diesel-Exposed Railroad Workers

    PubMed Central

    Hart, Jaime E.; Laden, Francine; Schenker, Marc B.; Garshick, Eric

    2006-01-01

    Diesel exhaust is a mixture of combustion gases and ultrafine particles coated with organic compounds. There is concern whether exposure can result in or worsen obstructive airway diseases, but there is only limited information to assess this risk. U.S. railroad workers have been exposed to diesel exhaust since diesel locomotives were introduced after World War II, and by 1959, 95% of the locomotives were diesel. We conducted a case–control study of railroad worker deaths between 1981 and 1982 using U.S. Railroad Retirement Board job records and next-of-kin smoking, residential, and vitamin use histories. There were 536 cases with chronic obstructive pulmonary disease (COPD) and 1,525 controls with causes of death not related to diesel exhaust or fine particle exposure. After adjustment for age, race, smoking, U.S. Census region of death, vitamin use, and total years off work, engineers and conductors with diesel-exhaust exposure from operating trains had an increased risk of COPD mortality. The odds of COPD mortality increased with years of work in these jobs, and those who had worked ≥ 16 years as an engineer or conductor after 1959 had an odds ratio of 1.61 (95% confidence interval, 1.12–2.30). These results suggest that diesel-exhaust exposure contributed to COPD mortality in these workers. Further study is needed to assess whether this risk is observed after exposure to exhaust from later-generation diesel engines with modern emission controls. PMID:16835052

  15. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  16. Biodegradation studies of selected hydrocarbons from diesel oil.

    PubMed

    Sepic, E; Trier, C; Leskovsek, H

    1996-10-01

    In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.

  17. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  18. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    PubMed Central

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  19. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  20. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    PubMed Central

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  1. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    USDA-ARS?s Scientific Manuscript database

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  2. DI Diesel Performance and Emissions Models

    DTIC Science & Technology

    2003-06-11

    Skeletal mechanism for NOx chemistry in diesel engines ,” SAE Paper 981450, 1998 SAE Transactions, Vol. 107, Sect. 4, J. Fuels and... mechanism for NOx chemistry proposed by Mellor et al. (1998a) is incorporated in an engine simulation code. The two-zone model, also proposed by Mellor et...34Dynamic Application of a Skeletal Mechanism for DI Diesel NOx Emissions," SAE Paper 2001-01-1984, SAE Trans., J. Fuels & Lubricants,

  3. Black carbon emissions from diesel sources in Russia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators.more » The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.« less

  4. Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Xiang, He Wan; Xiong, Li Zhi

    1988-01-01

    The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.

  5. A tiered approach to distinguish sources of gasoline and diesel spills.

    PubMed

    Xiong, Wenhui; Bernesky, Ryan; Bechard, Robert; Michaud, Guy; Lang, Jeremy

    2014-07-15

    Approximately 11% and 25% of annual Canadian oil spill accidents are gasoline and diesel spills, respectively. Gasoline and diesel spills are a challenge to conventional environmental forensic techniques because refinery processes remove most of the higher molecular weight biomarkers. This study presents a tiered environmental forensics strategy that includes such information as site operational history, geology/hydrogeology, GC/FID pre-screening, volatile GC/MS, semi-volatile GC/MS, and GC/MS selected ion monitoring (SIM) chromatograms for fingerprinting of gasoline and diesel spills. GC/FID pre-screening analysis identified the presence of two individual gasoline and diesel plumes at a fuel service station (study site). The gasoline plume is present between the upgradient fuel underground storage tanks (USTs) and the downgradient diesel plume, suggesting that the diesel impacts to groundwater may not be originated from the current UST leakage. Similar distribution of C3-alkylbenzenes (the most stable chemicals in gasoline) and the consistent diagnostic ratios of the analyte pairs with similar solubility indicate that the source for the dissolved gasoline constituents in the gasoline impacted zone likely originated from a gasoline leakage from the current USTs on the study site. In the diesel impacted zone, the distinct distribution and diagnostic ratios of sesquiterpanes (biomarkers for diesel) and alkylated PAHs confirm that the diesel plume originate from different crude oil sources than the current USTs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Diesel exhaust exposure among adolescents in Harlem: a community-driven study.

    PubMed

    Northridge, M E; Yankura, J; Kinney, P L; Santella, R M; Shepard, P; Riojas, Y; Aggarwal, M; Strickland, P

    1999-07-01

    This study sought individual-level data on diesel exhaust exposure and lung function among adolescents in Harlem as part of a community-driven research agenda. High school students administered in-person surveys to seventh grade students to ascertain information on demographics, asthma history, and self-reported and maternal smoking. Urine samples were assayed for 1-hydroxypyrene (1-HP), a marker of diesel exhaust exposure, and cotinine, a marker of tobacco smoke exposure. Computer-assisted spirometry was used to measure lung function. Three quarters (76%) of the participating students had detectable levels of 1-HP. Three students (13%) had an FEF25-75 of less than or equal to 80% of their predicted measurements, and 4 students (17%) had results between 80% and 90% of the predicted value, all of which are suggestive of possible lung impairment. These data suggest that most adolescents in Harlem are exposed to detectable levels of diesel exhaust, a known exacerbator and possible cause of chronic lung disorders such as asthma. Community-driven research initiatives are important for empowering communities to make needed changes to improve their environments and health.

  8. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  9. Effects of blending on the properties of diesel and palm biodiesel

    NASA Astrophysics Data System (ADS)

    Bukkarapu, Kiran Raj; Srinivas Rahul, T.; Kundla, Sivaji; Vishnu Vardhan, G.

    2018-03-01

    Palm biodiesel is blended to diesel in different volume percentages to improve certain properties. This would help in having a good understanding of the dependence of the diesel properties on the biodiesel proportion. The properties of interest in the present work are density, kinematic viscosity, flash point and fire point of the blends which are determined and compared to petrodiesel. It is observed that the kinematic viscosity and density of the diesel increase with the palm biodiesel proportion and it is not preferable. Blends with higher palm content possess higher flash point and fire point. Apparently, blending worsens the conditions and hence might be of no use when compared to diesel, but when compared to neat palm biodiesel, blending helped in pulling down the density, viscosity, fire point and flash point of the latter. Using regression analysis and the properties data of respective blends, correlations are developed to predict the properties of diesel and biodiesel blends known the percentage of biodiesel added to diesel, which are validated using biodiesel and diesel blends which are not used as an input to develop them.

  10. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  11. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  12. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  13. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  14. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  15. Evaluation of factors that affect diesel exhaust toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbeck, J.M.; Smith, M.R.; Arey, J.

    1998-07-01

    The scope of this project was to obtain a preliminary assessment of the potential impact of the fuel formulation on the speciation and toxic components of diesel exhaust. The test bed was a Cummins L10 engine operating over the heavy-duty transient test cycle using three diesel fuels: a pre-1993 diesel fuel, a low aromatic diesel fuel, and an alternative formulation diesel fuel. The sampling/analysis plan included: determination of the criteria pollutant emission rates (THC, CO, NOx, and PM); determination of PM(10) and PM(2.5) emission rates; collection and analysis of particulate samples for elemental, inorganic ion and elemental/organic carbon analyses; collectionmore » of bas samples for VOC speciation analyses; collection of 2,4-dinitrophenylhydrazine (DNPH) cartridges for determination of oxygenates; collection of nitrosomorpholine with Thermosorb N cartridges; collection of semi-volatiles on PF/XAD and particulate samples for PAH, nitro-PAH, and mutagenicity studies; and collection and analysis of dioxins for the pre-1993 and alternative formulation diesel fuels.« less

  16. LPG as a Fuel for Diesel Engines-Experimental Investigations

    NASA Astrophysics Data System (ADS)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  17. NEUROGENIC RESPONSES OF RAT LUNG TO DIESEL EXHAUST

    EPA Science Inventory

    The investigators are among the first researchers to investigate neurogenic inflammation in the lungs of rats exposed to whole diesel exhaust. After exposure to both concentrations of diesel exhaust, consistently higher levels of plasma leakage and lower activity of the enz...

  18. No Breathing in the Aisles: Diesel Exhaust inside School Buses.

    ERIC Educational Resources Information Center

    Solomon, Gina M.; Campbell, Todd R.; Feuer, Gail Ruderman; Masters, Julie; Samkian, Artineh; Paul, Kavita Ann

    There is evidence that diesel exhaust causes cancer and premature death, and also exacerbates asthma and other respiratory illness. Noting that the vast majority of the nation's school buses run on diesel fuel, this report details a study examining the level of diesel exhaust to which children are typically exposed as they travel to and from…

  19. Serum vitamin D levels are not altered after controlled diesel ...

    EPA Pesticide Factsheets

    Past research has suggested that exposure to urban air pollution may be associated with vitamin D deficiency in human populations. Vitamin D is widely known for its importance in bone growth/remodeling, muscle metabolism, and its ability to promote calcium absorption in the gut; deficiency in vitamin D results in the development of rickets in children and osteomalacia in adults. In the current study, we assessed whether vitamin D levels are altered under controlled exposures to a commonly measured urban air pollutant, diesel. For this study, we exposed 12 healthy volunteers to clean air and diesel exhaust (300 μg/m3) for 2 hours while undergoing intermittent exercise. Venous blood was collected before, 0 hrs post-, and 18 hrs post-exposure, and 25-hydroxyvitamin D [25(OH)D] was measured in the serum. The average baseline value of 25(OH)D (mean ± standard error) was 22.9 ± 2.5 ng/mL. Four subject’s baseline values were vitamin D deficient (30 ng/mL). Additionally, there was no significant change in the baseline values between the clean air and diesel exposures (paired t-test, p = 0.54), suggesting minimal variability in 25(OH)D over the experiment's time course. Small inductions in 25(OH)D were found following clean air exposures (12.5 ± 4.9% and a 7.1 ± 5.0% for 0 hrs post- and 18 hrs post-exposure values compared to baseline, respectively). Minimal changes in 25(OH)D were observed following diesel exhaust exposures 0 hrs (3.5 ± 5.2%) and 18 hrs followin

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  1. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  2. Fuel system for diesel engine with multi-stage heated

    NASA Astrophysics Data System (ADS)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  3. Two-stroke diesels meet Macau electric power needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordeiro, V.; Jensen, J.B.

    1996-07-01

    In February 1996, the second and last section of the third low-speed diesel extension to the Coloane Power Station was handed over to Companhia de Electricidade de Macau (CEM) by an international consortium. Lead by Burmeister & Wain Scandinavian Contractor A/S (BWSC), The consortium also includes Mitsui Engineering & Shipbuilding Co. Ltd.(MES), and MAN B&W Diesel A/S. The two new Mitsui MAN B&W model 12K90MC-S units, each having a capacity of more than 50MW, are said to be the largest stationary two-stroke low-speed diesels built to date.

  4. Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng

    2017-10-01

    Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.

  5. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  6. 40 CFR 73.90 - Allowance allocations for small diesel refineries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Director, Acid Rain Division, under the procedures set forth in § 73.13 of this part. (c) Allowance... exceed 1500 for any calendar year: EC01SE92.092 where: a = diesel fuel in barrels for the year (or for October 1 through December 31 for 1993) b = lbs per barrel of diesel c = lbs of sulfur per lbs of diesel d...

  7. 40 CFR 73.90 - Allowance allocations for small diesel refineries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Director, Acid Rain Division, under the procedures set forth in § 73.13 of this part. (c) Allowance... exceed 1500 for any calendar year: EC01SE92.092 where: a = diesel fuel in barrels for the year (or for October 1 through December 31 for 1993) b = lbs per barrel of diesel c = lbs of sulfur per lbs of diesel d...

  8. 40 CFR 73.90 - Allowance allocations for small diesel refineries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Director, Acid Rain Division, under the procedures set forth in § 73.13 of this part. (c) Allowance... exceed 1500 for any calendar year: EC01SE92.092 where: a = diesel fuel in barrels for the year (or for October 1 through December 31 for 1993) b = lbs per barrel of diesel c = lbs of sulfur per lbs of diesel d...

  9. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  10. System for operating solid oxide fuel cell generator on diesel fuel

    NASA Technical Reports Server (NTRS)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  11. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  12. Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique

    NASA Astrophysics Data System (ADS)

    Verma, Rajneesh K.; Suwalka, Payal; Yadav, Jatin

    2018-07-01

    In this paper we focused on the experimental investigations for fabricating a surface plasmon resonance (SPR) based fiber optic sensor for the detection of the extent of adulteration in petrochemicals: petrol and diesel by kerosene. Primarily it is observed that the refractive index of the petrol and diesel changes if we mix kerosene in it. The variation in refractive index is linear in nature. Utilizing the phenomenon of surface plasmon resonance in Krestchmann configuration on optical fiber, the percentage of adulteration in petrol and diesel is detected. The detection level of adulteration is quantified systematically for both the petrol and diesel. The study carried out here explores the possibility of utilizing SPR technique for the detection of the level of adulteration in petrochemicals. The suitability of the optical fiber for remote sensing and its immunity towards electromagnetic interaction makes this probe very useful for such endeavor. High sensitivity, easy construction and its portability, makes this study important in the development of SPR based optical fiber sensors for petrochemical industries. Apart from this various aspects of environment polluting hazardous/toxic gases as an emission product of automobile fuels has also been discussed.

  13. Diesel Technology: Introduction.

    ERIC Educational Resources Information Center

    Joerschke, John D.; Eichhorn, Lane C.

    Competency-based teacher and student materials are provided for an introductory course on diesel technology. Twelve units of instruction cover the following topics: workplace tools, common materials, and basic related principles. The materials are based on the curriculum-alignment concept of first stating the objectives, then developing…

  14. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  15. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  18. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  19. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  20. Emissions from diesel and stratified charge powered cars. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less

  1. CT findings in hydrocarbon pneumonitis after diesel fuel siphonage.

    PubMed

    Yi, Mi Seon; Kim, Kun-Il; Jeong, Yeon Joo; Park, Hye Kyung; Lee, Min Ki

    2009-10-01

    The purpose of this study was to assess CT findings in a series of patients with hydrocarbon pneumonitis after diesel fuel siphonage. The characteristic CT findings of hydrocarbon pneumonitis after diesel fuel siphonage are the presence of air-space consolidations with predominant right middle lobe involvement and areas of low attenuation within consolidation. Occasionally, bronchoalveolar lavage is needed to confirm the diagnosis of hydrocarbon pneumonitis by the presence of lipid-laden macrophages on the basis of a history of diesel fuel aspiration.

  2. Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, E I; Barley, C D; Drouilhet, S

    1997-09-01

    Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control,more » the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.« less

  3. Evaluation of a disposable diesel exhaust filter for permissible mining machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambs, J.L.; Cantrell, B.K.; Watts, W.F.

    1994-01-01

    The US Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mines using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterbath exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90% at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less

  4. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  5. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  8. Correlation of black smoke and nitrogen oxides emissions through field testing of in-use diesel vehicles.

    PubMed

    Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting

    2006-05-01

    Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The

  9. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  10. Diesel Engine Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  11. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that thismore » synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.« less

  12. Physicochemical and FTIR Study of Diesel-Hydrogen Peroxide Fuel Blend

    NASA Astrophysics Data System (ADS)

    Saad Khan, Muhammad; Ahmed, Iqbal; Lal, Bhajan; Idris, Al-Amin; Albeirutty, Muhammad H.; Ayoub, Muhammad; Sufian, Suriati binti

    2018-04-01

    Physicochemical properties of combustion fuels play a key role in determining the qualitative and quantitative characteristics, reliability and health effects associated with emissions. This paper reports the preparation of polysaccharide (PS) based emulsifier for stable blending of petroleum diesel-hydrogen peroxide (H2O2) and investigated the influence of H2O2 as diesel fuel blends on the physicochemical properties and characteristics. The quantity of PS-emulsifier was kept at 5 volume % (vol. %) and the volume ratio of H2O2 were varied 5-15 vol. % to reference diesel (RD), respectively. The blended diesel/H2O2 fuel were prepared under inert oxygen (O2) gas closed heating system; afterthought, physiochemical properties of diesel/H2O2 blend were evaluated at standard ASTM D-975 testing method. The kinetic properties show the interaction of RD and H2O2 blend at presence of PS emulsifier which exhibit the phenomenon to diminish the interfacial tension among the two different phases to form a homogenized stable solution. Results revealed that H2O2 is capable of enhancing the diesel fuel properties and showed that the addition of H2O2 in a diesel fuel blend are lied within the ranges of standard ASTM D-975. Due to further oxygen atom present in H2O2, it can facilitate the combustion process which ultimately effect on exhaust emission.

  13. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  14. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study.

    PubMed

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere

    2017-06-01

    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  15. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  16. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993 and..., sell, offer for sale, supply, store, dispense, offer for supply or transport any diesel fuel for use in...

  17. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993 and..., sell, offer for sale, supply, store, dispense, offer for supply or transport any diesel fuel for use in...

  18. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel... containing a diesel fuel tank and no machinery must meet one of the following requirements: (1) A space of 14...

  19. Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine.

    PubMed

    Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K

    2017-02-07

    Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.

  20. Fatal Diesel Poisoning: A Case Report and Brief Review of Literature.

    PubMed

    Srinivasa Murthy, Abilash; Das, Siddhartha; Bheemanathi Hanuman, Srinivas

    2018-06-01

    Hydrocarbons are volatile substances that are used in routine life activities for cooking or as automobile fuel. Diesel is one of the commonly used automobile fuels obtained from crude oil. Death due to poisoning by diesel is rarely reported. Most commonly affected is the respiratory system either after aspiration or ingestion. The most common presentation is chemical pneumonitis or aspiration pneumonitis from which patient usually recovers. Gas chromatography techniques help in the detection of volatile substances like diesel. Here, we report a rare case of fatal pediatric accidental diesel poisoning.

  1. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  2. Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel?

    Science.gov Websites

    Diesel Vehicles Work Using Biodiesel? to someone by E-mail Share Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Facebook Tweet about Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Twitter Bookmark Alternative Fuels Data Center: How Do

  3. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  4. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  5. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  6. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  7. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 182.465, a space containing a diesel fuel tank and no machinery must meet the requirements of this...

  8. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  9. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  10. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  11. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  12. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  13. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  14. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  15. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.

  16. Increase of diesel car raises health risk in spite of recent development in engine technology.

    PubMed

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  17. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.

    PubMed

    Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L

    2015-07-01

    To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.

  18. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2010-01-15

    The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Diesel and Truck Certification Needs Assessment: Two Surveys.

    ERIC Educational Resources Information Center

    Broadbent, William A.

    Recommendations for the improvement of the diesel engine and truck components of the Hawaii state certification examination for automobile and truck mechanics were solicited from 14 major private businesses repairing heavy tractor rigs and/or diesel engines on Oahu and a statewide sample of 21 trucking firms and other companies making extensive…

  20. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device...

  2. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  3. NOx Emissions from Diesel Passenger Cars Worsen with Age.

    PubMed

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  4. Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium.

    PubMed

    Sharma, Anjana; Rehman, Meenal Budholia

    2009-09-01

    In vitro experiment was performed by taking petrol pump soils and diesel in flasks with the micronutrients and macronutrients supplements. Cemented bioreactors having sterilized soil and diesel was used for in vivo analysis of diesel hydrocarbon degradation. There were two sets of experiments, first having three bioreactors (1) inoculated by KI. pneumoniae subsp. aerogenes with soil and diesel; (2) with addition of NH4NO3; and (3) served as control. In second set, one bioreactor was inoculated by bacterial consortium containing Moraxella saccharolytica, Alteromonas putrefaciens, KI. pneumoniae subsp. aerogenes and Pseudomonas fragi along with soil and diesel. The remaining two bioreactors (having NH4NO3 and control) were similar to the first set. The experiments were incubated for 30 days. Ability of bacterial inoculum to degrade diesel was analyzed through GC-MS. Smaller chain compounds were obtained after experimental period of 30 days. Rate of diesel degradation was better with the present bacterial consortium than individual bacteria. Present bacterial consortium can be a better choice for faster and complete remediation of contaminated hydrocarbon soils.

  5. Exposures to diesel exhaust in the International Brotherhood of Teamsters, 1950-1990.

    PubMed

    Bailey, Chad R; Somers, Joseph H; Steenland, Kyle

    2003-01-01

    A prior case-control study found a positive, monotonic exposure-response relationship between exposure to diesel exhaust and lung cancer among decedents of the Central States Conference of the International Brotherhood of Teamsters. In response to critiques of the Teamsters' exposure estimates by the Health Effects Institute's Diesel Epidemiology Panel, historical exposures and associated uncertainties are investigated here. Historic diesel exhaust exposures are predicted as a function of heavy-duty diesel truck emissions, increasing use of diesel engines, and occupational elemental carbon (EC) measurements taken during the late 1980s and early 1990s. EC from diesel and nondiesel sources is distinguished in light of recent studies indicating a substantial contribution of gasoline vehicles to ambient EC. Monte Carlo sampling is used to characterize exposure distributions. The methodology used in this article-a probabilistic model for historical exposure assessment-is novel.

  6. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  7. Physico-chemical properties and biological effects of diesel and biomass particles.

    PubMed

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. Copyright © 2016 Elsevier Ltd. All rights

  8. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  9. Wavelength-dependent excess permittivity as indicator of kerosene in diesel oil.

    PubMed

    Kanyathare, Boniphace; Peiponen, Kai-Erik

    2018-04-20

    Adulteration of diesel oil by kerosene is a serious problem because of air pollution resulting from car exhaust gases. The objective of this study was to develop a relatively simple optical measurement and data analysis method to screen low-adulterated diesel oils. For this purpose, we introduce the utilization of refractive index measurement with a refractometer, scanning of visible-near-infrared transmittance, transmittance data inversion using the singly subtractive Kramers-Kronig relation, and exploitation of so-called wavelength-dependent relative excess permittivity. It is shown for three different diesel oil grades, adulterated with kerosene, that the excess permittivity is a powerful measure for screening fake diesel oils. The excess relative permittivity of such binary mixtures also reveals hidden spectral fingerprints that are neither visible in dispersion data alone nor in spectral transmittance measurements alone. We believe that the excess permittivity data are useful in the case of screening adulteration of diesel oil by kerosene and can further be explored for practical sensing solutions, e.g., in quality inspection of diesel oils in refineries.

  10. DIESEL PARTICLE GENERATION, CHARACTERIZATION, AND DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Inhalation of diesel exhaust is associated with the development of asthma as well as other adverse health effects. Studies have also demonstrated that diesel exhaust induces pulmonary changes that worsen asthmatic responses to respiratory allergens. This paper describes the des...

  11. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, D.; Parsley, W.; Bush,C

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particlemore » number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.« less

  12. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  13. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  14. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  15. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  16. Screw expander for light duty diesel engines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  17. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  18. Investigation of nozzle flow and cavitation characteristics in a diesel injector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, S.; Ramirez, A.; Aggarwal, S.

    2010-04-01

    Cavitation and turbulence inside a diesel injector play a critical role in primary spray breakup and development processes. The study of cavitation in realistic injectors is challenging, both theoretically and experimentally, since the associated two-phase flow field is turbulent and highly complex, characterized by large pressure gradients and small orifice geometries. We report herein a computational investigation of the internal nozzle flow and cavitation characteristics in a diesel injector. A mixture based model in FLUENT V6.2 software is employed for simulations. In addition, a new criterion for cavitation inception based on the total stress is implemented, and its effectiveness inmore » predicting cavitation is evaluated. Results indicate that under realistic diesel engine conditions, cavitation patterns inside the orifice are influenced by the new cavitation criterion. Simulations are validated using the available two-phase nozzle flow data and the rate of injection measurements at various injection pressures (800-1600 bar) from the present study. The computational model is then used to characterize the effects of important injector parameters on the internal nozzle flow and cavitation behavior, as well as on flow properties at the nozzle exit. The parameters include injection pressure, needle lift position, and fuel type. The propensity of cavitation for different on-fleet diesel fuels is compared with that for n-dodecane, a diesel fuel surrogate. Results indicate that the cavitation characteristics of n-dodecane are significantly different from those of the other three fuels investigated. The effect of needle movement on cavitation is investigated by performing simulations at different needle lift positions. Cavitation patterns are seen to shift dramatically as the needle lift position is changed during an injection event. The region of significant cavitation shifts from top of the orifice to bottom of the orifice as the needle position is changed from

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  20. What is new in diesel.

    PubMed

    Bunn, William B; Valberg, P A; Slavin, T J; Lapin, C A

    2002-10-01

    We review information from the past 5 years on changes in diesel exhaust (DE) emissions and developments in the study of DE toxicity. New DE technologies have changed the composition of DE considerably, reducing emissions of many of the components of health concern. The increasing similarity of modern diesel and compressed natural-gas engine emissions needs to be reflected in any regulatory analysis. Even for historical DE emissions, considerable study of DE exposure in animals or humans has not produced data useful for risk assessment. DE inhalation exposure in most species (hamsters, guinea pigs, mice) does not produce lung tumors. Inhalation studies of DE in rats found lung tumors only with lung overload, and tumors also occurred when inert dusts were inhaled at overload concentrations. The animal data are reassuring and show that DE is not a concern at ambient exposure levels. Re-analyses of occupational epidemiology have been shown to have serious shortcomings that do not allow the derivation of a quantitative cancer risk. Studies of railroad workers found no dose response; rather cancer risk appeared to decrease for individuals with greater DE exposure. Studies of truck drivers also suffer from serious flaws because of misconceptions about the year that diesel was introduced, lack of an adequate latency period, and the realization that drivers exhibited increased lung cancer risk even prior to the diesel era. Recent industrial hygiene studies of drivers show that DE was not likely to be a primary source of particles or polycyclic aromatic hydrocarbons. Further, there is no dose response across occupations. In fact, the occupation (underground miners) with the highest exposure to DE does not exhibit increased cancer risks. This new information seriously weakens earlier risk characterizations of DE by various regulatory groups. New research and better exposure measurements are needed before a reliable risk assessment of DE can be produced.

  1. 65. FORWARD EMERGENCY DIESEL GENERATOR SET AFT LOOKING FORWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FORWARD EMERGENCY DIESEL GENERATOR SET - AFT LOOKING FORWARD SHOWING TOP HALF OF FAIRBANKS MORSE 36D81/8 TEN CYLINDER DIESEL ENGINE SERIAL #951230 AND EXHAUST SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  3. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel fuel tanks. 58.50-10 Section 58.50-10 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  4. Occupational exposure to diesel engine exhaust and serum cytokine levels.

    PubMed

    Dai, Yufei; Ren, Dianzhi; Bassig, Bryan A; Vermeulen, Roel; Hu, Wei; Niu, Yong; Duan, Huawei; Ye, Meng; Meng, Tao; Xu, Jun; Bin, Ping; Shen, Meili; Yang, Jufang; Fu, Wei; Meliefste, Kees; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Zheng, Yuxin

    2018-03-01

    The International Agency for Research on Cancer has classified diesel engine exhaust (DEE) as a human lung carcinogen. Given that inflammation is suspected to be an important underlying mechanism of lung carcinogenesis, we evaluated the relationship between DEE exposure and the inflammatory response using data from a cross-sectional molecular epidemiology study of 41 diesel engine testing workers and 46 unexposed controls. Repeated personal exposure measurements of PM 2.5 and other DEE constituents were taken for the diesel engine testing workers before blood collection. Serum levels of six inflammatory biomarkers including interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1β, and monocyte chemotactic protein (MCP)-1 were analyzed in all subjects. Compared to unexposed controls, concentrations of MIP-1β were significantly reduced by ∼37% in DEE exposed workers (P < 0.001) and showed a strong decreasing trend with increasing PM 2.5 concentrations in all subjects (P trend  < 0.001) as well as in exposed subjects only (P trend  = 0.001). Levels of IL-8 and MIP-1β were significantly lower in workers in the highest exposure tertile of PM 2.5 (>397 µg/m 3 ) compared to unexposed controls. Further, significant inverse exposure-response relationships for IL-8 and MCP-1 were also found in relation to increasing PM 2.5 levels among the DEE exposed workers. Given that IL-8, MIP-1β, and MCP-1 are chemokines that play important roles in recruitment of immunocompetent cells for immune defense and tumor cell clearance, the observed lower levels of these markers with increasing PM 2.5 exposure may provide insight into the mechanism by which DEE promotes lung cancer. Environ. Mol. Mutagen. 59:144-150, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  6. 30 CFR 75.1915 - Training and qualification of persons working on diesel-powered equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on diesel-powered equipment. 75.1915 Section 75.1915 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1915 Training and qualification of persons working on diesel-powered equipment. (a) To be qualified to perform maintenance, repairs, examinations and tests on diesel-powered...

  7. 30 CFR 75.1915 - Training and qualification of persons working on diesel-powered equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... on diesel-powered equipment. 75.1915 Section 75.1915 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1915 Training and qualification of persons working on diesel-powered equipment. (a) To be qualified to perform maintenance, repairs, examinations and tests on diesel-powered...

  8. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    NASA Astrophysics Data System (ADS)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  9. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. Thismore » combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.« less

  10. Effects of biodiesel on emissions of a bus diesel engine.

    PubMed

    Kegl, Breda

    2008-03-01

    This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.

  11. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  12. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks...

  13. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  14. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    PubMed

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  15. Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; de Gouw, J. A.; Warneke, C.; Trainer, M.; Brock, C. A.; Stark, H.; Brown, S. S.; Dube, W. P.; Gilman, J. B.; Hall, K.; Holloway, J. S.; Kuster, W. C.; Perring, A. E.; Prevot, A. S. H.; Schwarz, J. P.; Spackman, J. R.; Szidat, S.; Wagner, N. L.; Weber, R. J.; Zotter, P.; Parrish, D. D.

    2012-03-01

    Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.

  16. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  18. Concentration measurements of biodiesel in engine oil and in diesel fuel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.

    2012-05-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  19. Analysis of noise emitted from diesel engines

    NASA Astrophysics Data System (ADS)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  20. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    needed. Do not return it to the originator. iii Oxygenates for Advanced Petroleum-Based Diesel Fuels INTERIM REPORT TFLRF No. 351 by David W. Naegeli ...Blends,” 219th American Chemical Society Meeting, San Francisco, CA, March 26-30, 2000. 5. Naegeli , D.W. and Moses, C.A., “Effects of Fuel...Alternative Fuels in an Advanced Automotive Diesel Engine,” SAE Paper 2000- 01-2048. 25. Vertin, K.D., Ohi, J.M., Naegeli , D.W., Childress, K.H

  1. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531 How...

  2. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531 How...

  3. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    USDA-ARS?s Scientific Manuscript database

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  4. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... written standard operating procedures for such testing and evaluation that specify the following: (1) The... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or...

  5. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... written standard operating procedures for such testing and evaluation that specify the following: (1) The... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or...

  6. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... written standard operating procedures for such testing and evaluation that specify the following: (1) The... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or...

  7. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... written standard operating procedures for such testing and evaluation that specify the following: (1) The... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or...

  8. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... written standard operating procedures for such testing and evaluation that specify the following: (1) The... MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or...

  9. Consider the DME alternative for diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, T.H.; Meurer, P.C.

    1996-07-01

    Engine tests demonstrate that dimethyl ether (DME, CH{sub 3}OCH{sub 3}) can provide an alternative approach toward efficient, ultra-clean and quiet compression ignition (CI) engines. From a combustion point of view, DME is an attractive alternative fuel for CI engines, primarily for commercial applications in urban areas, where ultra-low emissions will be required in the future. DME can resolve the classical diesel emission problem of smoke emissions, which are completely eliminated. With a properly developed DME injection and combustion system, NO{sub x} emissions can be reduced to 40% of Euro II or U.S. 1998 limits, and can meet the future ULEVmore » standards of California. Simultaneously, the combustion noise is reduced by as much as 15 dB(A) below diesel levels. In addition, the classical diesel advantages such as high thermal efficiency, compression ignition, engine robustness, etc., are retained.« less

  10. Gene Expression Changes in the Olfactory Bulb of Mice Induced by Exposure to Diesel Exhaust Are Dependent on Animal Rearing Environment

    PubMed Central

    Yokota, Satoshi; Hori, Hiroshi; Umezawa, Masakazu; Kubota, Natsuko; Niki, Rikio; Yanagita, Shinya; Takeda, Ken

    2013-01-01

    There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust. PMID:23940539

  11. Study on performance of blended fuel PPO - Diesel at generator

    NASA Astrophysics Data System (ADS)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  12. Preparation and characterization of bio-diesels from various bio-oils.

    PubMed

    Lang, X; Dalai, A K; Bakhshi, N N; Reaney, M J; Hertz, P B

    2001-10-01

    Methyl, ethyl, 2-propyl and butyl esters were prepared from canola and linseed oils through transesterification using KOH and/ or sodium alkoxides as catalysts. In addition, methyl and ethyl esters were prepared from rapeseed and sunflower oils using the same catalysts. Chemical composition of the esters was determined by HPLC for the class of lipids and by GC for fatty acid compositions. The bio-diesel esters were characterized for their physical and fuel properties including density, viscosity, iodine value, acid value, cloud point, pure point, gross heat of combustion and volatility. Methyl and ethyl esters prepared from a particular vegetable oil had similar viscosities, cloud points and pour points, whereas methyl, ethyl, 2-propyl and butyl esters derived from a particular vegetable oil had similar gross heating values. However, their densities, which were 2 7% higher than those of diesel fuels, statistically decreased in the order of methyl approximately 2-propyl > ethyl > butyl esters. Butyl esters showed reduced cloud points (-6 degrees C to -10 degrees C) and pour points (-13 degrees C to -16 degrees C) similar to those of summer diesel fuel having cloud and pour points of -8 degrees C and -15 degrees C, respectively. The viscosities of bio-diesels (3.3-7.6 x 10(-4) Pa s at 40 degrees C) were much less than those of pure oils (22.4-45.1 x 10(-4) Pa s at 40 degrees C) and were twice those of summer and winter diesel fuels (3.50 and 1.72 x 10(-4) Pa s at 40 degrees C), and their gross heat contents of approximately 40 MJ/kg were 11% less than those of diesel fuels (approximately 45 MJ/kg). For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier. However, the bio-diesels were considerably less volatile than the conventional diesel fuels.

  13. NREL and California Air Agency to Test Clean Diesel Fuels

    Science.gov Websites

    with catalyzed exhaust filters to virtually eliminate diesel smoke, odor and particulate matter low sulfur and low aromatic content may enable the use of catalyzed exhaust filters to reduce diesel

  14. Adsorption and preconcentration of divalent metal ions in fossil fuels and biofuels: gasoline, diesel, biodiesel, diesel-like and ethanol by using chitosan microspheres and thermodynamic approach.

    PubMed

    Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F

    2011-05-15

    Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  16. Diesel asthma. Reactive airways disease following overexposure to locomotive exhaust.

    PubMed

    Wade, J F; Newman, L S

    1993-02-01

    While some of the gaseous and particulate components of diesel exhaust can cause pulmonary irritation and bronchial hyperreactivity, diesel exhaust exposure has not been shown to cause asthma. Three railroad workers developed asthma following excessive exposure to locomotive emissions while riding immediately behind the lead engines of caboose-less trains. Asthma diagnosis was based on symptoms, pulmonary function tests, and measurement of airways hyperreactivity to methacholine or exercise. One individual's peak expiratory flow rates fell in a work-related pattern when riding immediately behind the lead diesel engine. None had a previous history of asthma or other respiratory disease and none were current smokers. All three developed persistent asthma. In two cases, physiologic abnormalities suggesting reversible restriction were observed. This is the first report implicating diesel exhaust as a cause of reactive airways disease.

  17. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing andmore » evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the

  18. Diesel Emissions Quantifier (DEQ)

    EPA Pesticide Factsheets

    .The Diesel Emissions Quantifier (Quantifier) is an interactive tool to estimate emission reductions and cost effectiveness. Publications EPA-420-F-13-008a (420f13008a), EPA-420-B-10-035 (420b10023), EPA-420-B-10-034 (420b10034)

  19. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79 Section 86.336-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  20. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typicallymore » have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus